Don't use .Xo/.Xc. Fix date format.
[netbsd-mini2440.git] / sys / dev / ic / ath.c
blob15b9ce646fe874253cbf7c94620330519b0eb87c
1 /* $NetBSD: ath.c,v 1.106 2009/08/02 13:26:33 jmcneill Exp $ */
3 /*-
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 * 3. Neither the names of the above-listed copyright holders nor the names
18 * of any contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * Alternatively, this software may be distributed under the terms of the
22 * GNU General Public License ("GPL") version 2 as published by the Free
23 * Software Foundation.
25 * NO WARRANTY
26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36 * THE POSSIBILITY OF SUCH DAMAGES.
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.106 2009/08/02 13:26:33 jmcneill Exp $");
45 #endif
48 * Driver for the Atheros Wireless LAN controller.
50 * This software is derived from work of Atsushi Onoe; his contribution
51 * is greatly appreciated.
54 #include "opt_inet.h"
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
97 #define AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include "ah_desc.h"
100 #include "ah_devid.h" /* XXX for softled */
101 #include "opt_ah.h"
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
107 /* unaligned little endian access */
108 #define LE_READ_2(p) \
109 ((u_int16_t) \
110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
111 #define LE_READ_4(p) \
112 ((u_int32_t) \
113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
114 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116 enum {
117 ATH_LED_TX,
118 ATH_LED_RX,
119 ATH_LED_POLL,
122 #ifdef AH_NEED_DESC_SWAP
123 #define HTOAH32(x) htole32(x)
124 #else
125 #define HTOAH32(x) (x)
126 #endif
128 static int ath_ifinit(struct ifnet *);
129 static int ath_init(struct ath_softc *);
130 static void ath_stop_locked(struct ifnet *, int);
131 static void ath_stop(struct ifnet *, int);
132 static void ath_start(struct ifnet *);
133 static int ath_media_change(struct ifnet *);
134 static void ath_watchdog(struct ifnet *);
135 static int ath_ioctl(struct ifnet *, u_long, void *);
136 static void ath_fatal_proc(void *, int);
137 static void ath_rxorn_proc(void *, int);
138 static void ath_bmiss_proc(void *, int);
139 static void ath_radar_proc(void *, int);
140 static int ath_key_alloc(struct ieee80211com *,
141 const struct ieee80211_key *,
142 ieee80211_keyix *, ieee80211_keyix *);
143 static int ath_key_delete(struct ieee80211com *,
144 const struct ieee80211_key *);
145 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void ath_key_update_begin(struct ieee80211com *);
148 static void ath_key_update_end(struct ieee80211com *);
149 static void ath_mode_init(struct ath_softc *);
150 static void ath_setslottime(struct ath_softc *);
151 static void ath_updateslot(struct ifnet *);
152 static int ath_beaconq_setup(struct ath_hal *);
153 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void ath_beacon_proc(void *, int);
156 static void ath_bstuck_proc(void *, int);
157 static void ath_beacon_free(struct ath_softc *);
158 static void ath_beacon_config(struct ath_softc *);
159 static void ath_descdma_cleanup(struct ath_softc *sc,
160 struct ath_descdma *, ath_bufhead *);
161 static int ath_desc_alloc(struct ath_softc *);
162 static void ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void ath_node_free(struct ieee80211_node *);
165 static u_int8_t ath_node_getrssi(const struct ieee80211_node *);
166 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 struct ieee80211_node *ni,
169 int subtype, int rssi, u_int32_t rstamp);
170 static void ath_setdefantenna(struct ath_softc *, u_int);
171 static void ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int ath_tx_setup(struct ath_softc *, int, int);
174 static int ath_wme_update(struct ieee80211com *);
175 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void ath_tx_cleanup(struct ath_softc *);
177 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 struct ath_buf *, struct mbuf *);
179 static void ath_tx_proc_q0(void *, int);
180 static void ath_tx_proc_q0123(void *, int);
181 static void ath_tx_proc(void *, int);
182 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void ath_draintxq(struct ath_softc *);
184 static void ath_stoprecv(struct ath_softc *);
185 static int ath_startrecv(struct ath_softc *);
186 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void ath_next_scan(void *);
188 static void ath_calibrate(void *);
189 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void ath_setup_stationkey(struct ieee80211_node *);
191 static void ath_newassoc(struct ieee80211_node *, int);
192 static int ath_getchannels(struct ath_softc *, u_int cc,
193 HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void ath_led_event(struct ath_softc *, int);
195 static void ath_update_txpow(struct ath_softc *);
196 static void ath_freetx(struct mbuf *);
197 static void ath_restore_diversity(struct ath_softc *);
199 static int ath_rate_setup(struct ath_softc *, u_int mode);
200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202 #if NBPFILTER > 0
203 static void ath_bpfattach(struct ath_softc *);
204 #endif
205 static void ath_announce(struct ath_softc *);
207 int ath_dwelltime = 200; /* 5 channels/second */
208 int ath_calinterval = 30; /* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE; /* outdoor operation */
210 int ath_xchanmode = AH_TRUE; /* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT; /* country code */
212 int ath_regdomain = 0; /* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
217 #ifdef AR_DEBUG
218 enum {
219 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
220 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
221 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
222 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
223 ATH_DEBUG_RATE = 0x00000010, /* rate control */
224 ATH_DEBUG_RESET = 0x00000020, /* reset processing */
225 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
226 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
227 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
228 ATH_DEBUG_INTR = 0x00001000, /* ISR */
229 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
230 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
231 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
232 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
233 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
234 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
235 ATH_DEBUG_NODE = 0x00080000, /* node management */
236 ATH_DEBUG_LED = 0x00100000, /* led management */
237 ATH_DEBUG_FF = 0x00200000, /* fast frames */
238 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
239 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
240 ATH_DEBUG_ANY = 0xffffffff
242 #define IFF_DUMPPKTS(sc, m) \
243 ((sc->sc_debug & (m)) || \
244 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define DPRINTF(sc, m, fmt, ...) do { \
246 if (sc->sc_debug & (m)) \
247 printf(fmt, __VA_ARGS__); \
248 } while (0)
249 #define KEYPRINTF(sc, ix, hk, mac) do { \
250 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
251 ath_keyprint(__func__, ix, hk, mac); \
252 } while (0)
253 static void ath_printrxbuf(struct ath_buf *bf, int);
254 static void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define IFF_DUMPPKTS(sc, m) \
257 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define DPRINTF(m, fmt, ...)
259 #define KEYPRINTF(sc, k, ix, mac)
260 #endif
262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
267 struct ifnet *ifp = &sc->sc_if;
268 struct ieee80211com *ic = &sc->sc_ic;
269 struct ath_hal *ah = NULL;
270 HAL_STATUS status;
271 int error = 0, i;
273 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
275 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
277 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
279 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
280 if (ah == NULL) {
281 if_printf(ifp, "unable to attach hardware; HAL status %u\n",
282 status);
283 error = ENXIO;
284 goto bad;
286 if (ah->ah_abi != HAL_ABI_VERSION) {
287 if_printf(ifp, "HAL ABI mismatch detected "
288 "(HAL:0x%x != driver:0x%x)\n",
289 ah->ah_abi, HAL_ABI_VERSION);
290 error = ENXIO;
291 goto bad;
293 sc->sc_ah = ah;
295 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
296 "pmf-powerdown", false))
297 goto bad;
300 * Check if the MAC has multi-rate retry support.
301 * We do this by trying to setup a fake extended
302 * descriptor. MAC's that don't have support will
303 * return false w/o doing anything. MAC's that do
304 * support it will return true w/o doing anything.
306 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
309 * Check if the device has hardware counters for PHY
310 * errors. If so we need to enable the MIB interrupt
311 * so we can act on stat triggers.
313 if (ath_hal_hwphycounters(ah))
314 sc->sc_needmib = 1;
317 * Get the hardware key cache size.
319 sc->sc_keymax = ath_hal_keycachesize(ah);
320 if (sc->sc_keymax > ATH_KEYMAX) {
321 if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
322 ATH_KEYMAX, sc->sc_keymax);
323 sc->sc_keymax = ATH_KEYMAX;
326 * Reset the key cache since some parts do not
327 * reset the contents on initial power up.
329 for (i = 0; i < sc->sc_keymax; i++)
330 ath_hal_keyreset(ah, i);
332 * Mark key cache slots associated with global keys
333 * as in use. If we knew TKIP was not to be used we
334 * could leave the +32, +64, and +32+64 slots free.
335 * XXX only for splitmic.
337 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
338 setbit(sc->sc_keymap, i);
339 setbit(sc->sc_keymap, i+32);
340 setbit(sc->sc_keymap, i+64);
341 setbit(sc->sc_keymap, i+32+64);
345 * Collect the channel list using the default country
346 * code and including outdoor channels. The 802.11 layer
347 * is resposible for filtering this list based on settings
348 * like the phy mode.
350 error = ath_getchannels(sc, ath_countrycode,
351 ath_outdoor, ath_xchanmode);
352 if (error != 0)
353 goto bad;
356 * Setup rate tables for all potential media types.
358 ath_rate_setup(sc, IEEE80211_MODE_11A);
359 ath_rate_setup(sc, IEEE80211_MODE_11B);
360 ath_rate_setup(sc, IEEE80211_MODE_11G);
361 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
362 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
363 /* NB: setup here so ath_rate_update is happy */
364 ath_setcurmode(sc, IEEE80211_MODE_11A);
367 * Allocate tx+rx descriptors and populate the lists.
369 error = ath_desc_alloc(sc);
370 if (error != 0) {
371 if_printf(ifp, "failed to allocate descriptors: %d\n", error);
372 goto bad;
374 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
375 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
376 #if 0
377 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
378 #endif
380 ATH_TXBUF_LOCK_INIT(sc);
382 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
383 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
384 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
385 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
386 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
387 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
390 * Allocate hardware transmit queues: one queue for
391 * beacon frames and one data queue for each QoS
392 * priority. Note that the hal handles reseting
393 * these queues at the needed time.
395 * XXX PS-Poll
397 sc->sc_bhalq = ath_beaconq_setup(ah);
398 if (sc->sc_bhalq == (u_int) -1) {
399 if_printf(ifp, "unable to setup a beacon xmit queue!\n");
400 error = EIO;
401 goto bad2;
403 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
404 if (sc->sc_cabq == NULL) {
405 if_printf(ifp, "unable to setup CAB xmit queue!\n");
406 error = EIO;
407 goto bad2;
409 /* NB: insure BK queue is the lowest priority h/w queue */
410 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
411 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
412 ieee80211_wme_acnames[WME_AC_BK]);
413 error = EIO;
414 goto bad2;
416 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
417 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
418 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
420 * Not enough hardware tx queues to properly do WME;
421 * just punt and assign them all to the same h/w queue.
422 * We could do a better job of this if, for example,
423 * we allocate queues when we switch from station to
424 * AP mode.
426 if (sc->sc_ac2q[WME_AC_VI] != NULL)
427 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
428 if (sc->sc_ac2q[WME_AC_BE] != NULL)
429 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
430 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
431 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
432 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
436 * Special case certain configurations. Note the
437 * CAB queue is handled by these specially so don't
438 * include them when checking the txq setup mask.
440 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
441 case 0x01:
442 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
443 break;
444 case 0x0f:
445 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
446 break;
447 default:
448 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
449 break;
453 * Setup rate control. Some rate control modules
454 * call back to change the anntena state so expose
455 * the necessary entry points.
456 * XXX maybe belongs in struct ath_ratectrl?
458 sc->sc_setdefantenna = ath_setdefantenna;
459 sc->sc_rc = ath_rate_attach(sc);
460 if (sc->sc_rc == NULL) {
461 error = EIO;
462 goto bad2;
465 sc->sc_blinking = 0;
466 sc->sc_ledstate = 1;
467 sc->sc_ledon = 0; /* low true */
468 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
469 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
471 * Auto-enable soft led processing for IBM cards and for
472 * 5211 minipci cards. Users can also manually enable/disable
473 * support with a sysctl.
475 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
476 if (sc->sc_softled) {
477 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
478 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
481 ifp->if_softc = sc;
482 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
483 ifp->if_start = ath_start;
484 ifp->if_stop = ath_stop;
485 ifp->if_watchdog = ath_watchdog;
486 ifp->if_ioctl = ath_ioctl;
487 ifp->if_init = ath_ifinit;
488 IFQ_SET_READY(&ifp->if_snd);
490 ic->ic_ifp = ifp;
491 ic->ic_reset = ath_reset;
492 ic->ic_newassoc = ath_newassoc;
493 ic->ic_updateslot = ath_updateslot;
494 ic->ic_wme.wme_update = ath_wme_update;
495 /* XXX not right but it's not used anywhere important */
496 ic->ic_phytype = IEEE80211_T_OFDM;
497 ic->ic_opmode = IEEE80211_M_STA;
498 ic->ic_caps =
499 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
500 | IEEE80211_C_HOSTAP /* hostap mode */
501 | IEEE80211_C_MONITOR /* monitor mode */
502 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
503 | IEEE80211_C_SHSLOT /* short slot time supported */
504 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
505 | IEEE80211_C_TXFRAG /* handle tx frags */
508 * Query the hal to figure out h/w crypto support.
510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
511 ic->ic_caps |= IEEE80211_C_WEP;
512 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
513 ic->ic_caps |= IEEE80211_C_AES;
514 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
515 ic->ic_caps |= IEEE80211_C_AES_CCM;
516 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
517 ic->ic_caps |= IEEE80211_C_CKIP;
518 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
519 ic->ic_caps |= IEEE80211_C_TKIP;
521 * Check if h/w does the MIC and/or whether the
522 * separate key cache entries are required to
523 * handle both tx+rx MIC keys.
525 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
526 ic->ic_caps |= IEEE80211_C_TKIPMIC;
529 * If the h/w supports storing tx+rx MIC keys
530 * in one cache slot automatically enable use.
532 if (ath_hal_hastkipsplit(ah) ||
533 !ath_hal_settkipsplit(ah, AH_FALSE))
534 sc->sc_splitmic = 1;
537 * If the h/w can do TKIP MIC together with WME then
538 * we use it; otherwise we force the MIC to be done
539 * in software by the net80211 layer.
541 if (ath_hal_haswmetkipmic(ah))
542 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
544 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
545 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
547 * Mark key cache slots associated with global keys
548 * as in use. If we knew TKIP was not to be used we
549 * could leave the +32, +64, and +32+64 slots free.
551 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
552 setbit(sc->sc_keymap, i);
553 setbit(sc->sc_keymap, i+64);
554 if (sc->sc_splitmic) {
555 setbit(sc->sc_keymap, i+32);
556 setbit(sc->sc_keymap, i+32+64);
560 * TPC support can be done either with a global cap or
561 * per-packet support. The latter is not available on
562 * all parts. We're a bit pedantic here as all parts
563 * support a global cap.
565 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
566 ic->ic_caps |= IEEE80211_C_TXPMGT;
569 * Mark WME capability only if we have sufficient
570 * hardware queues to do proper priority scheduling.
572 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
573 ic->ic_caps |= IEEE80211_C_WME;
575 * Check for misc other capabilities.
577 if (ath_hal_hasbursting(ah))
578 ic->ic_caps |= IEEE80211_C_BURST;
581 * Indicate we need the 802.11 header padded to a
582 * 32-bit boundary for 4-address and QoS frames.
584 ic->ic_flags |= IEEE80211_F_DATAPAD;
587 * Query the hal about antenna support.
589 sc->sc_defant = ath_hal_getdefantenna(ah);
592 * Not all chips have the VEOL support we want to
593 * use with IBSS beacons; check here for it.
595 sc->sc_hasveol = ath_hal_hasveol(ah);
597 /* get mac address from hardware */
598 ath_hal_getmac(ah, ic->ic_myaddr);
600 if_attach(ifp);
601 /* call MI attach routine. */
602 ieee80211_ifattach(ic);
603 /* override default methods */
604 ic->ic_node_alloc = ath_node_alloc;
605 sc->sc_node_free = ic->ic_node_free;
606 ic->ic_node_free = ath_node_free;
607 ic->ic_node_getrssi = ath_node_getrssi;
608 sc->sc_recv_mgmt = ic->ic_recv_mgmt;
609 ic->ic_recv_mgmt = ath_recv_mgmt;
610 sc->sc_newstate = ic->ic_newstate;
611 ic->ic_newstate = ath_newstate;
612 ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
613 ic->ic_crypto.cs_key_alloc = ath_key_alloc;
614 ic->ic_crypto.cs_key_delete = ath_key_delete;
615 ic->ic_crypto.cs_key_set = ath_key_set;
616 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
617 ic->ic_crypto.cs_key_update_end = ath_key_update_end;
618 /* complete initialization */
619 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
621 #if NBPFILTER > 0
622 ath_bpfattach(sc);
623 #endif
625 sc->sc_flags |= ATH_ATTACHED;
628 * Setup dynamic sysctl's now that country code and
629 * regdomain are available from the hal.
631 ath_sysctlattach(sc);
633 ieee80211_announce(ic);
634 ath_announce(sc);
635 return 0;
636 bad2:
637 ath_tx_cleanup(sc);
638 ath_desc_free(sc);
639 bad:
640 if (ah)
641 ath_hal_detach(ah);
642 /* XXX don't get under the abstraction like this */
643 sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
644 return error;
648 ath_detach(struct ath_softc *sc)
650 struct ifnet *ifp = &sc->sc_if;
651 int s;
653 if ((sc->sc_flags & ATH_ATTACHED) == 0)
654 return (0);
656 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
657 __func__, ifp->if_flags);
659 s = splnet();
660 ath_stop(ifp, 1);
661 #if NBPFILTER > 0
662 bpfdetach(ifp);
663 #endif
665 * NB: the order of these is important:
666 * o call the 802.11 layer before detaching the hal to
667 * insure callbacks into the driver to delete global
668 * key cache entries can be handled
669 * o reclaim the tx queue data structures after calling
670 * the 802.11 layer as we'll get called back to reclaim
671 * node state and potentially want to use them
672 * o to cleanup the tx queues the hal is called, so detach
673 * it last
674 * Other than that, it's straightforward...
676 ieee80211_ifdetach(&sc->sc_ic);
677 #ifdef ATH_TX99_DIAG
678 if (sc->sc_tx99 != NULL)
679 sc->sc_tx99->detach(sc->sc_tx99);
680 #endif
681 ath_rate_detach(sc->sc_rc);
682 ath_desc_free(sc);
683 ath_tx_cleanup(sc);
684 sysctl_teardown(&sc->sc_sysctllog);
685 ath_hal_detach(sc->sc_ah);
686 if_detach(ifp);
687 splx(s);
689 return 0;
692 void
693 ath_suspend(struct ath_softc *sc)
695 #if notyet
697 * Set the chip in full sleep mode. Note that we are
698 * careful to do this only when bringing the interface
699 * completely to a stop. When the chip is in this state
700 * it must be carefully woken up or references to
701 * registers in the PCI clock domain may freeze the bus
702 * (and system). This varies by chip and is mostly an
703 * issue with newer parts that go to sleep more quickly.
