NASM 2.09rc4
[nasm/avx512.git] / nasm.h
blob76f561fbfe958c82bc3c0c0c2fa01553e6e7a9a1
1 /* ----------------------------------------------------------------------- *
2 *
3 * Copyright 1996-2009 The NASM Authors - All Rights Reserved
4 * See the file AUTHORS included with the NASM distribution for
5 * the specific copyright holders.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following
9 * conditions are met:
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
19 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
20 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
29 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * ----------------------------------------------------------------------- */
34 /*
35 * nasm.h main header file for the Netwide Assembler: inter-module interface
38 #ifndef NASM_NASM_H
39 #define NASM_NASM_H
41 #include "compiler.h"
43 #include <stdio.h>
44 #include <inttypes.h>
45 #include "nasmlib.h"
46 #include "preproc.h"
47 #include "insnsi.h" /* For enum opcode */
48 #include "directiv.h" /* For enum directive */
49 #include "opflags.h"
51 #define NO_SEG -1L /* null segment value */
52 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
54 #ifndef FILENAME_MAX
55 #define FILENAME_MAX 256
56 #endif
58 #ifndef PREFIX_MAX
59 #define PREFIX_MAX 10
60 #endif
62 #ifndef POSTFIX_MAX
63 #define POSTFIX_MAX 10
64 #endif
66 #define IDLEN_MAX 4096
69 * Name pollution problems: <time.h> on Digital UNIX pulls in some
70 * strange hardware header file which sees fit to define R_SP. We
71 * undefine it here so as not to break the enum below.
73 #ifdef R_SP
74 #undef R_SP
75 #endif
78 * We must declare the existence of this structure type up here,
79 * since we have to reference it before we define it...
81 struct ofmt;
84 * values for the `type' parameter to an output function.
86 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
87 * which will be a relative jump. For this we need to know the
88 * distance in bytes from the start of the relocated record until
89 * the end of the containing instruction. _This_ is what is stored
90 * in the size part of the parameter, in this case.
92 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
93 * and the contents of the "data" parameter is irrelevant.
95 * The "data" parameter for the output function points to a "int32_t",
96 * containing the address in question, unless the type is
97 * OUT_RAWDATA, in which case it points to an "uint8_t"
98 * array.
100 enum out_type {
101 OUT_RAWDATA, /* Plain bytes */
102 OUT_ADDRESS, /* An address (symbol value) */
103 OUT_RESERVE, /* Reserved bytes (RESB et al) */
104 OUT_REL1ADR, /* 1-byte relative address */
105 OUT_REL2ADR, /* 2-byte relative address */
106 OUT_REL4ADR, /* 4-byte relative address */
107 OUT_REL8ADR, /* 8-byte relative address */
111 * -----------------------
112 * Other function typedefs
113 * -----------------------
117 * A label-lookup function should look like this.
119 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
122 * And a label-definition function like this. The boolean parameter
123 * `is_norm' states whether the label is a `normal' label (which
124 * should affect the local-label system), or something odder like
125 * an EQU or a segment-base symbol, which shouldn't.
127 typedef void (*ldfunc)(char *label, int32_t segment, int64_t offset,
128 char *special, bool is_norm, bool isextrn);
129 void define_label(char *label, int32_t segment, int64_t offset,
130 char *special, bool is_norm, bool isextrn);
133 * List-file generators should look like this:
135 typedef struct {
137 * Called to initialize the listing file generator. Before this
138 * is called, the other routines will silently do nothing when
139 * called. The `char *' parameter is the file name to write the
140 * listing to.
142 void (*init) (char *, efunc);
145 * Called to clear stuff up and close the listing file.
147 void (*cleanup) (void);
150 * Called to output binary data. Parameters are: the offset;
151 * the data; the data type. Data types are similar to the
152 * output-format interface, only OUT_ADDRESS will _always_ be
153 * displayed as if it's relocatable, so ensure that any non-
154 * relocatable address has been converted to OUT_RAWDATA by
155 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
156 * dummy call used to give the listing generator an offset to
157 * work with when doing things like uplevel(LIST_TIMES) or
158 * uplevel(LIST_INCBIN).
160 void (*output) (int32_t, const void *, enum out_type, uint64_t);
163 * Called to send a text line to the listing generator. The
164 * `int' parameter is LIST_READ or LIST_MACRO depending on
165 * whether the line came directly from an input file or is the
166 * result of a multi-line macro expansion.
