1 /* nasm.h main header file for the Netwide Assembler: inter-module interface
3 * The Netwide Assembler is copyright (C) 1996 Simon Tatham and
4 * Julian Hall. All rights reserved. The software is
5 * redistributable under the licence given in the file "Licence"
6 * distributed in the NASM archive.
8 * initial version: 27/iii/95 by Simon Tatham
14 #define NASM_MAJOR_VER 0
15 #define NASM_MINOR_VER 93
16 #define NASM_VER "0.93"
23 #define FALSE 0 /* comes in handy */
29 #define NO_SEG -1L /* null segment value */
30 #define SEG_ABS 0x40000000L /* mask for far-absolute segments */
33 #define FILENAME_MAX 256
37 * We must declare the existence of this structure type up here,
38 * since we have to reference it before we define it...
43 * -------------------------
44 * Error reporting functions
45 * -------------------------
49 * An error reporting function should look like this.
51 typedef void (*efunc
) (int severity
, char *fmt
, ...);
54 * These are the error severity codes which get passed as the first
55 * argument to an efunc.
58 #define ERR_WARNING 0 /* warn only: no further action */
59 #define ERR_NONFATAL 1 /* terminate assembly after phase */
60 #define ERR_FATAL 2 /* instantly fatal: exit with error */
61 #define ERR_PANIC 3 /* internal error: panic instantly
62 * and dump core for reference */
63 #define ERR_MASK 0x0F /* mask off the above codes */
64 #define ERR_NOFILE 0x10 /* don't give source file name/line */
65 #define ERR_USAGE 0x20 /* print a usage message */
68 * -----------------------
69 * Other function typedefs
70 * -----------------------
74 * A label-lookup function should look like this.
76 typedef int (*lfunc
) (char *label
, long *segment
, long *offset
);
79 * And a label-definition function like this.
81 typedef void (*ldfunc
) (char *label
, long segment
, long offset
,
82 struct ofmt
*ofmt
, efunc error
);
85 * -----------------------------------------------------------
86 * Format of the `insn' structure returned from `parser.c' and
87 * passed into `assemble.c'
88 * -----------------------------------------------------------
92 * Here we define the operand types. These are implemented as bit
93 * masks, since some are subsets of others; e.g. AX in a MOV
94 * instruction is a special operand type, whereas AX in other
95 * contexts is just another 16-bit register. (Also, consider CL in
96 * shift instructions, DX in OUT, etc.)
99 /* size, and other attributes, of the operand */
100 #define BITS8 0x00000001L
101 #define BITS16 0x00000002L
102 #define BITS32 0x00000004L
103 #define BITS64 0x00000008L /* FPU only */
104 #define BITS80 0x00000010L /* FPU only */
105 #define FAR 0x00000020L /* grotty: this means 16:16 or */
106 /* 16:32, like in CALL/JMP */
107 #define NEAR 0x00000040L
108 #define SHORT 0x00000080L /* and this means what it says :) */
110 #define SIZE_MASK 0x000000FFL /* all the size attributes */
111 #define NON_SIZE (~SIZE_MASK)
113 #define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
114 #define COLON 0x00000200L /* operand is followed by a colon */
