Document the as86 ..start label
[nasm/avx512.git] / assemble.c
blobee189f7c88015650cddb22e74b5c70d059cc62f2
1 /* assemble.c code generation for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the license given in the file "LICENSE"
6 * distributed in the NASM archive.
8 * the actual codes (C syntax, i.e. octal):
9 * \0 - terminates the code. (Unless it's a literal of course.)
10 * \1..\4 - that many literal bytes follow in the code stream
11 * \5 - add 4 to the primary operand number (b, low octdigit)
12 * \6 - add 4 to the secondary operand number (a, middle octdigit)
13 * \7 - add 4 to both the primary and the secondary operand number
14 * \10..\13 - a literal byte follows in the code stream, to be added
15 * to the register value of operand 0..3
16 * \14..\17 - a signed byte immediate operand, from operand 0..3
17 * \20..\23 - a byte immediate operand, from operand 0..3
18 * \24..\27 - an unsigned byte immediate operand, from operand 0..3
19 * \30..\33 - a word immediate operand, from operand 0..3
20 * \34..\37 - select between \3[0-3] and \4[0-3] depending on 16/32 bit
21 * assembly mode or the operand-size override on the operand
22 * \40..\43 - a long immediate operand, from operand 0..3
23 * \44..\47 - select between \3[0-3], \4[0-3] and \5[4-7]
24 * depending on the address size of the instruction.
25 * \50..\53 - a byte relative operand, from operand 0..3
26 * \54..\57 - a qword immediate operand, from operand 0..3
27 * \60..\63 - a word relative operand, from operand 0..3
28 * \64..\67 - select between \6[0-3] and \7[0-3] depending on 16/32 bit
29 * assembly mode or the operand-size override on the operand
30 * \70..\73 - a long relative operand, from operand 0..3
31 * \74..\77 - a word constant, from the _segment_ part of operand 0..3
32 * \1ab - a ModRM, calculated on EA in operand a, with the spare
33 * field the register value of operand b.
34 * \140..\143 - an immediate word or signed byte for operand 0..3
35 * \144..\147 - or 2 (s-field) into opcode byte if operand 0..3
36 * is a signed byte rather than a word. Opcode byte follows.
37 * \150..\153 - an immediate dword or signed byte for operand 0..3
38 * \154..\157 - or 2 (s-field) into opcode byte if operand 0..3
39 * is a signed byte rather than a dword. Opcode byte follows.
40 * \160..\163 - this instruction uses DREX rather than REX, with the
41 * OC0 field set to 0, and the dest field taken from
42 * operand 0..3.
43 * \164..\167 - this instruction uses DREX rather than REX, with the
44 * OC0 field set to 1, and the dest field taken from
45 * operand 0..3.
46 * \171 - placement of DREX suffix in the absence of an EA
47 * \172\ab - the register number from operand a in bits 7..4, with
48 * the 4-bit immediate from operand b in bits 3..0.
49 * \173\xab - the register number from operand a in bits 7..4, with
50 * the value b in bits 3..0.
51 * \174\a - the register number from operand a in bits 7..4, and
52 * an arbitrary value in bits 3..0 (assembled as zero.)
53 * \2ab - a ModRM, calculated on EA in operand a, with the spare
54 * field equal to digit b.
55 * \250..\253 - same as \150..\153, except warn if the 64-bit operand
56 * is not equal to the truncated and sign-extended 32-bit
57 * operand; used for 32-bit immediates in 64-bit mode.
58 * \254..\257 - a signed 32-bit operand to be extended to 64 bits.
59 * \260..\263 - this instruction uses VEX rather than REX, with the
60 * V field taken from operand 0..3.
61 * \270 - this instruction uses VEX rather than REX, with the
62 * V field set to 1111b.
64 * VEX prefixes are followed by the sequence:
65 * \mm\wlp where mm is the M field; and wlp is:
66 * 00 0ww lpp
67 * [w0] ww = 0 for W = 0
68 * [w1] ww = 1 for W = 1
69 * [wx] ww = 2 for W don't care (always assembled as 0)
70 * [ww] ww = 3 for W used as REX.W
73 * \274..\277 - a signed byte immediate operand, from operand 0..3,
74 * which is to be extended to the operand size.
75 * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
76 * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
77 * \312 - (disassembler only) marker on LOOP, LOOPxx instructions.
78 * \313 - indicates fixed 64-bit address size, 0x67 invalid.
79 * \314 - (disassembler only) invalid with REX.B
80 * \315 - (disassembler only) invalid with REX.X
81 * \316 - (disassembler only) invalid with REX.R
82 * \317 - (disassembler only) invalid with REX.W
83 * \320 - indicates fixed 16-bit operand size, i.e. optional 0x66.
84 * \321 - indicates fixed 32-bit operand size, i.e. optional 0x66.
85 * \322 - indicates that this instruction is only valid when the
86 * operand size is the default (instruction to disassembler,
87 * generates no code in the assembler)
88 * \323 - indicates fixed 64-bit operand size, REX on extensions only.
89 * \324 - indicates 64-bit operand size requiring REX prefix.
90 * \330 - a literal byte follows in the code stream, to be added
91 * to the condition code value of the instruction.
92 * \331 - instruction not valid with REP prefix. Hint for
93 * disassembler only; for SSE instructions.
94 * \332 - REP prefix (0xF2 byte) used as opcode extension.
95 * \333 - REP prefix (0xF3 byte) used as opcode extension.
96 * \334 - LOCK prefix used instead of REX.R
97 * \335 - disassemble a rep (0xF3 byte) prefix as repe not rep.
98 * \336 - force a REP(E) prefix (0xF2) even if not specified.
99 * \337 - force a REPNE prefix (0xF3) even if not specified.
100 * \336-\337 are still listed as prefixes in the disassembler.
101 * \340 - reserve <operand 0> bytes of uninitialized storage.
102 * Operand 0 had better be a segmentless constant.
103 * \344,\345 - the PUSH/POP (respectively) codes for CS, DS, ES, SS
104 * (POP is never used for CS) depending on operand 0
105 * \346,\347 - the second byte of PUSH/POP codes for FS, GS, depending
106 * on operand 0
107 * \360 - no SSE prefix (== \364\331)
108 * \361 - 66 SSE prefix (== \366\331)
109 * \362 - F2 SSE prefix (== \364\332)
110 * \363 - F3 SSE prefix (== \364\333)
111 * \364 - operand-size prefix (0x66) not permitted
112 * \365 - address-size prefix (0x67) not permitted
113 * \366 - operand-size prefix (0x66) used as opcode extension
114 * \367 - address-size prefix (0x67) used as opcode extension
115 * \370,\371,\372 - match only if operand 0 meets byte jump criteria.
116 * 370 is used for Jcc, 371 is used for JMP.
117 * \373 - assemble 0x03 if bits==16, 0x05 if bits==32;
118 * used for conditional jump over longer jump
121 #include "compiler.h"
123 #include <stdio.h>
124 #include <string.h>
125 #include <inttypes.h>
127 #include "nasm.h"
128 #include "nasmlib.h"
129 #include "assemble.h"
130 #include "insns.h"
131 #include "tables.h"
133 /* Initialized to zero by the C standard */
134 static const uint8_t const_zero_buf[256];
136 typedef struct {
137 int sib_present; /* is a SIB byte necessary? */
138 int bytes; /* # of bytes of offset needed */
139 int size; /* lazy - this is sib+bytes+1 */
140 uint8_t modrm, sib, rex, rip; /* the bytes themselves */
141 } ea;
143 static uint32_t cpu; /* cpu level received from nasm.c */
144 static efunc errfunc;
145 static struct ofmt *outfmt;
146 static ListGen *list;
148 static int64_t calcsize(int32_t, int64_t, int, insn *, const uint8_t *);
149 static void gencode(int32_t segment, int64_t offset, int bits,
150 insn * ins, const struct itemplate *temp,
151 int64_t insn_end);
152 static int matches(const struct itemplate *, insn *, int bits);
153 static int32_t regflag(const operand *);
154 static int32_t regval(const operand *);
155 static int rexflags(int, int32_t, int);
156 static int op_rexflags(const operand *, int);
157 static ea *process_ea(operand *, ea *, int, int, int, int32_t);
158 static void add_asp(insn *, int);
160 static int has_prefix(insn * ins, enum prefix_pos pos, enum prefixes prefix)
162 return ins->prefixes[pos] == prefix;
165 static void assert_no_prefix(insn * ins, enum prefix_pos pos)
167 if (ins->prefixes[pos])
168 errfunc(ERR_NONFATAL, "invalid %s prefix",
169 prefix_name(ins->prefixes[pos]));
172 static const char *size_name(int size)
174 switch (size) {
175 case 1:
176 return "byte";
177 case 2:
178 return "word";
179 case 4:
180 return "dword";
181 case 8:
182 return "qword";
183 case 10:
184 return "tword";
185 case 16:
186 return "oword";
187 case 32:
188 return "yword";
189 default:
190 return "???";
194 static void warn_overflow(int size, const struct operand *o)
196 if (size < 8 && o->wrt == NO_SEG && o->segment == NO_SEG) {
197 int64_t lim = ((int64_t)1 << (size*8))-1;
198 int64_t data = o->offset;
200 if (data < ~lim || data > lim)
201 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
202 "%s data exceeds bounds", size_name(size));
206 * This routine wrappers the real output format's output routine,
207 * in order to pass a copy of the data off to the listing file
208 * generator at the same time.