168 void (*line) (int, char *);
171 * Called to change one of the various levelled mechanisms in
172 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
173 * used to increase the nesting level of include files and
174 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
175 * two binary-output-suppression mechanisms for large-scale
176 * pseudo-instructions.
178 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
179 * it indicates the beginning of the expansion of a `nolist'
180 * macro, so anything under that level won't be expanded unless
181 * it includes another file.
183 void (*uplevel) (int);
186 * Reverse the effects of uplevel.
188 void (*downlevel) (int);
191 * Called on a warning or error, with the error message.
193 void (*error)(int severity, const char *pfx, const char *msg);
194 } ListGen;
197 * Token types returned by the scanner, in addition to ordinary
198 * ASCII character values, and zero for end-of-string.
200 enum token_type { /* token types, other than chars */
201 TOKEN_INVALID = -1, /* a placeholder value */
202 TOKEN_EOS = 0, /* end of string */
203 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
204 TOKEN_ID = 256, /* identifier */
205 TOKEN_NUM, /* numeric constant */
206 TOKEN_ERRNUM, /* malformed numeric constant */
207 TOKEN_STR, /* string constant */
208 TOKEN_ERRSTR, /* unterminated string constant */
209 TOKEN_FLOAT, /* floating-point constant */
210 TOKEN_REG, /* register name */
211 TOKEN_INSN, /* instruction name */
212 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
213 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
214 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
215 TOKEN_SHL, TOKEN_SHR, /* << and >> */
216 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
217 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
218 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
219 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
220 TOKEN_FLOATIZE, /* __floatX__ */
221 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
224 enum floatize {
225 FLOAT_8,
226 FLOAT_16,
227 FLOAT_32,
228 FLOAT_64,
229 FLOAT_80M,
230 FLOAT_80E,
231 FLOAT_128L,
232 FLOAT_128H,
235 /* Must match the list in string_transform(), in strfunc.c */
236 enum strfunc {
237 STRFUNC_UTF16,
238 STRFUNC_UTF32,
241 size_t string_transform(char *, size_t, char **, enum strfunc);
244 * The expression evaluator must be passed a scanner function; a
245 * standard scanner is provided as part of nasmlib.c. The
246 * preprocessor will use a different one. Scanners, and the
247 * token-value structures they return, look like this.
249 * The return value from the scanner is always a copy of the
250 * `t_type' field in the structure.
252 struct tokenval {
253 enum token_type t_type;
254 char *t_charptr;
255 int64_t t_integer, t_inttwo;
257 typedef int (*scanner) (void *private_data, struct tokenval * tv);
259 struct location {
260 int64_t offset;
261 int32_t segment;
262 int known;
266 * Expression-evaluator datatype. Expressions, within the
267 * evaluator, are stored as an array of these beasts, terminated by
268 * a record with type==0. Mostly, it's a vector type: each type
269 * denotes some kind of a component, and the value denotes the
270 * multiple of that component present in the expression. The
271 * exception is the WRT type, whose `value' field denotes the
272 * segment to which the expression is relative. These segments will
273 * be segment-base types, i.e. either odd segment values or SEG_ABS
274 * types. So it is still valid to assume that anything with a
275 * `value' field of zero is insignificant.
277 typedef struct {
278 int32_t type; /* a register, or EXPR_xxx */
279 int64_t value; /* must be >= 32 bits */
280 } expr;
283 * Library routines to manipulate expression data types.
285 int is_reloc(expr *);
286 int is_simple(expr *);
287 int is_really_simple(expr *);
288 int is_unknown(expr *);
289 int is_just_unknown(expr *);
290 int64_t reloc_value(expr *);
291 int32_t reloc_seg(expr *);
292 int32_t reloc_wrt(expr *);
295 * The evaluator can also return hints about which of two registers
296 * used in an expression should be the base register. See also the
297 * `operand' structure.
299 struct eval_hints {
300 int64_t base;
301 int type;
305 * The actual expression evaluator function looks like this. When
306 * called, it expects the first token of its expression to already
307 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
308 * it will start by calling the scanner.
310 * If a forward reference happens during evaluation, the evaluator
311 * must set `*fwref' to true if `fwref' is non-NULL.
313 * `critical' is non-zero if the expression may not contain forward
314 * references. The evaluator will report its own error if this
315 * occurs; if `critical' is 1, the error will be "symbol not
316 * defined before use", whereas if `critical' is 2, the error will
317 * be "symbol undefined".
