NASM 0.91
[nasm/avx512.git] / float.c
blobe9b7f4a378bb7dca5ac048b89c695f7a5297ab46
1 /* float.c floating-point constant support for the Netwide Assembler
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version 13/ix/96 by Simon Tatham
9 */
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
15 #include "nasm.h"
17 #define TRUE 1
18 #define FALSE 0
20 #define MANT_WORDS 6 /* 64 bits + 32 for accuracy == 96 */
21 #define MANT_DIGITS 28 /* 29 digits don't fit in 96 bits */
24 * guaranteed top bit of from is set
25 * => we only have to worry about _one_ bit shift to the left
28 static int multiply(unsigned short *to, unsigned short *from) {
29 unsigned long temp[MANT_WORDS*2];
30 int i, j;
32 for (i=0; i<MANT_WORDS*2; i++)
33 temp[i] = 0;
35 for (i=0; i<MANT_WORDS; i++)
36 for (j=0; j<MANT_WORDS; j++) {
37 unsigned long n;
38 n = (unsigned long)to[i] * (unsigned long)from[j];
39 temp[i+j] += n >> 16;
40 temp[i+j+1] += n & 0xFFFF;
43 for (i=MANT_WORDS*2; --i ;) {
44 temp[i-1] += temp[i] >> 16;
45 temp[i] &= 0xFFFF;
47 if (temp[0] & 0x8000) {
48 for (i=0; i<MANT_WORDS; i++)
49 to[i] = temp[i] & 0xFFFF;
50 return 0;
51 } else {
52 for (i=0; i<MANT_WORDS; i++)
53 to[i] = (temp[i] << 1) + !!(temp[i+1] & 0x8000);
54 return -1;
58 static void flconvert(char *string, unsigned short *mant, long *exponent) {
59 char digits[MANT_DIGITS], *p, *q, *r;
60 unsigned short mult[MANT_WORDS], *m, bit;
61 long tenpwr, twopwr;
62 int extratwos, started, seendot;
64 p = digits;
65 tenpwr = 0;
66 started = seendot = FALSE;
67 while (*string && *string != 'E' && *string != 'e') {
68 if (*string == '.') {
69 if (!seendot)
70 seendot = TRUE;
71 else {
72 fprintf(stderr, "too many periods!\n");
73 return;
75 } else if (*string >= '0' && *string <= '9') {
76 if (*string == '0' && !started) {
77 if (seendot)
78 tenpwr--;
79 } else {
80 started = TRUE;
81 if (p < digits+sizeof(digits))
82 *p++ = *string - '0';
83 if (!seendot)
84 tenpwr++;
86 } else {
87 fprintf(stderr, "`%c' is invalid char\n", *string);
88 return;
90 string++;
92 if (*string) {
93 string++; /* eat the E */
94 tenpwr += atoi(string);
98 * At this point, the memory interval [digits,p) contains a
99 * series of decimal digits zzzzzzz such that our number X
100 * satisfies
102 * X = 0.zzzzzzz * 10^tenpwr
105 bit = 0x8000;
106 for (m=mant; m<mant+MANT_WORDS; m++)
107 *m = 0;
108 m = mant;
109 q = digits;
110 started = FALSE;
111 twopwr = 0;
112 while (m < mant+MANT_WORDS) {
113 unsigned short carry = 0;
114 while (p > q && !p[-1])
115 p--;
116 if (p <= q)
117 break;
118 for (r = p; r-- > q ;) {
119 int i;
121 i = 2 * *r + carry;
122 if (i >= 10)
123 carry = 1, i -= 10;
124 else
125 carry = 0;
126 *r = i;
128 if (carry)
129 *m |= bit, started = TRUE;
130 if (started) {
131 if (bit == 1)
132 bit = 0x8000, m++;
133 else
134 bit >>= 1;
135 } else
136 twopwr--;
138 twopwr += tenpwr;
141 * At this point the `mant' array contains the first six
142 * fractional places of a base-2^16 real number, which when
143 * multiplied by 2^twopwr and 5^tenpwr gives X. So now we
144 * really do multiply by 5^tenpwr.
147 if (tenpwr < 0) {
148 for (m=mult; m<mult+MANT_WORDS; m++)
149 *m = 0xCCCC;
150 extratwos = -2;
151 tenpwr = -tenpwr;
152 } else if (tenpwr > 0) {
153 mult[0] = 0xA000;
154 for (m=mult+1; m<mult+MANT_WORDS; m++)
155 *m = 0;
156 extratwos = 3;
157 } else
158 extratwos = 0;
159 while (tenpwr) {
160 if (tenpwr & 1)
161 twopwr += extratwos + multiply (mant, mult);
162 extratwos = extratwos * 2 + multiply (mult, mult);
163 tenpwr >>= 1;
167 * Conversion is done. The elements of `mant' contain the first
168 * fractional places of a base-2^16 real number in [0.5,1)
169 * which we can multiply by 2^twopwr to get X. Or, of course,
170 * it contains zero.
172 *exponent = twopwr;
176 * Shift a mantissa to the right by i (i < 16) bits.
178 static void shr(unsigned short *mant, int i) {
179 unsigned short n = 0, m;
180 int j;
182 for (j=0; j<MANT_WORDS; j++) {
183 m = (mant[j] << (16-i)) & 0xFFFF;
184 mant[j] = (mant[j] >> i) | n;
185 n = m;
190 * Round a mantissa off after i words.