210 static void out(int64_t offset, int32_t segto, const void *data,
211 enum out_type type, uint64_t size,
212 int32_t segment, int32_t wrt)
214 static int32_t lineno = 0; /* static!!! */
215 static char *lnfname = NULL;
216 uint8_t p[8];
218 if (type == OUT_ADDRESS && segment == NO_SEG && wrt == NO_SEG) {
220 * This is a non-relocated address, and we're going to
221 * convert it into RAWDATA format.
223 uint8_t *q = p;
225 if (size > 8) {
226 errfunc(ERR_PANIC, "OUT_ADDRESS with size > 8");
227 return;
230 WRITEADDR(q, *(int64_t *)data, size);
231 data = p;
232 type = OUT_RAWDATA;
235 list->output(offset, data, type, size);
238 * this call to src_get determines when we call the
239 * debug-format-specific "linenum" function
240 * it updates lineno and lnfname to the current values
241 * returning 0 if "same as last time", -2 if lnfname
242 * changed, and the amount by which lineno changed,
243 * if it did. thus, these variables must be static
246 if (src_get(&lineno, &lnfname)) {
247 outfmt->current_dfmt->linenum(lnfname, lineno, segto);
250 outfmt->output(segto, data, type, size, segment, wrt);
253 static bool jmp_match(int32_t segment, int64_t offset, int bits,
254 insn * ins, const uint8_t *code)
256 int64_t isize;
257 uint8_t c = code[0];
259 if ((c != 0370 && c != 0371) || (ins->oprs[0].type & STRICT))
260 return false;
261 if (!optimizing)
262 return false;
263 if (optimizing < 0 && c == 0371)
264 return false;
266 isize = calcsize(segment, offset, bits, ins, code);
267 if (ins->oprs[0].segment != segment)
268 return false;
270 isize = ins->oprs[0].offset - offset - isize; /* isize is delta */
271 return (isize >= -128 && isize <= 127); /* is it byte size? */
274 int64_t assemble(int32_t segment, int64_t offset, int bits, uint32_t cp,
275 insn * instruction, struct ofmt *output, efunc error,
276 ListGen * listgen)
278 const struct itemplate *temp;
279 int j;
280 int size_prob;
281 int64_t insn_end;
282 int32_t itimes;
283 int64_t start = offset;
284 int64_t wsize = 0; /* size for DB etc. */
286 errfunc = error; /* to pass to other functions */
287 cpu = cp;
288 outfmt = output; /* likewise */
289 list = listgen; /* and again */
291 switch (instruction->opcode) {
292 case -1:
293 return 0;
294 case I_DB:
295 wsize = 1;
296 break;
297 case I_DW:
298 wsize = 2;
299 break;
300 case I_DD:
301 wsize = 4;
302 break;
303 case I_DQ:
304 wsize = 8;
305 break;
306 case I_DT:
307 wsize = 10;
308 break;
309 case I_DO:
310 wsize = 16;
311 break;
312 case I_DY:
313 wsize = 32;
314 break;
315 default:
316 break;
319 if (wsize) {
320 extop *e;
321 int32_t t = instruction->times;
322 if (t < 0)
323 errfunc(ERR_PANIC,
324 "instruction->times < 0 (%ld) in assemble()", t);
326 while (t--) { /* repeat TIMES times */
327 for (e = instruction->eops; e; e = e->next) {
328 if (e->type == EOT_DB_NUMBER) {
329 if (wsize == 1) {
330 if (e->segment != NO_SEG)
331 errfunc(ERR_NONFATAL,
332 "one-byte relocation attempted");
333 else {
334 uint8_t out_byte = e->offset;
335 out(offset, segment, &out_byte,
336 OUT_RAWDATA, 1, NO_SEG, NO_SEG);
338 } else if (wsize > 8) {
339 errfunc(ERR_NONFATAL,
340 "integer supplied to a DT, DO or DY"
341 " instruction");
342 } else
343 out(offset, segment, &e->offset,
344 OUT_ADDRESS, wsize, e->segment, e->wrt);
345 offset += wsize;
346 } else if (e->type == EOT_DB_STRING ||
347 e->type == EOT_DB_STRING_FREE) {
348 int align;
350 out(offset, segment, e->stringval,
351 OUT_RAWDATA, e->stringlen, NO_SEG, NO_SEG);
352 align = e->stringlen % wsize;
354 if (align) {
355 align = wsize - align;
356 out(offset, segment, const_zero_buf,
357 OUT_RAWDATA, align, NO_SEG, NO_SEG);
359 offset += e->stringlen + align;
362 if (t > 0 && t == instruction->times - 1) {
364 * Dummy call to list->output to give the offset to the
365 * listing module.
367 list->output(offset, NULL, OUT_RAWDATA, 0);
368 list->uplevel(LIST_TIMES);
371 if (instruction->times > 1)
372 list->downlevel(LIST_TIMES);
373 return offset - start;
376 if (instruction->opcode == I_INCBIN) {
377 const char *fname = instruction->eops->stringval;
378 FILE *fp;
380 fp = fopen(fname, "rb");
381 if (!fp) {
382 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
383 fname);
384 } else if (fseek(fp, 0L, SEEK_END) < 0) {
385 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
386 fname);
387 } else {
388 static char buf[4096];
389 size_t t = instruction->times;
390 size_t base = 0;
391 size_t len;
393 len = ftell(fp);
394 if (instruction->eops->next) {
395 base = instruction->eops->next->offset;
396 len -= base;
397 if (instruction->eops->next->next &&
398 len > (size_t)instruction->eops->next->next->offset)
399 len = (size_t)instruction->eops->next->next->offset;
402 * Dummy call to list->output to give the offset to the
403 * listing module.
405 list->output(offset, NULL, OUT_RAWDATA, 0);
406 list->uplevel(LIST_INCBIN);
407 while (t--) {
408 size_t l;
410 fseek(fp, base, SEEK_SET);
411 l = len;
412 while (l > 0) {
413 int32_t m =
414 fread(buf, 1, (l > (int32_t) sizeof(buf) ? (int32_t) sizeof(buf) : l),
415 fp);
416 if (!m) {
418 * This shouldn't happen unless the file
419 * actually changes while we are reading
420 * it.
422 error(ERR_NONFATAL,
423 "`incbin': unexpected EOF while"
424 " reading file `%s'", fname);
425 t = 0; /* Try to exit cleanly */
426 break;
428 out(offset, segment, buf, OUT_RAWDATA, m,
429 NO_SEG, NO_SEG);
430 l -= m;
433 list->downlevel(LIST_INCBIN);
434 if (instruction->times > 1) {
436 * Dummy call to list->output to give the offset to the
437 * listing module.
439 list->output(offset, NULL, OUT_RAWDATA, 0);
440 list->uplevel(LIST_TIMES);
441 list->downlevel(LIST_TIMES);
443 fclose(fp);
444 return instruction->times * len;
446 return 0; /* if we're here, there's an error */
449 /* Check to see if we need an address-size prefix */
450 add_asp(instruction, bits);
452 size_prob = 0;
454 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++){
455 int m = matches(temp, instruction, bits);
456 if (m == 100 ||
457 (m == 99 && jmp_match(segment, offset, bits,
458 instruction, temp->code))) {
459 /* Matches! */
460 int64_t insn_size = calcsize(segment, offset, bits,
461 instruction, temp->code);
462 itimes = instruction->times;
463 if (insn_size < 0) /* shouldn't be, on pass two */
464 error(ERR_PANIC, "errors made it through from pass one");
465 else
466 while (itimes--) {
467 for (j = 0; j < MAXPREFIX; j++) {
468 uint8_t c = 0;
469 switch (instruction->prefixes[j]) {
470 case P_LOCK:
471 c = 0xF0;
472 break;
473 case P_REPNE:
474 case P_REPNZ:
475 c = 0xF2;
476 break;
477 case P_REPE:
478 case P_REPZ:
479 case P_REP:
480 c = 0xF3;
481 break;
482 case R_CS:
483 if (bits == 64) {
484 error(ERR_WARNING | ERR_PASS2,
485 "cs segment base generated, but will be ignored in 64-bit mode");
487 c = 0x2E;
488 break;
489 case R_DS:
490 if (bits == 64) {
491 error(ERR_WARNING | ERR_PASS2,
492 "ds segment base generated, but will be ignored in 64-bit mode");
494 c = 0x3E;
495 break;
496 case R_ES:
497 if (bits == 64) {
498 error(ERR_WARNING | ERR_PASS2,
499 "es segment base generated, but will be ignored in 64-bit mode");
501 c = 0x26;
502 break;
503 case R_FS:
504 c = 0x64;
505 break;
506 case R_GS:
507 c = 0x65;
508 break;
509 case R_SS:
510 if (bits == 64) {
511 error(ERR_WARNING | ERR_PASS2,
512 "ss segment base generated, but will be ignored in 64-bit mode");
514 c = 0x36;
515 break;
516 case R_SEGR6:
517 case R_SEGR7:
518 error(ERR_NONFATAL,
519 "segr6 and segr7 cannot be used as prefixes");
520 break;
521 case P_A16:
522 if (bits == 64) {
523 error(ERR_NONFATAL,
524 "16-bit addressing is not supported "
525 "in 64-bit mode");
526 } else if (bits != 16)
527 c = 0x67;
528 break;
529 case P_A32:
530 if (bits != 32)
531 c = 0x67;
532 break;
533 case P_A64:
534 if (bits != 64) {
535 error(ERR_NONFATAL,
536 "64-bit addressing is only supported "
537 "in 64-bit mode");
539 break;
540 case P_ASP:
541 c = 0x67;
542 break;
543 case P_O16:
544 if (bits != 16)
545 c = 0x66;
546 break;
547 case P_O32:
548 if (bits == 16)
549 c = 0x66;
550 break;
551 case P_O64:
552 /* REX.W */
553 break;
554 case P_OSP:
555 c = 0x66;
556 break;
557 case P_none:
558 break;
559 default:
560 error(ERR_PANIC, "invalid instruction prefix");
562 if (c != 0) {
563 out(offset, segment, &c, OUT_RAWDATA, 1,
564 NO_SEG, NO_SEG);
565 offset++;
568 insn_end = offset + insn_size;
569 gencode(segment, offset, bits, instruction,
570 temp, insn_end);
571 offset += insn_size;
572 if (itimes > 0 && itimes == instruction->times - 1) {
574 * Dummy call to list->output to give the offset to the
575 * listing module.
