NASM 2.06rc1
[nasm/avx512.git] / assemble.c
blobbf4314d12796be2a29d7efc17650d57fe51ae90b
1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1..\4 - that many literal bytes follow in the code stream
11 * \5 - add 4 to the primary operand number (b, low octdigit)
12 * \6 - add 4 to the secondary operand number (a, middle octdigit)
13 * \7 - add 4 to both the primary and the secondary operand number
14 * \10..\13 - a literal byte follows in the code stream, to be added
15 * to the register value of operand 0..3
16 * \14..\17 - a signed byte immediate operand, from operand 0..3
17 * \20..\23 - a byte immediate operand, from operand 0..3
18 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
19 * \30..\33 - a word immediate operand, from operand 0..3
20 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
21 * assembly mode or the operand-size override on the operand
22 * \40..\43 - a long immediate operand, from operand 0..3
23 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
24 * depending on the address size of the instruction.
25 * \50..\53 - a byte relative operand, from operand 0..3
26 * \54..\57 - a qword immediate operand, from operand 0..3
27 * \60..\63 - a word relative operand, from operand 0..3
28 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
29 * assembly mode or the operand-size override on the operand
30 * \70..\73 - a long relative operand, from operand 0..3
31 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
32 * \1ab - a ModRM, calculated on EA in operand a, with the spare
33 * field the register value of operand b.
34 * \140..\143 - an immediate word or signed byte for operand 0..3
35 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
36 * is a signed byte rather than a word. Opcode byte follows.
37 * \150..\153 - an immediate dword or signed byte for operand 0..3
38 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
39 * is a signed byte rather than a dword. Opcode byte follows.
40 * \160..\163 - this instruction uses DREX rather than REX, with the
41 * OC0 field set to 0, and the dest field taken from
42 * operand 0..3.
43 * \164..\167 - this instruction uses DREX rather than REX, with the
44 * OC0 field set to 1, and the dest field taken from
45 * operand 0..3.
46 * \171 - placement of DREX suffix in the absence of an EA
47 * \172\ab - the register number from operand a in bits 7..4, with
48 * the 4-bit immediate from operand b in bits 3..0.
49 * \173\xab - the register number from operand a in bits 7..4, with
50 * the value b in bits 3..0.
51 * \174\a - the register number from operand a in bits 7..4, and
52 * an arbitrary value in bits 3..0 (assembled as zero.)
53 * \2ab - a ModRM, calculated on EA in operand a, with the spare
54 * field equal to digit b.
55 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
56 * is not equal to the truncated and sign-extended 32-bit
57 * operand; used for 32-bit immediates in 64-bit mode.
58 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
59 * \260..\263 - this instruction uses VEX rather than REX, with the
60 * V field taken from operand 0..3.
61 * \270 - this instruction uses VEX rather than REX, with the
62 * V field set to 1111b.
64 * VEX prefixes are followed by the sequence:
65 * \mm\wlp where mm is the M field; and wlp is:
66 * 00 0ww lpp
67 * [w0] ww = 0 for W = 0
68 * [w1] ww = 1 for W = 1
69 * [wx] ww = 2 for W don't care (always assembled as 0)
70 * [ww] ww = 3 for W used as REX.W
73 * \274..\277 - a signed byte immediate operand, from operand 0..3,
74 * which is to be extended to the operand size.
75 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
76 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
77 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
78 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
79 * \314 - (disassembler only) invalid with REX.B
80 * \315 - (disassembler only) invalid with REX.X
81 * \316 - (disassembler only) invalid with REX.R
82 * \317 - (disassembler only) invalid with REX.W
83 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
84 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
85 * \322 - indicates that this instruction is only valid when the
86 * operand size is the default (instruction to disassembler,
87 * generates no code in the assembler)
88 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
89 * \324 - indicates 64-bit operand size requiring REX prefix.
90 * \330 - a literal byte follows in the code stream, to be added
91 * to the condition code value of the instruction.
92 * \331 - instruction not valid with REP prefix. Hint for
93 * disassembler only; for SSE instructions.
94 * \332 - REP prefix (0xF2 byte) used as opcode extension.
95 * \333 - REP prefix (0xF3 byte) used as opcode extension.
96 * \334 - LOCK prefix used instead of REX.R
97 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
98 * \336 - force a REP(E) prefix (0xF2) even if not specified.
99 * \337 - force a REPNE prefix (0xF3) even if not specified.
100 * \336-\337 are still listed as prefixes in the disassembler.
101 * \340 - reserve <operand 0> bytes of uninitialized storage.
102 * Operand 0 had better be a segmentless constant.
103 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
104 * (POP is never used for CS) depending on operand 0
105 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
106 * on operand 0
107 * \360 - no SSE prefix (== \364\331)
108 * \361 - 66 SSE prefix (== \366\331)
109 * \362 - F2 SSE prefix (== \364\332)
110 * \363 - F3 SSE prefix (== \364\333)
111 * \364 - operand-size prefix (0x66) not permitted
112 * \365 - address-size prefix (0x67) not permitted
113 * \366 - operand-size prefix (0x66) used as opcode extension
114 * \367 - address-size prefix (0x67) used as opcode extension
115 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
116 * 370 is used for Jcc, 371 is used for JMP.
117 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
118 * used for conditional jump over longer jump
121 #include "compiler.h"
123 #include <stdio.h>
124 #include <string.h>
125 #include <inttypes.h>
127 #include "nasm.h"
128 #include "nasmlib.h"
129 #include "assemble.h"
130 #include "insns.h"
131 #include "tables.h"
133 /* Initialized to zero by the C standard */
134 static const uint8_t const_zero_buf[256];
136 typedef struct {
137 int sib_present; /* is a SIB byte necessary? */
138 int bytes; /* # of bytes of offset needed */
139 int size; /* lazy - this is sib+bytes+1 */
140 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
141 } ea;
143 static uint32_t cpu; /* cpu level received from nasm.c */
144 static efunc errfunc;
145 static struct ofmt *outfmt;
146 static ListGen *list;
148 static int64_t calcsize(int32_t, int64_t, int, insn *, const uint8_t *);
149 static void gencode(int32_t segment, int64_t offset, int bits,
150 insn * ins, const struct itemplate *temp,
151 int64_t insn_end);
152 static int matches(const struct itemplate *, insn *, int bits);
153 static int32_t regflag(const operand *);
154 static int32_t regval(const operand *);
155 static int rexflags(int, int32_t, int);
156 static int op_rexflags(const operand *, int);
157 static ea *process_ea(operand *, ea *, int, int, int, int32_t);
158 static void add_asp(insn *, int);
160 static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
162 return ins->prefixes[pos] == prefix;
165 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
167 if (ins->prefixes[pos])
168 errfunc(ERR_NONFATAL, "invalid %s prefix",
169 prefix_name(ins->prefixes[pos]));
172 static const char *size_name(int size)
174 switch (size) {
175 case 1:
176 return "byte";
177 case 2:
178 return "word";
179 case 4:
180 return "dword";
181 case 8:
182 return "qword";
183 case 10:
184 return "tword";
185 case 16:
186 return "oword";
187 case 32:
188 return "yword";
189 default:
190 return "???";
194 static void warn_overflow(int size, const struct operand *o)
196 if (size < 8 && o->wrt == NO_SEG && o->segment == NO_SEG) {
197 int64_t lim = ((int64_t)1 << (size*8))-1;
198 int64_t data = o->offset;
200 if (data < ~lim || data > lim)
201 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
202 "%s data exceeds bounds", size_name(size));
206 * This routine wrappers the real output format's output routine,
207 * in order to pass a copy of the data off to the listing file
208 * generator at the same time.
210 static void out(int64_t offset, int32_t segto, const void *data,
211 enum out_type type, uint64_t size,
212 int32_t segment, int32_t wrt)
214 static int32_t lineno = 0; /* static!!! */
215 static char *lnfname = NULL;
216 uint8_t p[8];
218 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
220 * This is a non-relocated address, and we're going to
221 * convert it into RAWDATA format.