116 /* type of operand: memory reference, register, etc. */
117 #define MEMORY 0x00204000L
118 #define REGISTER 0x00001000L /* register number in 'basereg' */
119 #define IMMEDIATE 0x00002000L
121 #define REGMEM 0x00200000L /* for r/m, ie EA, operands */
122 #define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
123 #define REG8 0x00201001L
124 #define REG16 0x00201002L
125 #define REG32 0x00201004L
126 #define FPUREG 0x01000000L /* floating point stack registers */
127 #define FPU0 0x01000800L /* FPU stack register zero */
128 #define MMXREG 0x00001008L /* MMX registers */
130 /* special register operands: these may be treated differently */
131 #define REG_SMASK 0x00070000L /* a mask for the following */
132 #define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
133 #define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
134 #define REG_AX 0x00211002L /* ditto */
135 #define REG_EAX 0x00211004L /* and again */
136 #define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
137 #define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
138 #define REG_CX 0x00221002L /* ditto */
139 #define REG_ECX 0x00221004L /* another one */
140 #define REG_DX 0x00241002L
141 #define REG_SREG 0x00081002L /* any segment register */
142 #define REG_CS 0x01081002L /* CS */
143 #define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
144 #define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
145 #define REG_CDT 0x00101004L /* CRn, DRn and TRn */
146 #define REG_CREG 0x08101004L /* CRn */
147 #define REG_CR4 0x08101404L /* CR4 (Pentium only) */
148 #define REG_DREG 0x10101004L /* DRn */
149 #define REG_TREG 0x20101004L /* TRn */
151 /* special type of EA */
152 #define MEM_OFFS 0x00604000L /* simple [address] offset */
154 /* special type of immediate operand */
155 #define UNITY 0x00802000L /* for shift/rotate instructions */
158 * Next, the codes returned from the parser, for registers and
162 enum { /* register names */
163 R_AH
= 1, R_AL
, R_AX
, R_BH
, R_BL
, R_BP
, R_BX
, R_CH
, R_CL
, R_CR0
,
164 R_CR2
, R_CR3
, R_CR4
, R_CS
, R_CX
, R_DH
, R_DI
, R_DL
, R_DR0
, R_DR1
,
165 R_DR2
, R_DR3
, R_DR6
, R_DR7
, R_DS
, R_DX
, R_EAX
, R_EBP
, R_EBX
,
166 R_ECX
, R_EDI
, R_EDX
, R_ES
, R_ESI
, R_ESP
, R_FS
, R_GS
, R_MM0
,
167 R_MM1
, R_MM2
, R_MM3
, R_MM4
, R_MM5
, R_MM6
, R_MM7
, R_SI
, R_SP
,
168 R_SS
, R_ST0
, R_ST1
, R_ST2
, R_ST3
, R_ST4
, R_ST5
, R_ST6
, R_ST7
,
169 R_TR3
, R_TR4
, R_TR5
, R_TR6
, R_TR7
, REG_ENUM_LIMIT
172 enum { /* instruction names */
173 I_AAA
, I_AAD
, I_AAM
, I_AAS
, I_ADC
, I_ADD
, I_AND
, I_ARPL
,
174 I_BOUND
, I_BSF
, I_BSR
, I_BSWAP
, I_BT
, I_BTC
, I_BTR
, I_BTS
,
175 I_CALL
, I_CBW
, I_CDQ
, I_CLC
, I_CLD
, I_CLI
, I_CLTS
, I_CMC
, I_CMP
,
176 I_CMPSB
, I_CMPSD
, I_CMPSW
, I_CMPXCHG
, I_CMPXCHG8B
, I_CPUID
,
177 I_CWD
, I_CWDE
, I_DAA
, I_DAS
, I_DB
, I_DD
, I_DEC
, I_DIV
, I_DQ
,
178 I_DT
, I_DW
, I_EMMS
, I_ENTER
, I_EQU
, I_F2XM1
, I_FABS
, I_FADD
,
179 I_FADDP
, I_FBLD
, I_FBSTP
, I_FCHS
, I_FCLEX
, I_FCMOVB
, I_FCMOVBE
,
180 I_FCMOVE
