Add copyright headers to macro files
[nasm/avx512.git] / nasm.h
blob775d0f99312dd39850e5c1b1f40d436dbbadc4e4
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU Lesser General Public License as
9 * published by the Free Software Foundation, Inc.,
10 * 51 Franklin St, Fifth Floor, Boston MA 02110-1301, USA; version 2.1,
11 * or, at your option, any later version, incorporated herein by
12 * reference.
14 * Patches submitted to this file are required to be dual licensed
15 * under the LGPL 2.1+ and the 2-clause BSD license:
17 * Copyright 1996-2009 the NASM Authors - All rights reserved.
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following
21 * conditions are met:
23 * * Redistributions of source code must retain the above copyright
24 * notice, this list of conditions and the following disclaimer.
25 * * Redistributions in binary form must reproduce the above
26 * copyright notice, this list of conditions and the following
27 * disclaimer in the documentation and/or other materials provided
28 * with the distribution.
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
31 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
32 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
35 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
36 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
37 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
38 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
40 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
41 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
42 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
44 * ----------------------------------------------------------------------- */
46 /*
47 * nasm.h main header file for the Netwide Assembler: inter-module interface
50 #ifndef NASM_NASM_H
51 #define NASM_NASM_H
53 #include "compiler.h"
55 #include <stdio.h>
56 #include <inttypes.h>
57 #include "nasmlib.h"
58 #include "preproc.h"
59 #include "insnsi.h" /* For enum opcode */
61 #define NO_SEG -1L /* null segment value */
62 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
64 #ifndef FILENAME_MAX
65 #define FILENAME_MAX 256
66 #endif
68 #ifndef PREFIX_MAX
69 #define PREFIX_MAX 10
70 #endif
72 #ifndef POSTFIX_MAX
73 #define POSTFIX_MAX 10
74 #endif
76 #define IDLEN_MAX 4096
79 * Name pollution problems: <time.h> on Digital UNIX pulls in some
80 * strange hardware header file which sees fit to define R_SP. We
81 * undefine it here so as not to break the enum below.
83 #ifdef R_SP
84 #undef R_SP
85 #endif
88 * We must declare the existence of this structure type up here,
89 * since we have to reference it before we define it...
91 struct ofmt;
94 * values for the `type' parameter to an output function.
96 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
97 * which will be a relative jump. For this we need to know the
98 * distance in bytes from the start of the relocated record until
99 * the end of the containing instruction. _This_ is what is stored
100 * in the size part of the parameter, in this case.
102 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
103 * and the contents of the "data" parameter is irrelevant.
105 * The "data" parameter for the output function points to a "int32_t",
106 * containing the address in question, unless the type is
107 * OUT_RAWDATA, in which case it points to an "uint8_t"
108 * array.
110 enum out_type {
111 OUT_RAWDATA, /* Plain bytes */
112 OUT_ADDRESS, /* An address (symbol value) */
113 OUT_RESERVE, /* Reserved bytes (RESB et al) */
114 OUT_REL2ADR, /* 2-byte relative address */
115 OUT_REL4ADR, /* 4-byte relative address */
116 OUT_REL8ADR, /* 8-byte relative address */
120 * -----------------------
121 * Other function typedefs
122 * -----------------------
126 * A label-lookup function should look like this.
128 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
131 * And a label-definition function like this. The boolean parameter
132 * `is_norm' states whether the label is a `normal' label (which
133 * should affect the local-label system), or something odder like
134 * an EQU or a segment-base symbol, which shouldn't.
136 typedef void (*ldfunc) (char *label, int32_t segment, int64_t offset,
137 char *special, bool is_norm, bool isextrn,
138 struct ofmt * ofmt, efunc error);
141 * List-file generators should look like this:
143 typedef struct {
145 * Called to initialize the listing file generator. Before this
146 * is called, the other routines will silently do nothing when
147 * called. The `char *' parameter is the file name to write the
148 * listing to.
150 void (*init) (char *, efunc);
153 * Called to clear stuff up and close the listing file.
155 void (*cleanup) (void);
158 * Called to output binary data. Parameters are: the offset;
159 * the data; the data type. Data types are similar to the
160 * output-format interface, only OUT_ADDRESS will _always_ be
161 * displayed as if it's relocatable, so ensure that any non-
162 * relocatable address has been converted to OUT_RAWDATA by
163 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
164 * dummy call used to give the listing generator an offset to
165 * work with when doing things like uplevel(LIST_TIMES) or
166 * uplevel(LIST_INCBIN).