223 uint8_t *q = p;
225 if (size > 8) {
226 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
227 return;
230 WRITEADDR(q, *(int64_t *)data, size);
231 data = p;
232 type = OUT_RAWDATA;
235 list->output(offset, data, type, size);
238 * this call to src_get determines when we call the
239 * debug-format-specific "linenum" function
240 * it updates lineno and lnfname to the current values
241 * returning 0 if "same as last time", -2 if lnfname
242 * changed, and the amount by which lineno changed,
243 * if it did. thus, these variables must be static
246 if (src_get(&lineno, &lnfname)) {
247 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
250 outfmt->output(segto, data, type, size, segment, wrt);
253 static bool jmp_match(int32_t segment, int64_t offset, int bits,
254 insn * ins, const uint8_t *code)
256 int64_t isize;
257 uint8_t c = code[0];
259 if ((c != 0370 && c != 0371) || (ins->oprs[0].type & STRICT))
260 return false;
261 if (!optimizing)
262 return false;
263 if (optimizing < 0 && c == 0371)
264 return false;
266 isize = calcsize(segment, offset, bits, ins, code);
267 if (ins->oprs[0].segment != segment)
268 return false;
270 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
271 return (isize >= -128 && isize <= 127); /* is it byte size? */
274 int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
275 insn * instruction, struct ofmt *output, efunc error,
276 ListGen * listgen)
278 const struct itemplate *temp;
279 int j;
280 int size_prob;
281 int64_t insn_end;
282 int32_t itimes;
283 int64_t start = offset;
284 int64_t wsize = 0; /* size for DB etc. */
286 errfunc = error; /* to pass to other functions */
287 cpu = cp;
288 outfmt = output; /* likewise */
289 list = listgen; /* and again */
291 switch (instruction->opcode) {
292 case -1:
293 return 0;
294 case I_DB:
295 wsize = 1;
296 break;
297 case I_DW:
298 wsize = 2;
299 break;
300 case I_DD:
301 wsize = 4;
302 break;
303 case I_DQ:
304 wsize = 8;
305 break;
306 case I_DT:
307 wsize = 10;
308 break;
309 case I_DO:
310 wsize = 16;
311 break;
312 case I_DY:
313 wsize = 32;
314 break;
315 default:
316 break;
319 if (wsize) {
320 extop *e;
321 int32_t t = instruction->times;
322 if (t < 0)
323 errfunc(ERR_PANIC,
324 "instruction->times < 0 (%ld) in assemble()", t);
326 while (t--) { /* repeat TIMES times */
327 for (e = instruction->eops; e; e = e->next) {
328 if (e->type == EOT_DB_NUMBER) {
329 if (wsize == 1) {
330 if (e->segment != NO_SEG)
331 errfunc(ERR_NONFATAL,
332 "one-byte relocation attempted");
333 else {
334 uint8_t out_byte = e->offset;
335 out(offset, segment, &out_byte,
336 OUT_RAWDATA, 1, NO_SEG, NO_SEG);
338 } else if (wsize > 8) {
339 errfunc(ERR_NONFATAL,
340 "integer supplied to a DT, DO or DY"
341 " instruction");
342 } else
343 out(offset, segment, &e->offset,
344 OUT_ADDRESS, wsize, e->segment, e->wrt);
345 offset += wsize;
346 } else if (e->type == EOT_DB_STRING ||
347 e->type == EOT_DB_STRING_FREE) {
348 int align;
350 out(offset, segment, e->stringval,
351 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
352 align = e->stringlen % wsize;
354 if (align) {
355 align = wsize - align;
356 out(offset, segment, const_zero_buf,
357 OUT_RAWDATA, align, NO_SEG, NO_SEG);
359 offset += e->stringlen + align;
362 if (t > 0 && t == instruction->times - 1) {
364 * Dummy call to list->output to give the offset to the
365 * listing module.
367 list->output(offset, NULL, OUT_RAWDATA, 0);
368 list->uplevel(LIST_TIMES);
371 if (instruction->times > 1)
372 list->downlevel(LIST_TIMES);
373 return offset - start;
376 if (instruction->opcode == I_INCBIN) {
377 const char *fname = instruction->eops->stringval;
378 FILE *fp;
380 fp = fopen(fname, "rb");
381 if (!fp) {
382 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
383 fname);
384 } else if (fseek(fp, 0L, SEEK_END) < 0) {
385 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
386 fname);
387 } else {
388 static char buf[4096];
389 size_t t = instruction->times;
390 size_t base = 0;
391 size_t len;
393 len = ftell(fp);
394 if (instruction->eops->next) {
395 base = instruction->eops->next->offset;
396 len -= base;
397 if (instruction->eops->next->next &&
398 len > (size_t)instruction->eops->next->next->offset)
399 len = (size_t)instruction->eops->next->next->offset;
402 * Dummy call to list->output to give the offset to the
403 * listing module.
405 list->output(offset, NULL, OUT_RAWDATA, 0);
406 list->uplevel(LIST_INCBIN);
407 while (t--) {
408 size_t l;
410 fseek(fp, base, SEEK_SET);
411 l = len;
412 while (l > 0) {
413 int32_t m =
414 fread(buf, 1, (l > (int32_t) sizeof(buf) ? (int32_t) sizeof(buf) : l),
415 fp);
416 if (!m) {
418 * This shouldn't happen unless the file
419 * actually changes while we are reading
420 * it.
422 error(ERR_NONFATAL,
423 "`incbin': unexpected EOF while"
424 " reading file `%s'", fname);
425 t = 0; /* Try to exit cleanly */
426 break;
428 out(offset, segment, buf, OUT_RAWDATA, m,
429 NO_SEG, NO_SEG);
430 l -= m;
433 list->downlevel(LIST_INCBIN);
434 if (instruction->times > 1) {
436 * Dummy call to list->output to give the offset to the
437 * listing module.
439 list->output(offset, NULL, OUT_RAWDATA, 0);
440 list->uplevel(LIST_TIMES);
441 list->downlevel(LIST_TIMES);
443 fclose(fp);
444 return instruction->times * len;
446 return 0; /* if we're here, there's an error */
449 /* Check to see if we need an address-size prefix */
450 add_asp(instruction, bits);
452 size_prob = false;
454 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++){
455 int m = matches(temp, instruction, bits);
456 if (m == 100 ||
457 (m == 99 && jmp_match(segment, offset, bits,
458 instruction, temp->code))) {
459 /* Matches! */
460 int64_t insn_size = calcsize(segment, offset, bits,
461 instruction, temp->code);
462 itimes = instruction->times;
463 if (insn_size < 0) /* shouldn't be, on pass two */
464 error(ERR_PANIC, "errors made it through from pass one");
465 else
466 while (itimes--) {
467 for (j = 0; j < MAXPREFIX; j++) {
468 uint8_t c = 0;
469 switch (instruction->prefixes[j]) {
470 case P_LOCK:
471 c = 0xF0;
472 break;
473 case P_REPNE:
474 case P_REPNZ:
475 c = 0xF2;
476 break;
477 case P_REPE:
478 case P_REPZ:
479 case P_REP:
480 c = 0xF3;
481 break;
482 case R_CS:
483 if (bits == 64) {
484 error(ERR_WARNING | ERR_PASS2,
485 "cs segment base generated, but will be ignored in 64-bit mode");
487 c = 0x2E;
488 break;
489 case R_DS:
490 if (bits == 64) {
491 error(ERR_WARNING | ERR_PASS2,
492 "ds segment base generated, but will be ignored in 64-bit mode");
494 c = 0x3E;
495 break;
496 case R_ES:
497 if (bits == 64) {
498 error(ERR_WARNING | ERR_PASS2,
499 "es segment base generated, but will be ignored in 64-bit mode");
501 c = 0x26;
502 break;
503 case R_FS:
504 c = 0x64;
505 break;
506 case R_GS:
507 c = 0x65;
508 break;
509 case R_SS:
510 if (bits == 64) {
511 error(ERR_WARNING | ERR_PASS2,
512 "ss segment base generated, but will be ignored in 64-bit mode");
514 c = 0x36;
515 break;
516 case R_SEGR6:
517 case R_SEGR7:
518 error(ERR_NONFATAL,
519 "segr6 and segr7 cannot be used as prefixes");
520 break;
521 case P_A16:
522 if (bits == 64) {
523 error(ERR_NONFATAL,
524 "16-bit addressing is not supported "
525 "in 64-bit mode");
526 } else if (bits != 16)
527 c = 0x67;
528 break;
529 case P_A32:
530 if (bits != 32)
531 c = 0x67;
532 break;
533 case P_A64:
534 if (bits != 64) {
535 error(ERR_NONFATAL,
536 "64-bit addressing is only supported "
537 "in 64-bit mode");
539 break;
540 case P_ASP:
541 c = 0x67;
542 break;
543 case P_O16:
544 if (bits != 16)
545 c = 0x66;
546 break;
547 case P_O32:
548 if (bits == 16)
549 c = 0x66;
550 break;
551 case P_O64:
552 /* REX.W */
553 break;
554 case P_OSP:
555 c = 0x66;
556 break;
557 case P_none:
558 break;
559 default:
560 error(ERR_PANIC, "invalid instruction prefix");
562 if (c != 0) {
563 out(offset, segment, &c, OUT_RAWDATA, 1,
564 NO_SEG, NO_SEG);
565 offset++;
568 insn_end = offset + insn_size;
569 gencode(segment, offset, bits, instruction,
570 temp, insn_end);
571 offset += insn_size;
572 if (itimes > 0 && itimes == instruction->times - 1) {
574 * Dummy call to list->output to give the offset to the
575 * listing module.