705 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
706 #endif
709 bool
710 ath_resume(struct ath_softc *sc)
712 struct ath_hal *ah = sc->sc_ah;
713 struct ieee80211com *ic = &sc->sc_ic;
714 HAL_STATUS status;
715 int i;
717 #if notyet
718 ath_hal_setpower(ah, HAL_PM_AWAKE);
719 #else
720 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
721 #endif
724 * Reset the key cache since some parts do not
725 * reset the contents on initial power up.
727 for (i = 0; i < sc->sc_keymax; i++)
728 ath_hal_keyreset(ah, i);
730 ath_hal_resettxqueue(ah, sc->sc_bhalq);
731 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
732 if (ATH_TXQ_SETUP(sc, i))
733 ath_hal_resettxqueue(ah, i);
735 if (sc->sc_softled) {
736 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
737 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
739 return true;
743 * Interrupt handler. Most of the actual processing is deferred.
746 ath_intr(void *arg)
748 struct ath_softc *sc = arg;
749 struct ifnet *ifp = &sc->sc_if;
750 struct ath_hal *ah = sc->sc_ah;
751 HAL_INT status;
753 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
755 * The hardware is not ready/present, don't touch anything.
756 * Note this can happen early on if the IRQ is shared.
758 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
759 return 0;
762 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
763 return 0;
765 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
766 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
767 __func__, ifp->if_flags);
768 ath_hal_getisr(ah, &status); /* clear ISR */
769 ath_hal_intrset(ah, 0); /* disable further intr's */
770 return 1; /* XXX */
773 * Figure out the reason(s) for the interrupt. Note
774 * that the hal returns a pseudo-ISR that may include
775 * bits we haven't explicitly enabled so we mask the
776 * value to insure we only process bits we requested.
778 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
779 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
780 status &= sc->sc_imask; /* discard unasked for bits */
781 if (status & HAL_INT_FATAL) {
783 * Fatal errors are unrecoverable. Typically
784 * these are caused by DMA errors. Unfortunately
785 * the exact reason is not (presently) returned
786 * by the hal.
788 sc->sc_stats.ast_hardware++;
789 ath_hal_intrset(ah, 0); /* disable intr's until reset */
790 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
791 } else if (status & HAL_INT_RXORN) {
792 sc->sc_stats.ast_rxorn++;
793 ath_hal_intrset(ah, 0); /* disable intr's until reset */
794 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
795 } else {
796 if (status & HAL_INT_SWBA) {
798 * Software beacon alert--time to send a beacon.
799 * Handle beacon transmission directly; deferring
800 * this is too slow to meet timing constraints
801 * under load.
803 ath_beacon_proc(sc, 0);
805 if (status & HAL_INT_RXEOL) {
807 * NB: the hardware should re-read the link when
808 * RXE bit is written, but it doesn't work at
809 * least on older hardware revs.
811 sc->sc_stats.ast_rxeol++;
812 sc->sc_rxlink = NULL;
814 if (status & HAL_INT_TXURN) {
815 sc->sc_stats.ast_txurn++;
816 /* bump tx trigger level */
817 ath_hal_updatetxtriglevel(ah, AH_TRUE);
819 if (status & HAL_INT_RX)
820 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
821 if (status & HAL_INT_TX)
822 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
823 if (status & HAL_INT_BMISS) {
824 sc->sc_stats.ast_bmiss++;
825 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
827 if (status & HAL_INT_MIB) {
828 sc->sc_stats.ast_mib++;
830 * Disable interrupts until we service the MIB
831 * interrupt; otherwise it will continue to fire.
833 ath_hal_intrset(ah, 0);
835 * Let the hal handle the event. We assume it will
836 * clear whatever condition caused the interrupt.
838 ath_hal_mibevent(ah, &sc->sc_halstats);
839 ath_hal_intrset(ah, sc->sc_imask);
842 return 1;
845 /* Swap transmit descriptor.
846 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
847 * function.
849 static inline void
850 ath_desc_swap(struct ath_desc *ds)
852 #ifdef AH_NEED_DESC_SWAP
853 ds->ds_link = htole32(ds->ds_link);
854 ds->ds_data = htole32(ds->ds_data);
855 ds->ds_ctl0 = htole32(ds->ds_ctl0);
856 ds->ds_ctl1 = htole32(ds->ds_ctl1);
857 ds->ds_hw[0] = htole32(ds->ds_hw[0]);
858 ds->ds_hw[1] = htole32(ds->ds_hw[1]);
859 #endif
862 static void
863 ath_fatal_proc(void *arg, int pending)
865 struct ath_softc *sc = arg;
866 struct ifnet *ifp = &sc->sc_if;
868 if_printf(ifp, "hardware error; resetting\n");
869 ath_reset(ifp);
872 static void
873 ath_rxorn_proc(void *arg, int pending)
875 struct ath_softc *sc = arg;
876 struct ifnet *ifp = &sc->sc_if;
878 if_printf(ifp, "rx FIFO overrun; resetting\n");
879 ath_reset(ifp);
882 static void
883 ath_bmiss_proc(void *arg, int pending)
885 struct ath_softc *sc = arg;
886 struct ieee80211com *ic = &sc->sc_ic;
888 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
889 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
890 ("unexpect operating mode %u", ic->ic_opmode));
891 if (ic->ic_state == IEEE80211_S_RUN) {
892 u_int64_t lastrx = sc->sc_lastrx;
893 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
895 DPRINTF(sc, ATH_DEBUG_BEACON,
896 "%s: tsf %" PRIu64 " lastrx %" PRId64
897 " (%" PRIu64 ") bmiss %u\n",
898 __func__, tsf, tsf - lastrx, lastrx,
899 ic->ic_bmisstimeout*1024);
901 * Workaround phantom bmiss interrupts by sanity-checking
902 * the time of our last rx'd frame. If it is within the
903 * beacon miss interval then ignore the interrupt. If it's
904 * truly a bmiss we'll get another interrupt soon and that'll
905 * be dispatched up for processing.
907 if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
908 NET_LOCK_GIANT();
909 ieee80211_beacon_miss(ic);
910 NET_UNLOCK_GIANT();
911 } else
912 sc->sc_stats.ast_bmiss_phantom++;
916 static void
917 ath_radar_proc(void *arg, int pending)
919 #if 0
920 struct ath_softc *sc = arg;
921 struct ifnet *ifp = &sc->sc_if;
922 struct ath_hal *ah = sc->sc_ah;
923 HAL_CHANNEL hchan;
925 if (ath_hal_procdfs(ah, &hchan)) {
926 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
927 hchan.channel, hchan.channelFlags, hchan.privFlags);
929 * Initiate channel change.
931 /* XXX not yet */
933 #endif
936 static u_int
937 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
939 #define N(a) (sizeof(a) / sizeof(a[0]))
940 static const u_int modeflags[] = {
941 0, /* IEEE80211_MODE_AUTO */
942 CHANNEL_A, /* IEEE80211_MODE_11A */
943 CHANNEL_B, /* IEEE80211_MODE_11B */
944 CHANNEL_PUREG, /* IEEE80211_MODE_11G */
945 0, /* IEEE80211_MODE_FH */
946 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */
947 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */
949 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
951 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
952 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
953 return modeflags[mode];
954 #undef N
957 static int
958 ath_ifinit(struct ifnet *ifp)
960 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
962 return ath_init(sc);
965 static void
966 ath_settkipmic(struct ath_softc *sc)
968 struct ieee80211com *ic = &sc->sc_ic;
969 struct ath_hal *ah = sc->sc_ah;
971 if ((ic->ic_caps & IEEE80211_C_TKIP) &&
972 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
973 if (ic->ic_flags & IEEE80211_F_WME) {
974 (void)ath_hal_settkipmic(ah, AH_FALSE);
975 ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
976 } else {
977 (void)ath_hal_settkipmic(ah, AH_TRUE);
978 ic->ic_caps |= IEEE80211_C_TKIPMIC;
983 static int
984 ath_init(struct ath_softc *sc)
986 struct ifnet *ifp = &sc->sc_if;
987 struct ieee80211com *ic = &sc->sc_ic;
988 struct ath_hal *ah = sc->sc_ah;
989 HAL_STATUS status;
990 int error = 0;
992 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
993 __func__, ifp->if_flags);
995 if (device_is_active(sc->sc_dev)) {
996 ATH_LOCK(sc);
997 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
998 !device_is_active(sc->sc_dev))
999 return 0;
1000 else
1001 ATH_LOCK(sc);
1004 * Stop anything previously setup. This is safe
1005 * whether this is the first time through or not.
1007 ath_stop_locked(ifp, 0);
1010 * The basic interface to setting the hardware in a good
1011 * state is ``reset''. On return the hardware is known to
1012 * be powered up and with interrupts disabled. This must
1013 * be followed by initialization of the appropriate bits
1014 * and then setup of the interrupt mask.
1016 ath_settkipmic(sc);
1017 sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1018 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1019 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1020 if_printf(ifp, "unable to reset hardware; hal status %u\n",
1021 status);
1022 error = EIO;
1023 goto done;
1027 * This is needed only to setup initial state
1028 * but it's best done after a reset.
1030 ath_update_txpow(sc);
1032 * Likewise this is set during reset so update
1033 * state cached in the driver.
1035 ath_restore_diversity(sc);
1036 sc->sc_calinterval = 1;
1037 sc->sc_caltries = 0;
1040 * Setup the hardware after reset: the key cache
1041 * is filled as needed and the receive engine is
1042 * set going. Frame transmit is handled entirely
1043 * in the frame output path; there's nothing to do
1044 * here except setup the interrupt mask.
1046 if ((error = ath_startrecv(sc)) != 0) {
1047 if_printf(ifp, "unable to start recv logic\n");
1048 goto done;
1052 * Enable interrupts.
1054 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1055 | HAL_INT_RXEOL | HAL_INT_RXORN
1056 | HAL_INT_FATAL | HAL_INT_GLOBAL;
1058 * Enable MIB interrupts when there are hardware phy counters.
1059 * Note we only do this (at the moment) for station mode.
1061 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1062 sc->sc_imask |= HAL_INT_MIB;
1063 ath_hal_intrset(ah, sc->sc_imask);
1065 ifp->if_flags |= IFF_RUNNING;
1066 ic->ic_state = IEEE80211_S_INIT;
1069 * The hardware should be ready to go now so it's safe
1070 * to kick the 802.11 state machine as it's likely to
1071 * immediately call back to us to send mgmt frames.
1073 ath_chan_change(sc, ic->ic_curchan);
1074 #ifdef ATH_TX99_DIAG
1075 if (sc->sc_tx99 != NULL)
1076 sc->sc_tx99->start(sc->sc_tx99);
1077 else
1078 #endif
1079 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1080 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1081 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1082 } else
1083 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1084 done:
1085 ATH_UNLOCK(sc);
1086 return error;
1089 static void
1090 ath_stop_locked(struct ifnet *ifp, int disable)
1092 struct ath_softc *sc = ifp->if_softc;
1093 struct ieee80211com *ic = &sc->sc_ic;
1094 struct ath_hal *ah = sc->sc_ah;
1096 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1097 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1099 ATH_LOCK_ASSERT(sc);
1100 if (ifp->if_flags & IFF_RUNNING) {
1102 * Shutdown the hardware and driver:
1103 * reset 802.11 state machine
1104 * turn off timers
1105 * disable interrupts
1106 * turn off the radio
1107 * clear transmit machinery
1108 * clear receive machinery
1109 * drain and release tx queues
1110 * reclaim beacon resources
1111 * power down hardware
1113 * Note that some of this work is not possible if the
1114 * hardware is gone (invalid).
1116 #ifdef ATH_TX99_DIAG
1117 if (sc->sc_tx99 != NULL)
1118 sc->sc_tx99->stop(sc->sc_tx99);
1119 #endif
1120 ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1121 ifp->if_flags &= ~IFF_RUNNING;
1122 ifp->if_timer = 0;
1123 if (device_is_enabled(sc->sc_dev)) {
1124 if (sc->sc_softled) {
1125 callout_stop(&sc->sc_ledtimer);
1126 ath_hal_gpioset(ah, sc->sc_ledpin,
1127 !sc->sc_ledon);
1128 sc->sc_blinking = 0;
1130 ath_hal_intrset(ah, 0);
1132 ath_draintxq(sc);
1133 if (device_is_enabled(sc->sc_dev)) {
1134 ath_stoprecv(sc);
1135 ath_hal_phydisable(ah);
1136 } else
1137 sc->sc_rxlink = NULL;
1138 IF_PURGE(&ifp->if_snd);
1139 ath_beacon_free(sc);
1141 if (disable)
1142 pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1145 static void
1146 ath_stop(struct ifnet *ifp, int disable)
1148 struct ath_softc *sc = ifp->if_softc;
1150 ATH_LOCK(sc);
1151 ath_stop_locked(ifp, disable);
1152 ATH_UNLOCK(sc);
1155 static void
1156 ath_restore_diversity(struct ath_softc *sc)
1158 struct ifnet *ifp = &sc->sc_if;
1159 struct ath_hal *ah = sc->sc_ah;
1161 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1162 sc->sc_diversity != ath_hal_getdiversity(ah)) {
1163 if_printf(ifp, "could not restore diversity setting %d\n",
1164 sc->sc_diversity);
1165 sc->sc_diversity = ath_hal_getdiversity(ah);
1170 * Reset the hardware w/o losing operational state. This is
1171 * basically a more efficient way of doing ath_stop, ath_init,
1172 * followed by state transitions to the current 802.11
1173 * operational state. Used to recover from various errors and
1174 * to reset or reload hardware state.
1177 ath_reset(struct ifnet *ifp)
1179 struct ath_softc *sc = ifp->if_softc;
1180 struct ieee80211com *ic = &sc->sc_ic;
1181 struct ath_hal *ah = sc->sc_ah;
1182 struct ieee80211_channel *c;
1183 HAL_STATUS status;
1186 * Convert to a HAL channel description with the flags
1187 * constrained to reflect the current operating mode.
1189 c = ic->ic_curchan;
1190 sc->sc_curchan.channel = c->ic_freq;
1191 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1193 ath_hal_intrset(ah, 0); /* disable interrupts */
1194 ath_draintxq(sc); /* stop xmit side */
1195 ath_stoprecv(sc); /* stop recv side */
1196 ath_settkipmic(sc); /* configure TKIP MIC handling */
1197 /* NB: indicate channel change so we do a full reset */
1198 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1199 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1200 __func__, status);
1201 ath_update_txpow(sc); /* update tx power state */
1202 ath_restore_diversity(sc);
1203 sc->sc_calinterval = 1;
1204 sc->sc_caltries = 0;
1205 if (ath_startrecv(sc) != 0) /* restart recv */
1206 if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1208 * We may be doing a reset in response to an ioctl
1209 * that changes the channel so update any state that
1210 * might change as a result.
1212 ath_chan_change(sc, c);
1213 if (ic->ic_state == IEEE80211_S_RUN)
1214 ath_beacon_config(sc); /* restart beacons */
1215 ath_hal_intrset(ah, sc->sc_imask);
1217 ath_start(ifp); /* restart xmit */
1218 return 0;
1222 * Cleanup driver resources when we run out of buffers
1223 * while processing fragments; return the tx buffers
1224 * allocated and drop node references.
1226 static void
1227 ath_txfrag_cleanup(struct ath_softc *sc,
1228 ath_bufhead *frags, struct ieee80211_node *ni)
1230 struct ath_buf *bf;
1232 ATH_TXBUF_LOCK_ASSERT(sc);
1234 while ((bf = STAILQ_FIRST(frags)) != NULL) {
1235 STAILQ_REMOVE_HEAD(frags, bf_list);
1236 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1237 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1238 ieee80211_node_decref(ni);
1243 * Setup xmit of a fragmented frame. Allocate a buffer
1244 * for each frag and bump the node reference count to
1245 * reflect the held reference to be setup by ath_tx_start.
1247 static int
1248 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1249 struct mbuf *m0, struct ieee80211_node *ni)
1251 struct mbuf *m;
1252 struct ath_buf *bf;
1254 ATH_TXBUF_LOCK(sc);
1255 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1256 bf = STAILQ_FIRST(&sc->sc_txbuf);
1257 if (bf == NULL) { /* out of buffers, cleanup */
1258 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1259 __func__);
1260 sc->sc_if.if_flags |= IFF_OACTIVE;
1261 ath_txfrag_cleanup(sc, frags, ni);
1262 break;
1264 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1265 ieee80211_node_incref(ni);
1266 STAILQ_INSERT_TAIL(frags, bf, bf_list);
1268 ATH_TXBUF_UNLOCK(sc);
1270 return !STAILQ_EMPTY(frags);
1273 static void
1274 ath_start(struct ifnet *ifp)
1276 struct ath_softc *sc = ifp->if_softc;
1277 struct ath_hal *ah = sc->sc_ah;
1278 struct ieee80211com *ic = &sc->sc_ic;
1279 struct ieee80211_node *ni;
1280 struct ath_buf *bf;
1281 struct mbuf *m, *next;
1282 struct ieee80211_frame *wh;
1283 struct ether_header *eh;
1284 ath_bufhead frags;
1286 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1287 !device_is_active(sc->sc_dev))
1288 return;
1289 for (;;) {
1291 * Grab a TX buffer and associated resources.
1293 ATH_TXBUF_LOCK(sc);
1294 bf = STAILQ_FIRST(&sc->sc_txbuf);
1295 if (bf != NULL)
1296 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1297 ATH_TXBUF_UNLOCK(sc);
1298 if (bf == NULL) {
1299 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1300 __func__);
1301 sc->sc_stats.ast_tx_qstop++;
1302 ifp->if_flags |= IFF_OACTIVE;
1303 break;
1306 * Poll the management queue for frames; they
1307 * have priority over normal data frames.
1309 IF_DEQUEUE(&ic->ic_mgtq, m);
1310 if (m == NULL) {
1312 * No data frames go out unless we're associated.
1314 if (ic->ic_state != IEEE80211_S_RUN) {
1315 DPRINTF(sc, ATH_DEBUG_XMIT,
1316 "%s: discard data packet, state %s\n",
1317 __func__,
1318 ieee80211_state_name[ic->ic_state]);
1319 sc->sc_stats.ast_tx_discard++;
1320 ATH_TXBUF_LOCK(sc);
1321 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1322 ATH_TXBUF_UNLOCK(sc);
1323 break;
1325 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */
1326 if (m == NULL) {
1327 ATH_TXBUF_LOCK(sc);
1328 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1329 ATH_TXBUF_UNLOCK(sc);
1330 break;
1332 STAILQ_INIT(&frags);
1334 * Find the node for the destination so we can do
1335 * things like power save and fast frames aggregation.