168 void (*output) (int32_t, const void *, enum out_type, uint64_t);
171 * Called to send a text line to the listing generator. The
172 * `int' parameter is LIST_READ or LIST_MACRO depending on
173 * whether the line came directly from an input file or is the
174 * result of a multi-line macro expansion.
176 void (*line) (int, char *);
179 * Called to change one of the various levelled mechanisms in
180 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
181 * used to increase the nesting level of include files and
182 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
183 * two binary-output-suppression mechanisms for large-scale
184 * pseudo-instructions.
186 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
187 * it indicates the beginning of the expansion of a `nolist'
188 * macro, so anything under that level won't be expanded unless
189 * it includes another file.
191 void (*uplevel) (int);
194 * Reverse the effects of uplevel.
196 void (*downlevel) (int);
197 } ListGen;
200 * Token types returned by the scanner, in addition to ordinary
201 * ASCII character values, and zero for end-of-string.
203 enum token_type { /* token types, other than chars */
204 TOKEN_INVALID = -1, /* a placeholder value */
205 TOKEN_EOS = 0, /* end of string */
206 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
207 TOKEN_ID = 256, /* identifier */
208 TOKEN_NUM, /* numeric constant */
209 TOKEN_ERRNUM, /* malformed numeric constant */
210 TOKEN_STR, /* string constant */
211 TOKEN_ERRSTR, /* unterminated string constant */
212 TOKEN_FLOAT, /* floating-point constant */
213 TOKEN_REG, /* register name */
214 TOKEN_INSN, /* instruction name */
215 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
216 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
217 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
218 TOKEN_SHL, TOKEN_SHR, /* << and >> */
219 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
220 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
221 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
222 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
223 TOKEN_FLOATIZE, /* __floatX__ */
224 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
227 enum floatize {
228 FLOAT_8,
229 FLOAT_16,
230 FLOAT_32,
231 FLOAT_64,
232 FLOAT_80M,
233 FLOAT_80E,
234 FLOAT_128L,
235 FLOAT_128H,
238 /* Must match the list in string_transform(), in strfunc.c */
239 enum strfunc {
240 STRFUNC_UTF16,
241 STRFUNC_UTF32,
244 size_t string_transform(char *, size_t, char **, enum strfunc);
247 * The expression evaluator must be passed a scanner function; a
248 * standard scanner is provided as part of nasmlib.c. The
249 * preprocessor will use a different one. Scanners, and the
250 * token-value structures they return, look like this.
252 * The return value from the scanner is always a copy of the
253 * `t_type' field in the structure.
255 struct tokenval {
256 enum token_type t_type;
257 char *t_charptr;
258 int64_t t_integer, t_inttwo;
260 typedef int (*scanner) (void *private_data, struct tokenval * tv);
262 struct location {
263 int64_t offset;
264 int32_t segment;
265 int known;
269 * Expression-evaluator datatype. Expressions, within the
270 * evaluator, are stored as an array of these beasts, terminated by
271 * a record with type==0. Mostly, it's a vector type: each type
272 * denotes some kind of a component, and the value denotes the
273 * multiple of that component present in the expression. The
274 * exception is the WRT type, whose `value' field denotes the
275 * segment to which the expression is relative. These segments will
276 * be segment-base types, i.e. either odd segment values or SEG_ABS
277 * types. So it is still valid to assume that anything with a
278 * `value' field of zero is insignificant.
280 typedef struct {
281 int32_t type; /* a register, or EXPR_xxx */
282 int64_t value; /* must be >= 32 bits */
283 } expr;
286 * Library routines to manipulate expression data types.
288 int is_reloc(expr *);
289 int is_simple(expr *);
290 int is_really_simple(expr *);
291 int is_unknown(expr *);
292 int is_just_unknown(expr *);
293 int64_t reloc_value(expr *);
294 int32_t reloc_seg(expr *);
295 int32_t reloc_wrt(expr *);
298 * The evaluator can also return hints about which of two registers
299 * used in an expression should be the base register. See also the
300 * `operand' structure.
302 struct eval_hints {
303 int64_t base;
304 int type;
308 * The actual expression evaluator function looks like this. When
309 * called, it expects the first token of its expression to already
310 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
311 * it will start by calling the scanner.