577 list->output(offset, NULL, OUT_RAWDATA, 0);
578 list->uplevel(LIST_TIMES);
581 if (instruction->times > 1)
582 list->downlevel(LIST_TIMES);
583 return offset - start;
584 } else if (m > 0 && m > size_prob) {
585 size_prob = m;
589 if (temp->opcode == -1) { /* didn't match any instruction */
590 switch (size_prob) {
591 case 1:
592 error(ERR_NONFATAL, "operation size not specified");
593 break;
594 case 2:
595 error(ERR_NONFATAL, "mismatch in operand sizes");
596 break;
597 case 3:
598 error(ERR_NONFATAL, "no instruction for this cpu level");
599 break;
600 case 4:
601 error(ERR_NONFATAL, "instruction not supported in 64-bit mode");
602 break;
603 default:
604 error(ERR_NONFATAL,
605 "invalid combination of opcode and operands");
606 break;
609 return 0;
612 int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
613 insn * instruction, efunc error)
615 const struct itemplate *temp;
617 errfunc = error; /* to pass to other functions */
618 cpu = cp;
620 if (instruction->opcode == -1)
621 return 0;
623 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
624 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
625 instruction->opcode == I_DT || instruction->opcode == I_DO ||
626 instruction->opcode == I_DY) {
627 extop *e;
628 int32_t isize, osize, wsize = 0; /* placate gcc */
630 isize = 0;
631 switch (instruction->opcode) {
632 case I_DB:
633 wsize = 1;
634 break;
635 case I_DW:
636 wsize = 2;
637 break;
638 case I_DD:
639 wsize = 4;
640 break;
641 case I_DQ:
642 wsize = 8;
643 break;
644 case I_DT:
645 wsize = 10;
646 break;
647 case I_DO:
648 wsize = 16;
649 break;
650 case I_DY:
651 wsize = 32;
652 break;
653 default:
654 break;
657 for (e = instruction->eops; e; e = e->next) {
658 int32_t align;
660 osize = 0;
661 if (e->type == EOT_DB_NUMBER)
662 osize = 1;
663 else if (e->type == EOT_DB_STRING ||
664 e->type == EOT_DB_STRING_FREE)
665 osize = e->stringlen;
667 align = (-osize) % wsize;
668 if (align < 0)
669 align += wsize;
670 isize += osize + align;
672 return isize * instruction->times;
675 if (instruction->opcode == I_INCBIN) {
676 const char *fname = instruction->eops->stringval;
677 FILE *fp;
678 size_t len;
680 fp = fopen(fname, "rb");
681 if (!fp)
682 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
683 fname);
684 else if (fseek(fp, 0L, SEEK_END) < 0)
685 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
686 fname);
687 else {
688 len = ftell(fp);
689 fclose(fp);
690 if (instruction->eops->next) {
691 len -= instruction->eops->next->offset;
692 if (instruction->eops->next->next &&
693 len > (size_t)instruction->eops->next->next->offset) {
694 len = (size_t)instruction->eops->next->next->offset;
697 return instruction->times * len;
699 return 0; /* if we're here, there's an error */
702 /* Check to see if we need an address-size prefix */
703 add_asp(instruction, bits);
705 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++) {
706 int m = matches(temp, instruction, bits);
707 if (m == 100 ||
708 (m == 99 && jmp_match(segment, offset, bits,
709 instruction, temp->code))) {
710 /* we've matched an instruction. */
711 int64_t isize;
712 const uint8_t *codes = temp->code;
713 int j;
715 isize = calcsize(segment, offset, bits, instruction, codes);
716 if (isize < 0)
717 return -1;
718 for (j = 0; j < MAXPREFIX; j++) {
719 switch (instruction->prefixes[j]) {
720 case P_A16:
721 if (bits != 16)
722 isize++;
723 break;
724 case P_A32:
725 if (bits != 32)
726 isize++;
727 break;
728 case P_O16:
729 if (bits != 16)
730 isize++;
731 break;
732 case P_O32:
733 if (bits == 16)
734 isize++;
735 break;
736 case P_A64:
737 case P_O64:
738 case P_none:
739 break;
740 default:
741 isize++;
742 break;
745 return isize * instruction->times;
748 return -1; /* didn't match any instruction */
751 static bool possible_sbyte(operand *o)
753 return o->wrt == NO_SEG && o->segment == NO_SEG &&
754 !(o->opflags & OPFLAG_FORWARD) &&
755 optimizing >= 0 && !(o->type & STRICT);
758 /* check that opn[op] is a signed byte of size 16 or 32 */
759 static bool is_sbyte16(operand *o)
761 int16_t v;
763 if (!possible_sbyte(o))
764 return false;
766 v = o->offset;
767 return v >= -128 && v <= 127;
770 static bool is_sbyte32(operand *o)
772 int32_t v;
774 if (!possible_sbyte(o))
775 return false;
777 v = o->offset;
778 return v >= -128 && v <= 127;
781 /* Common construct */
782 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
784 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
785 insn * ins, const uint8_t *codes)
787 int64_t length = 0;
788 uint8_t c;
789 int rex_mask = ~0;
790 int op1, op2;
791 struct operand *opx;
792 uint8_t opex = 0;
794 ins->rex = 0; /* Ensure REX is reset */
796 if (ins->prefixes[PPS_OSIZE] == P_O64)
797 ins->rex |= REX_W;
799 (void)segment; /* Don't warn that this parameter is unused */
800 (void)offset; /* Don't warn that this parameter is unused */
802 while (*codes) {
803 c = *codes++;
804 op1 = (c & 3) + ((opex & 1) << 2);
805 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
806 opx = &ins->oprs[op1];
807 opex = 0; /* For the next iteration */
809 switch (c) {
810 case 01:
811 case 02:
812 case 03:
813 case 04:
814 codes += c, length += c;
815 break;
817 case 05:
818 case 06:
819 case 07:
820 opex = c;
821 break;
823 case4(010):
824 ins->rex |=
825 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
826 codes++, length++;
827 break;
829 case4(014):
830 case4(020):
831 case4(024):
832 length++;
833 break;
835 case4(030):
836 length += 2;
837 break;
839 case4(034):
840 if (opx->type & (BITS16 | BITS32 | BITS64))
841 length += (opx->type & BITS16) ? 2 : 4;
842 else
843 length += (bits == 16) ? 2 : 4;
844 break;
846 case4(040):
847 length += 4;
848 break;
850 case4(044):
851 length += ins->addr_size >> 3;
852 break;
854 case4(050):
855 length++;
856 break;
858 case4(054):
859 length += 8; /* MOV reg64/imm */
860 break;
862 case4(060):
863 length += 2;
864 break;
866 case4(064):
867 if (opx->type & (BITS16 | BITS32 | BITS64))
868 length += (opx->type & BITS16) ? 2 : 4;
869 else
870 length += (bits == 16) ? 2 : 4;
871 break;
873 case4(070):
874 length += 4;
875 break;
877 case4(074):
878 length += 2;
879 break;
881 case4(0140):
882 length += is_sbyte16(opx) ? 1 : 2;
883 break;
885 case4(0144):
886 codes++;
887 length++;
888 break;
890 case4(0150):
891 length += is_sbyte32(opx) ? 1 : 4;
892 break;
894 case4(0154):
895 codes++;
896 length++;
897 break;
899 case4(0160):
900 length++;
901 ins->rex |= REX_D;
902 ins->drexdst = regval(opx);
903 break;
905 case4(0164):
906 length++;
907 ins->rex |= REX_D|REX_OC;
908 ins->drexdst = regval(opx);
909 break;
911 case 0171:
912 break;
914 case 0172:
915 case 0173:
916 case 0174:
917 codes++;
918 length++;
919 break;
921 case4(0250):
922 length += is_sbyte32(opx) ? 1 : 4;
923 break;
925 case4(0254):
926 length += 4;
927 break;
929 case4(0260):
930 ins->rex |= REX_V;
931 ins->drexdst = regval(opx);
932 ins->vex_m = *codes++;
933 ins->vex_wlp = *codes++;
934 break;
936 case 0270:
937 ins->rex |= REX_V;
938 ins->drexdst = 0;
939 ins->vex_m = *codes++;
940 ins->vex_wlp = *codes++;
941 break;