1337 if (m->m_len < sizeof(struct ether_header) &&
1338 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1339 ic->ic_stats.is_tx_nobuf++; /* XXX */
1340 ni = NULL;
1341 goto bad;
1343 eh = mtod(m, struct ether_header *);
1344 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1345 if (ni == NULL) {
1346 /* NB: ieee80211_find_txnode does stat+msg */
1347 m_freem(m);
1348 goto bad;
1350 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1351 (m->m_flags & M_PWR_SAV) == 0) {
1353 * Station in power save mode; pass the frame
1354 * to the 802.11 layer and continue. We'll get
1355 * the frame back when the time is right.
1357 ieee80211_pwrsave(ic, ni, m);
1358 goto reclaim;
1360 /* calculate priority so we can find the tx queue */
1361 if (ieee80211_classify(ic, m, ni)) {
1362 DPRINTF(sc, ATH_DEBUG_XMIT,
1363 "%s: discard, classification failure\n",
1364 __func__);
1365 m_freem(m);
1366 goto bad;
1368 ifp->if_opackets++;
1370 #if NBPFILTER > 0
1371 if (ifp->if_bpf)
1372 bpf_mtap(ifp->if_bpf, m);
1373 #endif
1375 * Encapsulate the packet in prep for transmission.
1377 m = ieee80211_encap(ic, m, ni);
1378 if (m == NULL) {
1379 DPRINTF(sc, ATH_DEBUG_XMIT,
1380 "%s: encapsulation failure\n",
1381 __func__);
1382 sc->sc_stats.ast_tx_encap++;
1383 goto bad;
1386 * Check for fragmentation. If this has frame
1387 * has been broken up verify we have enough
1388 * buffers to send all the fragments so all
1389 * go out or none...
1391 if ((m->m_flags & M_FRAG) &&
1392 !ath_txfrag_setup(sc, &frags, m, ni)) {
1393 DPRINTF(sc, ATH_DEBUG_ANY,
1394 "%s: out of txfrag buffers\n", __func__);
1395 ic->ic_stats.is_tx_nobuf++; /* XXX */
1396 ath_freetx(m);
1397 goto bad;
1399 } else {
1401 * Hack! The referenced node pointer is in the
1402 * rcvif field of the packet header. This is
1403 * placed there by ieee80211_mgmt_output because
1404 * we need to hold the reference with the frame
1405 * and there's no other way (other than packet
1406 * tags which we consider too expensive to use)
1407 * to pass it along.
1409 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1410 m->m_pkthdr.rcvif = NULL;
1412 wh = mtod(m, struct ieee80211_frame *);
1413 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1414 IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1415 /* fill time stamp */
1416 u_int64_t tsf;
1417 u_int32_t *tstamp;
1419 tsf = ath_hal_gettsf64(ah);
1420 /* XXX: adjust 100us delay to xmit */
1421 tsf += 100;
1422 tstamp = (u_int32_t *)&wh[1];
1423 tstamp[0] = htole32(tsf & 0xffffffff);
1424 tstamp[1] = htole32(tsf >> 32);
1426 sc->sc_stats.ast_tx_mgmt++;
1429 nextfrag:
1430 next = m->m_nextpkt;
1431 if (ath_tx_start(sc, ni, bf, m)) {
1432 bad:
1433 ifp->if_oerrors++;
1434 reclaim:
1435 ATH_TXBUF_LOCK(sc);
1436 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1437 ath_txfrag_cleanup(sc, &frags, ni);
1438 ATH_TXBUF_UNLOCK(sc);
1439 if (ni != NULL)
1440 ieee80211_free_node(ni);
1441 continue;
1443 if (next != NULL) {
1444 m = next;
1445 bf = STAILQ_FIRST(&frags);
1446 KASSERT(bf != NULL, ("no buf for txfrag"));
1447 STAILQ_REMOVE_HEAD(&frags, bf_list);
1448 goto nextfrag;
1451 ifp->if_timer = 1;
1455 static int
1456 ath_media_change(struct ifnet *ifp)
1458 #define IS_UP(ifp) \
1459 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1460 int error;
1462 error = ieee80211_media_change(ifp);
1463 if (error == ENETRESET) {
1464 if (IS_UP(ifp))
1465 ath_init(ifp->if_softc); /* XXX lose error */
1466 error = 0;
1468 return error;
1469 #undef IS_UP
1472 #ifdef AR_DEBUG
1473 static void
1474 ath_keyprint(const char *tag, u_int ix,
1475 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1477 static const char *ciphers[] = {
1478 "WEP",
1479 "AES-OCB",
1480 "AES-CCM",
1481 "CKIP",
1482 "TKIP",
1483 "CLR",
1485 int i, n;
1487 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1488 for (i = 0, n = hk->kv_len; i < n; i++)
1489 printf("%02x", hk->kv_val[i]);
1490 printf(" mac %s", ether_sprintf(mac));
1491 if (hk->kv_type == HAL_CIPHER_TKIP) {
1492 printf(" mic ");
1493 for (i = 0; i < sizeof(hk->kv_mic); i++)
1494 printf("%02x", hk->kv_mic[i]);
1496 printf("\n");
1498 #endif
1501 * Set a TKIP key into the hardware. This handles the
1502 * potential distribution of key state to multiple key
1503 * cache slots for TKIP.
1505 static int
1506 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1507 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1509 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1510 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1511 struct ath_hal *ah = sc->sc_ah;
1513 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1514 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1515 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1516 if (sc->sc_splitmic) {
1518 * TX key goes at first index, RX key at the rx index.
1519 * The hal handles the MIC keys at index+64.
1521 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1522 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1523 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1524 zerobssid))
1525 return 0;
1527 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1528 KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1529 /* XXX delete tx key on failure? */
1530 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1531 hk, mac);
1532 } else {
1534 * Room for both TX+RX MIC keys in one key cache
1535 * slot, just set key at the first index; the HAL
1536 * will handle the reset.
1538 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1539 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1540 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1541 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1543 } else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1544 if (sc->sc_splitmic) {
1546 * NB: must pass MIC key in expected location when
1547 * the keycache only holds one MIC key per entry.
1549 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1550 } else
1551 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1552 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1553 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1554 } else if (k->wk_flags & IEEE80211_KEY_RECV) {
1555 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1556 KEYPRINTF(sc, k->wk_keyix, hk, mac);
1557 return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1559 return 0;
1560 #undef IEEE80211_KEY_XR
1564 * Set a net80211 key into the hardware. This handles the
1565 * potential distribution of key state to multiple key
1566 * cache slots for TKIP with hardware MIC support.
1568 static int
1569 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1570 const u_int8_t mac0[IEEE80211_ADDR_LEN],
1571 struct ieee80211_node *bss)
1573 #define N(a) (sizeof(a)/sizeof(a[0]))
1574 static const u_int8_t ciphermap[] = {
1575 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
1576 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
1577 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
1578 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
1579 (u_int8_t) -1, /* 4 is not allocated */
1580 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
1581 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
1583 struct ath_hal *ah = sc->sc_ah;
1584 const struct ieee80211_cipher *cip = k->wk_cipher;
1585 u_int8_t gmac[IEEE80211_ADDR_LEN];
1586 const u_int8_t *mac;
1587 HAL_KEYVAL hk;
1589 memset(&hk, 0, sizeof(hk));
1591 * Software crypto uses a "clear key" so non-crypto
1592 * state kept in the key cache are maintained and
1593 * so that rx frames have an entry to match.
1595 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1596 KASSERT(cip->ic_cipher < N(ciphermap),
1597 ("invalid cipher type %u", cip->ic_cipher));
1598 hk.kv_type = ciphermap[cip->ic_cipher];
1599 hk.kv_len = k->wk_keylen;
1600 memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1601 } else
1602 hk.kv_type = HAL_CIPHER_CLR;
1604 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1606 * Group keys on hardware that supports multicast frame
1607 * key search use a mac that is the sender's address with
1608 * the high bit set instead of the app-specified address.
1610 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1611 gmac[0] |= 0x80;
1612 mac = gmac;
1613 } else
1614 mac = mac0;
1616 if ((hk.kv_type == HAL_CIPHER_TKIP &&
1617 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1618 return ath_keyset_tkip(sc, k, &hk, mac);
1619 } else {
1620 KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1621 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1623 #undef N
1627 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1628 * each key, one for decrypt/encrypt and the other for the MIC.
1630 static u_int16_t
1631 key_alloc_2pair(struct ath_softc *sc,
1632 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1634 #define N(a) (sizeof(a)/sizeof(a[0]))
1635 u_int i, keyix;
1637 KASSERT(sc->sc_splitmic, ("key cache !split"));
1638 /* XXX could optimize */
1639 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1640 u_int8_t b = sc->sc_keymap[i];
1641 if (b != 0xff) {
1643 * One or more slots in this byte are free.
1645 keyix = i*NBBY;
1646 while (b & 1) {
1647 again:
1648 keyix++;
1649 b >>= 1;
1651 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1652 if (isset(sc->sc_keymap, keyix+32) ||
1653 isset(sc->sc_keymap, keyix+64) ||
1654 isset(sc->sc_keymap, keyix+32+64)) {
1655 /* full pair unavailable */
1656 /* XXX statistic */
1657 if (keyix == (i+1)*NBBY) {
1658 /* no slots were appropriate, advance */
1659 continue;
1661 goto again;
1663 setbit(sc->sc_keymap, keyix);
1664 setbit(sc->sc_keymap, keyix+64);
1665 setbit(sc->sc_keymap, keyix+32);
1666 setbit(sc->sc_keymap, keyix+32+64);
1667 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1668 "%s: key pair %u,%u %u,%u\n",
1669 __func__, keyix, keyix+64,
1670 keyix+32, keyix+32+64);
1671 *txkeyix = keyix;
1672 *rxkeyix = keyix+32;
1673 return keyix;
1676 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1677 return IEEE80211_KEYIX_NONE;
1678 #undef N
1682 * Allocate tx/rx key slots for TKIP. We allocate two slots for
1683 * each key, one for decrypt/encrypt and the other for the MIC.
1685 static int
1686 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1687 ieee80211_keyix *rxkeyix)
1689 #define N(a) (sizeof(a)/sizeof(a[0]))
1690 u_int i, keyix;
1692 KASSERT(!sc->sc_splitmic, ("key cache split"));
1693 /* XXX could optimize */
1694 for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1695 uint8_t b = sc->sc_keymap[i];
1696 if (b != 0xff) {
1698 * One or more slots in this byte are free.
1700 keyix = i*NBBY;
1701 while (b & 1) {
1702 again:
1703 keyix++;
1704 b >>= 1;
1706 if (isset(sc->sc_keymap, keyix+64)) {
1707 /* full pair unavailable */
1708 /* XXX statistic */
1709 if (keyix == (i+1)*NBBY) {
1710 /* no slots were appropriate, advance */
1711 continue;
1713 goto again;
1715 setbit(sc->sc_keymap, keyix);
1716 setbit(sc->sc_keymap, keyix+64);
1717 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1718 "%s: key pair %u,%u\n",
1719 __func__, keyix, keyix+64);
1720 *txkeyix = *rxkeyix = keyix;
1721 return 1;
1724 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1725 return 0;
1726 #undef N
1730 * Allocate a single key cache slot.
1732 static int
1733 key_alloc_single(struct ath_softc *sc,
1734 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1736 #define N(a) (sizeof(a)/sizeof(a[0]))
1737 u_int i, keyix;
1739 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1740 for (i = 0; i < N(sc->sc_keymap); i++) {
1741 u_int8_t b = sc->sc_keymap[i];
1742 if (b != 0xff) {
1744 * One or more slots are free.
1746 keyix = i*NBBY;
1747 while (b & 1)
1748 keyix++, b >>= 1;
1749 setbit(sc->sc_keymap, keyix);
1750 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1751 __func__, keyix);
1752 *txkeyix = *rxkeyix = keyix;
1753 return 1;
1756 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1757 return 0;
1758 #undef N
1762 * Allocate one or more key cache slots for a uniacst key. The
1763 * key itself is needed only to identify the cipher. For hardware
1764 * TKIP with split cipher+MIC keys we allocate two key cache slot
1765 * pairs so that we can setup separate TX and RX MIC keys. Note
1766 * that the MIC key for a TKIP key at slot i is assumed by the
1767 * hardware to be at slot i+64. This limits TKIP keys to the first
1768 * 64 entries.
1770 static int
1771 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1772 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1774 struct ath_softc *sc = ic->ic_ifp->if_softc;
1777 * Group key allocation must be handled specially for
1778 * parts that do not support multicast key cache search
1779 * functionality. For those parts the key id must match
1780 * the h/w key index so lookups find the right key. On
1781 * parts w/ the key search facility we install the sender's
1782 * mac address (with the high bit set) and let the hardware
1783 * find the key w/o using the key id. This is preferred as
1784 * it permits us to support multiple users for adhoc and/or
1785 * multi-station operation.
1787 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1788 if (!(&ic->ic_nw_keys[0] <= k &&
1789 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1790 /* should not happen */
1791 DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1792 "%s: bogus group key\n", __func__);
1793 return 0;
1796 * XXX we pre-allocate the global keys so
1797 * have no way to check if they've already been allocated.
1799 *keyix = *rxkeyix = k - ic->ic_nw_keys;
1800 return 1;
1804 * We allocate two pair for TKIP when using the h/w to do
1805 * the MIC. For everything else, including software crypto,
1806 * we allocate a single entry. Note that s/w crypto requires
1807 * a pass-through slot on the 5211 and 5212. The 5210 does
1808 * not support pass-through cache entries and we map all
1809 * those requests to slot 0.
1811 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1812 return key_alloc_single(sc, keyix, rxkeyix);
1813 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1814 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1815 if (sc->sc_splitmic)
1816 return key_alloc_2pair(sc, keyix, rxkeyix);
1817 else
1818 return key_alloc_pair(sc, keyix, rxkeyix);
1819 } else {
1820 return key_alloc_single(sc, keyix, rxkeyix);
1825 * Delete an entry in the key cache allocated by ath_key_alloc.
1827 static int
1828 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1830 struct ath_softc *sc = ic->ic_ifp->if_softc;
1831 struct ath_hal *ah = sc->sc_ah;
1832 const struct ieee80211_cipher *cip = k->wk_cipher;
1833 u_int keyix = k->wk_keyix;
1835 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1837 if (!device_has_power(sc->sc_dev)) {
1838 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1839 k->wk_keyix);
1842 ath_hal_keyreset(ah, keyix);
1844 * Handle split tx/rx keying required for TKIP with h/w MIC.
1846 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1847 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1848 ath_hal_keyreset(ah, keyix+32); /* RX key */
1849 if (keyix >= IEEE80211_WEP_NKID) {
1851 * Don't touch keymap entries for global keys so
1852 * they are never considered for dynamic allocation.
1854 clrbit(sc->sc_keymap, keyix);
1855 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1856 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1857 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
1858 if (sc->sc_splitmic) {
1859 /* +32 for RX key, +32+64 for RX key MIC */
1860 clrbit(sc->sc_keymap, keyix+32);
1861 clrbit(sc->sc_keymap, keyix+32+64);
1865 return 1;
1869 * Set the key cache contents for the specified key. Key cache
1870 * slot(s) must already have been allocated by ath_key_alloc.
1872 static int
1873 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1874 const u_int8_t mac[IEEE80211_ADDR_LEN])
1876 struct ath_softc *sc = ic->ic_ifp->if_softc;
1878 if (!device_has_power(sc->sc_dev)) {
1879 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1880 k->wk_keyix);
1882 return ath_keyset(sc, k, mac, ic->ic_bss);
1886 * Block/unblock tx+rx processing while a key change is done.
1887 * We assume the caller serializes key management operations
1888 * so we only need to worry about synchronization with other
1889 * uses that originate in the driver.
1891 static void
1892 ath_key_update_begin(struct ieee80211com *ic)
1894 struct ifnet *ifp = ic->ic_ifp;
1895 struct ath_softc *sc = ifp->if_softc;
1897 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1898 #if 0
1899 tasklet_disable(&sc->sc_rxtq);
1900 #endif
1901 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
1904 static void
1905 ath_key_update_end(struct ieee80211com *ic)
1907 struct ifnet *ifp = ic->ic_ifp;
1908 struct ath_softc *sc = ifp->if_softc;
1910 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1911 IF_UNLOCK(&ifp->if_snd);
1912 #if 0
1913 tasklet_enable(&sc->sc_rxtq);
1914 #endif
1918 * Calculate the receive filter according to the
1919 * operating mode and state:
1921 * o always accept unicast, broadcast, and multicast traffic
1922 * o maintain current state of phy error reception (the hal
1923 * may enable phy error frames for noise immunity work)
1924 * o probe request frames are accepted only when operating in
1925 * hostap, adhoc, or monitor modes
1926 * o enable promiscuous mode according to the interface state
1927 * o accept beacons:
1928 * - when operating in adhoc mode so the 802.11 layer creates
1929 * node table entries for peers,
1930 * - when operating in station mode for collecting rssi data when
1931 * the station is otherwise quiet, or
1932 * - when scanning
1934 static u_int32_t
1935 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1937 struct ieee80211com *ic = &sc->sc_ic;
1938 struct ath_hal *ah = sc->sc_ah;
1939 struct ifnet *ifp = &sc->sc_if;
1940 u_int32_t rfilt;
1942 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1943 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1944 if (ic->ic_opmode != IEEE80211_M_STA)
1945 rfilt |= HAL_RX_FILTER_PROBEREQ;
1946 if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1947 (ifp->if_flags & IFF_PROMISC))
1948 rfilt |= HAL_RX_FILTER_PROM;
1949 if (ifp->if_flags & IFF_PROMISC)
1950 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1951 if (ic->ic_opmode == IEEE80211_M_STA ||
1952 ic->ic_opmode == IEEE80211_M_IBSS ||
1953 state == IEEE80211_S_SCAN)
1954 rfilt |= HAL_RX_FILTER_BEACON;
1955 return rfilt;
1958 static void
1959 ath_mode_init(struct ath_softc *sc)
1961 struct ifnet *ifp = &sc->sc_if;
1962 struct ieee80211com *ic = &sc->sc_ic;
1963 struct ath_hal *ah = sc->sc_ah;
1964 struct ether_multi *enm;
1965 struct ether_multistep estep;
1966 u_int32_t rfilt, mfilt[2], val;
1967 int i;
1968 uint8_t pos;
1970 /* configure rx filter */
1971 rfilt = ath_calcrxfilter(sc, ic->ic_state);
1972 ath_hal_setrxfilter(ah, rfilt);
1974 /* configure operational mode */
1975 ath_hal_setopmode(ah);
1977 /* Write keys to hardware; it may have been powered down. */
1978 ath_key_update_begin(ic);
1979 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1980 ath_key_set(ic,
1981 &ic->ic_crypto.cs_nw_keys[i],
1982 ic->ic_myaddr);
1984 ath_key_update_end(ic);
1987 * Handle any link-level address change. Note that we only
1988 * need to force ic_myaddr; any other addresses are handled
1989 * as a byproduct of the ifnet code marking the interface
1990 * down then up.