319 * If `critical' has bit 8 set (in addition to its main value: 0x101
320 * and 0x102 correspond to 1 and 2) then an extended expression
321 * syntax is recognised, in which relational operators such as =, <
322 * and >= are accepted, as well as low-precedence logical operators
323 * &&, ^^ and ||.
325 * If `hints' is non-NULL, it gets filled in with some hints as to
326 * the base register in complex effective addresses.
328 #define CRITICAL 0x100
329 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
330 struct tokenval * tv, int *fwref, int critical,
331 efunc error, struct eval_hints * hints);
334 * Special values for expr->type. These come after EXPR_REG_END
335 * as defined in regs.h.
338 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
339 #define EXPR_SIMPLE (EXPR_REG_END+2)
340 #define EXPR_WRT (EXPR_REG_END+3)
341 #define EXPR_SEGBASE (EXPR_REG_END+4)
344 * Linked list of strings...
346 typedef struct string_list {
347 struct string_list *next;
348 char str[1];
349 } StrList;
352 * preprocessors ought to look like this:
354 typedef struct preproc_ops {
356 * Called at the start of a pass; given a file name, the number
357 * of the pass, an error reporting function, an evaluator
358 * function, and a listing generator to talk to.
360 void (*reset) (char *, int, ListGen *, StrList **);
363 * Called to fetch a line of preprocessed source. The line
364 * returned has been malloc'ed, and so should be freed after
365 * use.
367 char *(*getline) (void);
370 * Called at the end of a pass.
372 void (*cleanup) (int);
373 } Preproc;
375 extern Preproc nasmpp;
378 * ----------------------------------------------------------------
379 * Some lexical properties of the NASM source language, included
380 * here because they are shared between the parser and preprocessor
381 * ----------------------------------------------------------------
385 * isidstart matches any character that may start an identifier, and isidchar
386 * matches any character that may appear at places other than the start of an
387 * identifier. E.g. a period may only appear at the start of an identifier
388 * (for local labels), whereas a number may appear anywhere *but* at the
389 * start.
392 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
393 || (c)=='@' )
394 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
395 (c)=='$' || (c)=='#' || (c)=='~' )
397 /* Ditto for numeric constants. */
399 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
400 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
402 /* This returns the numeric value of a given 'digit'. */
404 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
407 * Data-type flags that get passed to listing-file routines.
409 enum {
410 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
411 LIST_INCBIN, LIST_TIMES
415 * -----------------------------------------------------------
416 * Format of the `insn' structure returned from `parser.c' and
417 * passed into `assemble.c'
418 * -----------------------------------------------------------
421 /* Register names automatically generated from regs.dat */
422 #include "regs.h"
424 enum ccode { /* condition code names */
425 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
426 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
427 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
428 C_none = -1
432 * REX flags
434 #define REX_REAL 0x4f /* Actual REX prefix bits */
435 #define REX_B 0x01 /* ModRM r/m extension */
436 #define REX_X 0x02 /* SIB index extension */
437 #define REX_R 0x04 /* ModRM reg extension */
438 #define REX_W 0x08 /* 64-bit operand size */
439 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
440 #define REX_P 0x40 /* REX prefix present/required */
441 #define REX_H 0x80 /* High register present, REX forbidden */
442 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
443 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
444 #define REX_V 0x0400 /* Instruction uses VEX/XOP instead of REX */
445 #define REX_NH 0x0800 /* Instruction which doesn't use high regs */
448 * REX_V "classes" (prefixes which behave like VEX)
450 enum vex_class {
451 RV_VEX = 0, /* C4/C5 */
452 RV_XOP = 1 /* 8F */
456 * Note that because segment registers may be used as instruction
457 * prefixes, we must ensure the enumerations for prefixes and
458 * register names do not overlap.