943 case4(0274):
944 length++;
945 break;
947 case4(0300):
948 break;
950 case 0310:
951 if (bits == 64)
952 return -1;
953 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
954 break;
956 case 0311:
957 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
958 break;
960 case 0312:
961 break;
963 case 0313:
964 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
965 has_prefix(ins, PPS_ASIZE, P_A32))
966 return -1;
967 break;
969 case4(0314):
970 break;
972 case 0320:
973 length += (bits != 16);
974 break;
976 case 0321:
977 length += (bits == 16);
978 break;
980 case 0322:
981 break;
983 case 0323:
984 rex_mask &= ~REX_W;
985 break;
987 case 0324:
988 ins->rex |= REX_W;
989 break;
991 case 0330:
992 codes++, length++;
993 break;
995 case 0331:
996 break;
998 case 0332:
999 case 0333:
1000 length++;
1001 break;
1003 case 0334:
1004 ins->rex |= REX_L;
1005 break;
1007 case 0335:
1008 break;
1010 case 0336:
1011 if (!ins->prefixes[PPS_LREP])
1012 ins->prefixes[PPS_LREP] = P_REP;
1013 break;
1015 case 0337:
1016 if (!ins->prefixes[PPS_LREP])
1017 ins->prefixes[PPS_LREP] = P_REPNE;
1018 break;
1020 case 0340:
1021 if (ins->oprs[0].segment != NO_SEG)
1022 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1023 " quantity of BSS space");
1024 else
1025 length += ins->oprs[0].offset;
1026 break;
1028 case4(0344):
1029 length++;
1030 break;
1032 case 0360:
1033 break;
1035 case 0361:
1036 case 0362:
1037 case 0363:
1038 length++;
1039 break;
1041 case 0364:
1042 case 0365:
1043 break;
1045 case 0366:
1046 case 0367:
1047 length++;
1048 break;
1050 case 0370:
1051 case 0371:
1052 case 0372:
1053 break;
1055 case 0373:
1056 length++;
1057 break;
1059 case4(0100):
1060 case4(0110):
1061 case4(0120):
1062 case4(0130):
1063 case4(0200):
1064 case4(0204):
1065 case4(0210):
1066 case4(0214):
1067 case4(0220):
1068 case4(0224):
1069 case4(0230):
1070 case4(0234):
1072 ea ea_data;
1073 int rfield;
1074 int32_t rflags;
1075 struct operand *opy = &ins->oprs[op2];
1077 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1079 if (c <= 0177) {
1080 /* pick rfield from operand b (opx) */
1081 rflags = regflag(opx);
1082 rfield = nasm_regvals[opx->basereg];
1083 } else {
1084 rflags = 0;
1085 rfield = c & 7;
1087 if (!process_ea(opy, &ea_data, bits,
1088 ins->addr_size, rfield, rflags)) {
1089 errfunc(ERR_NONFATAL, "invalid effective address");
1090 return -1;
1091 } else {
1092 ins->rex |= ea_data.rex;
1093 length += ea_data.size;
1096 break;
1098 default:
1099 errfunc(ERR_PANIC, "internal instruction table corrupt"
1100 ": instruction code 0x%02X given", c);
1101 break;
1105 ins->rex &= rex_mask;
1107 if (ins->rex & REX_V) {
1108 int bad32 = REX_R|REX_W|REX_X|REX_B;
1110 if (ins->rex & REX_H) {
1111 errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
1112 return -1;
1114 switch (ins->vex_wlp & 030) {
1115 case 000:
1116 case 020:
1117 ins->rex &= ~REX_W;
1118 break;
1119 case 010:
1120 ins->rex |= REX_W;
1121 bad32 &= ~REX_W;
1122 break;
1123 case 030:
1124 /* Follow REX_W */
1125 break;
1128 if (bits != 64 && ((ins->rex & bad32) || ins->drexdst > 7)) {
1129 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1130 return -1;
1132 if (ins->vex_m != 1 || (ins->rex & (REX_W|REX_R|REX_B)))
1133 length += 3;
1134 else
1135 length += 2;
1136 } else if (ins->rex & REX_D) {
1137 if (ins->rex & REX_H) {
1138 errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
1139 return -1;
1141 if (bits != 64 && ((ins->rex & (REX_R|REX_W|REX_X|REX_B)) ||
1142 ins->drexdst > 7)) {
1143 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1144 return -1;
1146 length++;
1147 } else if (ins->rex & REX_REAL) {
1148 if (ins->rex & REX_H) {
1149 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1150 return -1;
1151 } else if (bits == 64) {
1152 length++;
1153 } else if ((ins->rex & REX_L) &&
1154 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1155 cpu >= IF_X86_64) {
1156 /* LOCK-as-REX.R */
1157 assert_no_prefix(ins, PPS_LREP);
1158 length++;
1159 } else {
1160 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1161 return -1;
1165 return length;
1168 #define EMIT_REX() \
1169 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1170 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1171 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1172 ins->rex = 0; \
1173 offset += 1; \
1176 static void gencode(int32_t segment, int64_t offset, int bits,
1177 insn * ins, const struct itemplate *temp,
1178 int64_t insn_end)
1180 static char condval[] = { /* conditional opcodes */
1181 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1182 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1183 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1185 uint8_t c;
1186 uint8_t bytes[4];
1187 int64_t size;
1188 int64_t data;
1189 int op1, op2;
1190 struct operand *opx;
1191 const uint8_t *codes = temp->code;
1192 uint8_t opex = 0;
1194 while (*codes) {
1195 c = *codes++;
1196 op1 = (c & 3) + ((opex & 1) << 2);
1197 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
1198 opx = &ins->oprs[op1];
1199 opex = 0; /* For the next iteration */
1201 switch (c) {
1202 case 01:
1203 case 02:
1204 case 03:
1205 case 04:
1206 EMIT_REX();
1207 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1208 codes += c;
1209 offset += c;
1210 break;
1212 case 05:
1213 case 06:
1214 case 07:
1215 opex = c;
1216 break;
1218 case4(010):
1219 EMIT_REX();
1220 bytes[0] = *codes++ + (regval(opx) & 7);
1221 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1222 offset += 1;
1223 break;
1225 case4(014):
1226 /* The test for BITS8 and SBYTE here is intended to avoid
1227 warning on optimizer actions due to SBYTE, while still
1228 warn on explicit BYTE directives. Also warn, obviously,
1229 if the optimizer isn't enabled. */
1230 if (((opx->type & BITS8) ||
1231 !(opx->type & temp->opd[op1] & BYTENESS)) &&
1232 (opx->offset < -128 || opx->offset > 127)) {
1233 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1234 "signed byte value exceeds bounds");
1236 if (opx->segment != NO_SEG) {
1237 data = opx->offset;
1238 out(offset, segment, &data, OUT_ADDRESS, 1,
1239 opx->segment, opx->wrt);
1240 } else {
1241 bytes[0] = opx->offset;
1242 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1243 NO_SEG);
1245 offset += 1;
1246 break;
1248 case4(020):
1249 if (opx->offset < -256 || opx->offset > 255) {
1250 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1251 "byte value exceeds bounds");
1253 if (opx->segment != NO_SEG) {
1254 data = opx->offset;
1255 out(offset, segment, &data, OUT_ADDRESS, 1,
1256 opx->segment, opx->wrt);
1257 } else {
1258 bytes[0] = opx->offset;
1259 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1260 NO_SEG);
1262 offset += 1;
1263 break;
1265 case4(024):
1266 if (opx->offset < 0 || opx->offset > 255)
1267 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1268 "unsigned byte value exceeds bounds");
1269 if (opx->segment != NO_SEG) {
1270 data = opx->offset;
1271 out(offset, segment, &data, OUT_ADDRESS, 1,
1272 opx->segment, opx->wrt);
1273 } else {
1274 bytes[0] = opx->offset;