1992 * XXX should get from lladdr instead of arpcom but that's more work
1994 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1995 ath_hal_setmac(ah, ic->ic_myaddr);
1997 /* calculate and install multicast filter */
1998 ifp->if_flags &= ~IFF_ALLMULTI;
1999 mfilt[0] = mfilt[1] = 0;
2000 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
2001 while (enm != NULL) {
2002 void *dl;
2003 /* XXX Punt on ranges. */
2004 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2005 mfilt[0] = mfilt[1] = 0xffffffff;
2006 ifp->if_flags |= IFF_ALLMULTI;
2007 break;
2009 dl = enm->enm_addrlo;
2010 val = LE_READ_4((char *)dl + 0);
2011 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2012 val = LE_READ_4((char *)dl + 3);
2013 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2014 pos &= 0x3f;
2015 mfilt[pos / 32] |= (1 << (pos % 32));
2017 ETHER_NEXT_MULTI(estep, enm);
2020 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2021 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2022 __func__, rfilt, mfilt[0], mfilt[1]);
2026 * Set the slot time based on the current setting.
2028 static void
2029 ath_setslottime(struct ath_softc *sc)
2031 struct ieee80211com *ic = &sc->sc_ic;
2032 struct ath_hal *ah = sc->sc_ah;
2034 if (ic->ic_flags & IEEE80211_F_SHSLOT)
2035 ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2036 else
2037 ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2038 sc->sc_updateslot = OK;
2042 * Callback from the 802.11 layer to update the
2043 * slot time based on the current setting.
2045 static void
2046 ath_updateslot(struct ifnet *ifp)
2048 struct ath_softc *sc = ifp->if_softc;
2049 struct ieee80211com *ic = &sc->sc_ic;
2052 * When not coordinating the BSS, change the hardware
2053 * immediately. For other operation we defer the change
2054 * until beacon updates have propagated to the stations.
2056 if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2057 sc->sc_updateslot = UPDATE;
2058 else
2059 ath_setslottime(sc);
2063 * Setup a h/w transmit queue for beacons.
2065 static int
2066 ath_beaconq_setup(struct ath_hal *ah)
2068 HAL_TXQ_INFO qi;
2070 memset(&qi, 0, sizeof(qi));
2071 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2072 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2073 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2074 /* NB: for dynamic turbo, don't enable any other interrupts */
2075 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2076 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2080 * Setup the transmit queue parameters for the beacon queue.
2082 static int
2083 ath_beaconq_config(struct ath_softc *sc)
2085 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
2086 struct ieee80211com *ic = &sc->sc_ic;
2087 struct ath_hal *ah = sc->sc_ah;
2088 HAL_TXQ_INFO qi;
2090 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2091 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2093 * Always burst out beacon and CAB traffic.
2095 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2096 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2097 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2098 } else {
2099 struct wmeParams *wmep =
2100 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2102 * Adhoc mode; important thing is to use 2x cwmin.
2104 qi.tqi_aifs = wmep->wmep_aifsn;
2105 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2106 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2109 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2110 device_printf(sc->sc_dev, "unable to update parameters for "
2111 "beacon hardware queue!\n");
2112 return 0;
2113 } else {
2114 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2115 return 1;
2117 #undef ATH_EXPONENT_TO_VALUE
2121 * Allocate and setup an initial beacon frame.
2123 static int
2124 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2126 struct ieee80211com *ic = ni->ni_ic;
2127 struct ath_buf *bf;
2128 struct mbuf *m;
2129 int error;
2131 bf = STAILQ_FIRST(&sc->sc_bbuf);
2132 if (bf == NULL) {
2133 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2134 sc->sc_stats.ast_be_nombuf++; /* XXX */
2135 return ENOMEM; /* XXX */
2138 * NB: the beacon data buffer must be 32-bit aligned;
2139 * we assume the mbuf routines will return us something
2140 * with this alignment (perhaps should assert).
2142 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2143 if (m == NULL) {
2144 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2145 __func__);
2146 sc->sc_stats.ast_be_nombuf++;
2147 return ENOMEM;
2149 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2150 BUS_DMA_NOWAIT);
2151 if (error == 0) {
2152 bf->bf_m = m;
2153 bf->bf_node = ieee80211_ref_node(ni);
2154 } else {
2155 m_freem(m);
2157 return error;
2161 * Setup the beacon frame for transmit.
2163 static void
2164 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2166 #define USE_SHPREAMBLE(_ic) \
2167 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2168 == IEEE80211_F_SHPREAMBLE)
2169 struct ieee80211_node *ni = bf->bf_node;
2170 struct ieee80211com *ic = ni->ni_ic;
2171 struct mbuf *m = bf->bf_m;
2172 struct ath_hal *ah = sc->sc_ah;
2173 struct ath_desc *ds;
2174 int flags, antenna;
2175 const HAL_RATE_TABLE *rt;
2176 u_int8_t rix, rate;
2178 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2179 __func__, m, m->m_len);
2181 /* setup descriptors */
2182 ds = bf->bf_desc;
2184 flags = HAL_TXDESC_NOACK;
2185 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2186 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */
2187 flags |= HAL_TXDESC_VEOL;
2189 * Let hardware handle antenna switching unless
2190 * the user has selected a transmit antenna
2191 * (sc_txantenna is not 0).
2193 antenna = sc->sc_txantenna;
2194 } else {
2195 ds->ds_link = 0;
2197 * Switch antenna every 4 beacons, unless the user
2198 * has selected a transmit antenna (sc_txantenna
2199 * is not 0).
2201 * XXX assumes two antenna
2203 if (sc->sc_txantenna == 0)
2204 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2205 else
2206 antenna = sc->sc_txantenna;
2209 KASSERT(bf->bf_nseg == 1,
2210 ("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2211 ds->ds_data = bf->bf_segs[0].ds_addr;
2213 * Calculate rate code.
2214 * XXX everything at min xmit rate
2216 rix = sc->sc_minrateix;
2217 rt = sc->sc_currates;
2218 rate = rt->info[rix].rateCode;
2219 if (USE_SHPREAMBLE(ic))
2220 rate |= rt->info[rix].shortPreamble;
2221 ath_hal_setuptxdesc(ah, ds
2222 , m->m_len + IEEE80211_CRC_LEN /* frame length */
2223 , sizeof(struct ieee80211_frame)/* header length */
2224 , HAL_PKT_TYPE_BEACON /* Atheros packet type */
2225 , ni->ni_txpower /* txpower XXX */
2226 , rate, 1 /* series 0 rate/tries */
2227 , HAL_TXKEYIX_INVALID /* no encryption */
2228 , antenna /* antenna mode */
2229 , flags /* no ack, veol for beacons */
2230 , 0 /* rts/cts rate */
2231 , 0 /* rts/cts duration */
2233 /* NB: beacon's BufLen must be a multiple of 4 bytes */
2234 ath_hal_filltxdesc(ah, ds
2235 , roundup(m->m_len, 4) /* buffer length */
2236 , AH_TRUE /* first segment */
2237 , AH_TRUE /* last segment */
2238 , ds /* first descriptor */
2241 /* NB: The desc swap function becomes void, if descriptor swapping
2242 * is not enabled
2244 ath_desc_swap(ds);
2246 #undef USE_SHPREAMBLE
2250 * Transmit a beacon frame at SWBA. Dynamic updates to the
2251 * frame contents are done as needed and the slot time is
2252 * also adjusted based on current state.
2254 static void
2255 ath_beacon_proc(void *arg, int pending)
2257 struct ath_softc *sc = arg;
2258 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2259 struct ieee80211_node *ni = bf->bf_node;
2260 struct ieee80211com *ic = ni->ni_ic;
2261 struct ath_hal *ah = sc->sc_ah;
2262 struct mbuf *m;
2263 int ncabq, error, otherant;
2265 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2266 __func__, pending);
2268 if (ic->ic_opmode == IEEE80211_M_STA ||
2269 ic->ic_opmode == IEEE80211_M_MONITOR ||
2270 bf == NULL || bf->bf_m == NULL) {
2271 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2272 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2273 return;
2276 * Check if the previous beacon has gone out. If
2277 * not don't try to post another, skip this period
2278 * and wait for the next. Missed beacons indicate
2279 * a problem and should not occur. If we miss too
2280 * many consecutive beacons reset the device.
2282 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2283 sc->sc_bmisscount++;
2284 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2285 "%s: missed %u consecutive beacons\n",
2286 __func__, sc->sc_bmisscount);
2287 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */
2288 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2289 return;
2291 if (sc->sc_bmisscount != 0) {
2292 DPRINTF(sc, ATH_DEBUG_BEACON,
2293 "%s: resume beacon xmit after %u misses\n",
2294 __func__, sc->sc_bmisscount);
2295 sc->sc_bmisscount = 0;
2299 * Update dynamic beacon contents. If this returns
2300 * non-zero then we need to remap the memory because
2301 * the beacon frame changed size (probably because
2302 * of the TIM bitmap).
2304 m = bf->bf_m;
2305 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2306 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2307 /* XXX too conservative? */
2308 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2309 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2310 BUS_DMA_NOWAIT);
2311 if (error != 0) {
2312 if_printf(&sc->sc_if,
2313 "%s: bus_dmamap_load_mbuf failed, error %u\n",
2314 __func__, error);
2315 return;
2320 * Handle slot time change when a non-ERP station joins/leaves
2321 * an 11g network. The 802.11 layer notifies us via callback,
2322 * we mark updateslot, then wait one beacon before effecting
2323 * the change. This gives associated stations at least one
2324 * beacon interval to note the state change.
2326 /* XXX locking */
2327 if (sc->sc_updateslot == UPDATE)
2328 sc->sc_updateslot = COMMIT; /* commit next beacon */
2329 else if (sc->sc_updateslot == COMMIT)
2330 ath_setslottime(sc); /* commit change to h/w */
2333 * Check recent per-antenna transmit statistics and flip
2334 * the default antenna if noticeably more frames went out
2335 * on the non-default antenna.
2336 * XXX assumes 2 anntenae
2338 otherant = sc->sc_defant & 1 ? 2 : 1;
2339 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2340 ath_setdefantenna(sc, otherant);
2341 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2344 * Construct tx descriptor.
2346 ath_beacon_setup(sc, bf);
2349 * Stop any current dma and put the new frame on the queue.
2350 * This should never fail since we check above that no frames
2351 * are still pending on the queue.
2353 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2354 DPRINTF(sc, ATH_DEBUG_ANY,
2355 "%s: beacon queue %u did not stop?\n",
2356 __func__, sc->sc_bhalq);
2358 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2359 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2362 * Enable the CAB queue before the beacon queue to
2363 * insure cab frames are triggered by this beacon.
2365 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */
2366 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2367 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2368 ath_hal_txstart(ah, sc->sc_bhalq);
2369 DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2370 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2371 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2373 sc->sc_stats.ast_be_xmit++;
2377 * Reset the hardware after detecting beacons have stopped.
2379 static void
2380 ath_bstuck_proc(void *arg, int pending)
2382 struct ath_softc *sc = arg;
2383 struct ifnet *ifp = &sc->sc_if;
2385 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2386 sc->sc_bmisscount);
2387 ath_reset(ifp);
2391 * Reclaim beacon resources.
2393 static void
2394 ath_beacon_free(struct ath_softc *sc)
2396 struct ath_buf *bf;
2398 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2399 if (bf->bf_m != NULL) {
2400 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2401 m_freem(bf->bf_m);
2402 bf->bf_m = NULL;
2404 if (bf->bf_node != NULL) {
2405 ieee80211_free_node(bf->bf_node);
2406 bf->bf_node = NULL;
2412 * Configure the beacon and sleep timers.
2414 * When operating as an AP this resets the TSF and sets
2415 * up the hardware to notify us when we need to issue beacons.
2417 * When operating in station mode this sets up the beacon
2418 * timers according to the timestamp of the last received
2419 * beacon and the current TSF, configures PCF and DTIM
2420 * handling, programs the sleep registers so the hardware
2421 * will wakeup in time to receive beacons, and configures
2422 * the beacon miss handling so we'll receive a BMISS
2423 * interrupt when we stop seeing beacons from the AP
2424 * we've associated with.
2426 static void
2427 ath_beacon_config(struct ath_softc *sc)
2429 #define TSF_TO_TU(_h,_l) \
2430 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2431 #define FUDGE 2
2432 struct ath_hal *ah = sc->sc_ah;
2433 struct ieee80211com *ic = &sc->sc_ic;
2434 struct ieee80211_node *ni = ic->ic_bss;
2435 u_int32_t nexttbtt, intval, tsftu;
2436 u_int64_t tsf;
2438 /* extract tstamp from last beacon and convert to TU */
2439 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2440 LE_READ_4(ni->ni_tstamp.data));
2441 /* NB: the beacon interval is kept internally in TU's */
2442 intval = ni->ni_intval & HAL_BEACON_PERIOD;
2443 if (nexttbtt == 0) /* e.g. for ap mode */
2444 nexttbtt = intval;
2445 else if (intval) /* NB: can be 0 for monitor mode */
2446 nexttbtt = roundup(nexttbtt, intval);
2447 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2448 __func__, nexttbtt, intval, ni->ni_intval);
2449 if (ic->ic_opmode == IEEE80211_M_STA) {
2450 HAL_BEACON_STATE bs;
2451 int dtimperiod, dtimcount;
2452 int cfpperiod, cfpcount;
2455 * Setup dtim and cfp parameters according to
2456 * last beacon we received (which may be none).
2458 dtimperiod = ni->ni_dtim_period;
2459 if (dtimperiod <= 0) /* NB: 0 if not known */
2460 dtimperiod = 1;
2461 dtimcount = ni->ni_dtim_count;
2462 if (dtimcount >= dtimperiod) /* NB: sanity check */
2463 dtimcount = 0; /* XXX? */
2464 cfpperiod = 1; /* NB: no PCF support yet */
2465 cfpcount = 0;
2467 * Pull nexttbtt forward to reflect the current
2468 * TSF and calculate dtim+cfp state for the result.
2470 tsf = ath_hal_gettsf64(ah);
2471 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2472 do {
2473 nexttbtt += intval;
2474 if (--dtimcount < 0) {
2475 dtimcount = dtimperiod - 1;
2476 if (--cfpcount < 0)
2477 cfpcount = cfpperiod - 1;
2479 } while (nexttbtt < tsftu);
2480 memset(&bs, 0, sizeof(bs));
2481 bs.bs_intval = intval;
2482 bs.bs_nexttbtt = nexttbtt;
2483 bs.bs_dtimperiod = dtimperiod*intval;
2484 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2485 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2486 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2487 bs.bs_cfpmaxduration = 0;
2488 #if 0
2490 * The 802.11 layer records the offset to the DTIM
2491 * bitmap while receiving beacons; use it here to
2492 * enable h/w detection of our AID being marked in
2493 * the bitmap vector (to indicate frames for us are
2494 * pending at the AP).
2495 * XXX do DTIM handling in s/w to WAR old h/w bugs
2496 * XXX enable based on h/w rev for newer chips
2498 bs.bs_timoffset = ni->ni_timoff;
2499 #endif
2501 * Calculate the number of consecutive beacons to miss
2502 * before taking a BMISS interrupt. The configuration
2503 * is specified in ms, so we need to convert that to
2504 * TU's and then calculate based on the beacon interval.
2505 * Note that we clamp the result to at most 10 beacons.
2507 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2508 if (bs.bs_bmissthreshold > 10)
2509 bs.bs_bmissthreshold = 10;
2510 else if (bs.bs_bmissthreshold <= 0)
2511 bs.bs_bmissthreshold = 1;
2514 * Calculate sleep duration. The configuration is
2515 * given in ms. We insure a multiple of the beacon
2516 * period is used. Also, if the sleep duration is
2517 * greater than the DTIM period then it makes senses
2518 * to make it a multiple of that.
2520 * XXX fixed at 100ms
2522 bs.bs_sleepduration =
2523 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2524 if (bs.bs_sleepduration > bs.bs_dtimperiod)
2525 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2527 DPRINTF(sc, ATH_DEBUG_BEACON,
2528 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2529 , __func__
2530 , tsf, tsftu
2531 , bs.bs_intval
2532 , bs.bs_nexttbtt
2533 , bs.bs_dtimperiod
2534 , bs.bs_nextdtim
2535 , bs.bs_bmissthreshold
2536 , bs.bs_sleepduration
2537 , bs.bs_cfpperiod
2538 , bs.bs_cfpmaxduration
2539 , bs.bs_cfpnext
2540 , bs.bs_timoffset
2542 ath_hal_intrset(ah, 0);
2543 ath_hal_beacontimers(ah, &bs);
2544 sc->sc_imask |= HAL_INT_BMISS;
2545 ath_hal_intrset(ah, sc->sc_imask);
2546 } else {
2547 ath_hal_intrset(ah, 0);
2548 if (nexttbtt == intval)
2549 intval |= HAL_BEACON_RESET_TSF;
2550 if (ic->ic_opmode == IEEE80211_M_IBSS) {
2552 * In IBSS mode enable the beacon timers but only
2553 * enable SWBA interrupts if we need to manually
2554 * prepare beacon frames. Otherwise we use a
2555 * self-linked tx descriptor and let the hardware
2556 * deal with things.
2558 intval |= HAL_BEACON_ENA;
2559 if (!sc->sc_hasveol)
2560 sc->sc_imask |= HAL_INT_SWBA;
2561 if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2563 * Pull nexttbtt forward to reflect
2564 * the current TSF.
2566 tsf = ath_hal_gettsf64(ah);
2567 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2568 do {
2569 nexttbtt += intval;
2570 } while (nexttbtt < tsftu);
2572 ath_beaconq_config(sc);
2573 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2575 * In AP mode we enable the beacon timers and
2576 * SWBA interrupts to prepare beacon frames.
2578 intval |= HAL_BEACON_ENA;
2579 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
2580 ath_beaconq_config(sc);
2582 ath_hal_beaconinit(ah, nexttbtt, intval);
2583 sc->sc_bmisscount = 0;
2584 ath_hal_intrset(ah, sc->sc_imask);
2586 * When using a self-linked beacon descriptor in
2587 * ibss mode load it once here.
