NASM 2.05rc4
[nasm/avx512.git] / nasm.h
blobd97e5f1d82f72c272bfbf502a751899ec0e8bf2f
1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
9 */
11 #ifndef NASM_NASM_H
12 #define NASM_NASM_H
14 #include "compiler.h"
16 #include <stdio.h>
17 #include <inttypes.h>
18 #include "version.h" /* generated NASM version macros */
19 #include "nasmlib.h"
20 #include "preproc.h"
21 #include "insnsi.h" /* For enum opcode */
23 #define NO_SEG -1L /* null segment value */
24 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
26 #ifndef FILENAME_MAX
27 #define FILENAME_MAX 256
28 #endif
30 #ifndef PREFIX_MAX
31 #define PREFIX_MAX 10
32 #endif
34 #ifndef POSTFIX_MAX
35 #define POSTFIX_MAX 10
36 #endif
38 #define IDLEN_MAX 4096
41 * Name pollution problems: <time.h> on Digital UNIX pulls in some
42 * strange hardware header file which sees fit to define R_SP. We
43 * undefine it here so as not to break the enum below.
45 #ifdef R_SP
46 #undef R_SP
47 #endif
50 * We must declare the existence of this structure type up here,
51 * since we have to reference it before we define it...
53 struct ofmt;
56 * values for the `type' parameter to an output function.
58 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
59 * which will be a relative jump. For this we need to know the
60 * distance in bytes from the start of the relocated record until
61 * the end of the containing instruction. _This_ is what is stored
62 * in the size part of the parameter, in this case.
64 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
65 * and the contents of the "data" parameter is irrelevant.
67 * The "data" parameter for the output function points to a "int32_t",
68 * containing the address in question, unless the type is
69 * OUT_RAWDATA, in which case it points to an "uint8_t"
70 * array.
72 enum out_type {
73 OUT_RAWDATA, /* Plain bytes */
74 OUT_ADDRESS, /* An address (symbol value) */
75 OUT_RESERVE, /* Reserved bytes (RESB et al) */
76 OUT_REL2ADR, /* 2-byte relative address */
77 OUT_REL4ADR, /* 4-byte relative address */
78 OUT_REL8ADR, /* 8-byte relative address */
82 * -----------------------
83 * Other function typedefs
84 * -----------------------
88 * A label-lookup function should look like this.
90 typedef bool (*lfunc) (char *label, int32_t *segment, int64_t *offset);
93 * And a label-definition function like this. The boolean parameter
94 * `is_norm' states whether the label is a `normal' label (which
95 * should affect the local-label system), or something odder like
96 * an EQU or a segment-base symbol, which shouldn't.
98 typedef void (*ldfunc) (char *label, int32_t segment, int64_t offset,
99 char *special, bool is_norm, bool isextrn,
100 struct ofmt * ofmt, efunc error);
103 * List-file generators should look like this:
105 typedef struct {
107 * Called to initialize the listing file generator. Before this
108 * is called, the other routines will silently do nothing when
109 * called. The `char *' parameter is the file name to write the
110 * listing to.
112 void (*init) (char *, efunc);
115 * Called to clear stuff up and close the listing file.
117 void (*cleanup) (void);
120 * Called to output binary data. Parameters are: the offset;
121 * the data; the data type. Data types are similar to the
122 * output-format interface, only OUT_ADDRESS will _always_ be
123 * displayed as if it's relocatable, so ensure that any non-
124 * relocatable address has been converted to OUT_RAWDATA by
125 * then. Note that OUT_RAWDATA,0 is a valid data type, and is a
126 * dummy call used to give the listing generator an offset to
127 * work with when doing things like uplevel(LIST_TIMES) or
128 * uplevel(LIST_INCBIN).
130 void (*output) (int32_t, const void *, enum out_type, uint64_t);
133 * Called to send a text line to the listing generator. The
134 * `int' parameter is LIST_READ or LIST_MACRO depending on
135 * whether the line came directly from an input file or is the
136 * result of a multi-line macro expansion.
138 void (*line) (int, char *);
141 * Called to change one of the various levelled mechanisms in
142 * the listing generator. LIST_INCLUDE and LIST_MACRO can be
143 * used to increase the nesting level of include files and
144 * macro expansions; LIST_TIMES and LIST_INCBIN switch on the
145 * two binary-output-suppression mechanisms for large-scale
146 * pseudo-instructions.
148 * LIST_MACRO_NOLIST is synonymous with LIST_MACRO except that
149 * it indicates the beginning of the expansion of a `nolist'
150 * macro, so anything under that level won't be expanded unless
151 * it includes another file.
153 void (*uplevel) (int);
156 * Reverse the effects of uplevel.