1275 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1276 NO_SEG);
1278 offset += 1;
1279 break;
1281 case4(030):
1282 warn_overflow(2, opx);
1283 data = opx->offset;
1284 out(offset, segment, &data, OUT_ADDRESS, 2,
1285 opx->segment, opx->wrt);
1286 offset += 2;
1287 break;
1289 case4(034):
1290 if (opx->type & (BITS16 | BITS32))
1291 size = (opx->type & BITS16) ? 2 : 4;
1292 else
1293 size = (bits == 16) ? 2 : 4;
1294 warn_overflow(size, opx);
1295 data = opx->offset;
1296 out(offset, segment, &data, OUT_ADDRESS, size,
1297 opx->segment, opx->wrt);
1298 offset += size;
1299 break;
1301 case4(040):
1302 warn_overflow(4, opx);
1303 data = opx->offset;
1304 out(offset, segment, &data, OUT_ADDRESS, 4,
1305 opx->segment, opx->wrt);
1306 offset += 4;
1307 break;
1309 case4(044):
1310 data = opx->offset;
1311 size = ins->addr_size >> 3;
1312 warn_overflow(size, opx);
1313 out(offset, segment, &data, OUT_ADDRESS, size,
1314 opx->segment, opx->wrt);
1315 offset += size;
1316 break;
1318 case4(050):
1319 if (opx->segment != segment)
1320 errfunc(ERR_NONFATAL,
1321 "short relative jump outside segment");
1322 data = opx->offset - insn_end;
1323 if (data > 127 || data < -128)
1324 errfunc(ERR_NONFATAL, "short jump is out of range");
1325 bytes[0] = data;
1326 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1327 offset += 1;
1328 break;
1330 case4(054):
1331 data = (int64_t)opx->offset;
1332 out(offset, segment, &data, OUT_ADDRESS, 8,
1333 opx->segment, opx->wrt);
1334 offset += 8;
1335 break;
1337 case4(060):
1338 if (opx->segment != segment) {
1339 data = opx->offset;
1340 out(offset, segment, &data,
1341 OUT_REL2ADR, insn_end - offset,
1342 opx->segment, opx->wrt);
1343 } else {
1344 data = opx->offset - insn_end;
1345 out(offset, segment, &data,
1346 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1348 offset += 2;
1349 break;
1351 case4(064):
1352 if (opx->type & (BITS16 | BITS32 | BITS64))
1353 size = (opx->type & BITS16) ? 2 : 4;
1354 else
1355 size = (bits == 16) ? 2 : 4;
1356 if (opx->segment != segment) {
1357 data = opx->offset;
1358 out(offset, segment, &data,
1359 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1360 insn_end - offset, opx->segment, opx->wrt);
1361 } else {
1362 data = opx->offset - insn_end;
1363 out(offset, segment, &data,
1364 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1366 offset += size;
1367 break;
1369 case4(070):
1370 if (opx->segment != segment) {
1371 data = opx->offset;
1372 out(offset, segment, &data,
1373 OUT_REL4ADR, insn_end - offset,
1374 opx->segment, opx->wrt);
1375 } else {
1376 data = opx->offset - insn_end;
1377 out(offset, segment, &data,
1378 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1380 offset += 4;
1381 break;
1383 case4(074):
1384 if (opx->segment == NO_SEG)
1385 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1386 " relocatable");
1387 data = 0;
1388 out(offset, segment, &data, OUT_ADDRESS, 2,
1389 outfmt->segbase(1 + opx->segment),
1390 opx->wrt);
1391 offset += 2;
1392 break;
1394 case4(0140):
1395 data = opx->offset;
1396 warn_overflow(2, opx);
1397 if (is_sbyte16(opx)) {
1398 bytes[0] = data;
1399 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1400 NO_SEG);
1401 offset++;
1402 } else {
1403 out(offset, segment, &data, OUT_ADDRESS, 2,
1404 opx->segment, opx->wrt);
1405 offset += 2;
1407 break;
1409 case4(0144):
1410 EMIT_REX();
1411 bytes[0] = *codes++;
1412 if (is_sbyte16(opx))
1413 bytes[0] |= 2; /* s-bit */
1414 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1415 offset++;
1416 break;
1418 case4(0150):
1419 data = opx->offset;
1420 warn_overflow(4, opx);
1421 if (is_sbyte32(opx)) {
1422 bytes[0] = data;
1423 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1424 NO_SEG);
1425 offset++;
1426 } else {
1427 out(offset, segment, &data, OUT_ADDRESS, 4,
1428 opx->segment, opx->wrt);
1429 offset += 4;
1431 break;
1433 case4(0154):
1434 EMIT_REX();
1435 bytes[0] = *codes++;
1436 if (is_sbyte32(opx))
1437 bytes[0] |= 2; /* s-bit */
1438 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1439 offset++;
1440 break;
1442 case4(0160):
1443 case4(0164):
1444 break;
1446 case 0171:
1447 bytes[0] =
1448 (ins->drexdst << 4) |
1449 (ins->rex & REX_OC ? 0x08 : 0) |
1450 (ins->rex & (REX_R|REX_X|REX_B));
1451 ins->rex = 0;
1452 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1453 offset++;
1454 break;
1456 case 0172:
1457 c = *codes++;
1458 opx = &ins->oprs[c >> 3];
1459 bytes[0] = nasm_regvals[opx->basereg] << 4;
1460 opx = &ins->oprs[c & 7];
1461 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1462 errfunc(ERR_NONFATAL,
1463 "non-absolute expression not permitted as argument %d",
1464 c & 7);
1465 } else {
1466 if (opx->offset & ~15) {
1467 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1468 "four-bit argument exceeds bounds");
1470 bytes[0] |= opx->offset & 15;
1472 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1473 offset++;
1474 break;
1476 case 0173:
1477 c = *codes++;
1478 opx = &ins->oprs[c >> 4];
1479 bytes[0] = nasm_regvals[opx->basereg] << 4;
1480 bytes[0] |= c & 15;
1481 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1482 offset++;
1483 break;
1485 case 0174:
1486 c = *codes++;
1487 opx = &ins->oprs[c];
1488 bytes[0] = nasm_regvals[opx->basereg] << 4;
1489 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1490 offset++;
1491 break;
1493 case4(0250):
1494 data = opx->offset;
1495 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1496 (int32_t)data != (int64_t)data) {
1497 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1498 "signed dword immediate exceeds bounds");
1500 if (is_sbyte32(opx)) {
1501 bytes[0] = data;
1502 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1503 NO_SEG);
1504 offset++;
1505 } else {
1506 out(offset, segment, &data, OUT_ADDRESS, 4,
1507 opx->segment, opx->wrt);
1508 offset += 4;
1510 break;
1512 case4(0254):
1513 data = opx->offset;
1514 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1515 (int32_t)data != (int64_t)data) {
1516 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1517 "signed dword immediate exceeds bounds");
1519 out(offset, segment, &data, OUT_ADDRESS, 4,
1520 opx->segment, opx->wrt);
1521 offset += 4;
1522 break;
1524 case4(0260):
1525 case 0270:
1526 codes += 2;
1527 if (ins->vex_m != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1528 bytes[0] = 0xc4;
1529 bytes[1] = ins->vex_m | ((~ins->rex & 7) << 5);
1530 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1531 ((~ins->drexdst & 15)<< 3) | (ins->vex_wlp & 07);
1532 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1533 offset += 3;
1534 } else {
1535 bytes[0] = 0xc5;
1536 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1537 ((~ins->drexdst & 15) << 3) | (ins->vex_wlp & 07);
1538 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1539 offset += 2;
1541 break;
1543 case4(0274):
1545 uint64_t uv, um;
1546 int s;
1548 if (ins->rex & REX_W)
1549 s = 64;
1550 else if (ins->prefixes[PPS_OSIZE] == P_O16)
1551 s = 16;
1552 else if (ins->prefixes[PPS_OSIZE] == P_O32)
1553 s = 32;
1554 else
1555 s = bits;