460 enum prefixes { /* instruction prefixes */
461 P_none = 0,
462 PREFIX_ENUM_START = REG_ENUM_LIMIT,
463 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
464 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
465 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
466 P_WAIT,
467 PREFIX_ENUM_LIMIT
470 enum extop_type { /* extended operand types */
471 EOT_NOTHING,
472 EOT_DB_STRING, /* Byte string */
473 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
474 EOT_DB_NUMBER, /* Integer */
477 enum ea_flags { /* special EA flags */
478 EAF_BYTEOFFS = 1, /* force offset part to byte size */
479 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
480 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
481 EAF_REL = 8, /* IP-relative addressing */
482 EAF_ABS = 16, /* non-IP-relative addressing */
483 EAF_FSGS = 32 /* fs/gs segment override present */
486 enum eval_hint { /* values for `hinttype' */
487 EAH_NOHINT = 0, /* no hint at all - our discretion */
488 EAH_MAKEBASE = 1, /* try to make given reg the base */
489 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
492 typedef struct operand { /* operand to an instruction */
493 opflags_t type; /* type of operand */
494 int disp_size; /* 0 means default; 16; 32; 64 */
495 enum reg_enum basereg, indexreg; /* address registers */
496 int scale; /* index scale */
497 int hintbase;
498 enum eval_hint hinttype; /* hint as to real base register */
499 int32_t segment; /* immediate segment, if needed */
500 int64_t offset; /* any immediate number */
501 int32_t wrt; /* segment base it's relative to */
502 int eaflags; /* special EA flags */
503 int opflags; /* see OPFLAG_* defines below */
504 } operand;
506 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
507 #define OPFLAG_EXTERN 2 /* operand is an external reference */
508 #define OPFLAG_UNKNOWN 4 /* operand is an unknown reference */
509 /* (always a forward reference also) */
511 typedef struct extop { /* extended operand */
512 struct extop *next; /* linked list */
513 char *stringval; /* if it's a string, then here it is */
514 size_t stringlen; /* ... and here's how long it is */
515 int64_t offset; /* ... it's given here ... */
516 int32_t segment; /* if it's a number/address, then... */
517 int32_t wrt; /* ... and here */
518 enum extop_type type; /* defined above */
519 } extop;
521 /* Prefix positions: each type of prefix goes in a specific slot.
522 This affects the final ordering of the assembled output, which
523 shouldn't matter to the processor, but if you have stylistic
524 preferences, you can change this. REX prefixes are handled
525 differently for the time being.
527 Note that LOCK and REP are in the same slot. This is
528 an x86 architectural constraint. */
529 enum prefix_pos {
530 PPS_WAIT, /* WAIT (technically not a prefix!) */
531 PPS_LREP, /* Lock or REP prefix */
532 PPS_SEG, /* Segment override prefix */
533 PPS_OSIZE, /* Operand size prefix */
534 PPS_ASIZE, /* Address size prefix */
535 MAXPREFIX /* Total number of prefix slots */
538 /* If you need to change this, also change it in insns.pl */
539 #define MAX_OPERANDS 5
541 typedef struct insn { /* an instruction itself */
542 char *label; /* the label defined, or NULL */
543 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
544 enum opcode opcode; /* the opcode - not just the string */
545 enum ccode condition; /* the condition code, if Jcc/SETcc */
546 int operands; /* how many operands? 0-3
547 * (more if db et al) */
548 int addr_size; /* address size */
549 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
550 extop *eops; /* extended operands */
551 int eops_float; /* true if DD and floating */
552 int32_t times; /* repeat count (TIMES prefix) */
553 bool forw_ref; /* is there a forward reference? */
554 int rex; /* Special REX Prefix */
555 int drexdst; /* Destination register for DREX/VEX suffix */
556 int vex_cm; /* Class and M field for VEX prefix */
557 int vex_wlp; /* W, P and L information for VEX prefix */
558 } insn;
560 enum geninfo { GI_SWITCH };
562 * ------------------------------------------------------------
563 * The data structure defining an output format driver, and the
564 * interfaces to the functions therein.
565 * ------------------------------------------------------------
568 struct ofmt {
570 * This is a short (one-liner) description of the type of
571 * output generated by the driver.
573 const char *fullname;
576 * This is a single keyword used to select the driver.
578 const char *shortname;
581 * Output format flags.
583 #define OFMT_TEXT 1 /* Text file format */
584 unsigned int flags;
587 * this is a pointer to the first element of the debug information
589 struct dfmt **debug_formats;
592 * and a pointer to the element that is being used
593 * note: this is set to the default at compile time and changed if the
594 * -F option is selected. If developing a set of new debug formats for
595 * an output format, be sure to set this to whatever default you want
598 const struct dfmt *current_dfmt;
601 * This, if non-NULL, is a NULL-terminated list of `char *'s
602 * pointing to extra standard macros supplied by the object
603 * format (e.g. a sensible initial default value of __SECT__,
604 * and user-level equivalents for any format-specific
605 * directives).