158 void (*downlevel) (int);
159 } ListGen;
162 * Token types returned by the scanner, in addition to ordinary
163 * ASCII character values, and zero for end-of-string.
165 enum token_type { /* token types, other than chars */
166 TOKEN_INVALID = -1, /* a placeholder value */
167 TOKEN_EOS = 0, /* end of string */
168 TOKEN_EQ = '=', TOKEN_GT = '>', TOKEN_LT = '<', /* aliases */
169 TOKEN_ID = 256, /* identifier */
170 TOKEN_NUM, /* numeric constant */
171 TOKEN_ERRNUM, /* malformed numeric constant */
172 TOKEN_STR, /* string constant */
173 TOKEN_ERRSTR, /* unterminated string constant */
174 TOKEN_FLOAT, /* floating-point constant */
175 TOKEN_REG, /* register name */
176 TOKEN_INSN, /* instruction name */
177 TOKEN_HERE, TOKEN_BASE, /* $ and $$ */
178 TOKEN_SPECIAL, /* BYTE, WORD, DWORD, QWORD, FAR, NEAR, etc */
179 TOKEN_PREFIX, /* A32, O16, LOCK, REPNZ, TIMES, etc */
180 TOKEN_SHL, TOKEN_SHR, /* << and >> */
181 TOKEN_SDIV, TOKEN_SMOD, /* // and %% */
182 TOKEN_GE, TOKEN_LE, TOKEN_NE, /* >=, <= and <> (!= is same as <>) */
183 TOKEN_DBL_AND, TOKEN_DBL_OR, TOKEN_DBL_XOR, /* &&, || and ^^ */
184 TOKEN_SEG, TOKEN_WRT, /* SEG and WRT */
185 TOKEN_FLOATIZE, /* __floatX__ */
186 TOKEN_STRFUNC, /* __utf16__, __utf32__ */
189 enum floatize {
190 FLOAT_8,
191 FLOAT_16,
192 FLOAT_32,
193 FLOAT_64,
194 FLOAT_80M,
195 FLOAT_80E,
196 FLOAT_128L,
197 FLOAT_128H,
200 /* Must match the list in string_transform(), in strfunc.c */
201 enum strfunc {
202 STRFUNC_UTF16,
203 STRFUNC_UTF32,
206 size_t string_transform(char *, size_t, char **, enum strfunc);
209 * The expression evaluator must be passed a scanner function; a
210 * standard scanner is provided as part of nasmlib.c. The
211 * preprocessor will use a different one. Scanners, and the
212 * token-value structures they return, look like this.
214 * The return value from the scanner is always a copy of the
215 * `t_type' field in the structure.
217 struct tokenval {
218 enum token_type t_type;
219 char *t_charptr;
220 int64_t t_integer, t_inttwo;
222 typedef int (*scanner) (void *private_data, struct tokenval * tv);
224 struct location {
225 int64_t offset;
226 int32_t segment;
227 int known;
231 * Expression-evaluator datatype. Expressions, within the
232 * evaluator, are stored as an array of these beasts, terminated by
233 * a record with type==0. Mostly, it's a vector type: each type
234 * denotes some kind of a component, and the value denotes the
235 * multiple of that component present in the expression. The
236 * exception is the WRT type, whose `value' field denotes the
237 * segment to which the expression is relative. These segments will
238 * be segment-base types, i.e. either odd segment values or SEG_ABS
239 * types. So it is still valid to assume that anything with a
240 * `value' field of zero is insignificant.
242 typedef struct {
243 int32_t type; /* a register, or EXPR_xxx */
244 int64_t value; /* must be >= 32 bits */
245 } expr;
248 * Library routines to manipulate expression data types.
250 int is_reloc(expr *);
251 int is_simple(expr *);
252 int is_really_simple(expr *);
253 int is_unknown(expr *);
254 int is_just_unknown(expr *);
255 int64_t reloc_value(expr *);
256 int32_t reloc_seg(expr *);
257 int32_t reloc_wrt(expr *);
260 * The evaluator can also return hints about which of two registers
261 * used in an expression should be the base register. See also the
262 * `operand' structure.
264 struct eval_hints {
265 int64_t base;
266 int type;
270 * The actual expression evaluator function looks like this. When
271 * called, it expects the first token of its expression to already
272 * be in `*tv'; if it is not, set tv->t_type to TOKEN_INVALID and
273 * it will start by calling the scanner.
275 * If a forward reference happens during evaluation, the evaluator
276 * must set `*fwref' to true if `fwref' is non-NULL.