1557 um = (uint64_t)2 << (s-1);
1558 uv = opx->offset;
1560 if (uv > 127 && uv < (uint64_t)-128 &&
1561 (uv < um-128 || uv > um-1)) {
1562 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1563 "signed byte value exceeds bounds");
1565 if (opx->segment != NO_SEG) {
1566 data = uv;
1567 out(offset, segment, &data, OUT_ADDRESS, 1,
1568 opx->segment, opx->wrt);
1569 } else {
1570 bytes[0] = uv;
1571 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1572 NO_SEG);
1574 offset += 1;
1575 break;
1578 case4(0300):
1579 break;
1581 case 0310:
1582 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1583 *bytes = 0x67;
1584 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1585 offset += 1;
1586 } else
1587 offset += 0;
1588 break;
1590 case 0311:
1591 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1592 *bytes = 0x67;
1593 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1594 offset += 1;
1595 } else
1596 offset += 0;
1597 break;
1599 case 0312:
1600 break;
1602 case 0313:
1603 ins->rex = 0;
1604 break;
1606 case4(0314):
1607 break;
1609 case 0320:
1610 if (bits != 16) {
1611 *bytes = 0x66;
1612 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1613 offset += 1;
1614 } else
1615 offset += 0;
1616 break;
1618 case 0321:
1619 if (bits == 16) {
1620 *bytes = 0x66;
1621 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1622 offset += 1;
1623 } else
1624 offset += 0;
1625 break;
1627 case 0322:
1628 case 0323:
1629 break;
1631 case 0324:
1632 ins->rex |= REX_W;
1633 break;
1635 case 0330:
1636 *bytes = *codes++ ^ condval[ins->condition];
1637 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1638 offset += 1;
1639 break;
1641 case 0331:
1642 break;
1644 case 0332:
1645 case 0333:
1646 *bytes = c - 0332 + 0xF2;
1647 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1648 offset += 1;
1649 break;
1651 case 0334:
1652 if (ins->rex & REX_R) {
1653 *bytes = 0xF0;
1654 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1655 offset += 1;
1657 ins->rex &= ~(REX_L|REX_R);
1658 break;
1660 case 0335:
1661 break;
1663 case 0336:
1664 case 0337:
1665 break;
1667 case 0340:
1668 if (ins->oprs[0].segment != NO_SEG)
1669 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1670 else {
1671 int64_t size = ins->oprs[0].offset;
1672 if (size > 0)
1673 out(offset, segment, NULL,
1674 OUT_RESERVE, size, NO_SEG, NO_SEG);
1675 offset += size;
1677 break;
1679 case 0344:
1680 case 0345:
1681 bytes[0] = c & 1;
1682 switch (ins->oprs[0].basereg) {
1683 case R_CS:
1684 bytes[0] += 0x0E;
1685 break;
1686 case R_DS:
1687 bytes[0] += 0x1E;
1688 break;
1689 case R_ES:
1690 bytes[0] += 0x06;
1691 break;
1692 case R_SS:
1693 bytes[0] += 0x16;
1694 break;
1695 default:
1696 errfunc(ERR_PANIC,
1697 "bizarre 8086 segment register received");
1699 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1700 offset++;
1701 break;
1703 case 0346:
1704 case 0347:
1705 bytes[0] = c & 1;
1706 switch (ins->oprs[0].basereg) {
1707 case R_FS:
1708 bytes[0] += 0xA0;
1709 break;
1710 case R_GS:
1711 bytes[0] += 0xA8;
1712 break;
1713 default:
1714 errfunc(ERR_PANIC,
1715 "bizarre 386 segment register received");
1717 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1718 offset++;
1719 break;
1721 case 0360:
1722 break;
1724 case 0361:
1725 bytes[0] = 0x66;
1726 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1727 offset += 1;
1728 break;
1730 case 0362:
1731 case 0363:
1732 bytes[0] = c - 0362 + 0xf2;
1733 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1734 offset += 1;
1735 break;
1737 case 0364:
1738 case 0365:
1739 break;
1741 case 0366:
1742 case 0367:
1743 *bytes = c - 0366 + 0x66;
1744 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1745 offset += 1;
1746 break;
1748 case 0370:
1749 case 0371:
1750 case 0372:
1751 break;
1753 case 0373:
1754 *bytes = bits == 16 ? 3 : 5;
1755 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1756 offset += 1;
1757 break;
1759 case4(0100):
1760 case4(0110):
1761 case4(0120):
1762 case4(0130):
1763 case4(0200):
1764 case4(0204):
1765 case4(0210):
1766 case4(0214):
1767 case4(0220):
1768 case4(0224):
1769 case4(0230):
1770 case4(0234):
1772 ea ea_data;
1773 int rfield;
1774 int32_t rflags;
1775 uint8_t *p;
1776 int32_t s;
1777 enum out_type type;
1778 struct operand *opy = &ins->oprs[op2];
1780 if (c <= 0177) {
1781 /* pick rfield from operand b (opx) */
1782 rflags = regflag(opx);
1783 rfield = nasm_regvals[opx->basereg];
1784 } else {
1785 /* rfield is constant */
1786 rflags = 0;
1787 rfield = c & 7;
1790 if (!process_ea(opy, &ea_data, bits, ins->addr_size,
1791 rfield, rflags)) {
1792 errfunc(ERR_NONFATAL, "invalid effective address");
1796 p = bytes;
1797 *p++ = ea_data.modrm;
1798 if (ea_data.sib_present)
1799 *p++ = ea_data.sib;
1801 /* DREX suffixes come between the SIB and the displacement */
1802 if (ins->rex & REX_D) {
1803 *p++ = (ins->drexdst << 4) |
1804 (ins->rex & REX_OC ? 0x08 : 0) |
1805 (ins->rex & (REX_R|REX_X|REX_B));
1806 ins->rex = 0;
1809 s = p - bytes;
1810 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1813 * Make sure the address gets the right offset in case
1814 * the line breaks in the .lst file (BR 1197827)
1816 offset += s;
1817 s = 0;
1819 switch (ea_data.bytes) {
1820 case 0:
1821 break;
1822 case 1:
1823 if (opy->segment != NO_SEG) {
1824 data = opy->offset;
1825 out(offset, segment, &data, OUT_ADDRESS, 1,
1826 opy->segment, opy->wrt);
1827 } else {
1828 *bytes = opy->offset;
1829 out(offset, segment, bytes, OUT_RAWDATA, 1,
1830 NO_SEG, NO_SEG);
1832 s++;
1833 break;
1834 case 8:
1835 case 2:
1836 case 4:
1837 data = opy->offset;
1838 warn_overflow(ea_data.bytes, opy);
1839 s += ea_data.bytes;
1840 if (ea_data.rip) {
1841 if (opy->segment == segment) {
1842 data -= insn_end;
1843 out(offset, segment, &data, OUT_ADDRESS,
1844 ea_data.bytes, NO_SEG, NO_SEG);
1845 } else {
1846 out(offset, segment, &data, OUT_REL4ADR,
1847 insn_end - offset, opy->segment, opy->wrt);
1849 } else {
1850 type = OUT_ADDRESS;
1851 out(offset, segment, &data, OUT_ADDRESS,
1852 ea_data.bytes, opy->segment, opy->wrt);
1854 break;
1856 offset += s;
1858 break;
1860 default:
1861 errfunc(ERR_PANIC, "internal instruction table corrupt"
1862 ": instruction code 0x%02X given", c);
1863 break;
1868 static int32_t regflag(const operand * o)
1870 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1871 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1873 return nasm_reg_flags[o->basereg];
1876 static int32_t regval(const operand * o)
1878 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1879 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1881 return nasm_regvals[o->basereg];
1884 static int op_rexflags(const operand * o, int mask)
1886 int32_t flags;
1887 int val;
1889 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1890 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1893 flags = nasm_reg_flags[o->basereg];
1894 val = nasm_regvals[o->basereg];
1896 return rexflags(val, flags, mask);
1899 static int rexflags(int val, int32_t flags, int mask)
1901 int rex = 0;
1903 if (val >= 8)
1904 rex |= REX_B|REX_X|REX_R;