577 list->output(offset, NULL, OUT_RAWDATA, 0);
578 list->uplevel(LIST_TIMES);
581 if (instruction->times > 1)
582 list->downlevel(LIST_TIMES);
583 return offset - start;
584 } else if (m > 0 && m > size_prob) {
585 size_prob = m;
589 if (temp->opcode == -1) { /* didn't match any instruction */
590 switch (size_prob) {
591 case 1:
592 error(ERR_NONFATAL, "operation size not specified");
593 break;
594 case 2:
595 error(ERR_NONFATAL, "mismatch in operand sizes");
596 break;
597 case 3:
598 error(ERR_NONFATAL, "no instruction for this cpu level");
599 break;
600 case 4:
601 error(ERR_NONFATAL, "instruction not supported in %d-bit mode",
602 bits);
603 break;
604 default:
605 error(ERR_NONFATAL,
606 "invalid combination of opcode and operands");
607 break;
610 return 0;
613 int64_t insn_size(int32_t segment, int64_t offset, int bits, uint32_t cp,
614 insn * instruction, efunc error)
616 const struct itemplate *temp;
618 errfunc = error; /* to pass to other functions */
619 cpu = cp;
621 if (instruction->opcode == -1)
622 return 0;
624 if (instruction->opcode == I_DB || instruction->opcode == I_DW ||
625 instruction->opcode == I_DD || instruction->opcode == I_DQ ||
626 instruction->opcode == I_DT || instruction->opcode == I_DO ||
627 instruction->opcode == I_DY) {
628 extop *e;
629 int32_t isize, osize, wsize = 0; /* placate gcc */
631 isize = 0;
632 switch (instruction->opcode) {
633 case I_DB:
634 wsize = 1;
635 break;
636 case I_DW:
637 wsize = 2;
638 break;
639 case I_DD:
640 wsize = 4;
641 break;
642 case I_DQ:
643 wsize = 8;
644 break;
645 case I_DT:
646 wsize = 10;
647 break;
648 case I_DO:
649 wsize = 16;
650 break;
651 case I_DY:
652 wsize = 32;
653 break;
654 default:
655 break;
658 for (e = instruction->eops; e; e = e->next) {
659 int32_t align;
661 osize = 0;
662 if (e->type == EOT_DB_NUMBER)
663 osize = 1;
664 else if (e->type == EOT_DB_STRING ||
665 e->type == EOT_DB_STRING_FREE)
666 osize = e->stringlen;
668 align = (-osize) % wsize;
669 if (align < 0)
670 align += wsize;
671 isize += osize + align;
673 return isize * instruction->times;
676 if (instruction->opcode == I_INCBIN) {
677 const char *fname = instruction->eops->stringval;
678 FILE *fp;
679 size_t len;
681 fp = fopen(fname, "rb");
682 if (!fp)
683 error(ERR_NONFATAL, "`incbin': unable to open file `%s'",
684 fname);
685 else if (fseek(fp, 0L, SEEK_END) < 0)
686 error(ERR_NONFATAL, "`incbin': unable to seek on file `%s'",
687 fname);
688 else {
689 len = ftell(fp);
690 fclose(fp);
691 if (instruction->eops->next) {
692 len -= instruction->eops->next->offset;
693 if (instruction->eops->next->next &&
694 len > (size_t)instruction->eops->next->next->offset) {
695 len = (size_t)instruction->eops->next->next->offset;
698 return instruction->times * len;
700 return 0; /* if we're here, there's an error */
703 /* Check to see if we need an address-size prefix */
704 add_asp(instruction, bits);
706 for (temp = nasm_instructions[instruction->opcode]; temp->opcode != -1; temp++) {
707 int m = matches(temp, instruction, bits);
708 if (m == 100 ||
709 (m == 99 && jmp_match(segment, offset, bits,
710 instruction, temp->code))) {
711 /* we've matched an instruction. */
712 int64_t isize;
713 const uint8_t *codes = temp->code;
714 int j;
716 isize = calcsize(segment, offset, bits, instruction, codes);
717 if (isize < 0)
718 return -1;
719 for (j = 0; j < MAXPREFIX; j++) {
720 switch (instruction->prefixes[j]) {
721 case P_A16:
722 if (bits != 16)
723 isize++;
724 break;
725 case P_A32:
726 if (bits != 32)
727 isize++;
728 break;
729 case P_O16:
730 if (bits != 16)
731 isize++;
732 break;
733 case P_O32:
734 if (bits == 16)
735 isize++;
736 break;
737 case P_A64:
738 case P_O64:
739 case P_none:
740 break;
741 default:
742 isize++;
743 break;
746 return isize * instruction->times;
749 return -1; /* didn't match any instruction */
752 static bool possible_sbyte(operand *o)
754 return o->wrt == NO_SEG && o->segment == NO_SEG &&
755 !(o->opflags & OPFLAG_FORWARD) &&
756 optimizing >= 0 && !(o->type & STRICT);
759 /* check that opn[op] is a signed byte of size 16 or 32 */
760 static bool is_sbyte16(operand *o)
762 int16_t v;
764 if (!possible_sbyte(o))
765 return false;
767 v = o->offset;
768 return v >= -128 && v <= 127;
771 static bool is_sbyte32(operand *o)
773 int32_t v;
775 if (!possible_sbyte(o))
776 return false;
778 v = o->offset;
779 return v >= -128 && v <= 127;
782 /* Common construct */
783 #define case4(x) case (x): case (x)+1: case (x)+2: case (x)+3
785 static int64_t calcsize(int32_t segment, int64_t offset, int bits,
786 insn * ins, const uint8_t *codes)
788 int64_t length = 0;
789 uint8_t c;
790 int rex_mask = ~0;
791 int op1, op2;
792 struct operand *opx;
793 uint8_t opex = 0;
795 ins->rex = 0; /* Ensure REX is reset */
797 if (ins->prefixes[PPS_OSIZE] == P_O64)
798 ins->rex |= REX_W;
800 (void)segment; /* Don't warn that this parameter is unused */
801 (void)offset; /* Don't warn that this parameter is unused */
803 while (*codes) {
804 c = *codes++;
805 op1 = (c & 3) + ((opex & 1) << 2);
806 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
807 opx = &ins->oprs[op1];
808 opex = 0; /* For the next iteration */
810 switch (c) {
811 case 01:
812 case 02:
813 case 03:
814 case 04:
815 codes += c, length += c;
816 break;
818 case 05:
819 case 06:
820 case 07:
821 opex = c;
822 break;
824 case4(010):
825 ins->rex |=
826 op_rexflags(opx, REX_B|REX_H|REX_P|REX_W);
827 codes++, length++;
828 break;
830 case4(014):
831 case4(020):
832 case4(024):
833 length++;
834 break;
836 case4(030):
837 length += 2;
838 break;
840 case4(034):
841 if (opx->type & (BITS16 | BITS32 | BITS64))
842 length += (opx->type & BITS16) ? 2 : 4;
843 else
844 length += (bits == 16) ? 2 : 4;
845 break;
847 case4(040):
848 length += 4;
849 break;
851 case4(044):
852 length += ins->addr_size >> 3;
853 break;
855 case4(050):
856 length++;
857 break;
859 case4(054):
860 length += 8; /* MOV reg64/imm */
861 break;
863 case4(060):
864 length += 2;
865 break;
867 case4(064):
868 if (opx->type & (BITS16 | BITS32 | BITS64))
869 length += (opx->type & BITS16) ? 2 : 4;
870 else
871 length += (bits == 16) ? 2 : 4;
872 break;
874 case4(070):
875 length += 4;
876 break;
878 case4(074):
879 length += 2;
880 break;
882 case4(0140):
883 length += is_sbyte16(opx) ? 1 : 2;
884 break;
886 case4(0144):
887 codes++;
888 length++;
889 break;
891 case4(0150):
892 length += is_sbyte32(opx) ? 1 : 4;
893 break;
895 case4(0154):
896 codes++;
897 length++;
898 break;
900 case4(0160):
901 length++;
902 ins->rex |= REX_D;
903 ins->drexdst = regval(opx);
904 break;
906 case4(0164):
907 length++;
908 ins->rex |= REX_D|REX_OC;
909 ins->drexdst = regval(opx);
910 break;
912 case 0171:
913 break;
915 case 0172:
916 case 0173:
917 case 0174:
918 codes++;
919 length++;
920 break;
922 case4(0250):
923 length += is_sbyte32(opx) ? 1 : 4;
924 break;
926 case4(0254):
927 length += 4;
928 break;
930 case4(0260):
931 ins->rex |= REX_V;
932 ins->drexdst = regval(opx);
933 ins->vex_m = *codes++;
934 ins->vex_wlp = *codes++;
935 break;
937 case 0270:
938 ins->rex |= REX_V;
939 ins->drexdst = 0;
940 ins->vex_m = *codes++;
941 ins->vex_wlp = *codes++;
942 break;
944 case4(0274):
945 length++;
946 break;
948 case4(0300):
949 break;
951 case 0310:
952 if (bits == 64)
953 return -1;
954 length += (bits != 16) && !has_prefix(ins, PPS_ASIZE, P_A16);
955 break;
957 case 0311:
958 length += (bits != 32) && !has_prefix(ins, PPS_ASIZE, P_A32);
959 break;
961 case 0312:
962 break;
964 case 0313:
965 if (bits != 64 || has_prefix(ins, PPS_ASIZE, P_A16) ||
966 has_prefix(ins, PPS_ASIZE, P_A32))
967 return -1;
968 break;
970 case4(0314):
971 break;
973 case 0320:
974 length += (bits != 16);
975 break;
977 case 0321:
978 length += (bits == 16);
979 break;
981 case 0322:
982 break;
984 case 0323:
985 rex_mask &= ~REX_W;
986 break;
988 case 0324:
989 ins->rex |= REX_W;
990 break;
992 case 0330:
993 codes++, length++;
994 break;
996 case 0331:
997 break;
999 case 0332:
1000 case 0333:
1001 length++;
1002 break;
1004 case 0334:
1005 ins->rex |= REX_L;
1006 break;
1008 case 0335:
1009 break;
1011 case 0336:
1012 if (!ins->prefixes[PPS_LREP])
1013 ins->prefixes[PPS_LREP] = P_REP;
1014 break;
1016 case 0337:
1017 if (!ins->prefixes[PPS_LREP])
1018 ins->prefixes[PPS_LREP] = P_REPNE;
1019 break;
1021 case 0340:
1022 if (ins->oprs[0].segment != NO_SEG)
1023 errfunc(ERR_NONFATAL, "attempt to reserve non-constant"
1024 " quantity of BSS space");
1025 else
1026 length += ins->oprs[0].offset;
1027 break;
1029 case4(0344):
1030 length++;
1031 break;
1033 case 0360:
1034 break;
1036 case 0361:
1037 case 0362:
1038 case 0363:
1039 length++;
1040 break;
1042 case 0364:
1043 case 0365:
1044 break;
1046 case 0366:
1047 case 0367:
1048 length++;
1049 break;
1051 case 0370:
1052 case 0371:
1053 case 0372:
1054 break;
1056 case 0373:
1057 length++;
1058 break;
1060 case4(0100):
1061 case4(0110):
1062 case4(0120):
1063 case4(0130):
1064 case4(0200):
1065 case4(0204):
1066 case4(0210):
1067 case4(0214):
1068 case4(0220):
1069 case4(0224):
1070 case4(0230):
1071 case4(0234):
1073 ea ea_data;
1074 int rfield;
1075 int32_t rflags;
1076 struct operand *opy = &ins->oprs[op2];
1078 ea_data.rex = 0; /* Ensure ea.REX is initially 0 */
1080 if (c <= 0177) {
1081 /* pick rfield from operand b (opx) */
1082 rflags = regflag(opx);
1083 rfield = nasm_regvals[opx->basereg];
1084 } else {
1085 rflags = 0;
1086 rfield = c & 7;
1088 if (!process_ea(opy, &ea_data, bits,
1089 ins->addr_size, rfield, rflags)) {
1090 errfunc(ERR_NONFATAL, "invalid effective address");
1091 return -1;
1092 } else {
1093 ins->rex |= ea_data.rex;
1094 length += ea_data.size;
1097 break;
1099 default:
1100 errfunc(ERR_PANIC, "internal instruction table corrupt"
1101 ": instruction code 0x%02X given", c);
1102 break;
1106 ins->rex &= rex_mask;
1108 if (ins->rex & REX_V) {
1109 int bad32 = REX_R|REX_W|REX_X|REX_B;
1111 if (ins->rex & REX_H) {
1112 errfunc(ERR_NONFATAL, "cannot use high register in vex instruction");
1113 return -1;
1115 switch (ins->vex_wlp & 030) {
1116 case 000:
1117 case 020:
1118 ins->rex &= ~REX_W;
1119 break;
1120 case 010:
1121 ins->rex |= REX_W;
1122 bad32 &= ~REX_W;
1123 break;
1124 case 030:
1125 /* Follow REX_W */
1126 break;
1129 if (bits != 64 && ((ins->rex & bad32) || ins->drexdst > 7)) {
1130 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1131 return -1;
1133 if (ins->vex_m != 1 || (ins->rex & (REX_W|REX_R|REX_B)))
1134 length += 3;
1135 else
1136 length += 2;
1137 } else if (ins->rex & REX_D) {
1138 if (ins->rex & REX_H) {
1139 errfunc(ERR_NONFATAL, "cannot use high register in drex instruction");
1140 return -1;
1142 if (bits != 64 && ((ins->rex & (REX_R|REX_W|REX_X|REX_B)) ||
1143 ins->drexdst > 7)) {
1144 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1145 return -1;
1147 length++;
1148 } else if (ins->rex & REX_REAL) {
1149 if (ins->rex & REX_H) {
1150 errfunc(ERR_NONFATAL, "cannot use high register in rex instruction");
1151 return -1;
1152 } else if (bits == 64) {
1153 length++;
1154 } else if ((ins->rex & REX_L) &&
1155 !(ins->rex & (REX_P|REX_W|REX_X|REX_B)) &&
1156 cpu >= IF_X86_64) {
1157 /* LOCK-as-REX.R */
1158 assert_no_prefix(ins, PPS_LREP);
1159 length++;
1160 } else {
1161 errfunc(ERR_NONFATAL, "invalid operands in non-64-bit mode");
1162 return -1;
1166 return length;
1169 #define EMIT_REX() \
1170 if (!(ins->rex & (REX_D|REX_V)) && (ins->rex & REX_REAL) && (bits == 64)) { \
1171 ins->rex = (ins->rex & REX_REAL)|REX_P; \
1172 out(offset, segment, &ins->rex, OUT_RAWDATA, 1, NO_SEG, NO_SEG); \
1173 ins->rex = 0; \
1174 offset += 1; \
1177 static void gencode(int32_t segment, int64_t offset, int bits,
1178 insn * ins, const struct itemplate *temp,
1179 int64_t insn_end)
1181 static char condval[] = { /* conditional opcodes */
1182 0x7, 0x3, 0x2, 0x6, 0x2, 0x4, 0xF, 0xD, 0xC, 0xE, 0x6, 0x2,
1183 0x3, 0x7, 0x3, 0x5, 0xE, 0xC, 0xD, 0xF, 0x1, 0xB, 0x9, 0x5,
1184 0x0, 0xA, 0xA, 0xB, 0x8, 0x4
1186 uint8_t c;
1187 uint8_t bytes[4];
1188 int64_t size;
1189 int64_t data;
1190 int op1, op2;
1191 struct operand *opx;
1192 const uint8_t *codes = temp->code;
1193 uint8_t opex = 0;
1195 while (*codes) {
1196 c = *codes++;
1197 op1 = (c & 3) + ((opex & 1) << 2);
1198 op2 = ((c >> 3) & 3) + ((opex & 2) << 1);
1199 opx = &ins->oprs[op1];
1200 opex = 0; /* For the next iteration */
1202 switch (c) {
1203 case 01:
1204 case 02:
1205 case 03:
1206 case 04:
1207 EMIT_REX();
1208 out(offset, segment, codes, OUT_RAWDATA, c, NO_SEG, NO_SEG);
1209 codes += c;
1210 offset += c;
1211 break;
1213 case 05:
1214 case 06:
1215 case 07:
1216 opex = c;
1217 break;
1219 case4(010):
1220 EMIT_REX();
1221 bytes[0] = *codes++ + (regval(opx) & 7);
1222 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1223 offset += 1;
1224 break;
1226 case4(014):
1227 /* The test for BITS8 and SBYTE here is intended to avoid
1228 warning on optimizer actions due to SBYTE, while still
1229 warn on explicit BYTE directives. Also warn, obviously,
1230 if the optimizer isn't enabled. */
1231 if (((opx->type & BITS8) ||
1232 !(opx->type & temp->opd[op1] & BYTENESS)) &&
1233 (opx->offset < -128 || opx->offset > 127)) {
1234 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1235 "signed byte value exceeds bounds");
1237 if (opx->segment != NO_SEG) {
1238 data = opx->offset;
1239 out(offset, segment, &data, OUT_ADDRESS, 1,
1240 opx->segment, opx->wrt);
1241 } else {
1242 bytes[0] = opx->offset;
1243 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1244 NO_SEG);
1246 offset += 1;
1247 break;
1249 case4(020):
1250 if (opx->offset < -256 || opx->offset > 255) {
1251 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1252 "byte value exceeds bounds");
1254 if (opx->segment != NO_SEG) {
1255 data = opx->offset;
1256 out(offset, segment, &data, OUT_ADDRESS, 1,
1257 opx->segment, opx->wrt);
1258 } else {
1259 bytes[0] = opx->offset;
1260 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1261 NO_SEG);
1263 offset += 1;
1264 break;
1266 case4(024):
1267 if (opx->offset < 0 || opx->offset > 255)
1268 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1269 "unsigned byte value exceeds bounds");