278 * `critical' is non-zero if the expression may not contain forward
279 * references. The evaluator will report its own error if this
280 * occurs; if `critical' is 1, the error will be "symbol not
281 * defined before use", whereas if `critical' is 2, the error will
282 * be "symbol undefined".
284 * If `critical' has bit 8 set (in addition to its main value: 0x101
285 * and 0x102 correspond to 1 and 2) then an extended expression
286 * syntax is recognised, in which relational operators such as =, <
287 * and >= are accepted, as well as low-precedence logical operators
288 * &&, ^^ and ||.
290 * If `hints' is non-NULL, it gets filled in with some hints as to
291 * the base register in complex effective addresses.
293 #define CRITICAL 0x100
294 typedef expr *(*evalfunc) (scanner sc, void *scprivate,
295 struct tokenval * tv, int *fwref, int critical,
296 efunc error, struct eval_hints * hints);
299 * Special values for expr->type. These come after EXPR_REG_END
300 * as defined in regs.h.
303 #define EXPR_UNKNOWN (EXPR_REG_END+1) /* forward references */
304 #define EXPR_SIMPLE (EXPR_REG_END+2)
305 #define EXPR_WRT (EXPR_REG_END+3)
306 #define EXPR_SEGBASE (EXPR_REG_END+4)
309 * Linked list of strings...
311 typedef struct string_list {
312 struct string_list *next;
313 char str[1];
314 } StrList;
317 * preprocessors ought to look like this:
319 typedef struct preproc_ops {
321 * Called at the start of a pass; given a file name, the number
322 * of the pass, an error reporting function, an evaluator
323 * function, and a listing generator to talk to.
325 void (*reset) (char *, int, efunc, evalfunc, ListGen *, StrList **);
328 * Called to fetch a line of preprocessed source. The line
329 * returned has been malloc'ed, and so should be freed after
330 * use.
332 char *(*getline) (void);
335 * Called at the end of a pass.
337 void (*cleanup) (int);
338 } Preproc;
340 extern Preproc nasmpp;
343 * ----------------------------------------------------------------
344 * Some lexical properties of the NASM source language, included
345 * here because they are shared between the parser and preprocessor
346 * ----------------------------------------------------------------
350 * isidstart matches any character that may start an identifier, and isidchar
351 * matches any character that may appear at places other than the start of an
352 * identifier. E.g. a period may only appear at the start of an identifier
353 * (for local labels), whereas a number may appear anywhere *but* at the
354 * start.
357 #define isidstart(c) ( nasm_isalpha(c) || (c)=='_' || (c)=='.' || (c)=='?' \
358 || (c)=='@' )
359 #define isidchar(c) ( isidstart(c) || nasm_isdigit(c) || \
360 (c)=='$' || (c)=='#' || (c)=='~' )
362 /* Ditto for numeric constants. */
364 #define isnumstart(c) ( nasm_isdigit(c) || (c)=='$' )
365 #define isnumchar(c) ( nasm_isalnum(c) || (c)=='_' )
367 /* This returns the numeric value of a given 'digit'. */
369 #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0')
372 * Data-type flags that get passed to listing-file routines.
374 enum {
375 LIST_READ, LIST_MACRO, LIST_MACRO_NOLIST, LIST_INCLUDE,
376 LIST_INCBIN, LIST_TIMES
380 * -----------------------------------------------------------
381 * Format of the `insn' structure returned from `parser.c' and
382 * passed into `assemble.c'
383 * -----------------------------------------------------------
387 * Here we define the operand types. These are implemented as bit
388 * masks, since some are subsets of others; e.g. AX in a MOV
389 * instruction is a special operand type, whereas AX in other
390 * contexts is just another 16-bit register. (Also, consider CL in
391 * shift instructions, DX in OUT, etc.)
393 * The basic concept here is that
394 * (class & ~operand) == 0
396 * if and only if "operand" belongs to class type "class".