1905 if (flags & BITS64)
1906 rex |= REX_W;
1907 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1908 rex |= REX_H;
1909 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1910 rex |= REX_P;
1912 return rex & mask;
1915 static int matches(const struct itemplate *itemp, insn * instruction, int bits)
1917 int i, size[MAX_OPERANDS], asize, oprs, ret;
1919 ret = 100;
1922 * Check the opcode
1924 if (itemp->opcode != instruction->opcode)
1925 return 0;
1928 * Count the operands
1930 if (itemp->operands != instruction->operands)
1931 return 0;
1934 * Check that no spurious colons or TOs are present
1936 for (i = 0; i < itemp->operands; i++)
1937 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
1938 return 0;
1941 * Process size flags
1943 if (itemp->flags & IF_ARMASK) {
1944 memset(size, 0, sizeof size);
1946 i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
1948 switch (itemp->flags & IF_SMASK) {
1949 case IF_SB:
1950 size[i] = BITS8;
1951 break;
1952 case IF_SW:
1953 size[i] = BITS16;
1954 break;
1955 case IF_SD:
1956 size[i] = BITS32;
1957 break;
1958 case IF_SQ:
1959 size[i] = BITS64;
1960 break;
1961 case IF_SO:
1962 size[i] = BITS128;
1963 break;
1964 case IF_SY:
1965 size[i] = BITS256;
1966 break;
1967 case IF_SZ:
1968 switch (bits) {
1969 case 16:
1970 size[i] = BITS16;
1971 break;
1972 case 32:
1973 size[i] = BITS32;
1974 break;
1975 case 64:
1976 size[i] = BITS64;
1977 break;
1979 break;
1980 default:
1981 break;
1983 } else {
1984 asize = 0;
1985 switch (itemp->flags & IF_SMASK) {
1986 case IF_SB:
1987 asize = BITS8;
1988 break;
1989 case IF_SW:
1990 asize = BITS16;
1991 break;
1992 case IF_SD:
1993 asize = BITS32;
1994 break;
1995 case IF_SQ:
1996 asize = BITS64;
1997 break;
1998 case IF_SO:
1999 asize = BITS128;
2000 break;
2001 case IF_SY:
2002 asize = BITS256;
2003 break;
2004 case IF_SZ:
2005 switch (bits) {
2006 case 16:
2007 asize = BITS16;
2008 break;
2009 case 32:
2010 asize = BITS32;
2011 break;
2012 case 64:
2013 asize = BITS64;
2014 break;
2016 break;
2017 default:
2018 break;
2020 for (i = 0; i < MAX_OPERANDS; i++)
2021 size[i] = asize;
2025 * Check that the operand flags all match up
2027 for (i = 0; i < itemp->operands; i++) {
2028 int32_t type = instruction->oprs[i].type;
2029 if (!(type & SIZE_MASK))
2030 type |= size[i];
2032 if (itemp->opd[i] & SAME_AS) {
2033 int j = itemp->opd[i] & ~SAME_AS;
2034 if (type != instruction->oprs[j].type ||
2035 instruction->oprs[i].basereg != instruction->oprs[j].basereg)
2036 return 0;
2037 } else if (itemp->opd[i] & ~type ||
2038 ((itemp->opd[i] & SIZE_MASK) &&
2039 ((itemp->opd[i] ^ type) & SIZE_MASK))) {
2040 if ((itemp->opd[i] & ~type & ~SIZE_MASK) ||
2041 (type & SIZE_MASK))
2042 return 0;
2043 else
2044 return 1;
2049 * Check operand sizes
2051 if (itemp->flags & (IF_SM | IF_SM2)) {
2052 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
2053 asize = 0;
2054 for (i = 0; i < oprs; i++) {
2055 if ((asize = itemp->opd[i] & SIZE_MASK) != 0) {
2056 int j;
2057 for (j = 0; j < oprs; j++)
2058 size[j] = asize;
2059 break;
2062 } else {
2063 oprs = itemp->operands;
2066 for (i = 0; i < itemp->operands; i++) {
2067 if (!(itemp->opd[i] & SIZE_MASK) &&
2068 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2069 return 2;
2073 * Check template is okay at the set cpu level
2075 if (((itemp->flags & IF_PLEVEL) > cpu))
2076 return 3;
2079 * Check if instruction is available in long mode
2081 if ((itemp->flags & IF_NOLONG) && (bits == 64))
2082 return 4;
2085 * Check if special handling needed for Jumps
2087 if ((uint8_t)(itemp->code[0]) >= 0370)
2088 return 99;
2090 return ret;
2093 static ea *process_ea(operand * input, ea * output, int bits,
2094 int addrbits, int rfield, int32_t rflags)
2096 bool forw_ref = !!(input->opflags & OPFLAG_FORWARD);
2098 output->rip = false;
2100 /* REX flags for the rfield operand */
2101 output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
2103 if (!(REGISTER & ~input->type)) { /* register direct */
2104 int i;
2105 int32_t f;
2107 if (input->basereg < EXPR_REG_START /* Verify as Register */
2108 || input->basereg >= REG_ENUM_LIMIT)
2109 return NULL;
2110 f = regflag(input);
2111 i = nasm_regvals[input->basereg];
2113 if (REG_EA & ~f)
2114 return NULL; /* Invalid EA register */
2116 output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
2118 output->sib_present = false; /* no SIB necessary */
2119 output->bytes = 0; /* no offset necessary either */
2120 output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
2121 } else { /* it's a memory reference */
2122 if (input->basereg == -1
2123 && (input->indexreg == -1 || input->scale == 0)) {
2124 /* it's a pure offset */
2125 if (bits == 64 && (~input->type & IP_REL)) {
2126 int scale, index, base;
2127 output->sib_present = true;
2128 scale = 0;
2129 index = 4;
2130 base = 5;
2131 output->sib = (scale << 6) | (index << 3) | base;
2132 output->bytes = 4;
2133 output->modrm = 4 | ((rfield & 7) << 3);
2134 output->rip = false;
2135 } else {
2136 output->sib_present = false;
2137 output->bytes = (addrbits != 16 ? 4 : 2);
2138 output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
2139 output->rip = bits == 64;
2141 } else { /* it's an indirection */
2142 int i = input->indexreg, b = input->basereg, s = input->scale;
2143 int32_t o = input->offset, seg = input->segment;
2144 int hb = input->hintbase, ht = input->hinttype;
2145 int t;
2146 int it, bt;
2147 int32_t ix, bx; /* register flags */
2149 if (s == 0)
2150 i = -1; /* make this easy, at least */
2152 if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
2153 it = nasm_regvals[i];
2154 ix = nasm_reg_flags[i];
2155 } else {
2156 it = -1;
2157 ix = 0;
2160 if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
2161 bt = nasm_regvals[b];
2162 bx = nasm_reg_flags[b];
2163 } else {
2164 bt = -1;
2165 bx = 0;
2168 /* check for a 32/64-bit memory reference... */
2169 if ((ix|bx) & (BITS32|BITS64)) {
2170 /* it must be a 32/64-bit memory reference. Firstly we have
2171 * to check that all registers involved are type E/Rxx. */
2172 int32_t sok = BITS32|BITS64;
2174 if (it != -1) {
2175 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2176 sok &= ix;
2177 else
2178 return NULL;
2181 if (bt != -1) {
2182 if (REG_GPR & ~bx)
2183 return NULL; /* Invalid register */
2184 if (~sok & bx & SIZE_MASK)
2185 return NULL; /* Invalid size */
2186 sok &= bx;
2189 /* While we're here, ensure the user didn't specify
2190 WORD or QWORD. */
2191 if (input->disp_size == 16 || input->disp_size == 64)
2192 return NULL;
2194 if (addrbits == 16 ||
2195 (addrbits == 32 && !(sok & BITS32)) ||
2196 (addrbits == 64 && !(sok & BITS64)))
2197 return NULL;
2199 /* now reorganize base/index */
2200 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2201 ((hb == b && ht == EAH_NOTBASE)
2202 || (hb == i && ht == EAH_MAKEBASE))) {
2203 /* swap if hints say so */
2204 t = bt, bt = it, it = t;
2205 t = bx, bx = ix, ix = t;
2207 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2208 bt = -1, bx = 0, s++;
2209 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