2589 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2590 ath_beacon_proc(sc, 0);
2592 sc->sc_syncbeacon = 0;
2593 #undef UNDEF
2594 #undef TSF_TO_TU
2597 static int
2598 ath_descdma_setup(struct ath_softc *sc,
2599 struct ath_descdma *dd, ath_bufhead *head,
2600 const char *name, int nbuf, int ndesc)
2602 #define DS2PHYS(_dd, _ds) \
2603 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2604 struct ifnet *ifp = &sc->sc_if;
2605 struct ath_desc *ds;
2606 struct ath_buf *bf;
2607 int i, bsize, error;
2609 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2610 __func__, name, nbuf, ndesc);
2612 dd->dd_name = name;
2613 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2616 * Setup DMA descriptor area.
2618 dd->dd_dmat = sc->sc_dmat;
2620 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2621 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2623 if (error != 0) {
2624 if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2625 "error %u\n", nbuf * ndesc, dd->dd_name, error);
2626 goto fail0;
2629 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2630 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2631 if (error != 0) {
2632 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2633 nbuf * ndesc, dd->dd_name, error);
2634 goto fail1;
2637 /* allocate descriptors */
2638 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2639 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2640 if (error != 0) {
2641 if_printf(ifp, "unable to create dmamap for %s descriptors, "
2642 "error %u\n", dd->dd_name, error);
2643 goto fail2;
2646 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2647 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2648 if (error != 0) {
2649 if_printf(ifp, "unable to map %s descriptors, error %u\n",
2650 dd->dd_name, error);
2651 goto fail3;
2654 ds = dd->dd_desc;
2655 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2656 DPRINTF(sc, ATH_DEBUG_RESET,
2657 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2658 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2659 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2661 /* allocate rx buffers */
2662 bsize = sizeof(struct ath_buf) * nbuf;
2663 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2664 if (bf == NULL) {
2665 if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2666 dd->dd_name, bsize);
2667 goto fail4;
2669 dd->dd_bufptr = bf;
2671 STAILQ_INIT(head);
2672 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2673 bf->bf_desc = ds;
2674 bf->bf_daddr = DS2PHYS(dd, ds);
2675 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2676 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2677 if (error != 0) {
2678 if_printf(ifp, "unable to create dmamap for %s "
2679 "buffer %u, error %u\n", dd->dd_name, i, error);
2680 ath_descdma_cleanup(sc, dd, head);
2681 return error;
2683 STAILQ_INSERT_TAIL(head, bf, bf_list);
2685 return 0;
2686 fail4:
2687 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2688 fail3:
2689 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2690 fail2:
2691 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2692 fail1:
2693 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2694 fail0:
2695 memset(dd, 0, sizeof(*dd));
2696 return error;
2697 #undef DS2PHYS
2700 static void
2701 ath_descdma_cleanup(struct ath_softc *sc,
2702 struct ath_descdma *dd, ath_bufhead *head)
2704 struct ath_buf *bf;
2705 struct ieee80211_node *ni;
2707 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2708 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2709 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2710 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2712 STAILQ_FOREACH(bf, head, bf_list) {
2713 if (bf->bf_m) {
2714 m_freem(bf->bf_m);
2715 bf->bf_m = NULL;
2717 if (bf->bf_dmamap != NULL) {
2718 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2719 bf->bf_dmamap = NULL;
2721 ni = bf->bf_node;
2722 bf->bf_node = NULL;
2723 if (ni != NULL) {
2725 * Reclaim node reference.
2727 ieee80211_free_node(ni);
2731 STAILQ_INIT(head);
2732 free(dd->dd_bufptr, M_ATHDEV);
2733 memset(dd, 0, sizeof(*dd));
2736 static int
2737 ath_desc_alloc(struct ath_softc *sc)
2739 int error;
2741 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2742 "rx", ath_rxbuf, 1);
2743 if (error != 0)
2744 return error;
2746 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2747 "tx", ath_txbuf, ATH_TXDESC);
2748 if (error != 0) {
2749 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2750 return error;
2753 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2754 "beacon", 1, 1);
2755 if (error != 0) {
2756 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2757 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2758 return error;
2760 return 0;
2763 static void
2764 ath_desc_free(struct ath_softc *sc)
2767 if (sc->sc_bdma.dd_desc_len != 0)
2768 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2769 if (sc->sc_txdma.dd_desc_len != 0)
2770 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2771 if (sc->sc_rxdma.dd_desc_len != 0)
2772 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2775 static struct ieee80211_node *
2776 ath_node_alloc(struct ieee80211_node_table *nt)
2778 struct ieee80211com *ic = nt->nt_ic;
2779 struct ath_softc *sc = ic->ic_ifp->if_softc;
2780 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2781 struct ath_node *an;
2783 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2784 if (an == NULL) {
2785 /* XXX stat+msg */
2786 return NULL;
2788 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2789 ath_rate_node_init(sc, an);
2791 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2792 return &an->an_node;
2795 static void
2796 ath_node_free(struct ieee80211_node *ni)
2798 struct ieee80211com *ic = ni->ni_ic;
2799 struct ath_softc *sc = ic->ic_ifp->if_softc;
2801 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2803 ath_rate_node_cleanup(sc, ATH_NODE(ni));
2804 sc->sc_node_free(ni);
2807 static u_int8_t
2808 ath_node_getrssi(const struct ieee80211_node *ni)
2810 #define HAL_EP_RND(x, mul) \
2811 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2812 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2813 int32_t rssi;
2816 * When only one frame is received there will be no state in
2817 * avgrssi so fallback on the value recorded by the 802.11 layer.
2819 if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2820 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2821 else
2822 rssi = ni->ni_rssi;
2823 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2824 #undef HAL_EP_RND
2827 static int
2828 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2830 struct ath_hal *ah = sc->sc_ah;
2831 int error;
2832 struct mbuf *m;
2833 struct ath_desc *ds;
2835 m = bf->bf_m;
2836 if (m == NULL) {
2838 * NB: by assigning a page to the rx dma buffer we
2839 * implicitly satisfy the Atheros requirement that
2840 * this buffer be cache-line-aligned and sized to be
2841 * multiple of the cache line size. Not doing this
2842 * causes weird stuff to happen (for the 5210 at least).
2844 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2845 if (m == NULL) {
2846 DPRINTF(sc, ATH_DEBUG_ANY,
2847 "%s: no mbuf/cluster\n", __func__);
2848 sc->sc_stats.ast_rx_nombuf++;
2849 return ENOMEM;
2851 bf->bf_m = m;
2852 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2854 error = bus_dmamap_load_mbuf(sc->sc_dmat,
2855 bf->bf_dmamap, m,
2856 BUS_DMA_NOWAIT);
2857 if (error != 0) {
2858 DPRINTF(sc, ATH_DEBUG_ANY,
2859 "%s: bus_dmamap_load_mbuf failed; error %d\n",
2860 __func__, error);
2861 sc->sc_stats.ast_rx_busdma++;
2862 return error;
2864 KASSERT(bf->bf_nseg == 1,
2865 ("multi-segment packet; nseg %u", bf->bf_nseg));
2867 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2868 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2871 * Setup descriptors. For receive we always terminate
2872 * the descriptor list with a self-linked entry so we'll
2873 * not get overrun under high load (as can happen with a
2874 * 5212 when ANI processing enables PHY error frames).
2876 * To insure the last descriptor is self-linked we create
2877 * each descriptor as self-linked and add it to the end. As
2878 * each additional descriptor is added the previous self-linked
2879 * entry is ``fixed'' naturally. This should be safe even
2880 * if DMA is happening. When processing RX interrupts we
2881 * never remove/process the last, self-linked, entry on the
2882 * descriptor list. This insures the hardware always has
2883 * someplace to write a new frame.
2885 ds = bf->bf_desc;
2886 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */
2887 ds->ds_data = bf->bf_segs[0].ds_addr;
2888 /* ds->ds_vdata = mtod(m, void *); for radar */
2889 ath_hal_setuprxdesc(ah, ds
2890 , m->m_len /* buffer size */
2894 if (sc->sc_rxlink != NULL)
2895 *sc->sc_rxlink = bf->bf_daddr;
2896 sc->sc_rxlink = &ds->ds_link;
2897 return 0;
2901 * Extend 15-bit time stamp from rx descriptor to
2902 * a full 64-bit TSF using the specified TSF.
2904 static inline u_int64_t
2905 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2907 if ((tsf & 0x7fff) < rstamp)
2908 tsf -= 0x8000;
2909 return ((tsf &~ 0x7fff) | rstamp);
2913 * Intercept management frames to collect beacon rssi data
2914 * and to do ibss merges.
2916 static void
2917 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2918 struct ieee80211_node *ni,
2919 int subtype, int rssi, u_int32_t rstamp)
2921 struct ath_softc *sc = ic->ic_ifp->if_softc;
2924 * Call up first so subsequent work can use information
2925 * potentially stored in the node (e.g. for ibss merge).
2927 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2928 switch (subtype) {
2929 case IEEE80211_FC0_SUBTYPE_BEACON:
2930 /* update rssi statistics for use by the hal */
2931 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2932 if (sc->sc_syncbeacon &&
2933 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2935 * Resync beacon timers using the tsf of the beacon
2936 * frame we just received.
2938 ath_beacon_config(sc);
2940 /* fall thru... */
2941 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2942 if (ic->ic_opmode == IEEE80211_M_IBSS &&
2943 ic->ic_state == IEEE80211_S_RUN) {
2944 u_int64_t tsf = ath_extend_tsf(rstamp,
2945 ath_hal_gettsf64(sc->sc_ah));
2948 * Handle ibss merge as needed; check the tsf on the
2949 * frame before attempting the merge. The 802.11 spec
2950 * says the station should change it's bssid to match
2951 * the oldest station with the same ssid, where oldest
2952 * is determined by the tsf. Note that hardware
2953 * reconfiguration happens through callback to
2954 * ath_newstate as the state machine will go from
2955 * RUN -> RUN when this happens.
2957 if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2958 DPRINTF(sc, ATH_DEBUG_STATE,
2959 "ibss merge, rstamp %u tsf %ju "
2960 "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2961 (uintmax_t)ni->ni_tstamp.tsf);
2962 (void) ieee80211_ibss_merge(ni);
2965 break;
2970 * Set the default antenna.
2972 static void
2973 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2975 struct ath_hal *ah = sc->sc_ah;
2977 /* XXX block beacon interrupts */
2978 ath_hal_setdefantenna(ah, antenna);
2979 if (sc->sc_defant != antenna)
2980 sc->sc_stats.ast_ant_defswitch++;
2981 sc->sc_defant = antenna;
2982 sc->sc_rxotherant = 0;
2985 static void
2986 ath_handle_micerror(struct ieee80211com *ic,
2987 struct ieee80211_frame *wh, int keyix)
2989 struct ieee80211_node *ni;
2991 /* XXX recheck MIC to deal w/ chips that lie */
2992 /* XXX discard MIC errors on !data frames */
2993 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2994 if (ni != NULL) {
2995 ieee80211_notify_michael_failure(ic, wh, keyix);
2996 ieee80211_free_node(ni);
3000 static void
3001 ath_rx_proc(void *arg, int npending)
3003 #define PA2DESC(_sc, _pa) \
3004 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3005 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3006 struct ath_softc *sc = arg;
3007 struct ath_buf *bf;
3008 struct ieee80211com *ic = &sc->sc_ic;
3009 struct ifnet *ifp = &sc->sc_if;
3010 struct ath_hal *ah = sc->sc_ah;
3011 struct ath_desc *ds;
3012 struct mbuf *m;
3013 struct ieee80211_node *ni;
3014 struct ath_node *an;
3015 int len, ngood, type;
3016 u_int phyerr;
3017 HAL_STATUS status;
3018 int16_t nf;
3019 u_int64_t tsf;
3020 uint8_t rxerr_tap, rxerr_mon;
3022 NET_LOCK_GIANT(); /* XXX */
3024 rxerr_tap =
3025 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3027 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3028 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3029 else if (ifp->if_flags & IFF_PROMISC)
3030 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3032 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3033 ngood = 0;
3034 nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3035 tsf = ath_hal_gettsf64(ah);
3036 do {
3037 bf = STAILQ_FIRST(&sc->sc_rxbuf);
3038 if (bf == NULL) { /* NB: shouldn't happen */
3039 if_printf(ifp, "%s: no buffer!\n", __func__);
3040 break;
3042 ds = bf->bf_desc;
3043 if (ds->ds_link == bf->bf_daddr) {
3044 /* NB: never process the self-linked entry at the end */
3045 break;
3047 m = bf->bf_m;
3048 if (m == NULL) { /* NB: shouldn't happen */
3049 if_printf(ifp, "%s: no mbuf!\n", __func__);
3050 break;
3052 /* XXX sync descriptor memory */
3054 * Must provide the virtual address of the current
3055 * descriptor, the physical address, and the virtual
3056 * address of the next descriptor in the h/w chain.
3057 * This allows the HAL to look ahead to see if the
3058 * hardware is done with a descriptor by checking the
3059 * done bit in the following descriptor and the address
3060 * of the current descriptor the DMA engine is working
3061 * on. All this is necessary because of our use of
3062 * a self-linked list to avoid rx overruns.
3064 status = ath_hal_rxprocdesc(ah, ds,
3065 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3066 &ds->ds_rxstat);
3067 #ifdef AR_DEBUG
3068 if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3069 ath_printrxbuf(bf, status == HAL_OK);
3070 #endif
3071 if (status == HAL_EINPROGRESS)
3072 break;
3073 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3074 if (ds->ds_rxstat.rs_more) {
3076 * Frame spans multiple descriptors; this
3077 * cannot happen yet as we don't support
3078 * jumbograms. If not in monitor mode,
3079 * discard the frame.
3081 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3082 sc->sc_stats.ast_rx_toobig++;
3083 goto rx_next;
3085 /* fall thru for monitor mode handling... */
3086 } else if (ds->ds_rxstat.rs_status != 0) {
3087 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3088 sc->sc_stats.ast_rx_crcerr++;
3089 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3090 sc->sc_stats.ast_rx_fifoerr++;
3091 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3092 sc->sc_stats.ast_rx_phyerr++;
3093 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3094 sc->sc_stats.ast_rx_phy[phyerr]++;
3095 goto rx_next;
3097 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3099 * Decrypt error. If the error occurred
3100 * because there was no hardware key, then
3101 * let the frame through so the upper layers
3102 * can process it. This is necessary for 5210
3103 * parts which have no way to setup a ``clear''
3104 * key cache entry.
3106 * XXX do key cache faulting
3108 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3109 goto rx_accept;
3110 sc->sc_stats.ast_rx_badcrypt++;
3112 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3113 sc->sc_stats.ast_rx_badmic++;
3115 * Do minimal work required to hand off
3116 * the 802.11 header for notifcation.
3118 /* XXX frag's and qos frames */
3119 len = ds->ds_rxstat.rs_datalen;
3120 if (len >= sizeof (struct ieee80211_frame)) {
3121 bus_dmamap_sync(sc->sc_dmat,
3122 bf->bf_dmamap,
3123 0, bf->bf_dmamap->dm_mapsize,
3124 BUS_DMASYNC_POSTREAD);
3125 ath_handle_micerror(ic,
3126 mtod(m, struct ieee80211_frame *),
3127 sc->sc_splitmic ?
3128 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3131 ifp->if_ierrors++;
3133 * Reject error frames, we normally don't want
3134 * to see them in monitor mode (in monitor mode
3135 * allow through packets that have crypto problems).
3138 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3139 goto rx_next;
3141 rx_accept:
3143 * Sync and unmap the frame. At this point we're
3144 * committed to passing the mbuf somewhere so clear
3145 * bf_m; this means a new sk_buff must be allocated
3146 * when the rx descriptor is setup again to receive
3147 * another frame.
3149 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3150 0, bf->bf_dmamap->dm_mapsize,
3151 BUS_DMASYNC_POSTREAD);
3152 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3153 bf->bf_m = NULL;
3155 m->m_pkthdr.rcvif = ifp;
3156 len = ds->ds_rxstat.rs_datalen;
3157 m->m_pkthdr.len = m->m_len = len;
3159 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3161 #if NBPFILTER > 0
3162 if (sc->sc_drvbpf) {
3163 u_int8_t rix;
3166 * Discard anything shorter than an ack or cts.
3168 if (len < IEEE80211_ACK_LEN) {
3169 DPRINTF(sc, ATH_DEBUG_RECV,
3170 "%s: runt packet %d\n",
3171 __func__, len);
3172 sc->sc_stats.ast_rx_tooshort++;
3173 m_freem(m);
3174 goto rx_next;
3176 rix = ds->ds_rxstat.rs_rate;
3177 sc->sc_rx_th.wr_tsf = htole64(
3178 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3179 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3180 if (ds->ds_rxstat.rs_status &
3181 (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3182 sc->sc_rx_th.wr_flags |=
3183 IEEE80211_RADIOTAP_F_BADFCS;
3185 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3186 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3187 sc->sc_rx_th.wr_antnoise = nf;
3188 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3190 bpf_mtap2(sc->sc_drvbpf,
3191 &sc->sc_rx_th, sc->sc_rx_th_len, m);
3193 #endif
3195 if (ds->ds_rxstat.rs_status & rxerr_tap) {
3196 m_freem(m);
3197 goto rx_next;
3200 * From this point on we assume the frame is at least
3201 * as large as ieee80211_frame_min; verify that.
3203 if (len < IEEE80211_MIN_LEN) {
3204 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3205 __func__, len);
3206 sc->sc_stats.ast_rx_tooshort++;
3207 m_freem(m);
3208 goto rx_next;
3211 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3212 ieee80211_dump_pkt(mtod(m, void *), len,
3213 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3214 ds->ds_rxstat.rs_rssi);
3217 m_adj(m, -IEEE80211_CRC_LEN);
3220 * Locate the node for sender, track state, and then
3221 * pass the (referenced) node up to the 802.11 layer
3222 * for its use.
3224 ni = ieee80211_find_rxnode_withkey(ic,
3225 mtod(m, const struct ieee80211_frame_min *),
3226 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3227 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3229 * Track rx rssi and do any rx antenna management.
3231 an = ATH_NODE(ni);
3232 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3233 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3235 * Send frame up for processing.
3237 type = ieee80211_input(ic, m, ni,
3238 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3239 ieee80211_free_node(ni);
3240 if (sc->sc_diversity) {
3242 * When using fast diversity, change the default rx
3243 * antenna if diversity chooses the other antenna 3
3244 * times in a row.
