NASM 2.06rc14
[nasm/avx512.git] / assemble.c
blob705ae27c4cffe15a63d5429dc24280163542559b
1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1..\4 - that many literal bytes follow in the code stream
11 * \5 - add 4 to the primary operand number (b, low octdigit)
12 * \6 - add 4 to the secondary operand number (a, middle octdigit)
13 * \7 - add 4 to both the primary and the secondary operand number
14 * \10..\13 - a literal byte follows in the code stream, to be added
15 * to the register value of operand 0..3
16 * \14..\17 - a signed byte immediate operand, from operand 0..3
17 * \20..\23 - a byte immediate operand, from operand 0..3
18 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
19 * \30..\33 - a word immediate operand, from operand 0..3
20 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
21 * assembly mode or the operand-size override on the operand
22 * \40..\43 - a long immediate operand, from operand 0..3
23 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
24 * depending on the address size of the instruction.
25 * \50..\53 - a byte relative operand, from operand 0..3
26 * \54..\57 - a qword immediate operand, from operand 0..3
27 * \60..\63 - a word relative operand, from operand 0..3
28 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
29 * assembly mode or the operand-size override on the operand
30 * \70..\73 - a long relative operand, from operand 0..3
31 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
32 * \1ab - a ModRM, calculated on EA in operand a, with the spare
33 * field the register value of operand b.
34 * \140..\143 - an immediate word or signed byte for operand 0..3
35 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
36 * is a signed byte rather than a word. Opcode byte follows.
37 * \150..\153 - an immediate dword or signed byte for operand 0..3
38 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
39 * is a signed byte rather than a dword. Opcode byte follows.
40 * \160..\163 - this instruction uses DREX rather than REX, with the
41 * OC0 field set to 0, and the dest field taken from
42 * operand 0..3.
43 * \164..\167 - this instruction uses DREX rather than REX, with the
44 * OC0 field set to 1, and the dest field taken from
45 * operand 0..3.
46 * \171 - placement of DREX suffix in the absence of an EA
47 * \172\ab - the register number from operand a in bits 7..4, with
48 * the 4-bit immediate from operand b in bits 3..0.
49 * \173\xab - the register number from operand a in bits 7..4, with
50 * the value b in bits 3..0.
51 * \174\a - the register number from operand a in bits 7..4, and
52 * an arbitrary value in bits 3..0 (assembled as zero.)
53 * \2ab - a ModRM, calculated on EA in operand a, with the spare
54 * field equal to digit b.
55 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
56 * is not equal to the truncated and sign-extended 32-bit
57 * operand; used for 32-bit immediates in 64-bit mode.
58 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
59 * \260..\263 - this instruction uses VEX/XOP rather than REX, with the
60 * V field taken from operand 0..3.
61 * \270 - this instruction uses VEX/XOP rather than REX, with the
62 * V field set to 1111b.
64 * VEX/XOP prefixes are followed by the sequence:
65 * \tmm\wlp where mm is the M field; and wlp is:
66 * 00 0ww lpp
67 * [w0] ww = 0 for W = 0
68 * [w1] ww = 1 for W = 1
69 * [wx] ww = 2 for W don't care (always assembled as 0)
70 * [ww] ww = 3 for W used as REX.W
72 * t = 0 for VEX (C4/C5), t = 1 for XOP (8F).
74 * \274..\277 - a signed byte immediate operand, from operand 0..3,
75 * which is to be extended to the operand size.
76 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
77 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
78 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
79 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
80 * \314 - (disassembler only) invalid with REX.B
81 * \315 - (disassembler only) invalid with REX.X
82 * \316 - (disassembler only) invalid with REX.R
83 * \317 - (disassembler only) invalid with REX.W
84 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
85 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
86 * \322 - indicates that this instruction is only valid when the
87 * operand size is the default (instruction to disassembler,
88 * generates no code in the assembler)
89 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
90 * \324 - indicates 64-bit operand size requiring REX prefix.
91 * \325 - instruction which always uses spl/bpl/sil/dil
92 * \330 - a literal byte follows in the code stream, to be added
93 * to the condition code value of the instruction.
94 * \331 - instruction not valid with REP prefix. Hint for
95 * disassembler only; for SSE instructions.
96 * \332 - REP prefix (0xF2 byte) used as opcode extension.
97 * \333 - REP prefix (0xF3 byte) used as opcode extension.
98 * \334 - LOCK prefix used as REX.R (used in non-64-bit mode)
99 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
100 * \336 - force a REP(E) prefix (0xF2) even if not specified.
101 * \337 - force a REPNE prefix (0xF3) even if not specified.
102 * \336-\337 are still listed as prefixes in the disassembler.
103 * \340 - reserve <operand 0> bytes of uninitialized storage.
104 * Operand 0 had better be a segmentless constant.
105 * \341 - this instruction needs a WAIT "prefix"
106 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
107 * (POP is never used for CS) depending on operand 0
108 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
109 * on operand 0
110 * \360 - no SSE prefix (== \364\331)
111 * \361 - 66 SSE prefix (== \366\331)
112 * \362 - F2 SSE prefix (== \364\332)
113 * \363 - F3 SSE prefix (== \364\333)
114 * \364 - operand-size prefix (0x66) not permitted
115 * \365 - address-size prefix (0x67) not permitted
116 * \366 - operand-size prefix (0x66) used as opcode extension
117 * \367 - address-size prefix (0x67) used as opcode extension
118 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
119 * 370 is used for Jcc, 371 is used for JMP.
120 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
121 * used for conditional jump over longer jump
124 #include "compiler.h"
126 #include <stdio.h>
127 #include <string.h>
128 #include <inttypes.h>
130 #include "nasm.h"
131 #include "nasmlib.h"
132 #include "assemble.h"
133 #include "insns.h"
134 #include "tables.h"
136 typedef struct {
137 int sib_present; /* is a SIB byte necessary? */
138 int bytes; /* # of bytes of offset needed */
139 int size; /* lazy - this is sib+bytes+1 */
140 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
141 } ea;
143 static uint32_t cpu; /* cpu level received from nasm.c */
144 static efunc errfunc;
145 static struct ofmt *outfmt;
146 static ListGen *list;
148 static int64_t calcsize(int32_t, int64_t, int, insn *, const uint8_t *);
149 static void gencode(int32_t segment, int64_t offset, int bits,
150 insn * ins, const struct itemplate *temp,
151 int64_t insn_end);
152 static int matches(const struct itemplate *, insn *, int bits);
153 static int32_t regflag(const operand *);
154 static int32_t regval(const operand *);
155 static int rexflags(int, int32_t, int);
156 static int op_rexflags(const operand *, int);
157 static ea *process_ea(operand *, ea *, int, int, int, int32_t);
158 static void add_asp(insn *, int);
160 static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
162 return ins->prefixes[pos] == prefix;
165 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
167 if (ins->prefixes[pos])
168 errfunc(ERR_NONFATAL, "invalid %s prefix",
169 prefix_name(ins->prefixes[pos]));
172 static const char *size_name(int size)
174 switch (size) {
175 case 1:
176 return "byte";
177 case 2:
178 return "word";
179 case 4:
180 return "dword";
181 case 8:
182 return "qword";
183 case 10:
184 return "tword";
185 case 16:
186 return "oword";
187 case 32:
188 return "yword";
189 default:
190 return "???";
194 static void warn_overflow(int size, const struct operand *o)
196 if (size < 8 && o->wrt == NO_SEG && o->segment == NO_SEG) {
197 int64_t lim = ((int64_t)1 << (size*8))-1;
198 int64_t data = o->offset;
200 if (data < ~lim || data > lim)
201 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
202 "%s data exceeds bounds", size_name(size));
206 * This routine wrappers the real output format's output routine,
207 * in order to pass a copy of the data off to the listing file
208 * generator at the same time.
210 static void out(int64_t offset, int32_t segto, const void *data,
211 enum out_type type, uint64_t size,
212 int32_t segment, int32_t wrt)
214 static int32_t lineno = 0; /* static!!! */
215 static char *lnfname = NULL;
216 uint8_t p[8];
218 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
220 * This is a non-relocated address, and we're going to
221 * convert it into RAWDATA format.