313 * If a forward reference happens during evaluation, the evaluator
314 * must set `*fwref' to true if `fwref' is non-NULL.
316 * `critical' is non-zero if the expression may not contain forward
317 * references. The evaluator will report its own error if this
318 * occurs; if `critical' is 1, the error will be "symbol not
319 * defined before use", whereas if `critical' is 2, the error will
320 * be "symbol undefined".
322 * If `critical' has bit 8 set (in addition to its main value: 0x101
323 * and 0x102 correspond to 1 and 2) then an extended expression
324 * syntax is recognised, in which relational operators such as =, <
325 * and >= are accepted, as well as low-precedence logical operators
326 * &&, ^^ and ||.
328 * If `hints' is non-NULL, it gets filled in with some hints as to
329 * the base register in complex effective addresses.
331 #define CRITICAL 0x100
332 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
333 struct tokenval * tv, int *fwref, int critical,
334 efunc error, struct eval_hints * hints);
337 * Special values for expr->type. These come after EXPR_REG_END
338 * as defined in regs.h.
341 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
342 #define EXPR_SIMPLE (EXPR_REG_END+2)
343 #define EXPR_WRT (EXPR_REG_END+3)
344 #define EXPR_SEGBASE (EXPR_REG_END+4)
347 * Linked list of strings...
349 typedef struct string_list {
350 struct string_list *next;
351 char str[1];
352 } StrList;
355 * preprocessors ought to look like this:
357 typedef struct preproc_ops {
359 * Called at the start of a pass; given a file name, the number
360 * of the pass, an error reporting function, an evaluator
361 * function, and a listing generator to talk to.
363 void (*reset) (char *, int, efunc, evalfunc, ListGen *, StrList **);
366 * Called to fetch a line of preprocessed source. The line
367 * returned has been malloc'ed, and so should be freed after
368 * use.
370 char *(*getline) (void);
373 * Called at the end of a pass.
375 void (*cleanup) (int);
376 } Preproc;
378 extern Preproc nasmpp;
381 * ----------------------------------------------------------------
382 * Some lexical properties of the NASM source language, included
383 * here because they are shared between the parser and preprocessor
384 * ----------------------------------------------------------------
388 * isidstart matches any character that may start an identifier, and isidchar
389 * matches any character that may appear at places other than the start of an
390 * identifier. E.g. a period may only appear at the start of an identifier
391 * (for local labels), whereas a number may appear anywhere *but* at the
392 * start.
395 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
396 || (c)=='@' )
397 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
398 (c)=='$' || (c)=='#' || (c)=='~' )
400 /* Ditto for numeric constants. */
402 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
403 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
405 /* This returns the numeric value of a given 'digit'. */
407 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
410 * Data-type flags that get passed to listing-file routines.
412 enum {
413 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
414 LIST_INCBIN, LIST_TIMES
418 * -----------------------------------------------------------
419 * Format of the `insn' structure returned from `parser.c' and
420 * passed into `assemble.c'
421 * -----------------------------------------------------------
425 * Here we define the operand types. These are implemented as bit
426 * masks, since some are subsets of others; e.g. AX in a MOV
427 * instruction is a special operand type, whereas AX in other
428 * contexts is just another 16-bit register. (Also, consider CL in
429 * shift instructions, DX in OUT, etc.)
431 * The basic concept here is that
432 * (class & ~operand) == 0
434 * if and only if "operand" belongs to class type "class".