, I_FCMOVNB
, I_FCMOVNBE
, I_FCMOVNE
, I_FCMOVNU
, I_FCMOVU
,
181 I_FCOM
, I_FCOMI
, I_FCOMIP
, I_FCOMP
, I_FCOMPP
, I_FCOS
, I_FDECSTP
,
182 I_FDISI
, I_FDIV
, I_FDIVP
, I_FDIVR
, I_FDIVRP
, I_FENI
, I_FFREE
,
183 I_FIADD
, I_FICOM
, I_FICOMP
, I_FIDIV
, I_FIDIVR
, I_FILD
, I_FIMUL
,
184 I_FINCSTP
, I_FINIT
, I_FIST
, I_FISTP
, I_FISUB
, I_FISUBR
, I_FLD
,
185 I_FLD1
, I_FLDCW
, I_FLDENV
, I_FLDL2E
, I_FLDL2T
, I_FLDLG2
,
186 I_FLDLN2
, I_FLDPI
, I_FLDZ
, I_FMUL
, I_FMULP
, I_FNOP
, I_FPATAN
,
187 I_FPREM
, I_FPREM1
, I_FPTAN
, I_FRNDINT
, I_FRSTOR
, I_FSAVE
,
188 I_FSCALE
, I_FSETPM
, I_FSIN
, I_FSINCOS
, I_FSQRT
, I_FST
, I_FSTCW
,
189 I_FSTENV
, I_FSTP
, I_FSTSW
, I_FSUB
, I_FSUBP
, I_FSUBR
, I_FSUBRP
,
190 I_FTST
, I_FUCOM
, I_FUCOMI
, I_FUCOMIP
, I_FUCOMP
, I_FUCOMPP
,
191 I_FXAM
, I_FXCH
, I_FXTRACT
, I_FYL2X
, I_FYL2XP1
, I_HLT
, I_ICEBP
,
192 I_IDIV
, I_IMUL
, I_IN
, I_INC
, I_INSB
, I_INSD
, I_INSW
, I_INT
,
193 I_INT1
, I_INT01
, I_INT3
, I_INTO
, I_INVD
, I_INVLPG
, I_IRET
,
194 I_IRETD
, I_IRETW
, I_JCXZ
, I_JECXZ
, I_JMP
, I_LAHF
, I_LAR
, I_LDS
,
195 I_LEA
, I_LEAVE
, I_LES
, I_LFS
, I_LGDT
, I_LGS
, I_LIDT
, I_LLDT
,
196 I_LMSW
, I_LOADALL
, I_LODSB
, I_LODSD
, I_LODSW
, I_LOOP
, I_LOOPE
,
197 I_LOOPNE
, I_LOOPNZ
, I_LOOPZ
, I_LSL
, I_LSS
, I_LTR
, I_MOV
, I_MOVD
,
198 I_MOVQ
, I_MOVSB
, I_MOVSD
, I_MOVSW
, I_MOVSX
, I_MOVZX
, I_MUL
,
199 I_NEG
, I_NOP
, I_NOT
, I_OR
, I_OUT
, I_OUTSB
, I_OUTSD
, I_OUTSW
,
200 I_PACKSSDW
, I_PACKSSWB
, I_PACKUSWB
, I_PADDB
, I_PADDD
, I_PADDSB
,
201 I_PADDSW
, I_PADDUSB
, I_PADDUSW
, I_PADDW
, I_PAND
, I_PANDN
,
202 I_PCMPEQB
, I_PCMPEQD
, I_PCMPEQW
, I_PCMPGTB
, I_PCMPGTD
,
203 I_PCMPGTW
, I_PMADDWD
, I_PMULHW
, I_PMULLW
, I_POP
, I_POPA
,
204 I_POPAD
, I_POPAW
, I_POPF
, I_POPFD
, I_POPFW
, I_POR
, I_PSLLD
,
205 I_PSLLQ
, I_PSLLW
, I_PSRAD
, I_PSRAW
, I_PSRLD
, I_PSRLQ
, I_PSRLW
,
206 I_PSUBB
, I_PSUBD
, I_PSUBSB
, I_PSUBSW
, I_PSUBUSB
, I_PSUBUSW
,
207 I_PSUBW
, I_PUNPCKHBW
, I_PUNPCKHDQ
, I_PUNPCKHWD
, I_PUNPCKLBW
,
208 I_PUNPCKLDQ
, I_PUNPCKLWD
, I_PUSH
, I_PUSHA
, I_PUSHAD
, I_PUSHAW
,
209 I_PUSHF
, I_PUSHFD
, I_PUSHFW
, I_PXOR
, I_RCL
, I_RCR
, I_RDMSR
,
210 I_RDPMC
, I_RDTSC
, I_RESB
, I_RESD
, I_RESQ
, I_REST
, I_RESW
, I_RET
,
211 I_RETF
, I_RETN
, I_ROL
, I_ROR
, I_RSM
, I_SAHF
, I_SAL
, I_SALC
,
212 I_SAR
, I_SBB
, I_SCASB
, I_SCASD
, I_SCASW
, I_SGDT
, I_SHL
, I_SHLD
,
213 I_SHR
, I_SHRD
, I_SIDT
, I_SLDT
, I_SMSW
, I_STC
, I_STD
, I_STI
,
214 I_STOSB
, I_STOSD
, I_STOSW
, I_STR
, I_SUB
, I_TEST
, I_UMOV
, I_VERR
,
215 I_VERW
, I_WAIT
, I_WBINVD
, I_WRMSR
, I_XADD
, I_XCHG
, I_XLATB
,
216 I_XOR
, I_CMOVcc
, I_Jcc
, I_SETcc
219 enum { /* condition code names */
220 C_A
, C_AE
, C_B
, C_BE
, C_C
, C_E
, C_G
, C_GE
, C_L
, C_LE
, C_NA
, C_NAE
,
221 C_NB
, C_NBE
, C_NC
, C_NE
, C_NG
, C_NGE
, C_NL
, C_NLE
, C_NO
, C_NP
,
222 C_NS
, C_NZ
, C_O
, C_P
, C_PE
, C_PO
, C_S
, C_Z
226 * Note that because segment registers may be used as instruction
227 * prefixes, we must ensure the enumerations for prefixes and
228 * register names do not overlap.