223 uint8_t *q = p;
225 if (size > 8) {
226 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
227 return;
230 WRITEADDR(q, *(int64_t *)data, size);
231 data = p;
232 type = OUT_RAWDATA;
235 list->output(offset, data, type, size);
238 * this call to src_get determines when we call the
239 * debug-format-specific "linenum" function
240 * it updates lineno and lnfname to the current values
241 * returning 0 if "same as last time", -2 if lnfname
242 * changed, and the amount by which lineno changed,
243 * if it did. thus, these variables must be static
246 if (src_get(&lineno, &lnfname)) {
247 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
250 outfmt->output(segto, data, type, size, segment, wrt);
253 static bool jmp_match(int32_t segment, int64_t offset, int bits,
254 insn * ins, const uint8_t *code)
256 int64_t isize;
257 uint8_t c = code[0];
259 if ((c != 0370 && c != 0371) || (ins->oprs[0].type & STRICT))
260 return false;
261 if (!optimizing)
262 return false;
263 if (optimizing < 0 && c == 0371)
264 return false;
266 isize = calcsize(segment, offset, bits, ins, code);
268 if (ins->oprs[0].opflags & OPFLAG_UNKNOWN)
269 /* Be optimistic in pass 1 */
270 return true;
272 if (ins->oprs[0].segment != segment)
273 return false;
275 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
276 return (isize >= -128 && isize <= 127); /* is it byte size? */
279 int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
280 insn * instruction, struct ofmt *output, efunc error,
281 ListGen * listgen)
283 const struct itemplate *temp;
284 int j;
285 int size_prob;
286 int64_t insn_end;
287 int32_t itimes;
288 int64_t start = offset;
289 int64_t wsize = 0; /* size for DB etc. */
291 errfunc = error; /* to pass to other functions */
292 cpu = cp;
293 outfmt = output; /* likewise */
294 list = listgen; /* and again */
296 switch (instruction->opcode) {
297 case -1:
298 return 0;
299 case I_DB:
300 wsize = 1;
301 break;
302 case I_DW:
303 wsize = 2;
304 break;
305 case I_DD:
306 wsize = 4;
307 break;
308 case I_DQ:
309 wsize = 8;
310 break;
311 case I_DT:
312 wsize = 10;
313 break;
314 case I_DO:
315 wsize = 16;
316 break;
317 case I_DY:
318 wsize = 32;
319 break;
320 default:
321 break;
324 if (wsize) {
325 extop *e;
326 int32_t t = instruction->times;
327 if (t < 0)
328 errfunc(ERR_PANIC,
329 "instruction->times < 0 (%ld) in assemble()", t);
331 while (t--) { /* repeat TIMES times */
332 for (e = instruction->eops; e; e = e->next) {
333 if (e->type == EOT_DB_NUMBER) {
334 if (wsize == 1) {
335 if (e->segment != NO_SEG)
336 errfunc(ERR_NONFATAL,
337 "one-byte relocation attempted");
338 else {
339 uint8_t out_byte = e->offset;
340 out(offset, segment, &out_byte,
341 OUT_RAWDATA, 1, NO_SEG, NO_SEG);
343 } else if (wsize > 8) {
344 errfunc(ERR_NONFATAL,
345 "integer supplied to a DT, DO or DY"
346 " instruction");
347 } else
348 out(offset, segment, &e->offset,
349 OUT_ADDRESS, wsize, e->segment, e->wrt);
350 offset += wsize;
351 } else if (e->type == EOT_DB_STRING ||
352 e->type == EOT_DB_STRING_FREE) {
353 int align;
355 out(offset, segment, e->stringval,
356 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
357 align = e->stringlen % wsize;
359 if (align) {
360 align = wsize - align;
361 out(offset, segment, zero_buffer,
362 OUT_RAWDATA, align, NO_SEG, NO_SEG);
364 offset += e->stringlen + align;
367 if (t > 0 && t == instruction->times - 1) {
369 * Dummy call to list->output to give the offset to the
370 * listing module.
372 list->output(offset, NULL, OUT_RAWDATA, 0);
373 list->uplevel(LIST_TIMES);
376 if (instruction->times > 1)
377 list->downlevel(LIST_TIMES);
378 return offset - start;
381 if (instruction->opcode == I_INCBIN) {
382 const char *fname = instruction->eops->stringval;
383 FILE *fp;
385 fp = fopen(fname, "rb");
386 if (!fp) {
387 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
388 fname);
389 } else if (fseek(fp, 0L, SEEK_END) < 0) {
390 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
391 fname);
392 } else {
393 static char buf[4096];
394 size_t t = instruction->times;
395 size_t base = 0;
396 size_t len;
398 len = ftell(fp);
399 if (instruction->eops->next) {
400 base = instruction->eops->next->offset;
401 len -= base;
402 if (instruction->eops->next->next &&
403 len > (size_t)instruction->eops->next->next->offset)
404 len = (size_t)instruction->eops->next->next->offset;
407 * Dummy call to list->output to give the offset to the
408 * listing module.
410 list->output(offset, NULL, OUT_RAWDATA, 0);
411 list->uplevel(LIST_INCBIN);
412 while (t--) {
413 size_t l;
415 fseek(fp, base, SEEK_SET);
416 l = len;
417 while (l > 0) {
418 int32_t m =
419 fread(buf, 1, (l > (int32_t) sizeof(buf) ? (int32_t) sizeof(buf) : l),
420 fp);
421 if (!m) {
423 * This shouldn't happen unless the file
424 * actually changes while we are reading
425 * it.
427 error(ERR_NONFATAL,
428 "`incbin': unexpected EOF while"
429 " reading file `%s'", fname);
430 t = 0; /* Try to exit cleanly */
431 break;
433 out(offset, segment, buf, OUT_RAWDATA, m,
434 NO_SEG, NO_SEG);
435 l -= m;
438 list->downlevel(LIST_INCBIN);
439 if (instruction->times > 1) {
441 * Dummy call to list->output to give the offset to the
442 * listing module.
444 list->output(offset, NULL, OUT_RAWDATA, 0);
445 list->uplevel(LIST_TIMES);
446 list->downlevel(LIST_TIMES);
448 fclose(fp);
449 return instruction->times * len;
451 return 0; /* if we're here, there's an error */
454 /* Check to see if we need an address-size prefix */
455 add_asp(instruction, bits);
457 size_prob = 0;
459 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++){
460 int m = matches(temp, instruction, bits);
461 if (m == 100 ||
462 (m == 99 && jmp_match(segment, offset, bits,
463 instruction, temp->code))) {
464 /* Matches! */
465 int64_t insn_size = calcsize(segment, offset, bits,
466 instruction, temp->code);
467 itimes = instruction->times;
468 if (insn_size < 0) /* shouldn't be, on pass two */
469 error(ERR_PANIC, "errors made it through from pass one");
470 else
471 while (itimes--) {
472 for (j = 0; j < MAXPREFIX; j++) {
473 uint8_t c = 0;
474 switch (instruction->prefixes[j]) {
475 case P_WAIT:
476 c = 0x9B;
477 break;
478 case P_LOCK:
479 c = 0xF0;
480 break;
481 case P_REPNE:
482 case P_REPNZ:
483 c = 0xF2;
484 break;
485 case P_REPE:
486 case P_REPZ:
487 case P_REP:
488 c = 0xF3;
489 break;
490 case R_CS:
491 if (bits == 64) {
492 error(ERR_WARNING | ERR_PASS2,
493 "cs segment base generated, but will be ignored in 64-bit mode");
495 c = 0x2E;
496 break;
497 case R_DS:
498 if (bits == 64) {
499 error(ERR_WARNING | ERR_PASS2,
500 "ds segment base generated, but will be ignored in 64-bit mode");
502 c = 0x3E;
503 break;
504 case R_ES:
505 if (bits == 64) {
506 error(ERR_WARNING | ERR_PASS2,
507 "es segment base generated, but will be ignored in 64-bit mode");
509 c = 0x26;
510 break;
511 case R_FS:
512 c = 0x64;
513 break;
514 case R_GS:
515 c = 0x65;
516 break;
517 case R_SS:
518 if (bits == 64) {
519 error(ERR_WARNING | ERR_PASS2,
520 "ss segment base generated, but will be ignored in 64-bit mode");
522 c = 0x36;
523 break;
524 case R_SEGR6:
525 case R_SEGR7:
526 error(ERR_NONFATAL,
527 "segr6 and segr7 cannot be used as prefixes");
528 break;
529 case P_A16:
530 if (bits == 64) {
531 error(ERR_NONFATAL,
532 "16-bit addressing is not supported "
533 "in 64-bit mode");
534 } else if (bits != 16)
535 c = 0x67;
536 break;
537 case P_A32:
538 if (bits != 32)
539 c = 0x67;
540 break;
541 case P_A64:
542 if (bits != 64) {
543 error(ERR_NONFATAL,
544 "64-bit addressing is only supported "
545 "in 64-bit mode");
547 break;
548 case P_ASP:
549 c = 0x67;
550 break;
551 case P_O16:
552 if (bits != 16)
553 c = 0x66;
554 break;
555 case P_O32:
556 if (bits == 16)
557 c = 0x66;
558 break;
559 case P_O64:
560 /* REX.W */
561 break;
562 case P_OSP:
563 c = 0x66;
564 break;
565 case P_none:
566 break;
567 default:
568 error(ERR_PANIC, "invalid instruction prefix");
570 if (c != 0) {
571 out(offset, segment, &c, OUT_RAWDATA, 1,
572 NO_SEG, NO_SEG);
573 offset++;
576 insn_end = offset + insn_size;
577 gencode(segment, offset, bits, instruction,
578 temp, insn_end);
579 offset += insn_size;
580 if (itimes > 0 && itimes == instruction->times - 1) {
582 * Dummy call to list->output to give the offset to the
583 * listing module.