436 * The bits are assigned as follows:
438 * Bits 0-7, 23, 29: sizes
439 * 0: 8 bits (BYTE)
440 * 1: 16 bits (WORD)
441 * 2: 32 bits (DWORD)
442 * 3: 64 bits (QWORD)
443 * 4: 80 bits (TWORD)
444 * 5: FAR
445 * 6: NEAR
446 * 7: SHORT
447 * 23: 256 bits (YWORD)
448 * 29: 128 bits (OWORD)
450 * Bits 8-11 modifiers
451 * 8: TO
452 * 9: COLON
453 * 10: STRICT
454 * 11: (reserved)
456 * Bits 12-15: type of operand
457 * 12: REGISTER
458 * 13: IMMEDIATE
459 * 14: MEMORY (always has REGMEM attribute as well)
460 * 15: REGMEM (valid EA operand)
462 * Bits 16-19, 28: subclasses
463 * With REG_CDT:
464 * 16: REG_CREG (CRx)
465 * 17: REG_DREG (DRx)
466 * 18: REG_TREG (TRx)
468 * With REG_GPR:
469 * 16: REG_ACCUM (AL, AX, EAX, RAX)
470 * 17: REG_COUNT (CL, CX, ECX, RCX)
471 * 18: REG_DATA (DL, DX, EDX, RDX)
472 * 19: REG_HIGH (AH, CH, DH, BH)
473 * 28: REG_NOTACC (not REG_ACCUM)
475 * With REG_SREG:
476 * 16: REG_CS
477 * 17: REG_DESS (DS, ES, SS)
478 * 18: REG_FSGS
479 * 19: REG_SEG67
481 * With FPUREG:
482 * 16: FPU0
484 * With XMMREG:
485 * 16: XMM0
487 * With YMMREG:
488 * 16: YMM0
490 * With MEMORY:
491 * 16: MEM_OFFS (this is a simple offset)
492 * 17: IP_REL (IP-relative offset)
494 * With IMMEDIATE:
495 * 16: UNITY (1)
496 * 17: BYTENESS16 (-128..127)
497 * 18: BYTENESS32 (-128..127)
498 * 19: BYTENESS64 (-128..127)
500 * Bits 20-22, 24-27: register classes
501 * 20: REG_CDT (CRx, DRx, TRx)
502 * 21: RM_GPR (REG_GPR) (integer register)
503 * 22: REG_SREG
504 * 24: FPUREG
505 * 25: RM_MMX (MMXREG)
506 * 26: RM_XMM (XMMREG)
507 * 27: RM_YMM (YMMREG)
509 * Bit 31 is currently unallocated.
511 * 30: SAME_AS
512 * Special flag only used in instruction patterns; means this operand
513 * has to be identical to another operand. Currently only supported
514 * for registers.
517 typedef uint32_t opflags_t;
519 /* Size, and other attributes, of the operand */
520 #define BITS8 0x00000001U
521 #define BITS16 0x00000002U
522 #define BITS32 0x00000004U
523 #define BITS64 0x00000008U /* x64 and FPU only */
524 #define BITS80 0x00000010U /* FPU only */
525 #define BITS128 0x20000000U
526 #define BITS256 0x00800000U
527 #define FAR 0x00000020U /* grotty: this means 16:16 or */
528 /* 16:32, like in CALL/JMP */
529 #define NEAR 0x00000040U
530 #define SHORT 0x00000080U /* and this means what it says :) */
532 #define SIZE_MASK 0x208000FFU /* all the size attributes */
534 /* Modifiers */
535 #define MODIFIER_MASK 0x00000f00U
536 #define TO 0x00000100U /* reverse effect in FADD, FSUB &c */
537 #define COLON 0x00000200U /* operand is followed by a colon */
538 #define STRICT 0x00000400U /* do not optimize this operand */
540 /* Type of operand: memory reference, register, etc. */
541 #define OPTYPE_MASK 0x0000f000U
542 #define REGISTER 0x00001000U /* register number in 'basereg' */
543 #define IMMEDIATE 0x00002000U
544 #define MEMORY 0x0000c000U
545 #define REGMEM 0x00008000U /* for r/m, ie EA, operands */
547 /* Register classes */
548 #define REG_EA 0x00009000U /* 'normal' reg, qualifies as EA */
549 #define RM_GPR 0x00208000U /* integer operand */
550 #define REG_GPR 0x00209000U /* integer register */
551 #define REG8 0x00209001U /* 8-bit GPR */
552 #define REG16 0x00209002U /* 16-bit GPR */
553 #define REG32 0x00209004U /* 32-bit GPR */
554 #define REG64 0x00209008U /* 64-bit GPR */
555 #define FPUREG 0x01001000U /* floating point stack registers */
556 #define FPU0 0x01011000U /* FPU stack register zero */
557 #define RM_MMX 0x02008000U /* MMX operand */
558 #define MMXREG 0x02009000U /* MMX register */
559 #define RM_XMM 0x04008000U /* XMM (SSE) operand */
560 #define XMMREG 0x04009000U /* XMM (SSE) register */
561 #define XMM0 0x04019000U /* XMM register zero */