1270 if (opx->segment != NO_SEG) {
1271 data = opx->offset;
1272 out(offset, segment, &data, OUT_ADDRESS, 1,
1273 opx->segment, opx->wrt);
1274 } else {
1275 bytes[0] = opx->offset;
1276 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1277 NO_SEG);
1279 offset += 1;
1280 break;
1282 case4(030):
1283 warn_overflow(2, opx);
1284 data = opx->offset;
1285 out(offset, segment, &data, OUT_ADDRESS, 2,
1286 opx->segment, opx->wrt);
1287 offset += 2;
1288 break;
1290 case4(034):
1291 if (opx->type & (BITS16 | BITS32))
1292 size = (opx->type & BITS16) ? 2 : 4;
1293 else
1294 size = (bits == 16) ? 2 : 4;
1295 warn_overflow(size, opx);
1296 data = opx->offset;
1297 out(offset, segment, &data, OUT_ADDRESS, size,
1298 opx->segment, opx->wrt);
1299 offset += size;
1300 break;
1302 case4(040):
1303 warn_overflow(4, opx);
1304 data = opx->offset;
1305 out(offset, segment, &data, OUT_ADDRESS, 4,
1306 opx->segment, opx->wrt);
1307 offset += 4;
1308 break;
1310 case4(044):
1311 data = opx->offset;
1312 size = ins->addr_size >> 3;
1313 warn_overflow(size, opx);
1314 out(offset, segment, &data, OUT_ADDRESS, size,
1315 opx->segment, opx->wrt);
1316 offset += size;
1317 break;
1319 case4(050):
1320 if (opx->segment != segment)
1321 errfunc(ERR_NONFATAL,
1322 "short relative jump outside segment");
1323 data = opx->offset - insn_end;
1324 if (data > 127 || data < -128)
1325 errfunc(ERR_NONFATAL, "short jump is out of range");
1326 bytes[0] = data;
1327 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1328 offset += 1;
1329 break;
1331 case4(054):
1332 data = (int64_t)opx->offset;
1333 out(offset, segment, &data, OUT_ADDRESS, 8,
1334 opx->segment, opx->wrt);
1335 offset += 8;
1336 break;
1338 case4(060):
1339 if (opx->segment != segment) {
1340 data = opx->offset;
1341 out(offset, segment, &data,
1342 OUT_REL2ADR, insn_end - offset,
1343 opx->segment, opx->wrt);
1344 } else {
1345 data = opx->offset - insn_end;
1346 out(offset, segment, &data,
1347 OUT_ADDRESS, 2, NO_SEG, NO_SEG);
1349 offset += 2;
1350 break;
1352 case4(064):
1353 if (opx->type & (BITS16 | BITS32 | BITS64))
1354 size = (opx->type & BITS16) ? 2 : 4;
1355 else
1356 size = (bits == 16) ? 2 : 4;
1357 if (opx->segment != segment) {
1358 data = opx->offset;
1359 out(offset, segment, &data,
1360 size == 2 ? OUT_REL2ADR : OUT_REL4ADR,
1361 insn_end - offset, opx->segment, opx->wrt);
1362 } else {
1363 data = opx->offset - insn_end;
1364 out(offset, segment, &data,
1365 OUT_ADDRESS, size, NO_SEG, NO_SEG);
1367 offset += size;
1368 break;
1370 case4(070):
1371 if (opx->segment != segment) {
1372 data = opx->offset;
1373 out(offset, segment, &data,
1374 OUT_REL4ADR, insn_end - offset,
1375 opx->segment, opx->wrt);
1376 } else {
1377 data = opx->offset - insn_end;
1378 out(offset, segment, &data,
1379 OUT_ADDRESS, 4, NO_SEG, NO_SEG);
1381 offset += 4;
1382 break;
1384 case4(074):
1385 if (opx->segment == NO_SEG)
1386 errfunc(ERR_NONFATAL, "value referenced by FAR is not"
1387 " relocatable");
1388 data = 0;
1389 out(offset, segment, &data, OUT_ADDRESS, 2,
1390 outfmt->segbase(1 + opx->segment),
1391 opx->wrt);
1392 offset += 2;
1393 break;
1395 case4(0140):
1396 data = opx->offset;
1397 warn_overflow(2, opx);
1398 if (is_sbyte16(opx)) {
1399 bytes[0] = data;
1400 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1401 NO_SEG);
1402 offset++;
1403 } else {
1404 out(offset, segment, &data, OUT_ADDRESS, 2,
1405 opx->segment, opx->wrt);
1406 offset += 2;
1408 break;
1410 case4(0144):
1411 EMIT_REX();
1412 bytes[0] = *codes++;
1413 if (is_sbyte16(opx))
1414 bytes[0] |= 2; /* s-bit */
1415 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1416 offset++;
1417 break;
1419 case4(0150):
1420 data = opx->offset;
1421 warn_overflow(4, opx);
1422 if (is_sbyte32(opx)) {
1423 bytes[0] = data;
1424 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1425 NO_SEG);
1426 offset++;
1427 } else {
1428 out(offset, segment, &data, OUT_ADDRESS, 4,
1429 opx->segment, opx->wrt);
1430 offset += 4;
1432 break;
1434 case4(0154):
1435 EMIT_REX();
1436 bytes[0] = *codes++;
1437 if (is_sbyte32(opx))
1438 bytes[0] |= 2; /* s-bit */
1439 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1440 offset++;
1441 break;
1443 case4(0160):
1444 case4(0164):
1445 break;
1447 case 0171:
1448 bytes[0] =
1449 (ins->drexdst << 4) |
1450 (ins->rex & REX_OC ? 0x08 : 0) |
1451 (ins->rex & (REX_R|REX_X|REX_B));
1452 ins->rex = 0;
1453 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1454 offset++;
1455 break;
1457 case 0172:
1458 c = *codes++;
1459 opx = &ins->oprs[c >> 3];
1460 bytes[0] = nasm_regvals[opx->basereg] << 4;
1461 opx = &ins->oprs[c & 7];
1462 if (opx->segment != NO_SEG || opx->wrt != NO_SEG) {
1463 errfunc(ERR_NONFATAL,
1464 "non-absolute expression not permitted as argument %d",
1465 c & 7);
1466 } else {
1467 if (opx->offset & ~15) {
1468 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1469 "four-bit argument exceeds bounds");
1471 bytes[0] |= opx->offset & 15;
1473 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1474 offset++;
1475 break;
1477 case 0173:
1478 c = *codes++;
1479 opx = &ins->oprs[c >> 4];
1480 bytes[0] = nasm_regvals[opx->basereg] << 4;
1481 bytes[0] |= c & 15;
1482 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1483 offset++;
1484 break;
1486 case 0174:
1487 c = *codes++;
1488 opx = &ins->oprs[c];
1489 bytes[0] = nasm_regvals[opx->basereg] << 4;
1490 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1491 offset++;
1492 break;
1494 case4(0250):
1495 data = opx->offset;
1496 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1497 (int32_t)data != (int64_t)data) {
1498 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1499 "signed dword immediate exceeds bounds");
1501 if (is_sbyte32(opx)) {
1502 bytes[0] = data;
1503 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1504 NO_SEG);
1505 offset++;
1506 } else {
1507 out(offset, segment, &data, OUT_ADDRESS, 4,
1508 opx->segment, opx->wrt);
1509 offset += 4;
1511 break;
1513 case4(0254):
1514 data = opx->offset;
1515 if (opx->wrt == NO_SEG && opx->segment == NO_SEG &&
1516 (int32_t)data != (int64_t)data) {
1517 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1518 "signed dword immediate exceeds bounds");
1520 out(offset, segment, &data, OUT_ADDRESS, 4,
1521 opx->segment, opx->wrt);
1522 offset += 4;
1523 break;
1525 case4(0260):
1526 case 0270:
1527 codes += 2;
1528 if (ins->vex_m != 1 || (ins->rex & (REX_W|REX_X|REX_B))) {
1529 bytes[0] = 0xc4;
1530 bytes[1] = ins->vex_m | ((~ins->rex & 7) << 5);
1531 bytes[2] = ((ins->rex & REX_W) << (7-3)) |
1532 ((~ins->drexdst & 15)<< 3) | (ins->vex_wlp & 07);
1533 out(offset, segment, &bytes, OUT_RAWDATA, 3, NO_SEG, NO_SEG);
1534 offset += 3;
1535 } else {
1536 bytes[0] = 0xc5;
1537 bytes[1] = ((~ins->rex & REX_R) << (7-2)) |
1538 ((~ins->drexdst & 15) << 3) | (ins->vex_wlp & 07);
1539 out(offset, segment, &bytes, OUT_RAWDATA, 2, NO_SEG, NO_SEG);
1540 offset += 2;
1542 break;
1544 case4(0274):
1546 uint64_t uv, um;
1547 int s;
1549 if (ins->rex & REX_W)
1550 s = 64;
1551 else if (ins->prefixes[PPS_OSIZE] == P_O16)