585 list->output(offset, NULL, OUT_RAWDATA, 0);
586 list->uplevel(LIST_TIMES);
589 if (instruction->times > 1)
590 list->downlevel(LIST_TIMES);
591 return offset - start;
592 } else if (m > 0 && m > size_prob) {
593 size_prob = m;
597 if (temp->opcode == -1) { /* didn't match any instruction */
598 switch (size_prob) {
599 case 1:
600 error(ERR_NONFATAL, "operation size not specified");
601 break;
602 case 2:
603 error(ERR_NONFATAL, "mismatch in operand sizes");
604 break;
605 case 3:
606 error(ERR_NONFATAL, "no instruction for this cpu level");
607 break;
608 case 4:
609 error(ERR_NONFATAL, "instruction not supported in %d-bit mode",
610 bits);
611 break;
612 default:
613 error(ERR_NONFATAL,
614 "invalid combination of opcode and operands");
615 break;
618 return 0;
621 int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
622 insn * instruction, efunc error)
624 const struct itemplate *temp;
626 errfunc = error; /* to pass to other functions */
627 cpu = cp;
629 if (instruction->opcode == -1)
630 return 0;
632 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
633 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
634 instruction->opcode == I_DT || instruction->opcode == I_DO ||
635 instruction->opcode == I_DY) {
636 extop *e;
637 int32_t isize, osize, wsize = 0; /* placate gcc */
639 isize = 0;
640 switch (instruction->opcode) {
641 case I_DB:
642 wsize = 1;
643 break;
644 case I_DW:
645 wsize = 2;
646 break;
647 case I_DD:
648 wsize = 4;
649 break;
650 case I_DQ:
651 wsize = 8;
652 break;
653 case I_DT:
654 wsize = 10;
655 break;
656 case I_DO:
657 wsize = 16;
658 break;
659 case I_DY:
660 wsize = 32;
661 break;
662 default:
663 break;
666 for (e = instruction->eops; e; e = e->next) {
667 int32_t align;
669 osize = 0;
670 if (e->type == EOT_DB_NUMBER)
671 osize = 1;
672 else if (e->type == EOT_DB_STRING ||
673 e->type == EOT_DB_STRING_FREE)
674 osize = e->stringlen;
676 align = (-osize) % wsize;
677 if (align < 0)
678 align += wsize;
679 isize += osize + align;
681 return isize * instruction->times;
684 if (instruction->opcode == I_INCBIN) {
685 const char *fname = instruction->eops->stringval;
686 FILE *fp;
687 size_t len;
689 fp = fopen(fname, "rb");
690 if (!fp)
691 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
692 fname);
693 else if (fseek(fp, 0L, SEEK_END) < 0)
694 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
695 fname);
696 else {
697 len = ftell(fp);
698 fclose(fp);
699 if (instruction->eops->next) {
700 len -= instruction->eops->next->offset;
701 if (instruction->eops->next->next &&
702 len > (size_t)instruction->eops->next->next->offset) {
703 len = (size_t)instruction->eops->next->next->offset;
706 return instruction->times * len;
708 return 0; /* if we're here, there's an error */
711 /* Check to see if we need an address-size prefix */
712 add_asp(instruction, bits);
714 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++) {
715 int m = matches(temp, instruction, bits);
716 if (m == 100 ||
717 (m == 99 && jmp_match(segment, offset, bits,
718 instruction, temp->code))) {
719 /* we've matched an instruction. */
720 int64_t isize;
721 const uint8_t *codes = temp->code;
722 int j;
724 isize = calcsize(segment, offset, bits, instruction, codes);
725 if (isize < 0)
726 return -1;
727 for (j = 0; j < MAXPREFIX; j++) {
728 switch (instruction->prefixes[j]) {
729 case P_A16:
730 if (bits != 16)
731 isize++;
732 break;
733 case P_A32:
734 if (bits != 32)
735 isize++;
736 break;
737 case P_O16:
738 if (bits != 16)
739 isize++;
740 break;
741 case P_O32:
742 if (bits == 16)
743 isize++;
744 break;
745 case P_A64:
746 case P_O64:
747 case P_none:
748 break;
749 default:
750 isize++;
751 break;
754 return isize * instruction->times;
757 return -1; /* didn't match any instruction */
760 static bool possible_sbyte(operand *o)
762 return o->wrt == NO_SEG && o->segment == NO_SEG &&
763 !(o->opflags & OPFLAG_UNKNOWN) &&
764 optimizing >= 0 && !(o->type & STRICT);
767 /* check that opn[op] is a signed byte of size 16 or 32 */
768 static bool is_sbyte16(operand *o)
770 int16_t v;
772 if (!possible_sbyte(o))
773 return false;
775 v = o->offset;
776 return v >= -128 && v <= 127;
779 static bool is_sbyte32(operand *o)
781 int32_t v;
783 if (!possible_sbyte(o))
784 return false;
786 v = o->offset;
787 return v >= -128 && v <= 127;
790 /* Common construct */
791 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
793 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
794 insn * ins, const uint8_t *codes)
796 int64_t length = 0;
797 uint8_t c;
798 int rex_mask = ~0;
799 int op1, op2;
800 struct operand *opx;
801 uint8_t opex = 0;
803 ins->rex = 0; /* Ensure REX is reset */
805 if (ins->prefixes[PPS_OSIZE] == P_O64)
806 ins->rex |= REX_W;
808 (void)segment; /* Don't warn that this parameter is unused */
809 (void)offset; /* Don't warn that this parameter is unused */
811 while (*codes) {
812 c = *codes++;
813 op1 = (c & 3) + ((opex & 1) << 2);
814 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
815 opx = &ins->oprs[op1];
816 opex = 0; /* For the next iteration */
818 switch (c) {
819 case 01:
820 case 02:
821 case 03:
822 case 04:
823 codes += c, length += c;
824 break;
826 case 05:
827 case 06:
828 case 07:
829 opex = c;
830 break;
832 case4(010):
833 ins->rex |=
834 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
835 codes++, length++;
836 break;
838 case4(014):
839 case4(020):
840 case4(024):
841 length++;
842 break;
844 case4(030):
845 length += 2;
846 break;
848 case4(034):
849 if (opx->type & (BITS16 | BITS32 | BITS64))
850 length += (opx->type & BITS16) ? 2 : 4;
851 else
852 length += (bits == 16) ? 2 : 4;
853 break;
855 case4(040):
856 length += 4;
857 break;
859 case4(044):
860 length += ins->addr_size >> 3;
861 break;
863 case4(050):
864 length++;
865 break;
867 case4(054):
868 length += 8; /* MOV reg64/imm */
869 break;
871 case4(060):
872 length += 2;
873 break;
875 case4(064):
876 if (opx->type & (BITS16 | BITS32 | BITS64))
877 length += (opx->type & BITS16) ? 2 : 4;
878 else
879 length += (bits == 16) ? 2 : 4;
880 break;
882 case4(070):
883 length += 4;
884 break;
886 case4(074):
887 length += 2;
888 break;
890 case4(0140):
891 length += is_sbyte16(opx) ? 1 : 2;
892 break;
894 case4(0144):
895 codes++;
896 length++;
897 break;
899 case4(0150):
900 length += is_sbyte32(opx) ? 1 : 4;
901 break;
903 case4(0154):
904 codes++;
905 length++;
906 break;
908 case4(0160):
909 length++;
910 ins->rex |= REX_D;
911 ins->drexdst = regval(opx);
912 break;
914 case4(0164):
915 length++;
916 ins->rex |= REX_D|REX_OC;
917 ins->drexdst = regval(opx);
918 break;
920 case 0171:
921 break;
923 case 0172:
924 case 0173:
925 case 0174:
926 codes++;
927 length++;
928 break;
930 case4(0250):
931 length += is_sbyte32(opx) ? 1 : 4;
932 break;
934 case4(0254):
935 length += 4;
936 break;
938 case4(0260):
939 ins->rex |= REX_V;
940 ins->drexdst = regval(opx);
941 ins->vex_cm = *codes++;
942 ins->vex_wlp = *codes++;
943 break;
945 case 0270:
946 ins->rex |= REX_V;
947 ins->drexdst = 0;
948 ins->vex_cm = *codes++;
949 ins->vex_wlp = *codes++;
950 break;
952 case4(0274):
953 length++;
954 break;
956 case4(0300):