3246 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3247 if (++sc->sc_rxotherant >= 3)
3248 ath_setdefantenna(sc,
3249 ds->ds_rxstat.rs_antenna);
3250 } else
3251 sc->sc_rxotherant = 0;
3253 if (sc->sc_softled) {
3255 * Blink for any data frame. Otherwise do a
3256 * heartbeat-style blink when idle. The latter
3257 * is mainly for station mode where we depend on
3258 * periodic beacon frames to trigger the poll event.
3260 if (type == IEEE80211_FC0_TYPE_DATA) {
3261 sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3262 ath_led_event(sc, ATH_LED_RX);
3263 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3264 ath_led_event(sc, ATH_LED_POLL);
3267 * Arrange to update the last rx timestamp only for
3268 * frames from our ap when operating in station mode.
3269 * This assumes the rx key is always setup when associated.
3271 if (ic->ic_opmode == IEEE80211_M_STA &&
3272 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3273 ngood++;
3274 rx_next:
3275 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3276 } while (ath_rxbuf_init(sc, bf) == 0);
3278 /* rx signal state monitoring */
3279 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3280 #if 0
3281 if (ath_hal_radar_event(ah))
3282 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3283 #endif
3284 if (ngood)
3285 sc->sc_lastrx = tsf;
3287 #ifdef __NetBSD__
3288 /* XXX Why isn't this necessary in FreeBSD? */
3289 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3290 ath_start(ifp);
3291 #endif /* __NetBSD__ */
3293 NET_UNLOCK_GIANT(); /* XXX */
3294 #undef PA2DESC
3298 * Setup a h/w transmit queue.
3300 static struct ath_txq *
3301 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3303 #define N(a) (sizeof(a)/sizeof(a[0]))
3304 struct ath_hal *ah = sc->sc_ah;
3305 HAL_TXQ_INFO qi;
3306 int qnum;
3308 memset(&qi, 0, sizeof(qi));
3309 qi.tqi_subtype = subtype;
3310 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3311 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3312 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3314 * Enable interrupts only for EOL and DESC conditions.
3315 * We mark tx descriptors to receive a DESC interrupt
3316 * when a tx queue gets deep; otherwise waiting for the
3317 * EOL to reap descriptors. Note that this is done to
3318 * reduce interrupt load and this only defers reaping
3319 * descriptors, never transmitting frames. Aside from
3320 * reducing interrupts this also permits more concurrency.
3321 * The only potential downside is if the tx queue backs
3322 * up in which case the top half of the kernel may backup
3323 * due to a lack of tx descriptors.
3325 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3326 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3327 if (qnum == -1) {
3329 * NB: don't print a message, this happens
3330 * normally on parts with too few tx queues
3332 return NULL;
3334 if (qnum >= N(sc->sc_txq)) {
3335 device_printf(sc->sc_dev,
3336 "hal qnum %u out of range, max %zu!\n",
3337 qnum, N(sc->sc_txq));
3338 ath_hal_releasetxqueue(ah, qnum);
3339 return NULL;
3341 if (!ATH_TXQ_SETUP(sc, qnum)) {
3342 struct ath_txq *txq = &sc->sc_txq[qnum];
3344 txq->axq_qnum = qnum;
3345 txq->axq_depth = 0;
3346 txq->axq_intrcnt = 0;
3347 txq->axq_link = NULL;
3348 STAILQ_INIT(&txq->axq_q);
3349 ATH_TXQ_LOCK_INIT(sc, txq);
3350 sc->sc_txqsetup |= 1<<qnum;
3352 return &sc->sc_txq[qnum];
3353 #undef N
3357 * Setup a hardware data transmit queue for the specified
3358 * access control. The hal may not support all requested
3359 * queues in which case it will return a reference to a
3360 * previously setup queue. We record the mapping from ac's
3361 * to h/w queues for use by ath_tx_start and also track
3362 * the set of h/w queues being used to optimize work in the
3363 * transmit interrupt handler and related routines.
3365 static int
3366 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3368 #define N(a) (sizeof(a)/sizeof(a[0]))
3369 struct ath_txq *txq;
3371 if (ac >= N(sc->sc_ac2q)) {
3372 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3373 ac, N(sc->sc_ac2q));
3374 return 0;
3376 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3377 if (txq != NULL) {
3378 sc->sc_ac2q[ac] = txq;
3379 return 1;
3380 } else
3381 return 0;
3382 #undef N
3386 * Update WME parameters for a transmit queue.
3388 static int
3389 ath_txq_update(struct ath_softc *sc, int ac)
3391 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
3392 #define ATH_TXOP_TO_US(v) (v<<5)
3393 struct ieee80211com *ic = &sc->sc_ic;
3394 struct ath_txq *txq = sc->sc_ac2q[ac];
3395 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3396 struct ath_hal *ah = sc->sc_ah;
3397 HAL_TXQ_INFO qi;
3399 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3400 qi.tqi_aifs = wmep->wmep_aifsn;
3401 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3402 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3403 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3405 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3406 device_printf(sc->sc_dev, "unable to update hardware queue "
3407 "parameters for %s traffic!\n",
3408 ieee80211_wme_acnames[ac]);
3409 return 0;
3410 } else {
3411 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3412 return 1;
3414 #undef ATH_TXOP_TO_US
3415 #undef ATH_EXPONENT_TO_VALUE
3419 * Callback from the 802.11 layer to update WME parameters.
3421 static int
3422 ath_wme_update(struct ieee80211com *ic)
3424 struct ath_softc *sc = ic->ic_ifp->if_softc;
3426 return !ath_txq_update(sc, WME_AC_BE) ||
3427 !ath_txq_update(sc, WME_AC_BK) ||
3428 !ath_txq_update(sc, WME_AC_VI) ||
3429 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3433 * Reclaim resources for a setup queue.
3435 static void
3436 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3439 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3440 ATH_TXQ_LOCK_DESTROY(txq);
3441 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3445 * Reclaim all tx queue resources.
3447 static void
3448 ath_tx_cleanup(struct ath_softc *sc)
3450 int i;
3452 ATH_TXBUF_LOCK_DESTROY(sc);
3453 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3454 if (ATH_TXQ_SETUP(sc, i))
3455 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3459 * Defragment an mbuf chain, returning at most maxfrags separate
3460 * mbufs+clusters. If this is not possible NULL is returned and
3461 * the original mbuf chain is left in it's present (potentially
3462 * modified) state. We use two techniques: collapsing consecutive
3463 * mbufs and replacing consecutive mbufs by a cluster.
3465 static struct mbuf *
3466 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3468 struct mbuf *m, *n, *n2, **prev;
3469 u_int curfrags;
3472 * Calculate the current number of frags.
3474 curfrags = 0;
3475 for (m = m0; m != NULL; m = m->m_next)
3476 curfrags++;
3478 * First, try to collapse mbufs. Note that we always collapse
3479 * towards the front so we don't need to deal with moving the
3480 * pkthdr. This may be suboptimal if the first mbuf has much
3481 * less data than the following.
3483 m = m0;
3484 again:
3485 for (;;) {
3486 n = m->m_next;
3487 if (n == NULL)
3488 break;
3489 if (n->m_len < M_TRAILINGSPACE(m)) {
3490 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3491 n->m_len);
3492 m->m_len += n->m_len;
3493 m->m_next = n->m_next;
3494 m_free(n);
3495 if (--curfrags <= maxfrags)
3496 return m0;
3497 } else
3498 m = n;
3500 KASSERT(maxfrags > 1,
3501 ("maxfrags %u, but normal collapse failed", maxfrags));
3503 * Collapse consecutive mbufs to a cluster.
3505 prev = &m0->m_next; /* NB: not the first mbuf */
3506 while ((n = *prev) != NULL) {
3507 if ((n2 = n->m_next) != NULL &&
3508 n->m_len + n2->m_len < MCLBYTES) {
3509 m = m_getcl(how, MT_DATA, 0);
3510 if (m == NULL)
3511 goto bad;
3512 bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3513 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3514 n2->m_len);
3515 m->m_len = n->m_len + n2->m_len;
3516 m->m_next = n2->m_next;
3517 *prev = m;
3518 m_free(n);
3519 m_free(n2);
3520 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
3521 return m0;
3523 * Still not there, try the normal collapse
3524 * again before we allocate another cluster.
3526 goto again;
3528 prev = &n->m_next;
3531 * No place where we can collapse to a cluster; punt.
3532 * This can occur if, for example, you request 2 frags
3533 * but the packet requires that both be clusters (we
3534 * never reallocate the first mbuf to avoid moving the
3535 * packet header).
3537 bad:
3538 return NULL;
3542 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3544 static int
3545 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3547 int i;
3549 for (i = 0; i < rt->rateCount; i++)
3550 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3551 return i;
3552 return 0; /* NB: lowest rate */
3555 static void
3556 ath_freetx(struct mbuf *m)
3558 struct mbuf *next;
3560 do {
3561 next = m->m_nextpkt;
3562 m->m_nextpkt = NULL;
3563 m_freem(m);
3564 } while ((m = next) != NULL);
3567 static int
3568 deduct_pad_bytes(int len, int hdrlen)
3570 /* XXX I am suspicious that this code, which I extracted
3571 * XXX from ath_tx_start() for reuse, does the right thing.
3573 return len - (hdrlen & 3);
3576 static int
3577 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3578 struct mbuf *m0)
3580 struct ieee80211com *ic = &sc->sc_ic;
3581 struct ath_hal *ah = sc->sc_ah;
3582 struct ifnet *ifp = &sc->sc_if;
3583 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3584 int i, error, iswep, ismcast, isfrag, ismrr;
3585 int keyix, hdrlen, pktlen, try0;
3586 u_int8_t rix, txrate, ctsrate;
3587 u_int8_t cix = 0xff; /* NB: silence compiler */
3588 struct ath_desc *ds, *ds0;
3589 struct ath_txq *txq;
3590 struct ieee80211_frame *wh;
3591 u_int subtype, flags, ctsduration;
3592 HAL_PKT_TYPE atype;
3593 const HAL_RATE_TABLE *rt;
3594 HAL_BOOL shortPreamble;
3595 struct ath_node *an;
3596 struct mbuf *m;
3597 u_int pri;
3599 wh = mtod(m0, struct ieee80211_frame *);
3600 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3601 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3602 isfrag = m0->m_flags & M_FRAG;
3603 hdrlen = ieee80211_anyhdrsize(wh);
3605 * Packet length must not include any
3606 * pad bytes; deduct them here.
3608 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3610 if (iswep) {
3611 const struct ieee80211_cipher *cip;
3612 struct ieee80211_key *k;
3615 * Construct the 802.11 header+trailer for an encrypted
3616 * frame. The only reason this can fail is because of an
3617 * unknown or unsupported cipher/key type.
3619 k = ieee80211_crypto_encap(ic, ni, m0);
3620 if (k == NULL) {
3622 * This can happen when the key is yanked after the
3623 * frame was queued. Just discard the frame; the
3624 * 802.11 layer counts failures and provides
3625 * debugging/diagnostics.
3627 ath_freetx(m0);
3628 return EIO;
3631 * Adjust the packet + header lengths for the crypto
3632 * additions and calculate the h/w key index. When
3633 * a s/w mic is done the frame will have had any mic
3634 * added to it prior to entry so m0->m_pkthdr.len above will
3635 * account for it. Otherwise we need to add it to the
3636 * packet length.
3638 cip = k->wk_cipher;
3639 hdrlen += cip->ic_header;
3640 pktlen += cip->ic_header + cip->ic_trailer;
3641 /* NB: frags always have any TKIP MIC done in s/w */
3642 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3643 pktlen += cip->ic_miclen;
3644 keyix = k->wk_keyix;
3646 /* packet header may have moved, reset our local pointer */
3647 wh = mtod(m0, struct ieee80211_frame *);
3648 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3650 * Use station key cache slot, if assigned.
3652 keyix = ni->ni_ucastkey.wk_keyix;
3653 if (keyix == IEEE80211_KEYIX_NONE)
3654 keyix = HAL_TXKEYIX_INVALID;
3655 } else
3656 keyix = HAL_TXKEYIX_INVALID;
3658 pktlen += IEEE80211_CRC_LEN;
3661 * Load the DMA map so any coalescing is done. This
3662 * also calculates the number of descriptors we need.
3664 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3665 BUS_DMA_NOWAIT);
3666 if (error == EFBIG) {
3667 /* XXX packet requires too many descriptors */
3668 bf->bf_nseg = ATH_TXDESC+1;
3669 } else if (error != 0) {
3670 sc->sc_stats.ast_tx_busdma++;
3671 ath_freetx(m0);
3672 return error;
3675 * Discard null packets and check for packets that
3676 * require too many TX descriptors. We try to convert
3677 * the latter to a cluster.
3679 if (error == EFBIG) { /* too many desc's, linearize */
3680 sc->sc_stats.ast_tx_linear++;
3681 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3682 if (m == NULL) {
3683 ath_freetx(m0);
3684 sc->sc_stats.ast_tx_nombuf++;
3685 return ENOMEM;
3687 m0 = m;
3688 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3689 BUS_DMA_NOWAIT);
3690 if (error != 0) {
3691 sc->sc_stats.ast_tx_busdma++;
3692 ath_freetx(m0);
3693 return error;
3695 KASSERT(bf->bf_nseg <= ATH_TXDESC,
3696 ("too many segments after defrag; nseg %u", bf->bf_nseg));
3697 } else if (bf->bf_nseg == 0) { /* null packet, discard */
3698 sc->sc_stats.ast_tx_nodata++;
3699 ath_freetx(m0);
3700 return EIO;
3702 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3703 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3704 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3705 bf->bf_m = m0;
3706 bf->bf_node = ni; /* NB: held reference */
3708 /* setup descriptors */
3709 ds = bf->bf_desc;
3710 rt = sc->sc_currates;
3711 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3714 * NB: the 802.11 layer marks whether or not we should
3715 * use short preamble based on the current mode and
3716 * negotiated parameters.
3718 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3719 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3720 shortPreamble = AH_TRUE;
3721 sc->sc_stats.ast_tx_shortpre++;
3722 } else {
3723 shortPreamble = AH_FALSE;
3726 an = ATH_NODE(ni);
3727 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
3728 ismrr = 0; /* default no multi-rate retry*/
3730 * Calculate Atheros packet type from IEEE80211 packet header,
3731 * setup for rate calculations, and select h/w transmit queue.
3733 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3734 case IEEE80211_FC0_TYPE_MGT:
3735 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3736 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3737 atype = HAL_PKT_TYPE_BEACON;
3738 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3739 atype = HAL_PKT_TYPE_PROBE_RESP;
3740 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3741 atype = HAL_PKT_TYPE_ATIM;
3742 else
3743 atype = HAL_PKT_TYPE_NORMAL; /* XXX */
3744 rix = sc->sc_minrateix;
3745 txrate = rt->info[rix].rateCode;
3746 if (shortPreamble)
3747 txrate |= rt->info[rix].shortPreamble;
3748 try0 = ATH_TXMGTTRY;
3749 /* NB: force all management frames to highest queue */
3750 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3751 /* NB: force all management frames to highest queue */
3752 pri = WME_AC_VO;
3753 } else
3754 pri = WME_AC_BE;
3755 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3756 break;
3757 case IEEE80211_FC0_TYPE_CTL:
3758 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
3759 rix = sc->sc_minrateix;
3760 txrate = rt->info[rix].rateCode;
3761 if (shortPreamble)
3762 txrate |= rt->info[rix].shortPreamble;
3763 try0 = ATH_TXMGTTRY;
3764 /* NB: force all ctl frames to highest queue */
3765 if (ni->ni_flags & IEEE80211_NODE_QOS) {
3766 /* NB: force all ctl frames to highest queue */
3767 pri = WME_AC_VO;
3768 } else
3769 pri = WME_AC_BE;
3770 flags |= HAL_TXDESC_INTREQ; /* force interrupt */
3771 break;
3772 case IEEE80211_FC0_TYPE_DATA:
3773 atype = HAL_PKT_TYPE_NORMAL; /* default */
3775 * Data frames: multicast frames go out at a fixed rate,
3776 * otherwise consult the rate control module for the
3777 * rate to use.
3779 if (ismcast) {
3781 * Check mcast rate setting in case it's changed.
3782 * XXX move out of fastpath
3784 if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3785 sc->sc_mcastrix =
3786 ath_tx_findrix(rt, ic->ic_mcast_rate);
3787 sc->sc_mcastrate = ic->ic_mcast_rate;
3789 rix = sc->sc_mcastrix;
3790 txrate = rt->info[rix].rateCode;
3791 try0 = 1;
3792 } else {
3793 ath_rate_findrate(sc, an, shortPreamble, pktlen,
3794 &rix, &try0, &txrate);
3795 sc->sc_txrate = txrate; /* for LED blinking */
3796 if (try0 != ATH_TXMAXTRY)
3797 ismrr = 1;
3799 pri = M_WME_GETAC(m0);
3800 if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3801 flags |= HAL_TXDESC_NOACK;
3802 break;
3803 default:
3804 if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3805 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3806 /* XXX statistic */
3807 ath_freetx(m0);
3808 return EIO;
3810 txq = sc->sc_ac2q[pri];
3813 * When servicing one or more stations in power-save mode
3814 * multicast frames must be buffered until after the beacon.
3815 * We use the CAB queue for that.
3817 if (ismcast && ic->ic_ps_sta) {
3818 txq = sc->sc_cabq;
3819 /* XXX? more bit in 802.11 frame header */
3823 * Calculate miscellaneous flags.
3825 if (ismcast) {
3826 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
3827 } else if (pktlen > ic->ic_rtsthreshold) {
3828 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
3829 cix = rt->info[rix].controlRate;
3830 sc->sc_stats.ast_tx_rts++;
3832 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
3833 sc->sc_stats.ast_tx_noack++;
3836 * If 802.11g protection is enabled, determine whether
3837 * to use RTS/CTS or just CTS. Note that this is only
3838 * done for OFDM unicast frames.
3840 if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3841 rt->info[rix].phy == IEEE80211_T_OFDM &&
3842 (flags & HAL_TXDESC_NOACK) == 0) {
3843 /* XXX fragments must use CCK rates w/ protection */
3844 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3845 flags |= HAL_TXDESC_RTSENA;
3846 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3847 flags |= HAL_TXDESC_CTSENA;
3848 if (isfrag) {
3850 * For frags it would be desirable to use the
3851 * highest CCK rate for RTS/CTS. But stations
3852 * farther away may detect it at a lower CCK rate
3853 * so use the configured protection rate instead
3854 * (for now).
3856 cix = rt->info[sc->sc_protrix].controlRate;
3857 } else
3858 cix = rt->info[sc->sc_protrix].controlRate;
3859 sc->sc_stats.ast_tx_protect++;
3863 * Calculate duration. This logically belongs in the 802.11
3864 * layer but it lacks sufficient information to calculate it.