398 * The bits are assigned as follows:
400 * Bits 0-7, 23, 29: sizes
401 * 0: 8 bits (BYTE)
402 * 1: 16 bits (WORD)
403 * 2: 32 bits (DWORD)
404 * 3: 64 bits (QWORD)
405 * 4: 80 bits (TWORD)
406 * 5: FAR
407 * 6: NEAR
408 * 7: SHORT
409 * 23: 256 bits (YWORD)
410 * 29: 128 bits (OWORD)
412 * Bits 8-11 modifiers
413 * 8: TO
414 * 9: COLON
415 * 10: STRICT
416 * 11: (reserved)
418 * Bits 12-15: type of operand
419 * 12: REGISTER
420 * 13: IMMEDIATE
421 * 14: MEMORY (always has REGMEM attribute as well)
422 * 15: REGMEM (valid EA operand)
424 * Bits 16-19, 28: subclasses
425 * With REG_CDT:
426 * 16: REG_CREG (CRx)
427 * 17: REG_DREG (DRx)
428 * 18: REG_TREG (TRx)
430 * With REG_GPR:
431 * 16: REG_ACCUM (AL, AX, EAX, RAX)
432 * 17: REG_COUNT (CL, CX, ECX, RCX)
433 * 18: REG_DATA (DL, DX, EDX, RDX)
434 * 19: REG_HIGH (AH, CH, DH, BH)
435 * 28: REG_NOTACC (not REG_ACCUM)
437 * With REG_SREG:
438 * 16: REG_CS
439 * 17: REG_DESS (DS, ES, SS)
440 * 18: REG_FSGS
441 * 19: REG_SEG67
443 * With FPUREG:
444 * 16: FPU0
446 * With XMMREG:
447 * 16: XMM0
449 * With YMMREG:
450 * 16: YMM0
452 * With MEMORY:
453 * 16: MEM_OFFS (this is a simple offset)
454 * 17: IP_REL (IP-relative offset)
456 * With IMMEDIATE:
457 * 16: UNITY (1)
458 * 17: BYTENESS16 (-128..127)
459 * 18: BYTENESS32 (-128..127)
460 * 19: BYTENESS64 (-128..127)
462 * Bits 20-22, 24-27: register classes
463 * 20: REG_CDT (CRx, DRx, TRx)
464 * 21: RM_GPR (REG_GPR) (integer register)
465 * 22: REG_SREG
466 * 24: FPUREG
467 * 25: RM_MMX (MMXREG)
468 * 26: RM_XMM (XMMREG)
469 * 27: RM_YMM (YMMREG)
471 * Bit 31 is currently unallocated.
473 * 30: SAME_AS
474 * Special flag only used in instruction patterns; means this operand
475 * has to be identical to another operand. Currently only supported
476 * for registers.
479 typedef uint32_t opflags_t;
481 /* Size, and other attributes, of the operand */
482 #define BITS8 0x00000001U
483 #define BITS16 0x00000002U
484 #define BITS32 0x00000004U
485 #define BITS64 0x00000008U /* x64 and FPU only */
486 #define BITS80 0x00000010U /* FPU only */
487 #define BITS128 0x20000000U
488 #define BITS256 0x00800000U
489 #define FAR 0x00000020U /* grotty: this means 16:16 or */
490 /* 16:32, like in CALL/JMP */
491 #define NEAR 0x00000040U
492 #define SHORT 0x00000080U /* and this means what it says :) */
494 #define SIZE_MASK 0x208000FFU /* all the size attributes */
496 /* Modifiers */
497 #define MODIFIER_MASK 0x00000f00U
498 #define TO 0x00000100U /* reverse effect in FADD, FSUB &c */
499 #define COLON 0x00000200U /* operand is followed by a colon */
500 #define STRICT 0x00000400U /* do not optimize this operand */
502 /* Type of operand: memory reference, register, etc. */
503 #define OPTYPE_MASK 0x0000f000U
504 #define REGISTER 0x00001000U /* register number in 'basereg' */
505 #define IMMEDIATE 0x00002000U
506 #define MEMORY 0x0000c000U
507 #define REGMEM 0x00008000U /* for r/m, ie EA, operands */
509 /* Register classes */
510 #define REG_EA 0x00009000U /* 'normal' reg, qualifies as EA */
511 #define RM_GPR 0x00208000U /* integer operand */
512 #define REG_GPR 0x00209000U /* integer register */
513 #define REG8 0x00209001U /* 8-bit GPR */
514 #define REG16 0x00209002U /* 16-bit GPR */
515 #define REG32 0x00209004U /* 32-bit GPR */
516 #define REG64 0x00209008U /* 64-bit GPR */
517 #define FPUREG 0x01001000U /* floating point stack registers */
518 #define FPU0 0x01011000U /* FPU stack register zero */
519 #define RM_MMX 0x02008000U /* MMX operand */
520 #define MMXREG 0x02009000U /* MMX register */
521 #define RM_XMM 0x04008000U /* XMM (SSE) operand */
522 #define XMMREG 0x04009000U /* XMM (SSE) register */