957 break;
959 case 0310:
960 if (bits == 64)
961 return -1;
962 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
963 break;
965 case 0311:
966 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
967 break;
969 case 0312:
970 break;
972 case 0313:
973 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
974 has_prefix(ins, PPS_ASIZE, P_A32))
975 return -1;
976 break;
978 case4(0314):
979 break;
981 case 0320:
982 length += (bits != 16);
983 break;
985 case 0321:
986 length += (bits == 16);
987 break;
989 case 0322:
990 break;
992 case 0323:
993 rex_mask &= ~REX_W;
994 break;
996 case 0324:
997 ins->rex |= REX_W;
998 break;
1000 case 0325:
1001 ins->rex |= REX_NH;
1002 break;
1004 case 0330:
1005 codes++, length++;
1006 break;
1008 case 0331:
1009 break;
1011 case 0332:
1012 case 0333:
1013 length++;
1014 break;
1016 case 0334:
1017 ins->rex |= REX_L;
1018 break;
1020 case 0335:
1021 break;
1023 case 0336:
1024 if (!ins->prefixes[PPS_LREP])
1025 ins->prefixes[PPS_LREP] = P_REP;
1026 break;
1028 case 0337:
1029 if (!ins->prefixes[PPS_LREP])
1030 ins->prefixes[PPS_LREP] = P_REPNE;
1031 break;
1033 case 0340:
1034 if (ins->oprs[0].segment != NO_SEG)
1035 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1036 " quantity of BSS space");
1037 else
1038 length += ins->oprs[0].offset;
1039 break;
1041 case 0341:
1042 if (!ins->prefixes[PPS_WAIT])
1043 ins->prefixes[PPS_WAIT] = P_WAIT;
1044 break;
1046 case4(0344):
1047 length++;
1048 break;
1050 case 0360:
1051 break;
1053 case 0361:
1054 case 0362:
1055 case 0363:
1056 length++;
1057 break;
1059 case 0364:
1060 case 0365:
1061 break;
1063 case 0366:
1064 case 0367:
1065 length++;
1066 break;
1068 case 0370:
1069 case 0371:
1070 case 0372:
1071 break;
1073 case 0373:
1074 length++;
1075 break;
1077 case4(0100):
1078 case4(0110):
1079 case4(0120):
1080 case4(0130):
1081 case4(0200):
1082 case4(0204):
1083 case4(0210):
1084 case4(0214):
1085 case4(0220):
1086 case4(0224):
1087 case4(0230):
1088 case4(0234):
1090 ea ea_data;
1091 int rfield;
1092 int32_t rflags;
1093 struct operand *opy = &ins->oprs[op2];
1095 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1097 if (c <= 0177) {
1098 /* pick rfield from operand b (opx) */
1099 rflags = regflag(opx);
1100 rfield = nasm_regvals[opx->basereg];
1101 } else {
1102 rflags = 0;
1103 rfield = c & 7;
1105 if (!process_ea(opy, &ea_data, bits,
1106 ins->addr_size, rfield, rflags)) {
1107 errfunc(ERR_NONFATAL, "invalid effective address");
1108 return -1;
1109 } else {
1110 ins->rex |= ea_data.rex;
1111 length += ea_data.size;
1114 break;
1116 default:
1117 errfunc(ERR_PANIC, "internal instruction table corrupt"
1118 ": instruction code \\%o (0x%02X) given", c, c);
1119 break;
1123 ins->rex &= rex_mask;
1125 if (ins->rex & REX_NH) {
1126 if (ins->rex & REX_H) {
1127 errfunc(ERR_NONFATAL, "instruction cannot use high registers");
1128 return -1;
1130 ins->rex &= ~REX_P; /* Don't force REX prefix due to high reg */
1133 if (ins->rex & REX_V) {
1134 int bad32 = REX_R|REX_W|REX_X|REX_B;
1136 if (ins->rex & REX_H) {
1137 errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
1138 return -1;
1140 switch (ins->vex_wlp & 030) {
1141 case 000:
1142 case 020:
1143 ins->rex &= ~REX_W;
1144 break;
1145 case 010:
1146 ins->rex |= REX_W;
1147 bad32 &= ~REX_W;
1148 break;
1149 case 030:
1150 /* Follow REX_W */
1151 break;
1154 if (bits != 64 && ((ins->rex & bad32) || ins->drexdst > 7)) {
1155 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1156 return -1;
1158 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_R|REX_B)))
1159 length += 3;
1160 else
1161 length += 2;
1162 } else if (ins->rex & REX_D) {
1163 if (ins->rex & REX_H) {
1164 errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
1165 return -1;
1167 if (bits != 64 && ((ins->rex & (REX_R|REX_W|REX_X|REX_B)) ||
1168 ins->drexdst > 7)) {
1169 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1170 return -1;
1172 length++;
1173 } else if (ins->rex & REX_REAL) {
1174 if (ins->rex & REX_H) {
1175 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1176 return -1;
1177 } else if (bits == 64) {
1178 length++;
1179 } else if ((ins->rex & REX_L) &&
1180 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1181 cpu >= IF_X86_64) {
1182 /* LOCK-as-REX.R */
1183 assert_no_prefix(ins, PPS_LREP);
1184 length++;
1185 } else {
1186 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1187 return -1;
1191 return length;
1194 #define EMIT_REX() \
1195 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1196 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1197 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1198 ins->rex = 0; \
1199 offset += 1; \
1202 static void gencode(int32_t segment, int64_t offset, int bits,
1203 insn * ins, const struct itemplate *temp,
1204 int64_t insn_end)
1206 static char condval[] = { /* conditional opcodes */
1207 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1208 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1209 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1211 uint8_t c;
1212 uint8_t bytes[4];
1213 int64_t size;
1214 int64_t data;
1215 int op1, op2;
1216 struct operand *opx;
1217 const uint8_t *codes = temp->code;
1218 uint8_t opex = 0;
1220 while (*codes) {
1221 c = *codes++;
1222 op1 = (c & 3) + ((opex & 1) << 2);
1223 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
1224 opx = &ins->oprs[op1];
1225 opex = 0; /* For the next iteration */
1227 switch (c) {
1228 case 01:
1229 case 02:
1230 case 03:
1231 case 04:
1232 EMIT_REX();
1233 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1234 codes += c;
1235 offset += c;
1236 break;
1238 case 05:
1239 case 06:
1240 case 07:
1241 opex = c;
1242 break;
1244 case4(010):
1245 EMIT_REX();
1246 bytes[0] = *codes++ + (regval(opx) & 7);
1247 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1248 offset += 1;
1249 break;
1251 case4(014):
1252 /* The test for BITS8 and SBYTE here is intended to avoid
1253 warning on optimizer actions due to SBYTE, while still
1254 warn on explicit BYTE directives. Also warn, obviously,
1255 if the optimizer isn't enabled. */
1256 if (((opx->type & BITS8) ||
1257 !(opx->type & temp->opd[op1] & BYTENESS)) &&
1258 (opx->offset < -128 || opx->offset > 127)) {
1259 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1260 "signed byte value exceeds bounds");
1262 if (opx->segment != NO_SEG) {
1263 data = opx->offset;
1264 out(offset, segment, &data, OUT_ADDRESS, 1,
1265 opx->segment, opx->wrt);
1266 } else {
1267 bytes[0] = opx->offset;
1268 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1269 NO_SEG);
1271 offset += 1;
1272 break;
1274 case4(020):
1275 if (opx->offset < -256 || opx->offset > 255) {
1276 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1277 "byte value exceeds bounds");
1279 if (opx->segment != NO_SEG) {
1280 data = opx->offset;
1281 out(offset, segment, &data, OUT_ADDRESS, 1,
1282 opx->segment, opx->wrt);
1283 } else {
1284 bytes[0] = opx->offset;
1285 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1286 NO_SEG);
1288 offset += 1;
1289 break;
1291 case4(024):
1292 if (opx->offset < 0 || opx->offset > 255)