3866 if ((flags & HAL_TXDESC_NOACK) == 0 &&
3867 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3868 u_int16_t dur;
3870 * XXX not right with fragmentation.
3872 if (shortPreamble)
3873 dur = rt->info[rix].spAckDuration;
3874 else
3875 dur = rt->info[rix].lpAckDuration;
3876 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3877 dur += dur; /* additional SIFS+ACK */
3878 KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3880 * Include the size of next fragment so NAV is
3881 * updated properly. The last fragment uses only
3882 * the ACK duration
3884 dur += ath_hal_computetxtime(ah, rt,
3885 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3886 hdrlen) -
3887 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3888 rix, shortPreamble);
3890 if (isfrag) {
3892 * Force hardware to use computed duration for next
3893 * fragment by disabling multi-rate retry which updates
3894 * duration based on the multi-rate duration table.
3896 try0 = ATH_TXMAXTRY;
3898 *(u_int16_t *)wh->i_dur = htole16(dur);
3902 * Calculate RTS/CTS rate and duration if needed.
3904 ctsduration = 0;
3905 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3907 * CTS transmit rate is derived from the transmit rate
3908 * by looking in the h/w rate table. We must also factor
3909 * in whether or not a short preamble is to be used.
3911 /* NB: cix is set above where RTS/CTS is enabled */
3912 KASSERT(cix != 0xff, ("cix not setup"));
3913 ctsrate = rt->info[cix].rateCode;
3915 * Compute the transmit duration based on the frame
3916 * size and the size of an ACK frame. We call into the
3917 * HAL to do the computation since it depends on the
3918 * characteristics of the actual PHY being used.
3920 * NB: CTS is assumed the same size as an ACK so we can
3921 * use the precalculated ACK durations.
3923 if (shortPreamble) {
3924 ctsrate |= rt->info[cix].shortPreamble;
3925 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3926 ctsduration += rt->info[cix].spAckDuration;
3927 ctsduration += ath_hal_computetxtime(ah,
3928 rt, pktlen, rix, AH_TRUE);
3929 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3930 ctsduration += rt->info[rix].spAckDuration;
3931 } else {
3932 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
3933 ctsduration += rt->info[cix].lpAckDuration;
3934 ctsduration += ath_hal_computetxtime(ah,
3935 rt, pktlen, rix, AH_FALSE);
3936 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
3937 ctsduration += rt->info[rix].lpAckDuration;
3940 * Must disable multi-rate retry when using RTS/CTS.
3942 ismrr = 0;
3943 try0 = ATH_TXMGTTRY; /* XXX */
3944 } else
3945 ctsrate = 0;
3947 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3948 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3949 sc->sc_hwmap[txrate].ieeerate, -1);
3950 #if NBPFILTER > 0
3951 if (ic->ic_rawbpf)
3952 bpf_mtap(ic->ic_rawbpf, m0);
3953 if (sc->sc_drvbpf) {
3954 u_int64_t tsf = ath_hal_gettsf64(ah);
3956 sc->sc_tx_th.wt_tsf = htole64(tsf);
3957 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3958 if (iswep)
3959 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3960 if (isfrag)
3961 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3962 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3963 sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3964 sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3966 bpf_mtap2(sc->sc_drvbpf,
3967 &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3969 #endif
3972 * Determine if a tx interrupt should be generated for
3973 * this descriptor. We take a tx interrupt to reap
3974 * descriptors when the h/w hits an EOL condition or
3975 * when the descriptor is specifically marked to generate
3976 * an interrupt. We periodically mark descriptors in this
3977 * way to insure timely replenishing of the supply needed
3978 * for sending frames. Defering interrupts reduces system
3979 * load and potentially allows more concurrent work to be
3980 * done but if done to aggressively can cause senders to
3981 * backup.
3983 * NB: use >= to deal with sc_txintrperiod changing
3984 * dynamically through sysctl.
3986 if (flags & HAL_TXDESC_INTREQ) {
3987 txq->axq_intrcnt = 0;
3988 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3989 flags |= HAL_TXDESC_INTREQ;
3990 txq->axq_intrcnt = 0;
3994 * Formulate first tx descriptor with tx controls.
3996 /* XXX check return value? */
3997 ath_hal_setuptxdesc(ah, ds
3998 , pktlen /* packet length */
3999 , hdrlen /* header length */
4000 , atype /* Atheros packet type */
4001 , ni->ni_txpower /* txpower */
4002 , txrate, try0 /* series 0 rate/tries */
4003 , keyix /* key cache index */
4004 , sc->sc_txantenna /* antenna mode */
4005 , flags /* flags */
4006 , ctsrate /* rts/cts rate */
4007 , ctsduration /* rts/cts duration */
4009 bf->bf_flags = flags;
4011 * Setup the multi-rate retry state only when we're
4012 * going to use it. This assumes ath_hal_setuptxdesc
4013 * initializes the descriptors (so we don't have to)
4014 * when the hardware supports multi-rate retry and
4015 * we don't use it.
4017 if (ismrr)
4018 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4021 * Fillin the remainder of the descriptor info.
4023 ds0 = ds;
4024 for (i = 0; i < bf->bf_nseg; i++, ds++) {
4025 ds->ds_data = bf->bf_segs[i].ds_addr;
4026 if (i == bf->bf_nseg - 1)
4027 ds->ds_link = 0;
4028 else
4029 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4030 ath_hal_filltxdesc(ah, ds
4031 , bf->bf_segs[i].ds_len /* segment length */
4032 , i == 0 /* first segment */
4033 , i == bf->bf_nseg - 1 /* last segment */
4034 , ds0 /* first descriptor */
4037 /* NB: The desc swap function becomes void,
4038 * if descriptor swapping is not enabled
4040 ath_desc_swap(ds);
4042 DPRINTF(sc, ATH_DEBUG_XMIT,
4043 "%s: %d: %08x %08x %08x %08x %08x %08x\n",
4044 __func__, i, ds->ds_link, ds->ds_data,
4045 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4048 * Insert the frame on the outbound list and
4049 * pass it on to the hardware.
4051 ATH_TXQ_LOCK(txq);
4052 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4053 if (txq->axq_link == NULL) {
4054 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4055 DPRINTF(sc, ATH_DEBUG_XMIT,
4056 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4057 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4058 txq->axq_depth);
4059 } else {
4060 *txq->axq_link = HTOAH32(bf->bf_daddr);
4061 DPRINTF(sc, ATH_DEBUG_XMIT,
4062 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4063 __func__, txq->axq_qnum, txq->axq_link,
4064 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4066 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4068 * The CAB queue is started from the SWBA handler since
4069 * frames only go out on DTIM and to avoid possible races.
4071 if (txq != sc->sc_cabq)
4072 ath_hal_txstart(ah, txq->axq_qnum);
4073 ATH_TXQ_UNLOCK(txq);
4075 return 0;
4079 * Process completed xmit descriptors from the specified queue.
4081 static int
4082 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4084 struct ath_hal *ah = sc->sc_ah;
4085 struct ieee80211com *ic = &sc->sc_ic;
4086 struct ath_buf *bf;
4087 struct ath_desc *ds, *ds0;
4088 struct ieee80211_node *ni;
4089 struct ath_node *an;
4090 int sr, lr, pri, nacked;
4091 HAL_STATUS status;
4093 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4094 __func__, txq->axq_qnum,
4095 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4096 txq->axq_link);
4097 nacked = 0;
4098 for (;;) {
4099 ATH_TXQ_LOCK(txq);
4100 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4101 bf = STAILQ_FIRST(&txq->axq_q);
4102 if (bf == NULL) {
4103 txq->axq_link = NULL;
4104 ATH_TXQ_UNLOCK(txq);
4105 break;
4107 ds0 = &bf->bf_desc[0];
4108 ds = &bf->bf_desc[bf->bf_nseg - 1];
4109 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4110 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4111 ath_printtxbuf(bf, status == HAL_OK);
4112 if (status == HAL_EINPROGRESS) {
4113 ATH_TXQ_UNLOCK(txq);
4114 break;
4116 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4117 ATH_TXQ_UNLOCK(txq);
4119 ni = bf->bf_node;
4120 if (ni != NULL) {
4121 an = ATH_NODE(ni);
4122 if (ds->ds_txstat.ts_status == 0) {
4123 u_int8_t txant = ds->ds_txstat.ts_antenna;
4124 sc->sc_stats.ast_ant_tx[txant]++;
4125 sc->sc_ant_tx[txant]++;
4126 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4127 sc->sc_stats.ast_tx_altrate++;
4128 sc->sc_stats.ast_tx_rssi =
4129 ds->ds_txstat.ts_rssi;
4130 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4131 ds->ds_txstat.ts_rssi);
4132 pri = M_WME_GETAC(bf->bf_m);
4133 if (pri >= WME_AC_VO)
4134 ic->ic_wme.wme_hipri_traffic++;
4135 ni->ni_inact = ni->ni_inact_reload;
4136 } else {
4137 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4138 sc->sc_stats.ast_tx_xretries++;
4139 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4140 sc->sc_stats.ast_tx_fifoerr++;
4141 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4142 sc->sc_stats.ast_tx_filtered++;
4144 sr = ds->ds_txstat.ts_shortretry;
4145 lr = ds->ds_txstat.ts_longretry;
4146 sc->sc_stats.ast_tx_shortretry += sr;
4147 sc->sc_stats.ast_tx_longretry += lr;
4149 * Hand the descriptor to the rate control algorithm.
4151 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4152 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4154 * If frame was ack'd update the last rx time
4155 * used to workaround phantom bmiss interrupts.
4157 if (ds->ds_txstat.ts_status == 0)
4158 nacked++;
4159 ath_rate_tx_complete(sc, an, ds, ds0);
4162 * Reclaim reference to node.
4164 * NB: the node may be reclaimed here if, for example
4165 * this is a DEAUTH message that was sent and the
4166 * node was timed out due to inactivity.
4168 ieee80211_free_node(ni);
4170 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4171 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4172 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4173 m_freem(bf->bf_m);
4174 bf->bf_m = NULL;
4175 bf->bf_node = NULL;
4177 ATH_TXBUF_LOCK(sc);
4178 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4179 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4180 ATH_TXBUF_UNLOCK(sc);
4182 return nacked;
4185 static inline int
4186 txqactive(struct ath_hal *ah, int qnum)
4188 u_int32_t txqs = 1<<qnum;
4189 ath_hal_gettxintrtxqs(ah, &txqs);
4190 return (txqs & (1<<qnum));
4194 * Deferred processing of transmit interrupt; special-cased
4195 * for a single hardware transmit queue (e.g. 5210 and 5211).
4197 static void
4198 ath_tx_proc_q0(void *arg, int npending)
4200 struct ath_softc *sc = arg;
4201 struct ifnet *ifp = &sc->sc_if;
4203 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4204 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4206 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4207 ath_tx_processq(sc, sc->sc_cabq);
4209 if (sc->sc_softled)
4210 ath_led_event(sc, ATH_LED_TX);
4212 ath_start(ifp);
4216 * Deferred processing of transmit interrupt; special-cased
4217 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4219 static void
4220 ath_tx_proc_q0123(void *arg, int npending)
4222 struct ath_softc *sc = arg;
4223 struct ifnet *ifp = &sc->sc_if;
4224 int nacked;
4227 * Process each active queue.
4229 nacked = 0;
4230 if (txqactive(sc->sc_ah, 0))
4231 nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4232 if (txqactive(sc->sc_ah, 1))
4233 nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4234 if (txqactive(sc->sc_ah, 2))
4235 nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4236 if (txqactive(sc->sc_ah, 3))
4237 nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4238 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4239 ath_tx_processq(sc, sc->sc_cabq);
4240 if (nacked) {
4241 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4244 if (sc->sc_softled)
4245 ath_led_event(sc, ATH_LED_TX);
4247 ath_start(ifp);
4251 * Deferred processing of transmit interrupt.
4253 static void
4254 ath_tx_proc(void *arg, int npending)
4256 struct ath_softc *sc = arg;
4257 struct ifnet *ifp = &sc->sc_if;
4258 int i, nacked;
4261 * Process each active queue.
4263 nacked = 0;
4264 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4265 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4266 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4267 if (nacked) {
4268 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4271 if (sc->sc_softled)
4272 ath_led_event(sc, ATH_LED_TX);
4274 ath_start(ifp);
4277 static void
4278 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4280 struct ath_hal *ah = sc->sc_ah;
4281 struct ieee80211_node *ni;
4282 struct ath_buf *bf;
4283 struct ath_desc *ds;
4286 * NB: this assumes output has been stopped and
4287 * we do not need to block ath_tx_tasklet
4289 for (;;) {
4290 ATH_TXQ_LOCK(txq);
4291 bf = STAILQ_FIRST(&txq->axq_q);
4292 if (bf == NULL) {
4293 txq->axq_link = NULL;
4294 ATH_TXQ_UNLOCK(txq);
4295 break;
4297 ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4298 ATH_TXQ_UNLOCK(txq);
4299 ds = &bf->bf_desc[bf->bf_nseg - 1];
4300 if (sc->sc_debug & ATH_DEBUG_RESET)
4301 ath_printtxbuf(bf,
4302 ath_hal_txprocdesc(ah, bf->bf_desc,
4303 &ds->ds_txstat) == HAL_OK);
4304 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4305 m_freem(bf->bf_m);
4306 bf->bf_m = NULL;
4307 ni = bf->bf_node;
4308 bf->bf_node = NULL;
4309 if (ni != NULL) {
4311 * Reclaim node reference.
4313 ieee80211_free_node(ni);
4315 ATH_TXBUF_LOCK(sc);
4316 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4317 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4318 ATH_TXBUF_UNLOCK(sc);
4322 static void
4323 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4325 struct ath_hal *ah = sc->sc_ah;
4327 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4328 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4329 __func__, txq->axq_qnum,
4330 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4331 txq->axq_link);
4335 * Drain the transmit queues and reclaim resources.
4337 static void
4338 ath_draintxq(struct ath_softc *sc)
4340 struct ath_hal *ah = sc->sc_ah;
4341 int i;
4343 /* XXX return value */
4344 if (device_is_active(sc->sc_dev)) {
4345 /* don't touch the hardware if marked invalid */
4346 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4347 DPRINTF(sc, ATH_DEBUG_RESET,
4348 "%s: beacon queue %p\n", __func__,
4349 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4350 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4351 if (ATH_TXQ_SETUP(sc, i))
4352 ath_tx_stopdma(sc, &sc->sc_txq[i]);
4354 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4355 if (ATH_TXQ_SETUP(sc, i))
4356 ath_tx_draintxq(sc, &sc->sc_txq[i]);
4360 * Disable the receive h/w in preparation for a reset.
4362 static void
4363 ath_stoprecv(struct ath_softc *sc)
4365 #define PA2DESC(_sc, _pa) \
4366 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4367 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4368 struct ath_hal *ah = sc->sc_ah;
4369 u_int64_t tsf;
4371 ath_hal_stoppcurecv(ah); /* disable PCU */
4372 ath_hal_setrxfilter(ah, 0); /* clear recv filter */
4373 ath_hal_stopdmarecv(ah); /* disable DMA engine */
4374 DELAY(3000); /* 3ms is long enough for 1 frame */
4375 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4376 struct ath_buf *bf;
4378 printf("%s: rx queue %p, link %p\n", __func__,
4379 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4380 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4381 struct ath_desc *ds = bf->bf_desc;
4382 tsf = ath_hal_gettsf64(sc->sc_ah);
4383 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4384 bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4385 &ds->ds_rxstat);
4386 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4387 ath_printrxbuf(bf, status == HAL_OK);
4390 sc->sc_rxlink = NULL; /* just in case */
4391 #undef PA2DESC
4395 * Enable the receive h/w following a reset.
4397 static int
4398 ath_startrecv(struct ath_softc *sc)
4400 struct ath_hal *ah = sc->sc_ah;
4401 struct ath_buf *bf;
4403 sc->sc_rxlink = NULL;
4404 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4405 int error = ath_rxbuf_init(sc, bf);
4406 if (error != 0) {
4407 DPRINTF(sc, ATH_DEBUG_RECV,
4408 "%s: ath_rxbuf_init failed %d\n",
4409 __func__, error);
4410 return error;
4414 bf = STAILQ_FIRST(&sc->sc_rxbuf);
4415 ath_hal_putrxbuf(ah, bf->bf_daddr);
4416 ath_hal_rxena(ah); /* enable recv descriptors */
4417 ath_mode_init(sc); /* set filters, etc. */
4418 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
4419 return 0;
4423 * Update internal state after a channel change.
4425 static void
4426 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4428 struct ieee80211com *ic = &sc->sc_ic;
4429 enum ieee80211_phymode mode;
4430 u_int16_t flags;
4433 * Change channels and update the h/w rate map
4434 * if we're switching; e.g. 11a to 11b/g.
4436 mode = ieee80211_chan2mode(ic, chan);
4437 if (mode != sc->sc_curmode)
4438 ath_setcurmode(sc, mode);
4440 * Update BPF state. NB: ethereal et. al. don't handle
4441 * merged flags well so pick a unique mode for their use.
4443 if (IEEE80211_IS_CHAN_A(chan))
4444 flags = IEEE80211_CHAN_A;
4445 /* XXX 11g schizophrenia */
4446 else if (IEEE80211_IS_CHAN_G(chan) ||
4447 IEEE80211_IS_CHAN_PUREG(chan))
4448 flags = IEEE80211_CHAN_G;
4449 else
4450 flags = IEEE80211_CHAN_B;
4451 if (IEEE80211_IS_CHAN_T(chan))
4452 flags |= IEEE80211_CHAN_TURBO;
4453 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4454 htole16(chan->ic_freq);
4455 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4456 htole16(flags);
4459 #if 0
4461 * Poll for a channel clear indication; this is required
4462 * for channels requiring DFS and not previously visited
4463 * and/or with a recent radar detection.
4465 static void
4466 ath_dfswait(void *arg)
4468 struct ath_softc *sc = arg;
4469 struct ath_hal *ah = sc->sc_ah;
4470 HAL_CHANNEL hchan;
4472 ath_hal_radar_wait(ah, &hchan);
4473 if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4474 if_printf(&sc->sc_if,
4475 "channel %u/0x%x/0x%x has interference\n",
4476 hchan.channel, hchan.channelFlags, hchan.privFlags);
4477 return;
4479 if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4480 /* XXX should not happen */
4481 return;
4483 if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4484 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4485 sc->sc_if.if_flags &= ~IFF_OACTIVE;
4486 if_printf(&sc->sc_if,
4487 "channel %u/0x%x/0x%x marked clear\n",
4488 hchan.channel, hchan.channelFlags, hchan.privFlags);
4489 } else
4490 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4492 #endif
4495 * Set/change channels. If the channel is really being changed,
4496 * it's done by reseting the chip. To accomplish this we must
4497 * first cleanup any pending DMA, then restart stuff after a la
4498 * ath_init.