607 macros_t *stdmac;
610 * This procedure is called at the start of an output session to set
611 * up internal parameters.
613 void (*init)(void);
616 * This procedure is called to pass generic information to the
617 * object file. The first parameter gives the information type
618 * (currently only command line switches)
619 * and the second parameter gives the value. This function returns
620 * 1 if recognized, 0 if unrecognized
622 int (*setinfo) (enum geninfo type, char **string);
625 * This procedure is called by assemble() to write actual
626 * generated code or data to the object file. Typically it
627 * doesn't have to actually _write_ it, just store it for
628 * later.
630 * The `type' argument specifies the type of output data, and
631 * usually the size as well: its contents are described below.
633 void (*output) (int32_t segto, const void *data,
634 enum out_type type, uint64_t size,
635 int32_t segment, int32_t wrt);
638 * This procedure is called once for every symbol defined in
639 * the module being assembled. It gives the name and value of
640 * the symbol, in NASM's terms, and indicates whether it has
641 * been declared to be global. Note that the parameter "name",
642 * when passed, will point to a piece of static storage
643 * allocated inside the label manager - it's safe to keep using
644 * that pointer, because the label manager doesn't clean up
645 * until after the output driver has.
647 * Values of `is_global' are: 0 means the symbol is local; 1
648 * means the symbol is global; 2 means the symbol is common (in
649 * which case `offset' holds the _size_ of the variable).
650 * Anything else is available for the output driver to use
651 * internally.
653 * This routine explicitly _is_ allowed to call the label
654 * manager to define further symbols, if it wants to, even
655 * though it's been called _from_ the label manager. That much
656 * re-entrancy is guaranteed in the label manager. However, the
657 * label manager will in turn call this routine, so it should
658 * be prepared to be re-entrant itself.
660 * The `special' parameter contains special information passed
661 * through from the command that defined the label: it may have
662 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
663 * be obvious to the output format from the other parameters.
665 void (*symdef) (char *name, int32_t segment, int64_t offset,
666 int is_global, char *special);
669 * This procedure is called when the source code requests a
670 * segment change. It should return the corresponding segment
671 * _number_ for the name, or NO_SEG if the name is not a valid
672 * segment name.
674 * It may also be called with NULL, in which case it is to
675 * return the _default_ section number for starting assembly in.
677 * It is allowed to modify the string it is given a pointer to.
679 * It is also allowed to specify a default instruction size for
680 * the segment, by setting `*bits' to 16 or 32. Or, if it
681 * doesn't wish to define a default, it can leave `bits' alone.
683 int32_t (*section) (char *name, int pass, int *bits);
686 * This procedure is called to modify section alignment,
687 * note there is a trick, the alignment can only increase
689 void (*sectalign)(int32_t seg, unsigned int value);
692 * This procedure is called to modify the segment base values
693 * returned from the SEG operator. It is given a segment base
694 * value (i.e. a segment value with the low bit set), and is
695 * required to produce in return a segment value which may be
696 * different. It can map segment bases to absolute numbers by
697 * means of returning SEG_ABS types.
699 * It should return NO_SEG if the segment base cannot be
700 * determined; the evaluator (which calls this routine) is
701 * responsible for throwing an error condition if that occurs
702 * in pass two or in a critical expression.
704 int32_t (*segbase) (int32_t segment);
707 * This procedure is called to allow the output driver to
708 * process its own specific directives. When called, it has the
709 * directive word in `directive' and the parameter string in
710 * `value'. It is called in both assembly passes, and `pass'
711 * will be either 1 or 2.
713 * This procedure should return zero if it does not _recognise_
714 * the directive, so that the main program can report an error.
715 * If it recognises the directive but then has its own errors,
716 * it should report them itself and then return non-zero. It
717 * should also return non-zero if it correctly processes the
718 * directive.
720 int (*directive)(enum directives directive, char *value, int pass);
723 * This procedure is called before anything else - even before
724 * the "init" routine - and is passed the name of the input
725 * file from which this output file is being generated. It
726 * should return its preferred name for the output file in
727 * `outname', if outname[0] is not '\0', and do nothing to
728 * `outname' otherwise. Since it is called before the driver is
729 * properly initialized, it has to be passed its error handler
730 * separately.