1293 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1294 "unsigned byte value exceeds bounds");
1295 if (opx->segment != NO_SEG) {
1296 data = opx->offset;
1297 out(offset, segment, &data, OUT_ADDRESS, 1,
1298 opx->segment, opx->wrt);
1299 } else {
1300 bytes[0] = opx->offset;
1301 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1302 NO_SEG);
1304 offset += 1;
1305 break;
1307 case4(030):
1308 warn_overflow(2, opx);
1309 data = opx->offset;
1310 out(offset, segment, &data, OUT_ADDRESS, 2,
1311 opx->segment, opx->wrt);
1312 offset += 2;
1313 break;
1315 case4(034):
1316 if (opx->type & (BITS16 | BITS32))
1317 size = (opx->type & BITS16) ? 2 : 4;
1318 else
1319 size = (bits == 16) ? 2 : 4;
1320 warn_overflow(size, opx);
1321 data = opx->offset;
1322 out(offset, segment, &data, OUT_ADDRESS, size,
1323 opx->segment, opx->wrt);
1324 offset += size;
1325 break;
1327 case4(040):
1328 warn_overflow(4, opx);
1329 data = opx->offset;
1330 out(offset, segment, &data, OUT_ADDRESS, 4,
1331 opx->segment, opx->wrt);
1332 offset += 4;
1333 break;
1335 case4(044):
1336 data = opx->offset;
1337 size = ins->addr_size >> 3;
1338 warn_overflow(size, opx);
1339 out(offset, segment, &data, OUT_ADDRESS, size,
1340 opx->segment, opx->wrt);
1341 offset += size;
1342 break;
1344 case4(050):
1345 if (opx->segment != segment)
1346 errfunc(ERR_NONFATAL,
1347 "short relative jump outside segment");
1348 data = opx->offset - insn_end;
1349 if (data > 127 || data < -128)
1350 errfunc(ERR_NONFATAL, "short jump is out of range");
1351 bytes[0] = data;
1352 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1353 offset += 1;
1354 break;
1356 case4(054):
1357 data = (int64_t)opx->offset;
1358 out(offset, segment, &data, OUT_ADDRESS, 8,
1359 opx->segment, opx->wrt);
1360 offset += 8;
1361 break;
1363 case4(060):
1364 if (opx->segment != segment) {
1365 data = opx->offset;
1366 out(offset, segment, &data,
1367 OUT_REL2ADR, insn_end - offset,
1368 opx->segment, opx->wrt);
1369 } else {
1370 data = opx->offset - insn_end;
1371 out(offset, segment, &data,
1372 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1374 offset += 2;
1375 break;
1377 case4(064):
1378 if (opx->type & (BITS16 | BITS32 | BITS64))
1379 size = (opx->type & BITS16) ? 2 : 4;
1380 else
1381 size = (bits == 16) ? 2 : 4;
1382 if (opx->segment != segment) {
1383 data = opx->offset;
1384 out(offset, segment, &data,
1385 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1386 insn_end - offset, opx->segment, opx->wrt);
1387 } else {
1388 data = opx->offset - insn_end;
1389 out(offset, segment, &data,
1390 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1392 offset += size;
1393 break;
1395 case4(070):
1396 if (opx->segment != segment) {
1397 data = opx->offset;
1398 out(offset, segment, &data,
1399 OUT_REL4ADR, insn_end - offset,
1400 opx->segment, opx->wrt);
1401 } else {
1402 data = opx->offset - insn_end;
1403 out(offset, segment, &data,
1404 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1406 offset += 4;
1407 break;
1409 case4(074):
1410 if (opx->segment == NO_SEG)
1411 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1412 " relocatable");
1413 data = 0;
1414 out(offset, segment, &data, OUT_ADDRESS, 2,
1415 outfmt->segbase(1 + opx->segment),
1416 opx->wrt);
1417 offset += 2;
1418 break;
1420 case4(0140):
1421 data = opx->offset;
1422 warn_overflow(2, opx);
1423 if (is_sbyte16(opx)) {
1424 bytes[0] = data;
1425 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1426 NO_SEG);
1427 offset++;
1428 } else {
1429 out(offset, segment, &data, OUT_ADDRESS, 2,
1430 opx->segment, opx->wrt);
1431 offset += 2;
1433 break;
1435 case4(0144):
1436 EMIT_REX();
1437 bytes[0] = *codes++;
1438 if (is_sbyte16(opx))
1439 bytes[0] |= 2; /* s-bit */
1440 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1441 offset++;
1442 break;
1444 case4(0150):
1445 data = opx->offset;
1446 warn_overflow(4, opx);
1447 if (is_sbyte32(opx)) {
1448 bytes[0] = data;
1449 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1450 NO_SEG);
1451 offset++;
1452 } else {
1453 out(offset, segment, &data, OUT_ADDRESS, 4,
1454 opx->segment, opx->wrt);
1455 offset += 4;
1457 break;
1459 case4(0154):
1460 EMIT_REX();
1461 bytes[0] = *codes++;
1462 if (is_sbyte32(opx))
1463 bytes[0] |= 2; /* s-bit */
1464 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1465 offset++;
1466 break;
1468 case4(0160):
1469 case4(0164):
1470 break;
1472 case 0171:
1473 bytes[0] =
1474 (ins->drexdst << 4) |
1475 (ins->rex & REX_OC ? 0x08 : 0) |
1476 (ins->rex & (REX_R|REX_X|REX_B));
1477 ins->rex = 0;
1478 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1479 offset++;
1480 break;
1482 case 0172:
1483 c = *codes++;
1484 opx = &ins->oprs[c >> 3];
1485 bytes[0] = nasm_regvals[opx->basereg] << 4;
1486 opx = &ins->oprs[c & 7];
1487 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1488 errfunc(ERR_NONFATAL,
1489 "non-absolute expression not permitted as argument %d",
1490 c & 7);
1491 } else {
1492 if (opx->offset & ~15) {
1493 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1494 "four-bit argument exceeds bounds");
1496 bytes[0] |= opx->offset & 15;
1498 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1499 offset++;
1500 break;
1502 case 0173:
1503 c = *codes++;
1504 opx = &ins->oprs[c >> 4];
1505 bytes[0] = nasm_regvals[opx->basereg] << 4;
1506 bytes[0] |= c & 15;
1507 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1508 offset++;
1509 break;
1511 case 0174:
1512 c = *codes++;
1513 opx = &ins->oprs[c];
1514 bytes[0] = nasm_regvals[opx->basereg] << 4;
1515 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1516 offset++;
1517 break;
1519 case4(0250):
1520 data = opx->offset;
1521 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1522 (int32_t)data != (int64_t)data) {
1523 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1524 "signed dword immediate exceeds bounds");
1526 if (is_sbyte32(opx)) {
1527 bytes[0] = data;
1528 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1529 NO_SEG);
1530 offset++;
1531 } else {
1532 out(offset, segment, &data, OUT_ADDRESS, 4,
1533 opx->segment, opx->wrt);
1534 offset += 4;
1536 break;
1538 case4(0254):
1539 data = opx->offset;
1540 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1541 (int32_t)data != (int64_t)data) {
1542 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1543 "signed dword immediate exceeds bounds");
1545 out(offset, segment, &data, OUT_ADDRESS, 4,
1546 opx->segment, opx->wrt);
1547 offset += 4;
1548 break;
1550 case4(0260):
1551 case 0270:
1552 codes += 2;
1553 if (ins->vex_cm != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1554 bytes[0] = (ins->vex_cm >> 6) ? 0x8f : 0xc4;
1555 bytes[1] = (ins->vex_cm & 31) | ((~ins->rex & 7) << 5);
1556 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1557 ((~ins->drexdst & 15)<< 3) | (ins->vex_wlp & 07);
1558 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1559 offset += 3;
1560 } else {
1561 bytes[0] = 0xc5;
1562 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1563 ((~ins->drexdst & 15) << 3) | (ins->vex_wlp & 07);
1564 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1565 offset += 2;