562 #define RM_YMM 0x08008000U /* YMM (AVX) operand */
563 #define YMMREG 0x08009000U /* YMM (AVX) register */
564 #define YMM0 0x08019000U /* YMM register zero */
565 #define REG_CDT 0x00101004U /* CRn, DRn and TRn */
566 #define REG_CREG 0x00111004U /* CRn */
567 #define REG_DREG 0x00121004U /* DRn */
568 #define REG_TREG 0x00141004U /* TRn */
569 #define REG_SREG 0x00401002U /* any segment register */
570 #define REG_CS 0x00411002U /* CS */
571 #define REG_DESS 0x00421002U /* DS, ES, SS */
572 #define REG_FSGS 0x00441002U /* FS, GS */
573 #define REG_SEG67 0x00481002U /* Unimplemented segment registers */
575 #define REG_RIP 0x00801008U /* RIP relative addressing */
576 #define REG_EIP 0x00801004U /* EIP relative addressing */
578 /* Special GPRs */
579 #define REG_SMASK 0x100f0000U /* a mask for the following */
580 #define REG_ACCUM 0x00219000U /* accumulator: AL, AX, EAX, RAX */
581 #define REG_AL 0x00219001U
582 #define REG_AX 0x00219002U
583 #define REG_EAX 0x00219004U
584 #define REG_RAX 0x00219008U
585 #define REG_COUNT 0x10229000U /* counter: CL, CX, ECX, RCX */
586 #define REG_CL 0x10229001U
587 #define REG_CX 0x10229002U
588 #define REG_ECX 0x10229004U
589 #define REG_RCX 0x10229008U
590 #define REG_DL 0x10249001U /* data: DL, DX, EDX, RDX */
591 #define REG_DX 0x10249002U
592 #define REG_EDX 0x10249004U
593 #define REG_RDX 0x10249008U
594 #define REG_HIGH 0x10289001U /* high regs: AH, CH, DH, BH */
595 #define REG_NOTACC 0x10000000U /* non-accumulator register */
596 #define REG8NA 0x10209001U /* 8-bit non-acc GPR */
597 #define REG16NA 0x10209002U /* 16-bit non-acc GPR */
598 #define REG32NA 0x10209004U /* 32-bit non-acc GPR */
599 #define REG64NA 0x10209008U /* 64-bit non-acc GPR */
601 /* special types of EAs */
602 #define MEM_OFFS 0x0001c000U /* simple [address] offset - absolute! */
603 #define IP_REL 0x0002c000U /* IP-relative offset */
605 /* memory which matches any type of r/m operand */
606 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM|RM_YMM)
608 /* special type of immediate operand */
609 #define UNITY 0x00012000U /* for shift/rotate instructions */
610 #define SBYTE16 0x00022000U /* for op r16,immediate instrs. */
611 #define SBYTE32 0x00042000U /* for op r32,immediate instrs. */
612 #define SBYTE64 0x00082000U /* for op r64,immediate instrs. */
613 #define BYTENESS 0x000e0000U /* for testing for byteness */
615 /* special flags */
616 #define SAME_AS 0x40000000U
618 /* Register names automatically generated from regs.dat */
619 #include "regs.h"
621 enum ccode { /* condition code names */
622 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
623 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
624 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
625 C_none = -1
629 * REX flags
631 #define REX_REAL 0x4f /* Actual REX prefix bits */
632 #define REX_B 0x01 /* ModRM r/m extension */
633 #define REX_X 0x02 /* SIB index extension */
634 #define REX_R 0x04 /* ModRM reg extension */
635 #define REX_W 0x08 /* 64-bit operand size */
636 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
637 #define REX_P 0x40 /* REX prefix present/required */
638 #define REX_H 0x80 /* High register present, REX forbidden */
639 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
640 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
641 #define REX_V 0x0400 /* Instruction uses VEX/XOP instead of REX */
642 #define REX_NH 0x0800 /* Instruction which doesn't use high regs */
645 * REX_V "classes" (prefixes which behave like VEX)
647 enum vex_class {
648 RV_VEX = 0, /* C4/C5 */
649 RV_XOP = 1 /* 8F */
653 * Note that because segment registers may be used as instruction
654 * prefixes, we must ensure the enumerations for prefixes and
655 * register names do not overlap.