1552 s = 16;
1553 else if (ins->prefixes[PPS_OSIZE] == P_O32)
1554 s = 32;
1555 else
1556 s = bits;
1558 um = (uint64_t)2 << (s-1);
1559 uv = opx->offset;
1561 if (uv > 127 && uv < (uint64_t)-128 &&
1562 (uv < um-128 || uv > um-1)) {
1563 errfunc(ERR_WARNING | ERR_PASS2 | ERR_WARN_NOV,
1564 "signed byte value exceeds bounds");
1566 if (opx->segment != NO_SEG) {
1567 data = uv;
1568 out(offset, segment, &data, OUT_ADDRESS, 1,
1569 opx->segment, opx->wrt);
1570 } else {
1571 bytes[0] = uv;
1572 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG,
1573 NO_SEG);
1575 offset += 1;
1576 break;
1579 case4(0300):
1580 break;
1582 case 0310:
1583 if (bits == 32 && !has_prefix(ins, PPS_ASIZE, P_A16)) {
1584 *bytes = 0x67;
1585 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1586 offset += 1;
1587 } else
1588 offset += 0;
1589 break;
1591 case 0311:
1592 if (bits != 32 && !has_prefix(ins, PPS_ASIZE, P_A32)) {
1593 *bytes = 0x67;
1594 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1595 offset += 1;
1596 } else
1597 offset += 0;
1598 break;
1600 case 0312:
1601 break;
1603 case 0313:
1604 ins->rex = 0;
1605 break;
1607 case4(0314):
1608 break;
1610 case 0320:
1611 if (bits != 16) {
1612 *bytes = 0x66;
1613 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1614 offset += 1;
1615 } else
1616 offset += 0;
1617 break;
1619 case 0321:
1620 if (bits == 16) {
1621 *bytes = 0x66;
1622 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1623 offset += 1;
1624 } else
1625 offset += 0;
1626 break;
1628 case 0322:
1629 case 0323:
1630 break;
1632 case 0324:
1633 ins->rex |= REX_W;
1634 break;
1636 case 0330:
1637 *bytes = *codes++ ^ condval[ins->condition];
1638 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1639 offset += 1;
1640 break;
1642 case 0331:
1643 break;
1645 case 0332:
1646 case 0333:
1647 *bytes = c - 0332 + 0xF2;
1648 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1649 offset += 1;
1650 break;
1652 case 0334:
1653 if (ins->rex & REX_R) {
1654 *bytes = 0xF0;
1655 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1656 offset += 1;
1658 ins->rex &= ~(REX_L|REX_R);
1659 break;
1661 case 0335:
1662 break;
1664 case 0336:
1665 case 0337:
1666 break;
1668 case 0340:
1669 if (ins->oprs[0].segment != NO_SEG)
1670 errfunc(ERR_PANIC, "non-constant BSS size in pass two");
1671 else {
1672 int64_t size = ins->oprs[0].offset;
1673 if (size > 0)
1674 out(offset, segment, NULL,
1675 OUT_RESERVE, size, NO_SEG, NO_SEG);
1676 offset += size;
1678 break;
1680 case 0344:
1681 case 0345:
1682 bytes[0] = c & 1;
1683 switch (ins->oprs[0].basereg) {
1684 case R_CS:
1685 bytes[0] += 0x0E;
1686 break;
1687 case R_DS:
1688 bytes[0] += 0x1E;
1689 break;
1690 case R_ES:
1691 bytes[0] += 0x06;
1692 break;
1693 case R_SS:
1694 bytes[0] += 0x16;
1695 break;
1696 default:
1697 errfunc(ERR_PANIC,
1698 "bizarre 8086 segment register received");
1700 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1701 offset++;
1702 break;
1704 case 0346:
1705 case 0347:
1706 bytes[0] = c & 1;
1707 switch (ins->oprs[0].basereg) {
1708 case R_FS:
1709 bytes[0] += 0xA0;
1710 break;
1711 case R_GS:
1712 bytes[0] += 0xA8;
1713 break;
1714 default:
1715 errfunc(ERR_PANIC,
1716 "bizarre 386 segment register received");
1718 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1719 offset++;
1720 break;
1722 case 0360:
1723 break;
1725 case 0361:
1726 bytes[0] = 0x66;
1727 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1728 offset += 1;
1729 break;
1731 case 0362:
1732 case 0363:
1733 bytes[0] = c - 0362 + 0xf2;
1734 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1735 offset += 1;
1736 break;
1738 case 0364:
1739 case 0365:
1740 break;
1742 case 0366:
1743 case 0367:
1744 *bytes = c - 0366 + 0x66;
1745 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1746 offset += 1;
1747 break;
1749 case 0370:
1750 case 0371:
1751 case 0372:
1752 break;
1754 case 0373:
1755 *bytes = bits == 16 ? 3 : 5;
1756 out(offset, segment, bytes, OUT_RAWDATA, 1, NO_SEG, NO_SEG);
1757 offset += 1;
1758 break;
1760 case4(0100):
1761 case4(0110):
1762 case4(0120):
1763 case4(0130):
1764 case4(0200):
1765 case4(0204):
1766 case4(0210):
1767 case4(0214):
1768 case4(0220):
1769 case4(0224):
1770 case4(0230):
1771 case4(0234):
1773 ea ea_data;
1774 int rfield;
1775 int32_t rflags;
1776 uint8_t *p;
1777 int32_t s;
1778 enum out_type type;
1779 struct operand *opy = &ins->oprs[op2];
1781 if (c <= 0177) {
1782 /* pick rfield from operand b (opx) */
1783 rflags = regflag(opx);
1784 rfield = nasm_regvals[opx->basereg];
1785 } else {
1786 /* rfield is constant */
1787 rflags = 0;
1788 rfield = c & 7;
1791 if (!process_ea(opy, &ea_data, bits, ins->addr_size,
1792 rfield, rflags)) {
1793 errfunc(ERR_NONFATAL, "invalid effective address");
1797 p = bytes;
1798 *p++ = ea_data.modrm;
1799 if (ea_data.sib_present)
1800 *p++ = ea_data.sib;
1802 /* DREX suffixes come between the SIB and the displacement */
1803 if (ins->rex & REX_D) {
1804 *p++ = (ins->drexdst << 4) |
1805 (ins->rex & REX_OC ? 0x08 : 0) |
1806 (ins->rex & (REX_R|REX_X|REX_B));
1807 ins->rex = 0;
1810 s = p - bytes;
1811 out(offset, segment, bytes, OUT_RAWDATA, s, NO_SEG, NO_SEG);
1814 * Make sure the address gets the right offset in case
1815 * the line breaks in the .lst file (BR 1197827)
1817 offset += s;
1818 s = 0;
1820 switch (ea_data.bytes) {
1821 case 0:
1822 break;
1823 case 1:
1824 case 2:
1825 case 4:
1826 case 8:
1827 data = opy->offset;
1828 warn_overflow(ea_data.bytes, opy);
1829 s += ea_data.bytes;
1830 if (ea_data.rip) {
1831 if (opy->segment == segment) {
1832 data -= insn_end;
1833 out(offset, segment, &data, OUT_ADDRESS,
1834 ea_data.bytes, NO_SEG, NO_SEG);
1835 } else {
1836 out(offset, segment, &data, OUT_REL4ADR,
1837 insn_end - offset, opy->segment, opy->wrt);
1839 } else {
1840 type = OUT_ADDRESS;
1841 out(offset, segment, &data, OUT_ADDRESS,
1842 ea_data.bytes, opy->segment, opy->wrt);
1844 break;
1845 default:
1846 /* Impossible! */
1847 errfunc(ERR_PANIC,
1848 "Invalid amount of bytes (%d) for offset?!",
1849 ea_data.bytes);
1850 break;
1852 offset += s;
1854 break;
1856 default:
1857 errfunc(ERR_PANIC, "internal instruction table corrupt"
1858 ": instruction code 0x%02X given", c);
1859 break;
1864 static int32_t regflag(const operand * o)
1866 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1867 errfunc(ERR_PANIC, "invalid operand passed to regflag()");
1869 return nasm_reg_flags[o->basereg];
1872 static int32_t regval(const operand * o)
1874 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1875 errfunc(ERR_PANIC, "invalid operand passed to regval()");
1877 return nasm_regvals[o->basereg];
1880 static int op_rexflags(const operand * o, int mask)
1882 int32_t flags;
1883 int val;
1885 if (o->basereg < EXPR_REG_START || o->basereg >= REG_ENUM_LIMIT) {
1886 errfunc(ERR_PANIC, "invalid operand passed to op_rexflags()");
1889 flags = nasm_reg_flags[o->basereg];
1890 val = nasm_regvals[o->basereg];
1892 return rexflags(val, flags, mask);
1895 static int rexflags(int val, int32_t flags, int mask)