1567 break;
1569 case4(0274):
1571 uint64_t uv, um;
1572 int s;
1574 if (ins->rex & REX_W)
1575 s = 64;
1576 else if (ins->prefixes[PPS_OSIZE] == P_O16)
1577 s = 16;
1578 else if (ins->prefixes[PPS_OSIZE] == P_O32)
1579 s = 32;
1580 else
1581 s = bits;
1583 um = (uint64_t)2 << (s-1);
1584 uv = opx->offset;
1586 if (uv > 127 && uv < (uint64_t)-128 &&
1587 (uv < um-128 || uv > um-1)) {
1588 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1589 "signed byte value exceeds bounds");
1591 if (opx->segment != NO_SEG) {
1592 data = uv;
1593 out(offset, segment, &data, OUT_ADDRESS, 1,
1594 opx->segment, opx->wrt);
1595 } else {
1596 bytes[0] = uv;
1597 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1598 NO_SEG);
1600 offset += 1;
1601 break;
1604 case4(0300):
1605 break;
1607 case 0310:
1608 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1609 *bytes = 0x67;
1610 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1611 offset += 1;
1612 } else
1613 offset += 0;
1614 break;
1616 case 0311:
1617 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1618 *bytes = 0x67;
1619 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1620 offset += 1;
1621 } else
1622 offset += 0;
1623 break;
1625 case 0312:
1626 break;
1628 case 0313:
1629 ins->rex = 0;
1630 break;
1632 case4(0314):
1633 break;
1635 case 0320:
1636 if (bits != 16) {
1637 *bytes = 0x66;
1638 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1639 offset += 1;
1640 } else
1641 offset += 0;
1642 break;
1644 case 0321:
1645 if (bits == 16) {
1646 *bytes = 0x66;
1647 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1648 offset += 1;
1649 } else
1650 offset += 0;
1651 break;
1653 case 0322:
1654 case 0323:
1655 break;
1657 case 0324:
1658 ins->rex |= REX_W;
1659 break;
1661 case 0325:
1662 break;
1664 case 0330:
1665 *bytes = *codes++ ^ condval[ins->condition];
1666 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1667 offset += 1;
1668 break;
1670 case 0331:
1671 break;
1673 case 0332:
1674 case 0333:
1675 *bytes = c - 0332 + 0xF2;
1676 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1677 offset += 1;
1678 break;
1680 case 0334:
1681 if (ins->rex & REX_R) {
1682 *bytes = 0xF0;
1683 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1684 offset += 1;
1686 ins->rex &= ~(REX_L|REX_R);
1687 break;
1689 case 0335:
1690 break;
1692 case 0336:
1693 case 0337:
1694 break;
1696 case 0340:
1697 if (ins->oprs[0].segment != NO_SEG)
1698 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1699 else {
1700 int64_t size = ins->oprs[0].offset;
1701 if (size > 0)
1702 out(offset, segment, NULL,
1703 OUT_RESERVE, size, NO_SEG, NO_SEG);
1704 offset += size;
1706 break;
1708 case 0341:
1709 break;
1711 case 0344:
1712 case 0345:
1713 bytes[0] = c & 1;
1714 switch (ins->oprs[0].basereg) {
1715 case R_CS:
1716 bytes[0] += 0x0E;
1717 break;
1718 case R_DS:
1719 bytes[0] += 0x1E;
1720 break;
1721 case R_ES:
1722 bytes[0] += 0x06;
1723 break;
1724 case R_SS:
1725 bytes[0] += 0x16;
1726 break;
1727 default:
1728 errfunc(ERR_PANIC,
1729 "bizarre 8086 segment register received");
1731 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1732 offset++;
1733 break;
1735 case 0346:
1736 case 0347:
1737 bytes[0] = c & 1;
1738 switch (ins->oprs[0].basereg) {
1739 case R_FS:
1740 bytes[0] += 0xA0;
1741 break;
1742 case R_GS:
1743 bytes[0] += 0xA8;
1744 break;
1745 default:
1746 errfunc(ERR_PANIC,
1747 "bizarre 386 segment register received");
1749 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1750 offset++;
1751 break;
1753 case 0360:
1754 break;
1756 case 0361:
1757 bytes[0] = 0x66;
1758 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1759 offset += 1;
1760 break;
1762 case 0362:
1763 case 0363:
1764 bytes[0] = c - 0362 + 0xf2;
1765 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1766 offset += 1;
1767 break;
1769 case 0364:
1770 case 0365:
1771 break;
1773 case 0366:
1774 case 0367:
1775 *bytes = c - 0366 + 0x66;
1776 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1777 offset += 1;
1778 break;
1780 case 0370:
1781 case 0371:
1782 case 0372:
1783 break;
1785 case 0373:
1786 *bytes = bits == 16 ? 3 : 5;
1787 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1788 offset += 1;
1789 break;
1791 case4(0100):
1792 case4(0110):
1793 case4(0120):
1794 case4(0130):
1795 case4(0200):
1796 case4(0204):
1797 case4(0210):
1798 case4(0214):
1799 case4(0220):
1800 case4(0224):
1801 case4(0230):
1802 case4(0234):
1804 ea ea_data;
1805 int rfield;
1806 int32_t rflags;
1807 uint8_t *p;
1808 int32_t s;
1809 enum out_type type;
1810 struct operand *opy = &ins->oprs[op2];
1812 if (c <= 0177) {
1813 /* pick rfield from operand b (opx) */
1814 rflags = regflag(opx);
1815 rfield = nasm_regvals[opx->basereg];
1816 } else {
1817 /* rfield is constant */
1818 rflags = 0;
1819 rfield = c & 7;
1822 if (!process_ea(opy, &ea_data, bits, ins->addr_size,
1823 rfield, rflags)) {
1824 errfunc(ERR_NONFATAL, "invalid effective address");
1828 p = bytes;
1829 *p++ = ea_data.modrm;
1830 if (ea_data.sib_present)
1831 *p++ = ea_data.sib;
1833 /* DREX suffixes come between the SIB and the displacement */
1834 if (ins->rex & REX_D) {
1835 *p++ = (ins->drexdst << 4) |
1836 (ins->rex & REX_OC ? 0x08 : 0) |
1837 (ins->rex & (REX_R|REX_X|REX_B));
1838 ins->rex = 0;
1841 s = p - bytes;
1842 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1845 * Make sure the address gets the right offset in case
1846 * the line breaks in the .lst file (BR 1197827)
1848 offset += s;
1849 s = 0;
1851 switch (ea_data.bytes) {
1852 case 0:
1853 break;
1854 case 1:
1855 case 2:
1856 case 4:
1857 case 8:
1858 data = opy->offset;
1859 warn_overflow(ea_data.bytes, opy);
1860 s += ea_data.bytes;
1861 if (ea_data.rip) {
1862 if (opy->segment == segment) {
1863 data -= insn_end;
1864 out(offset, segment, &data, OUT_ADDRESS,
1865 ea_data.bytes, NO_SEG, NO_SEG);
1866 } else {
1867 out(offset, segment, &data, OUT_REL4ADR,
1868 insn_end - offset, opy->segment, opy->wrt);
1870 } else {
1871 type = OUT_ADDRESS;
1872 out(offset, segment, &data, OUT_ADDRESS,
1873 ea_data.bytes, opy->segment, opy->wrt);
1875 break;
1876 default:
1877 /* Impossible! */
1878 errfunc(ERR_PANIC,
1879 "Invalid amount of bytes (%d) for offset?!",
1880 ea_data.bytes);
1881 break;
1883 offset += s;
1885 break;
1887 default:
1888 errfunc(ERR_PANIC, "internal instruction table corrupt"
1889 ": instruction code \\%o (0x%02X) given", c, c);
1890 break;
1895 static int32_t regflag(const operand * o)
1897 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1898 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1900 return nasm_reg_flags[o->basereg];
1903 static int32_t regval(const operand * o)
1905 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1906 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1908 return nasm_regvals[o->basereg];
1911 static int op_rexflags(const operand * o, int mask)
1913 int32_t flags;
1914 int val;
1916 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1917 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1920 flags = nasm_reg_flags[o->basereg];
1921 val = nasm_regvals[o->basereg];
1923 return rexflags(val, flags, mask);