657 enum prefixes { /* instruction prefixes */
658 P_none = 0,
659 PREFIX_ENUM_START = REG_ENUM_LIMIT,
660 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
661 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
662 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
663 P_WAIT,
664 PREFIX_ENUM_LIMIT
667 enum extop_type { /* extended operand types */
668 EOT_NOTHING,
669 EOT_DB_STRING, /* Byte string */
670 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
671 EOT_DB_NUMBER, /* Integer */
674 enum ea_flags { /* special EA flags */
675 EAF_BYTEOFFS = 1, /* force offset part to byte size */
676 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
677 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
678 EAF_REL = 8, /* IP-relative addressing */
679 EAF_ABS = 16, /* non-IP-relative addressing */
680 EAF_FSGS = 32 /* fs/gs segment override present */
683 enum eval_hint { /* values for `hinttype' */
684 EAH_NOHINT = 0, /* no hint at all - our discretion */
685 EAH_MAKEBASE = 1, /* try to make given reg the base */
686 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
689 typedef struct operand { /* operand to an instruction */
690 int32_t type; /* type of operand */
691 int disp_size; /* 0 means default; 16; 32; 64 */
692 enum reg_enum basereg, indexreg; /* address registers */
693 int scale; /* index scale */
694 int hintbase;
695 enum eval_hint hinttype; /* hint as to real base register */
696 int32_t segment; /* immediate segment, if needed */
697 int64_t offset; /* any immediate number */
698 int32_t wrt; /* segment base it's relative to */
699 int eaflags; /* special EA flags */
700 int opflags; /* see OPFLAG_* defines below */
701 } operand;
703 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
704 #define OPFLAG_EXTERN 2 /* operand is an external reference */
705 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference */
706 /* (always a forward reference also) */
708 typedef struct extop { /* extended operand */
709 struct extop *next; /* linked list */
710 char *stringval; /* if it's a string, then here it is */
711 size_t stringlen; /* ... and here's how long it is */
712 int64_t offset; /* ... it's given here ... */
713 int32_t segment; /* if it's a number/address, then... */
714 int32_t wrt; /* ... and here */
715 enum extop_type type; /* defined above */
716 } extop;
718 /* Prefix positions: each type of prefix goes in a specific slot.
719 This affects the final ordering of the assembled output, which
720 shouldn't matter to the processor, but if you have stylistic
721 preferences, you can change this. REX prefixes are handled
722 differently for the time being.
724 Note that LOCK and REP are in the same slot. This is
725 an x86 architectural constraint. */
726 enum prefix_pos {
727 PPS_WAIT, /* WAIT (technically not a prefix!) */
728 PPS_LREP, /* Lock or REP prefix */
729 PPS_SEG, /* Segment override prefix */
730 PPS_OSIZE, /* Operand size prefix */
731 PPS_ASIZE, /* Address size prefix */
732 MAXPREFIX /* Total number of prefix slots */
735 /* If you need to change this, also change it in insns.pl */
736 #define MAX_OPERANDS 5
738 typedef struct insn { /* an instruction itself */
739 char *label; /* the label defined, or NULL */
740 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
741 enum opcode opcode; /* the opcode - not just the string */
742 enum ccode condition; /* the condition code, if Jcc/SETcc */
743 int operands; /* how many operands? 0-3
744 * (more if db et al) */
745 int addr_size; /* address size */
746 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
747 extop *eops; /* extended operands */
748 int eops_float; /* true if DD and floating */
749 int32_t times; /* repeat count (TIMES prefix) */
750 bool forw_ref; /* is there a forward reference? */
751 int rex; /* Special REX Prefix */
752 int drexdst; /* Destination register for DREX/VEX suffix */
753 int vex_cm; /* Class and M field for VEX prefix */
754 int vex_wlp; /* W, P and L information for VEX prefix */
755 } insn;
757 enum geninfo { GI_SWITCH };
759 * ------------------------------------------------------------
760 * The data structure defining an output format driver, and the
761 * interfaces to the functions therein.
762 * ------------------------------------------------------------
765 struct ofmt {
767 * This is a short (one-liner) description of the type of
768 * output generated by the driver.
770 const char *fullname;
773 * This is a single keyword used to select the driver.
775 const char *shortname;
779 * this is reserved for out module specific help.
780 * It is set to NULL in all the out modules and is not implemented
781 * in the main program
783 const char *helpstring;
786 * this is a pointer to the first element of the debug information
788 struct dfmt **debug_formats;
791 * and a pointer to the element that is being used
792 * note: this is set to the default at compile time and changed if the
793 * -F option is selected. If developing a set of new debug formats for
794 * an output format, be sure to set this to whatever default you want
797 struct dfmt *current_dfmt;
800 * This, if non-NULL, is a NULL-terminated list of `char *'s
801 * pointing to extra standard macros supplied by the object
802 * format (e.g. a sensible initial default value of __SECT__,
803 * and user-level equivalents for any format-specific
804 * directives).