2210 /* make single reg base, unless hint */
2211 bt = it, bx = ix, it = -1, ix = 0;
2213 if (((s == 2 && it != REG_NUM_ESP
2214 && !(input->eaflags & EAF_TIMESTWO)) || s == 3
2215 || s == 5 || s == 9) && bt == -1)
2216 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2217 if (it == -1 && (bt & 7) != REG_NUM_ESP
2218 && (input->eaflags & EAF_TIMESTWO))
2219 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2220 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2221 if (s == 1 && it == REG_NUM_ESP) {
2222 /* swap ESP into base if scale is 1 */
2223 t = it, it = bt, bt = t;
2224 t = ix, ix = bx, bx = t;
2226 if (it == REG_NUM_ESP
2227 || (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2228 return NULL; /* wrong, for various reasons */
2230 output->rex |= rexflags(it, ix, REX_X);
2231 output->rex |= rexflags(bt, bx, REX_B);
2233 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2234 /* no SIB needed */
2235 int mod, rm;
2237 if (bt == -1) {
2238 rm = 5;
2239 mod = 0;
2240 } else {
2241 rm = (bt & 7);
2242 if (rm != REG_NUM_EBP && o == 0 &&
2243 seg == NO_SEG && !forw_ref &&
2244 !(input->eaflags &
2245 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2246 mod = 0;
2247 else if (input->eaflags & EAF_BYTEOFFS ||
2248 (o >= -128 && o <= 127 && seg == NO_SEG
2249 && !forw_ref
2250 && !(input->eaflags & EAF_WORDOFFS)))
2251 mod = 1;
2252 else
2253 mod = 2;
2256 output->sib_present = false;
2257 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2258 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2259 } else {
2260 /* we need a SIB */
2261 int mod, scale, index, base;
2263 if (it == -1)
2264 index = 4, s = 1;
2265 else
2266 index = (it & 7);
2268 switch (s) {
2269 case 1:
2270 scale = 0;
2271 break;
2272 case 2:
2273 scale = 1;
2274 break;
2275 case 4:
2276 scale = 2;
2277 break;
2278 case 8:
2279 scale = 3;
2280 break;
2281 default: /* then what the smeg is it? */
2282 return NULL; /* panic */
2285 if (bt == -1) {
2286 base = 5;
2287 mod = 0;
2288 } else {
2289 base = (bt & 7);
2290 if (base != REG_NUM_EBP && o == 0 &&
2291 seg == NO_SEG && !forw_ref &&
2292 !(input->eaflags &
2293 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2294 mod = 0;
2295 else if (input->eaflags & EAF_BYTEOFFS ||
2296 (o >= -128 && o <= 127 && seg == NO_SEG
2297 && !forw_ref
2298 && !(input->eaflags & EAF_WORDOFFS)))
2299 mod = 1;
2300 else
2301 mod = 2;
2304 output->sib_present = true;
2305 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2306 output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
2307 output->sib = (scale << 6) | (index << 3) | base;
2309 } else { /* it's 16-bit */
2310 int mod, rm;
2312 /* check for 64-bit long mode */
2313 if (addrbits == 64)
2314 return NULL;
2316 /* check all registers are BX, BP, SI or DI */
2317 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
2318 && b != R_DI) || (i != -1 && i != R_BP && i != R_BX
2319 && i != R_SI && i != R_DI))
2320 return NULL;
2322 /* ensure the user didn't specify DWORD/QWORD */
2323 if (input->disp_size == 32 || input->disp_size == 64)
2324 return NULL;
2326 if (s != 1 && i != -1)
2327 return NULL; /* no can do, in 16-bit EA */
2328 if (b == -1 && i != -1) {
2329 int tmp = b;
2330 b = i;
2331 i = tmp;
2332 } /* swap */
2333 if ((b == R_SI || b == R_DI) && i != -1) {
2334 int tmp = b;
2335 b = i;
2336 i = tmp;
2338 /* have BX/BP as base, SI/DI index */
2339 if (b == i)
2340 return NULL; /* shouldn't ever happen, in theory */
2341 if (i != -1 && b != -1 &&
2342 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2343 return NULL; /* invalid combinations */
2344 if (b == -1) /* pure offset: handled above */
2345 return NULL; /* so if it gets to here, panic! */
2347 rm = -1;
2348 if (i != -1)
2349 switch (i * 256 + b) {
2350 case R_SI * 256 + R_BX:
2351 rm = 0;
2352 break;
2353 case R_DI * 256 + R_BX:
2354 rm = 1;
2355 break;
2356 case R_SI * 256 + R_BP:
2357 rm = 2;
2358 break;
2359 case R_DI * 256 + R_BP:
2360 rm = 3;
2361 break;
2362 } else
2363 switch (b) {
2364 case R_SI:
2365 rm = 4;
2366 break;
2367 case R_DI:
2368 rm = 5;
2369 break;
2370 case R_BP:
2371 rm = 6;
2372 break;
2373 case R_BX:
2374 rm = 7;
2375 break;
2377 if (rm == -1) /* can't happen, in theory */
2378 return NULL; /* so panic if it does */
2380 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2381 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2382 mod = 0;
2383 else if (input->eaflags & EAF_BYTEOFFS ||
2384 (o >= -128 && o <= 127 && seg == NO_SEG
2385 && !forw_ref
2386 && !(input->eaflags & EAF_WORDOFFS)))
2387 mod = 1;
2388 else
2389 mod = 2;
2391 output->sib_present = false; /* no SIB - it's 16-bit */
2392 output->bytes = mod; /* bytes of offset needed */
2393 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2398 output->size = 1 + output->sib_present + output->bytes;
2399 return output;
2402 static void add_asp(insn *ins, int addrbits)
2404 int j, valid;
2405 int defdisp;
2407 valid = (addrbits == 64) ? 64|32 : 32|16;
2409 switch (ins->prefixes[PPS_ASIZE]) {
2410 case P_A16:
2411 valid &= 16;
2412 break;
2413 case P_A32:
2414 valid &= 32;
2415 break;
2416 case P_A64:
2417 valid &= 64;
2418 break;
2419 case P_ASP:
2420 valid &= (addrbits == 32) ? 16 : 32;
2421 break;
2422 default:
2423 break;
2426 for (j = 0; j < ins->operands; j++) {
2427 if (!(MEMORY & ~ins->oprs[j].type)) {
2428 int32_t i, b;
2430 /* Verify as Register */
2431 if (ins->oprs[j].indexreg < EXPR_REG_START
2432 || ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
2433 i = 0;
2434 else
2435 i = nasm_reg_flags[ins->oprs[j].indexreg];
2437 /* Verify as Register */
2438 if (ins->oprs[j].basereg < EXPR_REG_START
2439 || ins->oprs[j].basereg >= REG_ENUM_LIMIT)
2440 b = 0;
2441 else
2442 b = nasm_reg_flags[ins->oprs[j].basereg];
2444 if (ins->oprs[j].scale == 0)
2445 i = 0;
2447 if (!i && !b) {
2448 int ds = ins->oprs[j].disp_size;
2449 if ((addrbits != 64 && ds > 8) ||
2450 (addrbits == 64 && ds == 16))
2451 valid &= ds;
2452 } else {
2453 if (!(REG16 & ~b))
2454 valid &= 16;
2455 if (!(REG32 & ~b))
2456 valid &= 32;
2457 if (!(REG64 & ~b))
2458 valid &= 64;
2460 if (!(REG16 & ~i))
2461 valid &= 16;
2462 if (!(REG32 & ~i))
2463 valid &= 32;
2464 if (!(REG64 & ~i))
2465 valid &= 64;
2470 if (valid & addrbits) {
2471 ins->addr_size = addrbits;
2472 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2473 /* Add an address size prefix */
2474 enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
2475 ins->prefixes[PPS_ASIZE] = pref;
2476 ins->addr_size = (addrbits == 32) ? 16 : 32;
2477 } else {
2478 /* Impossible... */
2479 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2480 ins->addr_size = addrbits; /* Error recovery */
2483 defdisp = ins->addr_size == 16 ? 16 : 32;
2485 for (j = 0; j < ins->operands; j++) {
2486 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2487 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
2488 != ins->addr_size) {
2489 /* mem_offs sizes must match the address size; if not,
2490 strip the MEM_OFFS bit and match only EA instructions */
2491 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);