732 * This procedure may also take its own copy of the input file
733 * name for use in writing the output file: it is _guaranteed_
734 * that it will be called before the "init" routine.
736 * The parameter `outname' points to an area of storage
737 * guaranteed to be at least FILENAME_MAX in size.
739 void (*filename) (char *inname, char *outname);
742 * This procedure is called after assembly finishes, to allow
743 * the output driver to clean itself up and free its memory.
744 * Typically, it will also be the point at which the object
745 * file actually gets _written_.
747 * One thing the cleanup routine should always do is to close
748 * the output file pointer.
750 void (*cleanup) (int debuginfo);
753 extern struct ofmt *ofmt;
754 extern FILE *ofile;
757 * ------------------------------------------------------------
758 * The data structure defining a debug format driver, and the
759 * interfaces to the functions therein.
760 * ------------------------------------------------------------
763 struct dfmt {
765 * This is a short (one-liner) description of the type of
766 * output generated by the driver.
768 const char *fullname;
771 * This is a single keyword used to select the driver.
773 const char *shortname;
776 * init - called initially to set up local pointer to object format.
778 void (*init)(void);
781 * linenum - called any time there is output with a change of
782 * line number or file.
784 void (*linenum)(const char *filename, int32_t linenumber, int32_t segto);
787 * debug_deflabel - called whenever a label is defined. Parameters
788 * are the same as to 'symdef()' in the output format. This function
789 * would be called before the output format version.
792 void (*debug_deflabel)(char *name, int32_t segment, int64_t offset,
793 int is_global, char *special);
795 * debug_directive - called whenever a DEBUG directive other than 'LINE'
796 * is encountered. 'directive' contains the first parameter to the
797 * DEBUG directive, and params contains the rest. For example,
798 * 'DEBUG VAR _somevar:int' would translate to a call to this
799 * function with 'directive' equal to "VAR" and 'params' equal to
800 * "_somevar:int".
802 void (*debug_directive)(const char *directive, const char *params);
805 * typevalue - called whenever the assembler wishes to register a type
806 * for the last defined label. This routine MUST detect if a type was
807 * already registered and not re-register it.
809 void (*debug_typevalue)(int32_t type);
812 * debug_output - called whenever output is required
813 * 'type' is the type of info required, and this is format-specific
815 void (*debug_output)(int type, void *param);
818 * cleanup - called after processing of file is complete
820 void (*cleanup)(void);
823 extern const struct dfmt *dfmt;
826 * The type definition macros
827 * for debugging
829 * low 3 bits: reserved
830 * next 5 bits: type
831 * next 24 bits: number of elements for arrays (0 for labels)
834 #define TY_UNKNOWN 0x00
835 #define TY_LABEL 0x08
836 #define TY_BYTE 0x10
837 #define TY_WORD 0x18
838 #define TY_DWORD 0x20
839 #define TY_FLOAT 0x28
840 #define TY_QWORD 0x30
841 #define TY_TBYTE 0x38
842 #define TY_OWORD 0x40
843 #define TY_YWORD 0x48
844 #define TY_COMMON 0xE0
845 #define TY_SEG 0xE8
846 #define TY_EXTERN 0xF0
847 #define TY_EQU 0xF8
849 #define TYM_TYPE(x) ((x) & 0xF8)
850 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
852 #define TYS_ELEMENTS(x) ((x) << 8)
855 * -----
856 * Special tokens
857 * -----
860 enum special_tokens {
861 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
862 S_ABS = SPECIAL_ENUM_START,
863 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
864 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
865 SPECIAL_ENUM_LIMIT
869 * -----
870 * Global modes
871 * -----
875 * This declaration passes the "pass" number to all other modules
876 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
877 * where 0 = optimizing pass
878 * 1 = pass 1
879 * 2 = pass 2
882 extern int pass0;
883 extern int passn; /* Actual pass number */
885 extern bool tasm_compatible_mode;
886 extern int optimizing;
887 extern int globalbits; /* 16, 32 or 64-bit mode */
888 extern int globalrel; /* default to relative addressing? */
889 extern int maxbits; /* max bits supported by output */
892 * NASM version strings, defined in ver.c
894 extern const char nasm_version[];
895 extern const char nasm_date[];
896 extern const char nasm_compile_options[];
897 extern const char nasm_comment[];
898 extern const char nasm_signature[];
900 #endif