523 #define XMM0 0x04019000U /* XMM register zero */
524 #define RM_YMM 0x08008000U /* YMM (AVX) operand */
525 #define YMMREG 0x08009000U /* YMM (AVX) register */
526 #define YMM0 0x08019000U /* YMM register zero */
527 #define REG_CDT 0x00101004U /* CRn, DRn and TRn */
528 #define REG_CREG 0x00111004U /* CRn */
529 #define REG_DREG 0x00121004U /* DRn */
530 #define REG_TREG 0x00141004U /* TRn */
531 #define REG_SREG 0x00401002U /* any segment register */
532 #define REG_CS 0x00411002U /* CS */
533 #define REG_DESS 0x00421002U /* DS, ES, SS */
534 #define REG_FSGS 0x00441002U /* FS, GS */
535 #define REG_SEG67 0x00481002U /* Unimplemented segment registers */
537 #define REG_RIP 0x00801008U /* RIP relative addressing */
538 #define REG_EIP 0x00801004U /* EIP relative addressing */
540 /* Special GPRs */
541 #define REG_SMASK 0x100f0000U /* a mask for the following */
542 #define REG_ACCUM 0x00219000U /* accumulator: AL, AX, EAX, RAX */
543 #define REG_AL 0x00219001U
544 #define REG_AX 0x00219002U
545 #define REG_EAX 0x00219004U
546 #define REG_RAX 0x00219008U
547 #define REG_COUNT 0x10229000U /* counter: CL, CX, ECX, RCX */
548 #define REG_CL 0x10229001U
549 #define REG_CX 0x10229002U
550 #define REG_ECX 0x10229004U
551 #define REG_RCX 0x10229008U
552 #define REG_DL 0x10249001U /* data: DL, DX, EDX, RDX */
553 #define REG_DX 0x10249002U
554 #define REG_EDX 0x10249004U
555 #define REG_RDX 0x10249008U
556 #define REG_HIGH 0x10289001U /* high regs: AH, CH, DH, BH */
557 #define REG_NOTACC 0x10000000U /* non-accumulator register */
558 #define REG8NA 0x10209001U /* 8-bit non-acc GPR */
559 #define REG16NA 0x10209002U /* 16-bit non-acc GPR */
560 #define REG32NA 0x10209004U /* 32-bit non-acc GPR */
561 #define REG64NA 0x10209008U /* 64-bit non-acc GPR */
563 /* special types of EAs */
564 #define MEM_OFFS 0x0001c000U /* simple [address] offset - absolute! */
565 #define IP_REL 0x0002c000U /* IP-relative offset */
567 /* memory which matches any type of r/m operand */
568 #define MEMORY_ANY (MEMORY|RM_GPR|RM_MMX|RM_XMM|RM_YMM)
570 /* special type of immediate operand */
571 #define UNITY 0x00012000U /* for shift/rotate instructions */
572 #define SBYTE16 0x00022000U /* for op r16,immediate instrs. */
573 #define SBYTE32 0x00042000U /* for op r32,immediate instrs. */
574 #define SBYTE64 0x00082000U /* for op r64,immediate instrs. */
575 #define BYTENESS 0x000e0000U /* for testing for byteness */
577 /* special flags */
578 #define SAME_AS 0x40000000U
580 /* Register names automatically generated from regs.dat */
581 #include "regs.h"
583 enum ccode { /* condition code names */
584 C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
585 C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
586 C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z,
587 C_none = -1
591 * REX flags
593 #define REX_REAL 0x4f /* Actual REX prefix bits */
594 #define REX_B 0x01 /* ModRM r/m extension */
595 #define REX_X 0x02 /* SIB index extension */
596 #define REX_R 0x04 /* ModRM reg extension */
597 #define REX_W 0x08 /* 64-bit operand size */
598 #define REX_L 0x20 /* Use LOCK prefix instead of REX.R */
599 #define REX_P 0x40 /* REX prefix present/required */
600 #define REX_H 0x80 /* High register present, REX forbidden */
601 #define REX_D 0x0100 /* Instruction uses DREX instead of REX */
602 #define REX_OC 0x0200 /* DREX suffix has the OC0 bit set */
603 #define REX_V 0x0400 /* Instruction uses VEX instead of REX */
606 * Note that because segment registers may be used as instruction
607 * prefixes, we must ensure the enumerations for prefixes and
608 * register names do not overlap.