230 enum { /* instruction prefixes */
231 PREFIX_ENUM_START
= REG_ENUM_LIMIT
,
232 P_A16
= PREFIX_ENUM_START
, P_A32
, P_LOCK
, P_O16
, P_O32
, P_REP
, P_REPE
,
233 P_REPNE
, P_REPNZ
, P_REPZ
, P_TIMES
236 enum { /* extended operand types */
237 EOT_NOTHING
, EOT_DB_STRING
, EOT_DB_NUMBER
240 typedef struct { /* operand to an instruction */
241 long type
; /* type of operand */
242 int addr_size
; /* 0 means default; 16; 32 */
243 int basereg
, indexreg
, scale
; /* registers and scale involved */
244 long segment
; /* immediate segment, if needed */
245 long offset
; /* any immediate number */
246 long wrt
; /* segment base it's relative to */
249 typedef struct extop
{ /* extended operand */
250 struct extop
*next
; /* linked list */
251 long type
; /* defined above */
252 char *stringval
; /* if it's a string, then here it is */
253 int stringlen
; /* ... and here's how long it is */
254 long segment
; /* if it's a number/address, then... */
255 long offset
; /* ... it's given here ... */
256 long wrt
; /* ... and here */
261 typedef struct { /* an instruction itself */
262 char *label
; /* the label defined, or NULL */
263 int prefixes
[MAXPREFIX
]; /* instruction prefixes, if any */
264 int nprefix
; /* number of entries in above */
265 int opcode
; /* the opcode - not just the string */
266 int condition
; /* the condition code, if Jcc/SETcc */
267 int operands
; /* how many operands? 0-3 */
268 operand oprs
[3]; /* the operands, defined as above */
269 extop
*eops
; /* extended operands */
270 int times
; /* repeat count (TIMES prefix) */
271 int forw_ref
; /* is there a forward reference? */
275 * ------------------------------------------------------------
276 * The data structure defining an output format driver, and the
277 * interfaces to the functions therein.
278 * ------------------------------------------------------------
283 * This is a short (one-liner) description of the type of
284 * output generated by the driver.
289 * This is a single keyword used to select the driver.
294 * This procedure is called at the start of an output session.
295 * It tells the output format what file it will be writing to,
296 * what routine to report errors through, and how to interface
297 * to the label manager if necessary. It also gives it a chance
298 * to do other initialisation.
300 void (*init
) (FILE *fp
, efunc error
, ldfunc ldef
);
303 * This procedure is called by assemble() to write actual
304 * generated code or data to the object file. Typically it
305 * doesn't have to actually _write_ it, just store it for
308 * The `type' argument specifies the type of output data, and
309 * usually the size as well: its contents are described below.
311 void (*output
) (long segto
, void *data
, unsigned long type
,
312 long segment
, long wrt
);
315 * This procedure is called once for every symbol defined in
316 * the module being assembled. It gives the name and value of
317 * the symbol, in NASM's terms, and indicates whether it has
318 * been declared to be global. Note that the parameter "name",
319 * when passed, will point to a piece of static storage
320 * allocated inside the label manager - it's safe to keep using
321 * that pointer, because the label manager doesn't clean up
322 * until after the output driver has.