1926 static int rexflags(int val, int32_t flags, int mask)
1928 int rex = 0;
1930 if (val >= 8)
1931 rex |= REX_B|REX_X|REX_R;
1932 if (flags & BITS64)
1933 rex |= REX_W;
1934 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1935 rex |= REX_H;
1936 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1937 rex |= REX_P;
1939 return rex & mask;
1942 static int matches(const struct itemplate *itemp, insn * instruction, int bits)
1944 int i, size[MAX_OPERANDS], asize, oprs, ret;
1946 ret = 100;
1949 * Check the opcode
1951 if (itemp->opcode != instruction->opcode)
1952 return 0;
1955 * Count the operands
1957 if (itemp->operands != instruction->operands)
1958 return 0;
1961 * Check that no spurious colons or TOs are present
1963 for (i = 0; i < itemp->operands; i++)
1964 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
1965 return 0;
1968 * Process size flags
1970 if (itemp->flags & IF_ARMASK) {
1971 memset(size, 0, sizeof size);
1973 i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
1975 switch (itemp->flags & IF_SMASK) {
1976 case IF_SB:
1977 size[i] = BITS8;
1978 break;
1979 case IF_SW:
1980 size[i] = BITS16;
1981 break;
1982 case IF_SD:
1983 size[i] = BITS32;
1984 break;
1985 case IF_SQ:
1986 size[i] = BITS64;
1987 break;
1988 case IF_SO:
1989 size[i] = BITS128;
1990 break;
1991 case IF_SY:
1992 size[i] = BITS256;
1993 break;
1994 case IF_SZ:
1995 switch (bits) {
1996 case 16:
1997 size[i] = BITS16;
1998 break;
1999 case 32:
2000 size[i] = BITS32;
2001 break;
2002 case 64:
2003 size[i] = BITS64;
2004 break;
2006 break;
2007 default:
2008 break;
2010 } else {
2011 asize = 0;
2012 switch (itemp->flags & IF_SMASK) {
2013 case IF_SB:
2014 asize = BITS8;
2015 break;
2016 case IF_SW:
2017 asize = BITS16;
2018 break;
2019 case IF_SD:
2020 asize = BITS32;
2021 break;
2022 case IF_SQ:
2023 asize = BITS64;
2024 break;
2025 case IF_SO:
2026 asize = BITS128;
2027 break;
2028 case IF_SY:
2029 asize = BITS256;
2030 break;
2031 case IF_SZ:
2032 switch (bits) {
2033 case 16:
2034 asize = BITS16;
2035 break;
2036 case 32:
2037 asize = BITS32;
2038 break;
2039 case 64:
2040 asize = BITS64;
2041 break;
2043 break;
2044 default:
2045 break;
2047 for (i = 0; i < MAX_OPERANDS; i++)
2048 size[i] = asize;
2052 * Check that the operand flags all match up
2054 for (i = 0; i < itemp->operands; i++) {
2055 int32_t type = instruction->oprs[i].type;
2056 if (!(type & SIZE_MASK))
2057 type |= size[i];
2059 if (itemp->opd[i] & SAME_AS) {
2060 int j = itemp->opd[i] & ~SAME_AS;
2061 if (type != instruction->oprs[j].type ||
2062 instruction->oprs[i].basereg != instruction->oprs[j].basereg)
2063 return 0;
2064 } else if (itemp->opd[i] & ~type ||
2065 ((itemp->opd[i] & SIZE_MASK) &&
2066 ((itemp->opd[i] ^ type) & SIZE_MASK))) {
2067 if ((itemp->opd[i] & ~type & ~SIZE_MASK) ||
2068 (type & SIZE_MASK))
2069 return 0;
2070 else
2071 return 1;
2076 * Check operand sizes
2078 if (itemp->flags & (IF_SM | IF_SM2)) {
2079 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
2080 asize = 0;
2081 for (i = 0; i < oprs; i++) {
2082 if ((asize = itemp->opd[i] & SIZE_MASK) != 0) {
2083 int j;
2084 for (j = 0; j < oprs; j++)
2085 size[j] = asize;
2086 break;
2089 } else {
2090 oprs = itemp->operands;
2093 for (i = 0; i < itemp->operands; i++) {
2094 if (!(itemp->opd[i] & SIZE_MASK) &&
2095 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2096 return 2;
2100 * Check template is okay at the set cpu level
2102 if (((itemp->flags & IF_PLEVEL) > cpu))
2103 return 3;
2106 * Verify the appropriate long mode flag.
2108 if ((itemp->flags & (bits == 64 ? IF_NOLONG : IF_LONG)))
2109 return 4;
2112 * Check if special handling needed for Jumps
2114 if ((uint8_t)(itemp->code[0]) >= 0370)
2115 return 99;
2117 return ret;
2120 static ea *process_ea(operand * input, ea * output, int bits,
2121 int addrbits, int rfield, int32_t rflags)
2123 bool forw_ref = !!(input->opflags & OPFLAG_UNKNOWN);
2125 output->rip = false;
2127 /* REX flags for the rfield operand */
2128 output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
2130 if (!(REGISTER & ~input->type)) { /* register direct */
2131 int i;
2132 int32_t f;
2134 if (input->basereg < EXPR_REG_START /* Verify as Register */
2135 || input->basereg >= REG_ENUM_LIMIT)
2136 return NULL;
2137 f = regflag(input);
2138 i = nasm_regvals[input->basereg];
2140 if (REG_EA & ~f)
2141 return NULL; /* Invalid EA register */
2143 output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
2145 output->sib_present = false; /* no SIB necessary */
2146 output->bytes = 0; /* no offset necessary either */
2147 output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
2148 } else { /* it's a memory reference */
2149 if (input->basereg == -1
2150 && (input->indexreg == -1 || input->scale == 0)) {
2151 /* it's a pure offset */
2152 if (bits == 64 && (~input->type & IP_REL)) {
2153 int scale, index, base;
2154 output->sib_present = true;
2155 scale = 0;
2156 index = 4;
2157 base = 5;
2158 output->sib = (scale << 6) | (index << 3) | base;
2159 output->bytes = 4;
2160 output->modrm = 4 | ((rfield & 7) << 3);
2161 output->rip = false;
2162 } else {
2163 output->sib_present = false;
2164 output->bytes = (addrbits != 16 ? 4 : 2);
2165 output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
2166 output->rip = bits == 64;
2168 } else { /* it's an indirection */
2169 int i = input->indexreg, b = input->basereg, s = input->scale;
2170 int32_t o = input->offset, seg = input->segment;
2171 int hb = input->hintbase, ht = input->hinttype;
2172 int t;
2173 int it, bt;
2174 int32_t ix, bx; /* register flags */
2176 if (s == 0)
2177 i = -1; /* make this easy, at least */
2179 if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
2180 it = nasm_regvals[i];
2181 ix = nasm_reg_flags[i];
2182 } else {
2183 it = -1;
2184 ix = 0;
2187 if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
2188 bt = nasm_regvals[b];
2189 bx = nasm_reg_flags[b];
2190 } else {
2191 bt = -1;
2192 bx = 0;
2195 /* check for a 32/64-bit memory reference... */
2196 if ((ix|bx) & (BITS32|BITS64)) {
2197 /* it must be a 32/64-bit memory reference. Firstly we have
2198 * to check that all registers involved are type E/Rxx. */
2199 int32_t sok = BITS32|BITS64;
2201 if (it != -1) {
2202 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2203 sok &= ix;
2204 else
2205 return NULL;
2208 if (bt != -1) {
2209 if (REG_GPR & ~bx)
2210 return NULL; /* Invalid register */
2211 if (~sok & bx & SIZE_MASK)
2212 return NULL; /* Invalid size */
2213 sok &= bx;
2216 /* While we're here, ensure the user didn't specify
2217 WORD or QWORD. */
2218 if (input->disp_size == 16 || input->disp_size == 64)
2219 return NULL;
2221 if (addrbits == 16 ||
2222 (addrbits == 32 && !(sok & BITS32)) ||
2223 (addrbits == 64 && !(sok & BITS64)))
2224 return NULL;
2226 /* now reorganize base/index */
2227 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2228 ((hb == b && ht == EAH_NOTBASE)
2229 || (hb == i && ht == EAH_MAKEBASE))) {
2230 /* swap if hints say so */
2231 t = bt, bt = it, it = t;
2232 t = bx, bx = ix, ix = t;
2234 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2235 bt = -1, bx = 0, s++;