610 enum prefixes { /* instruction prefixes */
611 P_none = 0,
612 PREFIX_ENUM_START = REG_ENUM_LIMIT,
613 P_A16 = PREFIX_ENUM_START, P_A32, P_A64, P_ASP,
614 P_LOCK, P_O16, P_O32, P_O64, P_OSP,
615 P_REP, P_REPE, P_REPNE, P_REPNZ, P_REPZ, P_TIMES,
616 PREFIX_ENUM_LIMIT
619 enum extop_type { /* extended operand types */
620 EOT_NOTHING,
621 EOT_DB_STRING, /* Byte string */
622 EOT_DB_STRING_FREE, /* Byte string which should be nasm_free'd*/
623 EOT_DB_NUMBER, /* Integer */
626 enum ea_flags { /* special EA flags */
627 EAF_BYTEOFFS = 1, /* force offset part to byte size */
628 EAF_WORDOFFS = 2, /* force offset part to [d]word size */
629 EAF_TIMESTWO = 4, /* really do EAX*2 not EAX+EAX */
630 EAF_REL = 8, /* IP-relative addressing */
631 EAF_ABS = 16, /* non-IP-relative addressing */
632 EAF_FSGS = 32 /* fs/gs segment override present */
635 enum eval_hint { /* values for `hinttype' */
636 EAH_NOHINT = 0, /* no hint at all - our discretion */
637 EAH_MAKEBASE = 1, /* try to make given reg the base */
638 EAH_NOTBASE = 2 /* try _not_ to make reg the base */
641 typedef struct operand { /* operand to an instruction */
642 int32_t type; /* type of operand */
643 int disp_size; /* 0 means default; 16; 32; 64 */
644 enum reg_enum basereg, indexreg; /* address registers */
645 int scale; /* index scale */
646 int hintbase;
647 enum eval_hint hinttype; /* hint as to real base register */
648 int32_t segment; /* immediate segment, if needed */
649 int64_t offset; /* any immediate number */
650 int32_t wrt; /* segment base it's relative to */
651 int eaflags; /* special EA flags */
652 int opflags; /* see OPFLAG_* defines below */
653 } operand;
655 #define OPFLAG_FORWARD 1 /* operand is a forward reference */
656 #define OPFLAG_EXTERN 2 /* operand is an external reference */
658 typedef struct extop { /* extended operand */
659 struct extop *next; /* linked list */
660 char *stringval; /* if it's a string, then here it is */
661 size_t stringlen; /* ... and here's how long it is */
662 int64_t offset; /* ... it's given here ... */
663 int32_t segment; /* if it's a number/address, then... */
664 int32_t wrt; /* ... and here */
665 enum extop_type type; /* defined above */
666 } extop;
668 /* Prefix positions: each type of prefix goes in a specific slot.
669 This affects the final ordering of the assembled output, which
670 shouldn't matter to the processor, but if you have stylistic
671 preferences, you can change this. REX prefixes are handled
672 differently for the time being.
674 Note that LOCK and REP are in the same slot. This is
675 an x86 architectural constraint. */
676 enum prefix_pos {
677 PPS_LREP, /* Lock or REP prefix */
678 PPS_SEG, /* Segment override prefix */
679 PPS_OSIZE, /* Operand size prefix */
680 PPS_ASIZE, /* Address size prefix */
681 MAXPREFIX /* Total number of prefix slots */
684 /* If you need to change this, also change it in insns.pl */
685 #define MAX_OPERANDS 5
687 typedef struct insn { /* an instruction itself */
688 char *label; /* the label defined, or NULL */
689 enum prefixes prefixes[MAXPREFIX]; /* instruction prefixes, if any */
690 enum opcode opcode; /* the opcode - not just the string */
691 enum ccode condition; /* the condition code, if Jcc/SETcc */
692 int operands; /* how many operands? 0-3
693 * (more if db et al) */
694 int addr_size; /* address size */
695 operand oprs[MAX_OPERANDS]; /* the operands, defined as above */
696 extop *eops; /* extended operands */
697 int eops_float; /* true if DD and floating */
698 int32_t times; /* repeat count (TIMES prefix) */
699 bool forw_ref; /* is there a forward reference? */
700 int rex; /* Special REX Prefix */
701 int drexdst; /* Destination register for DREX/VEX suffix */
702 int vex_m; /* M register for VEX prefix */
703 int vex_wlp; /* W, P and L information for VEX prefix */
704 } insn;
706 enum geninfo { GI_SWITCH };
708 * ------------------------------------------------------------
709 * The data structure defining an output format driver, and the
710 * interfaces to the functions therein.
711 * ------------------------------------------------------------
714 struct ofmt {
716 * This is a short (one-liner) description of the type of
717 * output generated by the driver.
719 const char *fullname;
722 * This is a single keyword used to select the driver.
724 const char *shortname;
728 * this is reserved for out module specific help.
729 * It is set to NULL in all the out modules and is not implemented
730 * in the main program
732 const char *helpstring;
735 * this is a pointer to the first element of the debug information
737 struct dfmt **debug_formats;
740 * and a pointer to the element that is being used
741 * note: this is set to the default at compile time and changed if the
742 * -F option is selected. If developing a set of new debug formats for
743 * an output format, be sure to set this to whatever default you want
746 struct dfmt *current_dfmt;
749 * This, if non-NULL, is a NULL-terminated list of `char *'s
750 * pointing to extra standard macros supplied by the object
751 * format (e.g. a sensible initial default value of __SECT__,
752 * and user-level equivalents for any format-specific
753 * directives).