806 macros_t *stdmac;
809 * This procedure is called at the start of an output session.
810 * It tells the output format what file it will be writing to,
811 * what routine to report errors through, and how to interface
812 * to the label manager and expression evaluator if necessary.
813 * It also gives it a chance to do other initialisation.
815 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
818 * This procedure is called to pass generic information to the
819 * object file. The first parameter gives the information type
820 * (currently only command line switches)
821 * and the second parameter gives the value. This function returns
822 * 1 if recognized, 0 if unrecognized
824 int (*setinfo) (enum geninfo type, char **string);
827 * This procedure is called by assemble() to write actual
828 * generated code or data to the object file. Typically it
829 * doesn't have to actually _write_ it, just store it for
830 * later.
832 * The `type' argument specifies the type of output data, and
833 * usually the size as well: its contents are described below.
835 void (*output) (int32_t segto, const void *data,
836 enum out_type type, uint64_t size,
837 int32_t segment, int32_t wrt);
840 * This procedure is called once for every symbol defined in
841 * the module being assembled. It gives the name and value of
842 * the symbol, in NASM's terms, and indicates whether it has
843 * been declared to be global. Note that the parameter "name",
844 * when passed, will point to a piece of static storage
845 * allocated inside the label manager - it's safe to keep using
846 * that pointer, because the label manager doesn't clean up
847 * until after the output driver has.
849 * Values of `is_global' are: 0 means the symbol is local; 1
850 * means the symbol is global; 2 means the symbol is common (in
851 * which case `offset' holds the _size_ of the variable).
852 * Anything else is available for the output driver to use
853 * internally.
855 * This routine explicitly _is_ allowed to call the label
856 * manager to define further symbols, if it wants to, even
857 * though it's been called _from_ the label manager. That much
858 * re-entrancy is guaranteed in the label manager. However, the
859 * label manager will in turn call this routine, so it should
860 * be prepared to be re-entrant itself.
862 * The `special' parameter contains special information passed
863 * through from the command that defined the label: it may have
864 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
865 * be obvious to the output format from the other parameters.
867 void (*symdef) (char *name, int32_t segment, int64_t offset,
868 int is_global, char *special);
871 * This procedure is called when the source code requests a
872 * segment change. It should return the corresponding segment
873 * _number_ for the name, or NO_SEG if the name is not a valid
874 * segment name.
876 * It may also be called with NULL, in which case it is to
877 * return the _default_ section number for starting assembly in.
879 * It is allowed to modify the string it is given a pointer to.
881 * It is also allowed to specify a default instruction size for
882 * the segment, by setting `*bits' to 16 or 32. Or, if it
883 * doesn't wish to define a default, it can leave `bits' alone.
885 int32_t (*section) (char *name, int pass, int *bits);
888 * This procedure is called to modify the segment base values
889 * returned from the SEG operator. It is given a segment base
890 * value (i.e. a segment value with the low bit set), and is
891 * required to produce in return a segment value which may be
892 * different. It can map segment bases to absolute numbers by
893 * means of returning SEG_ABS types.
895 * It should return NO_SEG if the segment base cannot be
896 * determined; the evaluator (which calls this routine) is
897 * responsible for throwing an error condition if that occurs
898 * in pass two or in a critical expression.
900 int32_t (*segbase) (int32_t segment);
903 * This procedure is called to allow the output driver to
904 * process its own specific directives. When called, it has the
905 * directive word in `directive' and the parameter string in
906 * `value'. It is called in both assembly passes, and `pass'
907 * will be either 1 or 2.
909 * This procedure should return zero if it does not _recognise_
910 * the directive, so that the main program can report an error.
911 * If it recognises the directive but then has its own errors,
912 * it should report them itself and then return non-zero. It
913 * should also return non-zero if it correctly processes the
914 * directive.
916 int (*directive) (char *directive, char *value, int pass);
919 * This procedure is called before anything else - even before
920 * the "init" routine - and is passed the name of the input
921 * file from which this output file is being generated. It
922 * should return its preferred name for the output file in
923 * `outname', if outname[0] is not '\0', and do nothing to
924 * `outname' otherwise. Since it is called before the driver is
925 * properly initialized, it has to be passed its error handler
926 * separately.