1897 int rex = 0;
1899 if (val >= 8)
1900 rex |= REX_B|REX_X|REX_R;
1901 if (flags & BITS64)
1902 rex |= REX_W;
1903 if (!(REG_HIGH & ~flags)) /* AH, CH, DH, BH */
1904 rex |= REX_H;
1905 else if (!(REG8 & ~flags) && val >= 4) /* SPL, BPL, SIL, DIL */
1906 rex |= REX_P;
1908 return rex & mask;
1911 static int matches(const struct itemplate *itemp, insn * instruction, int bits)
1913 int i, size[MAX_OPERANDS], asize, oprs, ret;
1915 ret = 100;
1918 * Check the opcode
1920 if (itemp->opcode != instruction->opcode)
1921 return 0;
1924 * Count the operands
1926 if (itemp->operands != instruction->operands)
1927 return 0;
1930 * Check that no spurious colons or TOs are present
1932 for (i = 0; i < itemp->operands; i++)
1933 if (instruction->oprs[i].type & ~itemp->opd[i] & (COLON | TO))
1934 return 0;
1937 * Process size flags
1939 if (itemp->flags & IF_ARMASK) {
1940 memset(size, 0, sizeof size);
1942 i = ((itemp->flags & IF_ARMASK) >> IF_ARSHFT) - 1;
1944 switch (itemp->flags & IF_SMASK) {
1945 case IF_SB:
1946 size[i] = BITS8;
1947 break;
1948 case IF_SW:
1949 size[i] = BITS16;
1950 break;
1951 case IF_SD:
1952 size[i] = BITS32;
1953 break;
1954 case IF_SQ:
1955 size[i] = BITS64;
1956 break;
1957 case IF_SO:
1958 size[i] = BITS128;
1959 break;
1960 case IF_SY:
1961 size[i] = BITS256;
1962 break;
1963 case IF_SZ:
1964 switch (bits) {
1965 case 16:
1966 size[i] = BITS16;
1967 break;
1968 case 32:
1969 size[i] = BITS32;
1970 break;
1971 case 64:
1972 size[i] = BITS64;
1973 break;
1975 break;
1976 default:
1977 break;
1979 } else {
1980 asize = 0;
1981 switch (itemp->flags & IF_SMASK) {
1982 case IF_SB:
1983 asize = BITS8;
1984 break;
1985 case IF_SW:
1986 asize = BITS16;
1987 break;
1988 case IF_SD:
1989 asize = BITS32;
1990 break;
1991 case IF_SQ:
1992 asize = BITS64;
1993 break;
1994 case IF_SO:
1995 asize = BITS128;
1996 break;
1997 case IF_SY:
1998 asize = BITS256;
1999 break;
2000 case IF_SZ:
2001 switch (bits) {
2002 case 16:
2003 asize = BITS16;
2004 break;
2005 case 32:
2006 asize = BITS32;
2007 break;
2008 case 64:
2009 asize = BITS64;
2010 break;
2012 break;
2013 default:
2014 break;
2016 for (i = 0; i < MAX_OPERANDS; i++)
2017 size[i] = asize;
2021 * Check that the operand flags all match up
2023 for (i = 0; i < itemp->operands; i++) {
2024 int32_t type = instruction->oprs[i].type;
2025 if (!(type & SIZE_MASK))
2026 type |= size[i];
2028 if (itemp->opd[i] & SAME_AS) {
2029 int j = itemp->opd[i] & ~SAME_AS;
2030 if (type != instruction->oprs[j].type ||
2031 instruction->oprs[i].basereg != instruction->oprs[j].basereg)
2032 return 0;
2033 } else if (itemp->opd[i] & ~type ||
2034 ((itemp->opd[i] & SIZE_MASK) &&
2035 ((itemp->opd[i] ^ type) & SIZE_MASK))) {
2036 if ((itemp->opd[i] & ~type & ~SIZE_MASK) ||
2037 (type & SIZE_MASK))
2038 return 0;
2039 else
2040 return 1;
2045 * Check operand sizes
2047 if (itemp->flags & (IF_SM | IF_SM2)) {
2048 oprs = (itemp->flags & IF_SM2 ? 2 : itemp->operands);
2049 asize = 0;
2050 for (i = 0; i < oprs; i++) {
2051 if ((asize = itemp->opd[i] & SIZE_MASK) != 0) {
2052 int j;
2053 for (j = 0; j < oprs; j++)
2054 size[j] = asize;
2055 break;
2058 } else {
2059 oprs = itemp->operands;
2062 for (i = 0; i < itemp->operands; i++) {
2063 if (!(itemp->opd[i] & SIZE_MASK) &&
2064 (instruction->oprs[i].type & SIZE_MASK & ~size[i]))
2065 return 2;
2069 * Check template is okay at the set cpu level
2071 if (((itemp->flags & IF_PLEVEL) > cpu))
2072 return 3;
2075 * Verify the appropriate long mode flag.
2077 if ((itemp->flags & (bits == 64 ? IF_NOLONG : IF_LONG)))
2078 return 4;
2081 * Check if special handling needed for Jumps
2083 if ((uint8_t)(itemp->code[0]) >= 0370)
2084 return 99;
2086 return ret;
2089 static ea *process_ea(operand * input, ea * output, int bits,
2090 int addrbits, int rfield, int32_t rflags)
2092 bool forw_ref = !!(input->opflags & OPFLAG_FORWARD);
2094 output->rip = false;
2096 /* REX flags for the rfield operand */
2097 output->rex |= rexflags(rfield, rflags, REX_R|REX_P|REX_W|REX_H);
2099 if (!(REGISTER & ~input->type)) { /* register direct */
2100 int i;
2101 int32_t f;
2103 if (input->basereg < EXPR_REG_START /* Verify as Register */
2104 || input->basereg >= REG_ENUM_LIMIT)
2105 return NULL;
2106 f = regflag(input);
2107 i = nasm_regvals[input->basereg];
2109 if (REG_EA & ~f)
2110 return NULL; /* Invalid EA register */
2112 output->rex |= op_rexflags(input, REX_B|REX_P|REX_W|REX_H);
2114 output->sib_present = false; /* no SIB necessary */
2115 output->bytes = 0; /* no offset necessary either */
2116 output->modrm = 0xC0 | ((rfield & 7) << 3) | (i & 7);
2117 } else { /* it's a memory reference */
2118 if (input->basereg == -1
2119 && (input->indexreg == -1 || input->scale == 0)) {
2120 /* it's a pure offset */
2121 if (bits == 64 && (~input->type & IP_REL)) {
2122 int scale, index, base;
2123 output->sib_present = true;
2124 scale = 0;
2125 index = 4;
2126 base = 5;
2127 output->sib = (scale << 6) | (index << 3) | base;
2128 output->bytes = 4;
2129 output->modrm = 4 | ((rfield & 7) << 3);
2130 output->rip = false;
2131 } else {
2132 output->sib_present = false;
2133 output->bytes = (addrbits != 16 ? 4 : 2);
2134 output->modrm = (addrbits != 16 ? 5 : 6) | ((rfield & 7) << 3);
2135 output->rip = bits == 64;
2137 } else { /* it's an indirection */
2138 int i = input->indexreg, b = input->basereg, s = input->scale;
2139 int32_t o = input->offset, seg = input->segment;
2140 int hb = input->hintbase, ht = input->hinttype;
2141 int t;
2142 int it, bt;
2143 int32_t ix, bx; /* register flags */
2145 if (s == 0)
2146 i = -1; /* make this easy, at least */
2148 if (i >= EXPR_REG_START && i < REG_ENUM_LIMIT) {
2149 it = nasm_regvals[i];
2150 ix = nasm_reg_flags[i];
2151 } else {
2152 it = -1;
2153 ix = 0;
2156 if (b >= EXPR_REG_START && b < REG_ENUM_LIMIT) {
2157 bt = nasm_regvals[b];
2158 bx = nasm_reg_flags[b];
2159 } else {
2160 bt = -1;
2161 bx = 0;
2164 /* check for a 32/64-bit memory reference... */
2165 if ((ix|bx) & (BITS32|BITS64)) {
2166 /* it must be a 32/64-bit memory reference. Firstly we have
2167 * to check that all registers involved are type E/Rxx. */
2168 int32_t sok = BITS32|BITS64;
2170 if (it != -1) {
2171 if (!(REG64 & ~ix) || !(REG32 & ~ix))
2172 sok &= ix;
2173 else
2174 return NULL;
2177 if (bt != -1) {
2178 if (REG_GPR & ~bx)
2179 return NULL; /* Invalid register */
2180 if (~sok & bx & SIZE_MASK)
2181 return NULL; /* Invalid size */
2182 sok &= bx;
2185 /* While we're here, ensure the user didn't specify
2186 WORD or QWORD. */
2187 if (input->disp_size == 16 || input->disp_size == 64)
2188 return NULL;
2190 if (addrbits == 16 ||
2191 (addrbits == 32 && !(sok & BITS32)) ||
2192 (addrbits == 64 && !(sok & BITS64)))
2193 return NULL;
2195 /* now reorganize base/index */
2196 if (s == 1 && bt != it && bt != -1 && it != -1 &&
2197 ((hb == b && ht == EAH_NOTBASE)
2198 || (hb == i && ht == EAH_MAKEBASE))) {
2199 /* swap if hints say so */
2200 t = bt, bt = it, it = t;
2201 t = bx, bx = ix, ix = t;
2203 if (bt == it) /* convert EAX+2*EAX to 3*EAX */
2204 bt = -1, bx = 0, s++;