755 macros_t *stdmac;
758 * This procedure is called at the start of an output session.
759 * It tells the output format what file it will be writing to,
760 * what routine to report errors through, and how to interface
761 * to the label manager and expression evaluator if necessary.
762 * It also gives it a chance to do other initialisation.
764 void (*init) (FILE * fp, efunc error, ldfunc ldef, evalfunc eval);
767 * This procedure is called to pass generic information to the
768 * object file. The first parameter gives the information type
769 * (currently only command line switches)
770 * and the second parameter gives the value. This function returns
771 * 1 if recognized, 0 if unrecognized
773 int (*setinfo) (enum geninfo type, char **string);
776 * This procedure is called by assemble() to write actual
777 * generated code or data to the object file. Typically it
778 * doesn't have to actually _write_ it, just store it for
779 * later.
781 * The `type' argument specifies the type of output data, and
782 * usually the size as well: its contents are described below.
784 void (*output) (int32_t segto, const void *data,
785 enum out_type type, uint64_t size,
786 int32_t segment, int32_t wrt);
789 * This procedure is called once for every symbol defined in
790 * the module being assembled. It gives the name and value of
791 * the symbol, in NASM's terms, and indicates whether it has
792 * been declared to be global. Note that the parameter "name",
793 * when passed, will point to a piece of static storage
794 * allocated inside the label manager - it's safe to keep using
795 * that pointer, because the label manager doesn't clean up
796 * until after the output driver has.
798 * Values of `is_global' are: 0 means the symbol is local; 1
799 * means the symbol is global; 2 means the symbol is common (in
800 * which case `offset' holds the _size_ of the variable).
801 * Anything else is available for the output driver to use
802 * internally.
804 * This routine explicitly _is_ allowed to call the label
805 * manager to define further symbols, if it wants to, even
806 * though it's been called _from_ the label manager. That much
807 * re-entrancy is guaranteed in the label manager. However, the
808 * label manager will in turn call this routine, so it should
809 * be prepared to be re-entrant itself.
811 * The `special' parameter contains special information passed
812 * through from the command that defined the label: it may have
813 * been an EXTERN, a COMMON or a GLOBAL. The distinction should
814 * be obvious to the output format from the other parameters.
816 void (*symdef) (char *name, int32_t segment, int64_t offset,
817 int is_global, char *special);
820 * This procedure is called when the source code requests a
821 * segment change. It should return the corresponding segment
822 * _number_ for the name, or NO_SEG if the name is not a valid
823 * segment name.
825 * It may also be called with NULL, in which case it is to
826 * return the _default_ section number for starting assembly in.
828 * It is allowed to modify the string it is given a pointer to.
830 * It is also allowed to specify a default instruction size for
831 * the segment, by setting `*bits' to 16 or 32. Or, if it
832 * doesn't wish to define a default, it can leave `bits' alone.
834 int32_t (*section) (char *name, int pass, int *bits);
837 * This procedure is called to modify the segment base values
838 * returned from the SEG operator. It is given a segment base
839 * value (i.e. a segment value with the low bit set), and is
840 * required to produce in return a segment value which may be
841 * different. It can map segment bases to absolute numbers by
842 * means of returning SEG_ABS types.
844 * It should return NO_SEG if the segment base cannot be
845 * determined; the evaluator (which calls this routine) is
846 * responsible for throwing an error condition if that occurs
847 * in pass two or in a critical expression.
849 int32_t (*segbase) (int32_t segment);
852 * This procedure is called to allow the output driver to
853 * process its own specific directives. When called, it has the
854 * directive word in `directive' and the parameter string in
855 * `value'. It is called in both assembly passes, and `pass'
856 * will be either 1 or 2.
858 * This procedure should return zero if it does not _recognise_
859 * the directive, so that the main program can report an error.
860 * If it recognises the directive but then has its own errors,
861 * it should report them itself and then return non-zero. It
862 * should also return non-zero if it correctly processes the
863 * directive.
865 int (*directive) (char *directive, char *value, int pass);
868 * This procedure is called before anything else - even before
869 * the "init" routine - and is passed the name of the input
870 * file from which this output file is being generated. It
871 * should return its preferred name for the output file in
872 * `outname', if outname[0] is not '\0', and do nothing to
873 * `outname' otherwise. Since it is called before the driver is
874 * properly initialized, it has to be passed its error handler
875 * separately.