324 * Values of `is_global' are: 0 means the symbol is local; 1
325 * means the symbol is global; 2 means the symbol is common (in
326 * which case `offset' holds the _size_ of the variable).
327 * Anything else is available for the output driver to use
330 void (*symdef
) (char *name
, long segment
, long offset
, int is_global
);
333 * This procedure is called when the source code requests a
334 * segment change. It should return the corresponding segment
335 * _number_ for the name, or NO_SEG if the name is not a valid
338 * It may also be called with NULL, in which case it is to
339 * return the _default_ section number for starting assembly in.
341 * It is allowed to modify the string it is given a pointer to.
343 * It is also allowed to specify a default instruction size for
344 * the segment, by setting `*bits' to 16 or 32. Or, if it
345 * doesn't wish to define a default, it can leave `bits' alone.
347 long (*section
) (char *name
, int pass
, int *bits
);
350 * This procedure is called to modify the segment base values
351 * returned from the SEG operator. It is given a segment base
352 * value (i.e. a segment value with the low bit set), and is
353 * required to produce in return a segment value which may be
354 * different. It can map segment bases to absolute numbers by
355 * means of returning SEG_ABS types.
357 long (*segbase
) (long segment
);
360 * This procedure is called to allow the output driver to
361 * process its own specific directives. When called, it has the
362 * directive word in `directive' and the parameter string in
363 * `value'. It is called in both assembly passes, and `pass'
364 * will be either 1 or 2.
366 * This procedure should return zero if it does not _recognise_
367 * the directive, so that the main program can report an error.
368 * If it recognises the directive but then has its own errors,
369 * it should report them itself and then return non-zero. It
370 * should also return non-zero if it correctly processes the
373 int (*directive
) (char *directive
, char *value
, int pass
);
376 * This procedure is called before anything else - even before
377 * the "init" routine - and is passed the name of the input
378 * file from which this output file is being generated. It
379 * should return its preferred name for the output file in
380 * `outfunc'. Since it is called before the driver is properly
381 * initialised, it has to be passed its error handler
384 * This procedure may also take its own copy of the input file
385 * name for use in writing the output file: it is _guaranteed_
386 * that it will be called before the "init" routine.
388 * The parameter `outname' points to an area of storage
389 * guaranteed to be at least FILENAME_MAX in size.
391 void (*filename
) (char *inname
, char *outname
, efunc error
);
394 * This procedure is called after assembly finishes, to allow
395 * the output driver to clean itself up and free its memory.
396 * Typically, it will also be the point at which the object
397 * file actually gets _written_.
399 * One thing the cleanup routine should always do is to close
400 * the output file pointer.
402 void (*cleanup
) (void);
406 * values for the `type' parameter to an output function. Each one
407 * must have the actual number of _bytes_ added to it.
409 * Exceptions are OUT_RELxADR, which denote an x-byte relocation
410 * which will be a relative jump. For this we need to know the
411 * distance in bytes from the start of the relocated record until
412 * the end of the containing instruction. _This_ is what is stored
413 * in the size part of the parameter, in this case.
415 * Also OUT_RESERVE denotes reservation of N bytes of BSS space,
416 * and the contents of the "data" parameter is irrelevant.
418 * The "data" parameter for the output function points to a "long",
419 * containing the address in question, unless the type is
420 * OUT_RAWDATA, in which case it points to an "unsigned char"
423 #define OUT_RAWDATA 0x00000000UL
424 #define OUT_ADDRESS 0x10000000UL
425 #define OUT_REL2ADR 0x20000000UL
426 #define OUT_REL4ADR 0x30000000UL
427 #define OUT_RESERVE 0x40000000UL
428 #define OUT_TYPMASK 0xF0000000UL
429 #define OUT_SIZMASK 0x0FFFFFFFUL
438 * This is a useful #define which I keep meaning to use more often:
439 * the number of elements of a statically defined array.
442 #define elements(x) ( sizeof(x) / sizeof(*(x)) )