2205 if (bt == -1 && s == 1 && !(hb == it && ht == EAH_NOTBASE)) {
2206 /* make single reg base, unless hint */
2207 bt = it, bx = ix, it = -1, ix = 0;
2209 if (((s == 2 && it != REG_NUM_ESP
2210 && !(input->eaflags & EAF_TIMESTWO)) || s == 3
2211 || s == 5 || s == 9) && bt == -1)
2212 bt = it, bx = ix, s--; /* convert 3*EAX to EAX+2*EAX */
2213 if (it == -1 && (bt & 7) != REG_NUM_ESP
2214 && (input->eaflags & EAF_TIMESTWO))
2215 it = bt, ix = bx, bt = -1, bx = 0, s = 1;
2216 /* convert [NOSPLIT EAX] to sib format with 0x0 displacement */
2217 if (s == 1 && it == REG_NUM_ESP) {
2218 /* swap ESP into base if scale is 1 */
2219 t = it, it = bt, bt = t;
2220 t = ix, ix = bx, bx = t;
2222 if (it == REG_NUM_ESP
2223 || (s != 1 && s != 2 && s != 4 && s != 8 && it != -1))
2224 return NULL; /* wrong, for various reasons */
2226 output->rex |= rexflags(it, ix, REX_X);
2227 output->rex |= rexflags(bt, bx, REX_B);
2229 if (it == -1 && (bt & 7) != REG_NUM_ESP) {
2230 /* no SIB needed */
2231 int mod, rm;
2233 if (bt == -1) {
2234 rm = 5;
2235 mod = 0;
2236 } else {
2237 rm = (bt & 7);
2238 if (rm != REG_NUM_EBP && o == 0 &&
2239 seg == NO_SEG && !forw_ref &&
2240 !(input->eaflags &
2241 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2242 mod = 0;
2243 else if (input->eaflags & EAF_BYTEOFFS ||
2244 (o >= -128 && o <= 127 && seg == NO_SEG
2245 && !forw_ref
2246 && !(input->eaflags & EAF_WORDOFFS)))
2247 mod = 1;
2248 else
2249 mod = 2;
2252 output->sib_present = false;
2253 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2254 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2255 } else {
2256 /* we need a SIB */
2257 int mod, scale, index, base;
2259 if (it == -1)
2260 index = 4, s = 1;
2261 else
2262 index = (it & 7);
2264 switch (s) {
2265 case 1:
2266 scale = 0;
2267 break;
2268 case 2:
2269 scale = 1;
2270 break;
2271 case 4:
2272 scale = 2;
2273 break;
2274 case 8:
2275 scale = 3;
2276 break;
2277 default: /* then what the smeg is it? */
2278 return NULL; /* panic */
2281 if (bt == -1) {
2282 base = 5;
2283 mod = 0;
2284 } else {
2285 base = (bt & 7);
2286 if (base != REG_NUM_EBP && o == 0 &&
2287 seg == NO_SEG && !forw_ref &&
2288 !(input->eaflags &
2289 (EAF_BYTEOFFS | EAF_WORDOFFS)))
2290 mod = 0;
2291 else if (input->eaflags & EAF_BYTEOFFS ||
2292 (o >= -128 && o <= 127 && seg == NO_SEG
2293 && !forw_ref
2294 && !(input->eaflags & EAF_WORDOFFS)))
2295 mod = 1;
2296 else
2297 mod = 2;
2300 output->sib_present = true;
2301 output->bytes = (bt == -1 || mod == 2 ? 4 : mod);
2302 output->modrm = (mod << 6) | ((rfield & 7) << 3) | 4;
2303 output->sib = (scale << 6) | (index << 3) | base;
2305 } else { /* it's 16-bit */
2306 int mod, rm;
2308 /* check for 64-bit long mode */
2309 if (addrbits == 64)
2310 return NULL;
2312 /* check all registers are BX, BP, SI or DI */
2313 if ((b != -1 && b != R_BP && b != R_BX && b != R_SI
2314 && b != R_DI) || (i != -1 && i != R_BP && i != R_BX
2315 && i != R_SI && i != R_DI))
2316 return NULL;
2318 /* ensure the user didn't specify DWORD/QWORD */
2319 if (input->disp_size == 32 || input->disp_size == 64)
2320 return NULL;
2322 if (s != 1 && i != -1)
2323 return NULL; /* no can do, in 16-bit EA */
2324 if (b == -1 && i != -1) {
2325 int tmp = b;
2326 b = i;
2327 i = tmp;
2328 } /* swap */
2329 if ((b == R_SI || b == R_DI) && i != -1) {
2330 int tmp = b;
2331 b = i;
2332 i = tmp;
2334 /* have BX/BP as base, SI/DI index */
2335 if (b == i)
2336 return NULL; /* shouldn't ever happen, in theory */
2337 if (i != -1 && b != -1 &&
2338 (i == R_BP || i == R_BX || b == R_SI || b == R_DI))
2339 return NULL; /* invalid combinations */
2340 if (b == -1) /* pure offset: handled above */
2341 return NULL; /* so if it gets to here, panic! */
2343 rm = -1;
2344 if (i != -1)
2345 switch (i * 256 + b) {
2346 case R_SI * 256 + R_BX:
2347 rm = 0;
2348 break;
2349 case R_DI * 256 + R_BX:
2350 rm = 1;
2351 break;
2352 case R_SI * 256 + R_BP:
2353 rm = 2;
2354 break;
2355 case R_DI * 256 + R_BP:
2356 rm = 3;
2357 break;
2358 } else
2359 switch (b) {
2360 case R_SI:
2361 rm = 4;
2362 break;
2363 case R_DI:
2364 rm = 5;
2365 break;
2366 case R_BP:
2367 rm = 6;
2368 break;
2369 case R_BX:
2370 rm = 7;
2371 break;
2373 if (rm == -1) /* can't happen, in theory */
2374 return NULL; /* so panic if it does */
2376 if (o == 0 && seg == NO_SEG && !forw_ref && rm != 6 &&
2377 !(input->eaflags & (EAF_BYTEOFFS | EAF_WORDOFFS)))
2378 mod = 0;
2379 else if (input->eaflags & EAF_BYTEOFFS ||
2380 (o >= -128 && o <= 127 && seg == NO_SEG
2381 && !forw_ref
2382 && !(input->eaflags & EAF_WORDOFFS)))
2383 mod = 1;
2384 else
2385 mod = 2;
2387 output->sib_present = false; /* no SIB - it's 16-bit */
2388 output->bytes = mod; /* bytes of offset needed */
2389 output->modrm = (mod << 6) | ((rfield & 7) << 3) | rm;
2394 output->size = 1 + output->sib_present + output->bytes;
2395 return output;
2398 static void add_asp(insn *ins, int addrbits)
2400 int j, valid;
2401 int defdisp;
2403 valid = (addrbits == 64) ? 64|32 : 32|16;
2405 switch (ins->prefixes[PPS_ASIZE]) {
2406 case P_A16:
2407 valid &= 16;
2408 break;
2409 case P_A32:
2410 valid &= 32;
2411 break;
2412 case P_A64:
2413 valid &= 64;
2414 break;
2415 case P_ASP:
2416 valid &= (addrbits == 32) ? 16 : 32;
2417 break;
2418 default:
2419 break;
2422 for (j = 0; j < ins->operands; j++) {
2423 if (!(MEMORY & ~ins->oprs[j].type)) {
2424 int32_t i, b;
2426 /* Verify as Register */
2427 if (ins->oprs[j].indexreg < EXPR_REG_START
2428 || ins->oprs[j].indexreg >= REG_ENUM_LIMIT)
2429 i = 0;
2430 else
2431 i = nasm_reg_flags[ins->oprs[j].indexreg];
2433 /* Verify as Register */
2434 if (ins->oprs[j].basereg < EXPR_REG_START
2435 || ins->oprs[j].basereg >= REG_ENUM_LIMIT)
2436 b = 0;
2437 else
2438 b = nasm_reg_flags[ins->oprs[j].basereg];
2440 if (ins->oprs[j].scale == 0)
2441 i = 0;
2443 if (!i && !b) {
2444 int ds = ins->oprs[j].disp_size;
2445 if ((addrbits != 64 && ds > 8) ||
2446 (addrbits == 64 && ds == 16))
2447 valid &= ds;
2448 } else {
2449 if (!(REG16 & ~b))
2450 valid &= 16;
2451 if (!(REG32 & ~b))
2452 valid &= 32;
2453 if (!(REG64 & ~b))
2454 valid &= 64;
2456 if (!(REG16 & ~i))
2457 valid &= 16;
2458 if (!(REG32 & ~i))
2459 valid &= 32;
2460 if (!(REG64 & ~i))
2461 valid &= 64;
2466 if (valid & addrbits) {
2467 ins->addr_size = addrbits;
2468 } else if (valid & ((addrbits == 32) ? 16 : 32)) {
2469 /* Add an address size prefix */
2470 enum prefixes pref = (addrbits == 32) ? P_A16 : P_A32;
2471 ins->prefixes[PPS_ASIZE] = pref;
2472 ins->addr_size = (addrbits == 32) ? 16 : 32;
2473 } else {
2474 /* Impossible... */
2475 errfunc(ERR_NONFATAL, "impossible combination of address sizes");
2476 ins->addr_size = addrbits; /* Error recovery */
2479 defdisp = ins->addr_size == 16 ? 16 : 32;
2481 for (j = 0; j < ins->operands; j++) {
2482 if (!(MEM_OFFS & ~ins->oprs[j].type) &&
2483 (ins->oprs[j].disp_size ? ins->oprs[j].disp_size : defdisp)
2484 != ins->addr_size) {
2485 /* mem_offs sizes must match the address size; if not,
2486 strip the MEM_OFFS bit and match only EA instructions */
2487 ins->oprs[j].type &= ~(MEM_OFFS & ~MEMORY);