877 * This procedure may also take its own copy of the input file
878 * name for use in writing the output file: it is _guaranteed_
879 * that it will be called before the "init" routine.
881 * The parameter `outname' points to an area of storage
882 * guaranteed to be at least FILENAME_MAX in size.
884 void (*filename) (char *inname, char *outname, efunc error);
887 * This procedure is called after assembly finishes, to allow
888 * the output driver to clean itself up and free its memory.
889 * Typically, it will also be the point at which the object
890 * file actually gets _written_.
892 * One thing the cleanup routine should always do is to close
893 * the output file pointer.
895 void (*cleanup) (int debuginfo);
900 * ------------------------------------------------------------
901 * The data structure defining a debug format driver, and the
902 * interfaces to the functions therein.
903 * ------------------------------------------------------------
906 struct dfmt {
909 * This is a short (one-liner) description of the type of
910 * output generated by the driver.
912 const char *fullname;
915 * This is a single keyword used to select the driver.
917 const char *shortname;
920 * init - called initially to set up local pointer to object format,
921 * void pointer to implementation defined data, file pointer (which
922 * probably won't be used, but who knows?), and error function.
924 void (*init) (struct ofmt * of, void *id, FILE * fp, efunc error);
927 * linenum - called any time there is output with a change of
928 * line number or file.
930 void (*linenum) (const char *filename, int32_t linenumber, int32_t segto);
933 * debug_deflabel - called whenever a label is defined. Parameters
934 * are the same as to 'symdef()' in the output format. This function
935 * would be called before the output format version.
938 void (*debug_deflabel) (char *name, int32_t segment, int64_t offset,
939 int is_global, char *special);
941 * debug_directive - called whenever a DEBUG directive other than 'LINE'
942 * is encountered. 'directive' contains the first parameter to the
943 * DEBUG directive, and params contains the rest. For example,
944 * 'DEBUG VAR _somevar:int' would translate to a call to this
945 * function with 'directive' equal to "VAR" and 'params' equal to
946 * "_somevar:int".
948 void (*debug_directive) (const char *directive, const char *params);
951 * typevalue - called whenever the assembler wishes to register a type
952 * for the last defined label. This routine MUST detect if a type was
953 * already registered and not re-register it.
955 void (*debug_typevalue) (int32_t type);
958 * debug_output - called whenever output is required
959 * 'type' is the type of info required, and this is format-specific
961 void (*debug_output) (int type, void *param);
964 * cleanup - called after processing of file is complete
966 void (*cleanup) (void);
970 * The type definition macros
971 * for debugging
973 * low 3 bits: reserved
974 * next 5 bits: type
975 * next 24 bits: number of elements for arrays (0 for labels)
978 #define TY_UNKNOWN 0x00
979 #define TY_LABEL 0x08
980 #define TY_BYTE 0x10
981 #define TY_WORD 0x18
982 #define TY_DWORD 0x20
983 #define TY_FLOAT 0x28
984 #define TY_QWORD 0x30
985 #define TY_TBYTE 0x38
986 #define TY_OWORD 0x40
987 #define TY_YWORD 0x48
988 #define TY_COMMON 0xE0
989 #define TY_SEG 0xE8
990 #define TY_EXTERN 0xF0
991 #define TY_EQU 0xF8
993 #define TYM_TYPE(x) ((x) & 0xF8)
994 #define TYM_ELEMENTS(x) (((x) & 0xFFFFFF00) >> 8)
996 #define TYS_ELEMENTS(x) ((x) << 8)
999 * -----
1000 * Special tokens
1001 * -----
1004 enum special_tokens {
1005 SPECIAL_ENUM_START = PREFIX_ENUM_LIMIT,
1006 S_ABS = SPECIAL_ENUM_START,
1007 S_BYTE, S_DWORD, S_FAR, S_LONG, S_NEAR, S_NOSPLIT,
1008 S_OWORD, S_QWORD, S_REL, S_SHORT, S_STRICT, S_TO, S_TWORD, S_WORD, S_YWORD,
1009 SPECIAL_ENUM_LIMIT
1013 * -----
1014 * Global modes
1015 * -----
1019 * This declaration passes the "pass" number to all other modules
1020 * "pass0" assumes the values: 0, 0, ..., 0, 1, 2
1021 * where 0 = optimizing pass
1022 * 1 = pass 1
1023 * 2 = pass 2
1026 extern int pass0;
1027 extern int passn; /* Actual pass number */
1029 extern bool tasm_compatible_mode;
1030 extern int optimizing;
1031 extern int globalbits; /* 16, 32 or 64-bit mode */
1032 extern int globalrel; /* default to relative addressing? */
1033 extern int maxbits; /* max bits supported by output */
1035 #endif