928 * This procedure may also take its own copy of the input file
929 * name for use in writing the output file: it is _guaranteed_
930 * that it will be called before the "init" routine.
932 * The parameter `outname' points to an area of storage
933 * guaranteed to be at least FILENAME_MAX in size.
935 void (*filename) (char *inname, char *outname, efunc error);
938 * This procedure is called after assembly finishes, to allow
939 * the output driver to clean itself up and free its memory.
940 * Typically, it will also be the point at which the object
941 * file actually gets _written_.
943 * One thing the cleanup routine should always do is to close
944 * the output file pointer.
946 void (*cleanup) (int debuginfo);
951 * ------------------------------------------------------------
952 * The data structure defining a debug format driver, and the
953 * interfaces to the functions therein.
954 * ------------------------------------------------------------
957 struct dfmt {
960 * This is a short (one-liner) description of the type of
961 * output generated by the driver.
963 const char *fullname;
966 * This is a single keyword used to select the driver.
968 const char *shortname;
971 * init - called initially to set up local pointer to object format,
972 * void pointer to implementation defined data, file pointer (which
973 * probably won't be used, but who knows?), and error function.
975 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
978 * linenum - called any time there is output with a change of
979 * line number or file.
981 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
984 * debug_deflabel - called whenever a label is defined. Parameters
985 * are the same as to 'symdef()' in the output format. This function
986 * would be called before the output format version.
989 void (*debug_deflabel) (char *name, int32_t segment, int64_t offset,
990 int is_global, char *special);
992 * debug_directive - called whenever a DEBUG directive other than 'LINE'
993 * is encountered. 'directive' contains the first parameter to the
994 * DEBUG directive, and params contains the rest. For example,
995 * 'DEBUG VAR _somevar:int' would translate to a call to this
996 * function with 'directive' equal to "VAR" and 'params' equal to
997 * "_somevar:int".
999 void (*debug_directive) (const char *directive, const char *params);
1002 * typevalue - called whenever the assembler wishes to register a type
1003 * for the last defined label. This routine MUST detect if a type was
1004 * already registered and not re-register it.
1006 void (*debug_typevalue) (int32_t type);
1009 * debug_output - called whenever output is required
1010 * 'type' is the type of info required, and this is format-specific
1012 void (*debug_output) (int type, void *param);
1015 * cleanup - called after processing of file is complete
1017 void (*cleanup) (void);
1021 * The type definition macros
1022 * for debugging
1024 * low 3 bits: reserved
1025 * next 5 bits: type
1026 * next 24 bits: number of elements for arrays (0 for labels)
1029 #define TY_UNKNOWN 0x00
1030 #define TY_LABEL 0x08
1031 #define TY_BYTE 0x10
1032 #define TY_WORD 0x18
1033 #define TY_DWORD 0x20
1034 #define TY_FLOAT 0x28
1035 #define TY_QWORD 0x30
1036 #define TY_TBYTE 0x38
1037 #define TY_OWORD 0x40
1038 #define TY_YWORD 0x48
1039 #define TY_COMMON 0xE0
1040 #define TY_SEG 0xE8
1041 #define TY_EXTERN 0xF0
1042 #define TY_EQU 0xF8
1044 #define TYM_TYPE(x) ((x) & 0xF8)
1045 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
1047 #define TYS_ELEMENTS(x) ((x) << 8)
1050 * -----
1051 * Special tokens
1052 * -----
1055 enum special_tokens {
1056 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1057 S_ABS = SPECIAL_ENUM_START,
1058 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
1059 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
1060 SPECIAL_ENUM_LIMIT
1064 * -----
1065 * Global modes
1066 * -----
1070 * This declaration passes the "pass" number to all other modules
1071 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1072 * where 0 = optimizing pass
1073 * 1 = pass 1
1074 * 2 = pass 2
1077 extern int pass0;
1078 extern int passn; /* Actual pass number */
1080 extern bool tasm_compatible_mode;
1081 extern int optimizing;
1082 extern int globalbits; /* 16, 32 or 64-bit mode */
1083 extern int globalrel; /* default to relative addressing? */
1084 extern int maxbits; /* max bits supported by output */
1087 * NASM version strings, defined in ver.c
1089 extern const char nasm_version[];
1090 extern const char nasm_date[];
1091 extern const char nasm_compile_options[];
1092 extern const char nasm_comment[];
1093 extern const char nasm_signature[];
1095 #endif