192 static int round(unsigned short *mant, int i) {
193 if (mant[i] & 0x8000) {
194 do {
195 ++mant[--i];
196 mant[i] &= 0xFFFF;
197 } while (i > 0 && !mant[i]);
198 return !i && !mant[i];
200 return 0;
203 #define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) )
205 static int to_double(char *str, long sign, unsigned char *result,
206 efunc error) {
207 unsigned short mant[MANT_WORDS];
208 long exponent;
210 sign = (sign < 0 ? 0x8000L : 0L);
212 flconvert (str, mant, &exponent);
213 if (mant[0] & 0x8000) {
215 * Non-zero.
217 exponent--;
218 if (exponent >= -1022 && exponent <= 1024) {
220 * Normalised.
222 exponent += 1023;
223 shr(mant, 11);
224 round(mant, 4);
225 if (mant[0] & 0x20) /* did we scale up by one? */
226 shr(mant, 1), exponent++;
227 mant[0] &= 0xF; /* remove leading one */
228 put(result+6,(exponent << 4) | mant[0] | sign);
229 put(result+4,mant[1]);
230 put(result+2,mant[2]);
231 put(result+0,mant[3]);
232 } else if (exponent < -1022 && exponent >= -1074) {
234 * Denormal.
236 int shift = -(exponent+1011);
237 int sh = shift % 16, wds = shift / 16;
238 shr(mant, sh);
239 if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
240 shr(mant, 1);
241 if (sh==0)
242 mant[0] |= 0x8000;
243 exponent++;
245 put(result+6,(wds == 0 ? mant[0] : 0) | sign);
246 put(result+4,(wds <= 1 ? mant[1-wds] : 0));
247 put(result+2,(wds <= 2 ? mant[2-wds] : 0));
248 put(result+0,(wds <= 3 ? mant[3-wds] : 0));
249 } else {
250 if (exponent > 0) {
251 error(ERR_NONFATAL, "overflow in floating-point constant");
252 return 0;
253 } else
254 memset (result, 0, 8);
256 } else {
258 * Zero.
260 memset (result, 0, 8);
262 return 1; /* success */
265 static int to_float(char *str, long sign, unsigned char *result,
266 efunc error) {
267 unsigned short mant[MANT_WORDS];
268 long exponent;
270 sign = (sign < 0 ? 0x8000L : 0L);
272 flconvert (str, mant, &exponent);
273 if (mant[0] & 0x8000) {
275 * Non-zero.
277 exponent--;
278 if (exponent >= -126 && exponent <= 128) {
280 * Normalised.
282 exponent += 127;
283 shr(mant, 8);
284 round(mant, 2);
285 if (mant[0] & 0x100) /* did we scale up by one? */
286 shr(mant, 1), exponent++;
287 mant[0] &= 0x7F; /* remove leading one */
288 put(result+2,(exponent << 7) | mant[0] | sign);
289 put(result+0,mant[1]);
290 } else if (exponent < -126 && exponent >= -149) {
292 * Denormal.
294 int shift = -(exponent+118);
295 int sh = shift % 16, wds = shift / 16;
296 shr(mant, sh);
297 if (round(mant, 2-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
298 shr(mant, 1);
299 if (sh==0)
300 mant[0] |= 0x8000;
301 exponent++;
303 put(result+2,(wds == 0 ? mant[0] : 0) | sign);
304 put(result+0,(wds <= 1 ? mant[1-wds] : 0));
305 } else {
306 if (exponent > 0) {
307 error(ERR_NONFATAL, "overflow in floating-point constant");
308 return 0;
309 } else
310 memset (result, 0, 4);
312 } else {
313 memset (result, 0, 4);
315 return 1;
318 static int to_ldoub(char *str, long sign, unsigned char *result,
319 efunc error) {
320 unsigned short mant[MANT_WORDS];
321 long exponent;
323 sign = (sign < 0 ? 0x8000L : 0L);
325 flconvert (str, mant, &exponent);
326 if (mant[0] & 0x8000) {
328 * Non-zero.
330 exponent--;
331 if (exponent >= -16383 && exponent <= 16384) {
333 * Normalised.
335 exponent += 16383;
336 if (round(mant, 4)) /* did we scale up by one? */
337 shr(mant, 1), mant[0] |= 0x8000, exponent++;
338 put(result+8,exponent | sign);
339 put(result+6,mant[0]);
340 put(result+4,mant[1]);
341 put(result+2,mant[2]);
342 put(result+0,mant[3]);
343 } else if (exponent < -16383 && exponent >= -16446) {
345 * Denormal.
347 int shift = -(exponent+16383);
348 int sh = shift % 16, wds = shift / 16;
349 shr(mant, sh);
350 if (round(mant, 4-wds) || (sh>0 && (mant[0]&(0x8000>>(sh-1))))) {
351 shr(mant, 1);
352 if (sh==0)
353 mant[0] |= 0x8000;
354 exponent++;
356 put(result+8,sign);
357 put(result+6,(wds == 0 ? mant[0] : 0));
358 put(result+4,(wds <= 1 ? mant[1-wds] : 0));
359 put(result+2,(wds <= 2 ? mant[2-wds] : 0));
360 put(result+0,(wds <= 3 ? mant[3-wds] : 0));
361 } else {
362 if (exponent > 0) {
363 error(ERR_NONFATAL, "overflow in floating-point constant");
364 return 0;
365 } else
366 memset (result, 0, 10);
368 } else {
370 * Zero.
372 memset (result, 0, 10);
374 return 1;
377 int float_const (char *number, long sign, unsigned char *result, int bytes,
378 efunc error) {
379 if (bytes == 4)
380 return to_float (number, sign, result, error);
381 else if (bytes == 8)
382 return to_double (number, sign, result, error);
383 else if (bytes == 10)
384 return to_ldoub (number, sign, result, error);
385 else {
386 error(ERR_PANIC, "strange value %d passed to float_const", bytes);
387 return 0;