2236 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
2237 /* make single reg base, unless hint */
2238 bt = it, bx = ix, it = -1, ix = 0;
2240 if (((s == 2 && it != REG_NUM_ESP
2241 && !(input->eaflags & EAF_TIMESTWO)) || s == 3
2242 || s == 5 || s == 9) && bt == -1)
2243 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2244 if (it == -1 && (bt & 7) != REG_NUM_ESP
2245 && (input->eaflags & EAF_TIMESTWO))
2246 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2247 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2248 if (s == 1 && it == REG_NUM_ESP) {
2249 /* swap ESP into base if scale is 1 */
2250 t = it, it = bt, bt = t;
2251 t = ix, ix = bx, bx = t;
2253 if (it == REG_NUM_ESP
2254 || (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2255 return NULL; /* wrong, for various reasons */
2257 output->rex |= rexflags(it, ix, REX_X);
2258 output->rex |= rexflags(bt, bx, REX_B);
2260 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2261 /* no SIB needed */
2262 int mod, rm;
2264 if (bt == -1) {
2265 rm = 5;
2266 mod = 0;
2267 } else {
2268 rm = (bt & 7);
2269 if (rm != REG_NUM_EBP && o == 0 &&
2270 seg == NO_SEG && !forw_ref &&
2271 !(input->eaflags &
2272 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2273 mod = 0;
2274 else if (input->eaflags & EAF_BYTEOFFS ||
2275 (o >= -128 && o <= 127 && seg == NO_SEG
2276 && !forw_ref
2277 && !(input->eaflags & EAF_WORDOFFS)))
2278 mod = 1;
2279 else
2280 mod = 2;
2283 output->sib_present = false;
2284 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2285 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2286 } else {
2287 /* we need a SIB */
2288 int mod, scale, index, base;
2290 if (it == -1)
2291 index = 4, s = 1;
2292 else
2293 index = (it & 7);
2295 switch (s) {
2296 case 1:
2297 scale = 0;
2298 break;
2299 case 2:
2300 scale = 1;
2301 break;
2302 case 4:
2303 scale = 2;
2304 break;
2305 case 8:
2306 scale = 3;
2307 break;
2308 default: /* then what the smeg is it? */
2309 return NULL; /* panic */
2312 if (bt == -1) {
2313 base = 5;
2314 mod = 0;
2315 } else {
2316 base = (bt & 7);
2317 if (base != REG_NUM_EBP && o == 0 &&
2318 seg == NO_SEG && !forw_ref &&
2319 !(input->eaflags &
2320 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2321 mod = 0;
2322 else if (input->eaflags & EAF_BYTEOFFS ||
2323 (o >= -128 && o <= 127 && seg == NO_SEG
2324 && !forw_ref
2325 && !(input->eaflags & EAF_WORDOFFS)))
2326 mod = 1;
2327 else
2328 mod = 2;
2331 output->sib_present = true;
2332 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2333 output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
2334 output->sib = (scale << 6) | (index << 3) | base;
2336 } else { /* it's 16-bit */
2337 int mod, rm;
2339 /* check for 64-bit long mode */
2340 if (addrbits == 64)
2341 return NULL;
2343 /* check all registers are BX, BP, SI or DI */
2344 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
2345 && b != R_DI) || (i != -1 && i != R_BP && i != R_BX
2346 && i != R_SI && i != R_DI))
2347 return NULL;
2349 /* ensure the user didn't specify DWORD/QWORD */
2350 if (input->disp_size == 32 || input->disp_size == 64)
2351 return NULL;
2353 if (s != 1 && i != -1)
2354 return NULL; /* no can do, in 16-bit EA */
2355 if (b == -1 && i != -1) {
2356 int tmp = b;
2357 b = i;
2358 i = tmp;
2359 } /* swap */
2360 if ((b == R_SI || b == R_DI) && i != -1) {
2361 int tmp = b;
2362 b = i;
2363 i = tmp;
2365 /* have BX/BP as base, SI/DI index */
2366 if (b == i)
2367 return NULL; /* shouldn't ever happen, in theory */
2368 if (i != -1 && b != -1 &&
2369 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2370 return NULL; /* invalid combinations */
2371 if (b == -1) /* pure offset: handled above */
2372 return NULL; /* so if it gets to here, panic! */
2374 rm = -1;
2375 if (i != -1)
2376 switch (i * 256 + b) {
2377 case R_SI * 256 + R_BX:
2378 rm = 0;
2379 break;
2380 case R_DI * 256 + R_BX:
2381 rm = 1;
2382 break;
2383 case R_SI * 256 + R_BP:
2384 rm = 2;
2385 break;
2386 case R_DI * 256 + R_BP:
2387 rm = 3;
2388 break;
2389 } else
2390 switch (b) {
2391 case R_SI:
2392 rm = 4;
2393 break;
2394 case R_DI:
2395 rm = 5;
2396 break;
2397 case R_BP:
2398 rm = 6;
2399 break;
2400 case R_BX:
2401 rm = 7;
2402 break;
2404 if (rm == -1) /* can't happen, in theory */
2405 return NULL; /* so panic if it does */
2407 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2408 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2409 mod = 0;
2410 else if (input->eaflags & EAF_BYTEOFFS ||
2411 (o >= -128 && o <= 127 && seg == NO_SEG
2412 && !forw_ref
2413 && !(input->eaflags & EAF_WORDOFFS)))
2414 mod = 1;
2415 else
2416 mod = 2;
2418 output->sib_present = false; /* no SIB - it's 16-bit */
2419 output->bytes = mod; /* bytes of offset needed */
2420 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2425 output->size = 1 + output->sib_present + output->bytes;
2426 return output;
2429 static void add_asp(insn *ins, int addrbits)
2431 int j, valid;
2432 int defdisp;
2434 valid = (addrbits == 64) ? 64|32 : 32|16;
2436 switch (ins->prefixes[PPS_ASIZE]) {
2437 case P_A16:
2438 valid &= 16;
2439 break;
2440 case P_A32:
2441 valid &= 32;
2442 break;
2443 case P_A64:
2444 valid &= 64;
2445 break;
2446 case P_ASP:
2447 valid &= (addrbits == 32) ? 16 : 32;
2448 break;
2449 default:
2450 break;
2453 for (j = 0; j < ins->operands; j++) {
2454 if (!(MEMORY & ~ins->oprs[j].type)) {
2455 int32_t i, b;
2457 /* Verify as Register */
2458 if (ins->oprs[j].indexreg < EXPR_REG_START
2459 || ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
2460 i = 0;
2461 else
2462 i = nasm_reg_flags[ins->oprs[j].indexreg];
2464 /* Verify as Register */
2465 if (ins->oprs[j].basereg < EXPR_REG_START
2466 || ins->oprs[j].basereg >= REG_ENUM_LIMIT)
2467 b = 0;
2468 else
2469 b = nasm_reg_flags[ins->oprs[j].basereg];
2471 if (ins->oprs[j].scale == 0)
2472 i = 0;
2474 if (!i && !b) {
2475 int ds = ins->oprs[j].disp_size;
2476 if ((addrbits != 64 && ds > 8) ||
2477 (addrbits == 64 && ds == 16))
2478 valid &= ds;
2479 } else {
2480 if (!(REG16 & ~b))
2481 valid &= 16;
2482 if (!(REG32 & ~b))
2483 valid &= 32;
2484 if (!(REG64 & ~b))
2485 valid &= 64;
2487 if (!(REG16 & ~i))
2488 valid &= 16;
2489 if (!(REG32 & ~i))
2490 valid &= 32;
2491 if (!(REG64 & ~i))
2492 valid &= 64;
2497 if (valid & addrbits) {
2498 ins->addr_size = addrbits;
2499 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2500 /* Add an address size prefix */
2501 enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
2502 ins->prefixes[PPS_ASIZE] = pref;
2503 ins->addr_size = (addrbits == 32) ? 16 : 32;
2504 } else {
2505 /* Impossible... */
2506 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2507 ins->addr_size = addrbits; /* Error recovery */
2510 defdisp = ins->addr_size == 16 ? 16 : 32;
2512 for (j = 0; j < ins->operands; j++) {
2513 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2514 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
2515 != ins->addr_size) {
2516 /* mem_offs sizes must match the address size; if not,
2517 strip the MEM_OFFS bit and match only EA instructions */
2518 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);