4500 static int
4501 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4503 struct ath_hal *ah = sc->sc_ah;
4504 struct ieee80211com *ic = &sc->sc_ic;
4505 HAL_CHANNEL hchan;
4508 * Convert to a HAL channel description with
4509 * the flags constrained to reflect the current
4510 * operating mode.
4512 hchan.channel = chan->ic_freq;
4513 hchan.channelFlags = ath_chan2flags(ic, chan);
4515 DPRINTF(sc, ATH_DEBUG_RESET,
4516 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4517 __func__,
4518 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4519 sc->sc_curchan.channelFlags),
4520 sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4521 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4522 hchan.channel, hchan.channelFlags);
4523 if (hchan.channel != sc->sc_curchan.channel ||
4524 hchan.channelFlags != sc->sc_curchan.channelFlags) {
4525 HAL_STATUS status;
4528 * To switch channels clear any pending DMA operations;
4529 * wait long enough for the RX fifo to drain, reset the
4530 * hardware at the new frequency, and then re-enable
4531 * the relevant bits of the h/w.
4533 ath_hal_intrset(ah, 0); /* disable interrupts */
4534 ath_draintxq(sc); /* clear pending tx frames */
4535 ath_stoprecv(sc); /* turn off frame recv */
4536 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4537 if_printf(ic->ic_ifp, "%s: unable to reset "
4538 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4539 __func__, ieee80211_chan2ieee(ic, chan),
4540 chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4541 return EIO;
4543 sc->sc_curchan = hchan;
4544 ath_update_txpow(sc); /* update tx power state */
4545 ath_restore_diversity(sc);
4546 sc->sc_calinterval = 1;
4547 sc->sc_caltries = 0;
4550 * Re-enable rx framework.
4552 if (ath_startrecv(sc) != 0) {
4553 if_printf(&sc->sc_if,
4554 "%s: unable to restart recv logic\n", __func__);
4555 return EIO;
4559 * Change channels and update the h/w rate map
4560 * if we're switching; e.g. 11a to 11b/g.
4562 ic->ic_ibss_chan = chan;
4563 ath_chan_change(sc, chan);
4565 #if 0
4567 * Handle DFS required waiting period to determine
4568 * if channel is clear of radar traffic.
4570 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4571 #define DFS_AND_NOT_CLEAR(_c) \
4572 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4573 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4574 if_printf(&sc->sc_if,
4575 "wait for DFS clear channel signal\n");
4576 /* XXX stop sndq */
4577 sc->sc_if.if_flags |= IFF_OACTIVE;
4578 callout_reset(&sc->sc_dfs_ch,
4579 2 * hz, ath_dfswait, sc);
4580 } else
4581 callout_stop(&sc->sc_dfs_ch);
4582 #undef DFS_NOT_CLEAR
4584 #endif
4587 * Re-enable interrupts.
4589 ath_hal_intrset(ah, sc->sc_imask);
4591 return 0;
4594 static void
4595 ath_next_scan(void *arg)
4597 struct ath_softc *sc = arg;
4598 struct ieee80211com *ic = &sc->sc_ic;
4599 int s;
4601 /* don't call ath_start w/o network interrupts blocked */
4602 s = splnet();
4604 if (ic->ic_state == IEEE80211_S_SCAN)
4605 ieee80211_next_scan(ic);
4606 splx(s);
4610 * Periodically recalibrate the PHY to account
4611 * for temperature/environment changes.
4613 static void
4614 ath_calibrate(void *arg)
4616 struct ath_softc *sc = arg;
4617 struct ath_hal *ah = sc->sc_ah;
4618 HAL_BOOL iqCalDone;
4620 sc->sc_stats.ast_per_cal++;
4622 ATH_LOCK(sc);
4624 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4626 * Rfgain is out of bounds, reset the chip
4627 * to load new gain values.
4629 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4630 "%s: rfgain change\n", __func__);
4631 sc->sc_stats.ast_per_rfgain++;
4632 ath_reset(&sc->sc_if);
4634 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4635 DPRINTF(sc, ATH_DEBUG_ANY,
4636 "%s: calibration of channel %u failed\n",
4637 __func__, sc->sc_curchan.channel);
4638 sc->sc_stats.ast_per_calfail++;
4641 * Calibrate noise floor data again in case of change.
4643 ath_hal_process_noisefloor(ah);
4645 * Poll more frequently when the IQ calibration is in
4646 * progress to speedup loading the final settings.
4647 * We temper this aggressive polling with an exponential
4648 * back off after 4 tries up to ath_calinterval.
4650 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4651 sc->sc_caltries = 0;
4652 sc->sc_calinterval = ath_calinterval;
4653 } else if (sc->sc_caltries > 4) {
4654 sc->sc_caltries = 0;
4655 sc->sc_calinterval <<= 1;
4656 if (sc->sc_calinterval > ath_calinterval)
4657 sc->sc_calinterval = ath_calinterval;
4659 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4660 ("bad calibration interval %u", sc->sc_calinterval));
4662 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4663 "%s: next +%u (%siqCalDone tries %u)\n", __func__,
4664 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4665 sc->sc_caltries++;
4666 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4667 ath_calibrate, sc);
4668 ATH_UNLOCK(sc);
4671 static int
4672 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4674 struct ifnet *ifp = ic->ic_ifp;
4675 struct ath_softc *sc = ifp->if_softc;
4676 struct ath_hal *ah = sc->sc_ah;
4677 struct ieee80211_node *ni;
4678 int i, error;
4679 const u_int8_t *bssid;
4680 u_int32_t rfilt;
4681 static const HAL_LED_STATE leds[] = {
4682 HAL_LED_INIT, /* IEEE80211_S_INIT */
4683 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
4684 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
4685 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
4686 HAL_LED_RUN, /* IEEE80211_S_RUN */
4689 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4690 ieee80211_state_name[ic->ic_state],
4691 ieee80211_state_name[nstate]);
4693 callout_stop(&sc->sc_scan_ch);
4694 callout_stop(&sc->sc_cal_ch);
4695 #if 0
4696 callout_stop(&sc->sc_dfs_ch);
4697 #endif
4698 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
4700 if (nstate == IEEE80211_S_INIT) {
4701 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4703 * NB: disable interrupts so we don't rx frames.
4705 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4707 * Notify the rate control algorithm.
4709 ath_rate_newstate(sc, nstate);
4710 goto done;
4712 ni = ic->ic_bss;
4713 error = ath_chan_set(sc, ic->ic_curchan);
4714 if (error != 0)
4715 goto bad;
4716 rfilt = ath_calcrxfilter(sc, nstate);
4717 if (nstate == IEEE80211_S_SCAN)
4718 bssid = ifp->if_broadcastaddr;
4719 else
4720 bssid = ni->ni_bssid;
4721 ath_hal_setrxfilter(ah, rfilt);
4722 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4723 __func__, rfilt, ether_sprintf(bssid));
4725 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4726 ath_hal_setassocid(ah, bssid, ni->ni_associd);
4727 else
4728 ath_hal_setassocid(ah, bssid, 0);
4729 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4730 for (i = 0; i < IEEE80211_WEP_NKID; i++)
4731 if (ath_hal_keyisvalid(ah, i))
4732 ath_hal_keysetmac(ah, i, bssid);
4736 * Notify the rate control algorithm so rates
4737 * are setup should ath_beacon_alloc be called.
4739 ath_rate_newstate(sc, nstate);
4741 if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4742 /* nothing to do */;
4743 } else if (nstate == IEEE80211_S_RUN) {
4744 DPRINTF(sc, ATH_DEBUG_STATE,
4745 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4746 "capinfo=0x%04x chan=%d\n"
4747 , __func__
4748 , ic->ic_flags
4749 , ni->ni_intval
4750 , ether_sprintf(ni->ni_bssid)
4751 , ni->ni_capinfo
4752 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4754 switch (ic->ic_opmode) {
4755 case IEEE80211_M_HOSTAP:
4756 case IEEE80211_M_IBSS:
4758 * Allocate and setup the beacon frame.
4760 * Stop any previous beacon DMA. This may be
4761 * necessary, for example, when an ibss merge
4762 * causes reconfiguration; there will be a state
4763 * transition from RUN->RUN that means we may
4764 * be called with beacon transmission active.
4766 ath_hal_stoptxdma(ah, sc->sc_bhalq);
4767 ath_beacon_free(sc);
4768 error = ath_beacon_alloc(sc, ni);
4769 if (error != 0)
4770 goto bad;
4772 * If joining an adhoc network defer beacon timer
4773 * configuration to the next beacon frame so we
4774 * have a current TSF to use. Otherwise we're
4775 * starting an ibss/bss so there's no need to delay.
4777 if (ic->ic_opmode == IEEE80211_M_IBSS &&
4778 ic->ic_bss->ni_tstamp.tsf != 0)
4779 sc->sc_syncbeacon = 1;
4780 else
4781 ath_beacon_config(sc);
4782 break;
4783 case IEEE80211_M_STA:
4785 * Allocate a key cache slot to the station.
4787 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4788 sc->sc_hasclrkey &&
4789 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4790 ath_setup_stationkey(ni);
4792 * Defer beacon timer configuration to the next
4793 * beacon frame so we have a current TSF to use
4794 * (any TSF collected when scanning is likely old).
4796 sc->sc_syncbeacon = 1;
4797 break;
4798 default:
4799 break;
4802 * Let the hal process statistics collected during a
4803 * scan so it can provide calibrated noise floor data.
4805 ath_hal_process_noisefloor(ah);
4807 * Reset rssi stats; maybe not the best place...
4809 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4810 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4811 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4812 } else {
4813 ath_hal_intrset(ah,
4814 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4815 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4817 done:
4819 * Invoke the parent method to complete the work.
4821 error = sc->sc_newstate(ic, nstate, arg);
4823 * Finally, start any timers.
4825 if (nstate == IEEE80211_S_RUN) {
4826 /* start periodic recalibration timer */
4827 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4828 ath_calibrate, sc);
4829 } else if (nstate == IEEE80211_S_SCAN) {
4830 /* start ap/neighbor scan timer */
4831 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4832 ath_next_scan, sc);
4834 bad:
4835 return error;
4839 * Allocate a key cache slot to the station so we can
4840 * setup a mapping from key index to node. The key cache
4841 * slot is needed for managing antenna state and for
4842 * compression when stations do not use crypto. We do
4843 * it uniliaterally here; if crypto is employed this slot
4844 * will be reassigned.
4846 static void
4847 ath_setup_stationkey(struct ieee80211_node *ni)
4849 struct ieee80211com *ic = ni->ni_ic;
4850 struct ath_softc *sc = ic->ic_ifp->if_softc;
4851 ieee80211_keyix keyix, rxkeyix;
4853 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4855 * Key cache is full; we'll fall back to doing
4856 * the more expensive lookup in software. Note
4857 * this also means no h/w compression.
4859 /* XXX msg+statistic */
4860 } else {
4861 /* XXX locking? */
4862 ni->ni_ucastkey.wk_keyix = keyix;
4863 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4864 /* NB: this will create a pass-thru key entry */
4865 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4870 * Setup driver-specific state for a newly associated node.
4871 * Note that we're called also on a re-associate, the isnew
4872 * param tells us if this is the first time or not.
4874 static void
4875 ath_newassoc(struct ieee80211_node *ni, int isnew)
4877 struct ieee80211com *ic = ni->ni_ic;
4878 struct ath_softc *sc = ic->ic_ifp->if_softc;
4880 ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4881 if (isnew &&
4882 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4883 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4884 ("new assoc with a unicast key already setup (keyix %u)",
4885 ni->ni_ucastkey.wk_keyix));
4886 ath_setup_stationkey(ni);
4890 static int
4891 ath_getchannels(struct ath_softc *sc, u_int cc,
4892 HAL_BOOL outdoor, HAL_BOOL xchanmode)
4894 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4895 struct ieee80211com *ic = &sc->sc_ic;
4896 struct ifnet *ifp = &sc->sc_if;
4897 struct ath_hal *ah = sc->sc_ah;
4898 HAL_CHANNEL *chans;
4899 int i, ix, nchan;
4901 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4902 M_TEMP, M_NOWAIT);
4903 if (chans == NULL) {
4904 if_printf(ifp, "unable to allocate channel table\n");
4905 return ENOMEM;
4907 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4908 NULL, 0, NULL,
4909 cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4910 u_int32_t rd;
4912 (void)ath_hal_getregdomain(ah, &rd);
4913 if_printf(ifp, "unable to collect channel list from hal; "
4914 "regdomain likely %u country code %u\n", rd, cc);
4915 free(chans, M_TEMP);
4916 return EINVAL;
4920 * Convert HAL channels to ieee80211 ones and insert
4921 * them in the table according to their channel number.
4923 for (i = 0; i < nchan; i++) {
4924 HAL_CHANNEL *c = &chans[i];
4925 u_int16_t flags;
4927 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4928 if (ix > IEEE80211_CHAN_MAX) {
4929 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4930 ix, c->channel, c->channelFlags);
4931 continue;
4933 if (ix < 0) {
4934 /* XXX can't handle stuff <2400 right now */
4935 if (bootverbose)
4936 if_printf(ifp, "hal channel %d (%u/%x) "
4937 "cannot be handled; ignored\n",
4938 ix, c->channel, c->channelFlags);
4939 continue;
4942 * Calculate net80211 flags; most are compatible
4943 * but some need massaging. Note the static turbo
4944 * conversion can be removed once net80211 is updated
4945 * to understand static vs. dynamic turbo.
4947 flags = c->channelFlags & COMPAT;
4948 if (c->channelFlags & CHANNEL_STURBO)
4949 flags |= IEEE80211_CHAN_TURBO;
4950 if (ic->ic_channels[ix].ic_freq == 0) {
4951 ic->ic_channels[ix].ic_freq = c->channel;
4952 ic->ic_channels[ix].ic_flags = flags;
4953 } else {
4954 /* channels overlap; e.g. 11g and 11b */
4955 ic->ic_channels[ix].ic_flags |= flags;
4958 free(chans, M_TEMP);
4959 return 0;
4960 #undef COMPAT
4963 static void
4964 ath_led_done(void *arg)
4966 struct ath_softc *sc = arg;
4968 sc->sc_blinking = 0;
4972 * Turn the LED off: flip the pin and then set a timer so no
4973 * update will happen for the specified duration.
4975 static void
4976 ath_led_off(void *arg)
4978 struct ath_softc *sc = arg;
4980 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4981 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4985 * Blink the LED according to the specified on/off times.
4987 static void
4988 ath_led_blink(struct ath_softc *sc, int on, int off)
4990 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4991 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4992 sc->sc_blinking = 1;
4993 sc->sc_ledoff = off;
4994 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4997 static void
4998 ath_led_event(struct ath_softc *sc, int event)
5001 sc->sc_ledevent = ticks; /* time of last event */
5002 if (sc->sc_blinking) /* don't interrupt active blink */
5003 return;
5004 switch (event) {
5005 case ATH_LED_POLL:
5006 ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5007 sc->sc_hwmap[0].ledoff);
5008 break;
5009 case ATH_LED_TX:
5010 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5011 sc->sc_hwmap[sc->sc_txrate].ledoff);
5012 break;
5013 case ATH_LED_RX:
5014 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5015 sc->sc_hwmap[sc->sc_rxrate].ledoff);
5016 break;
5020 static void
5021 ath_update_txpow(struct ath_softc *sc)
5023 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5024 struct ieee80211com *ic = &sc->sc_ic;
5025 struct ath_hal *ah = sc->sc_ah;
5026 u_int32_t txpow;
5028 if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5029 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5030 /* read back in case value is clamped */
5031 (void)ath_hal_gettxpowlimit(ah, &txpow);
5032 ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5035 * Fetch max tx power level for status requests.
5037 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5038 ic->ic_bss->ni_txpower = txpow;
5041 static void
5042 rate_setup(struct ath_softc *sc,
5043 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5045 int i, maxrates;
5047 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5048 DPRINTF(sc, ATH_DEBUG_ANY,
5049 "%s: rate table too small (%u > %u)\n",
5050 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5051 maxrates = IEEE80211_RATE_MAXSIZE;
5052 } else
5053 maxrates = rt->rateCount;
5054 for (i = 0; i < maxrates; i++)
5055 rs->rs_rates[i] = rt->info[i].dot11Rate;
5056 rs->rs_nrates = maxrates;
5059 static int
5060 ath_rate_setup(struct ath_softc *sc, u_int mode)
5062 struct ath_hal *ah = sc->sc_ah;
5063 struct ieee80211com *ic = &sc->sc_ic;
5064 const HAL_RATE_TABLE *rt;
5066 switch (mode) {
5067 case IEEE80211_MODE_11A:
5068 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5069 break;
5070 case IEEE80211_MODE_11B:
5071 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5072 break;
5073 case IEEE80211_MODE_11G:
5074 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5075 break;
5076 case IEEE80211_MODE_TURBO_A:
5077 /* XXX until static/dynamic turbo is fixed */
5078 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5079 break;
5080 case IEEE80211_MODE_TURBO_G:
5081 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5082 break;
5083 default:
5084 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5085 __func__, mode);
5086 return 0;
5088 sc->sc_rates[mode] = rt;
5089 if (rt != NULL) {
5090 rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5091 return 1;
5092 } else
5093 return 0;
5096 static void
5097 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5099 #define N(a) (sizeof(a)/sizeof(a[0]))
5100 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
5101 static const struct {
5102 u_int rate; /* tx/rx 802.11 rate */
5103 u_int16_t timeOn; /* LED on time (ms) */
5104 u_int16_t timeOff; /* LED off time (ms) */
5105 } blinkrates[] = {
5106 { 108, 40, 10 },
5107 { 96, 44, 11 },
5108 { 72, 50, 13 },
5109 { 48, 57, 14 },
5110 { 36, 67, 16 },
5111 { 24, 80, 20 },
5112 { 22, 100, 25 },
5113 { 18, 133, 34 },
5114 { 12, 160, 40 },
5115 { 10, 200, 50 },
5116 { 6, 240, 58 },
5117 { 4, 267, 66 },
5118 { 2, 400, 100 },
5119 { 0, 500, 130 },
5121 const HAL_RATE_TABLE *rt;
5122 int i, j;
5124 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5125 rt = sc->sc_rates[mode];
5126 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5127 for (i = 0; i < rt->rateCount; i++)
5128 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5129 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5130 for (i = 0; i < 32; i++) {
5131 u_int8_t ix = rt->rateCodeToIndex[i];
5132 if (ix == 0xff) {
5133 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5134 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5135 continue;
5137 sc->sc_hwmap[i].ieeerate =
5138 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5139 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5140 if (rt->info[ix].shortPreamble ||
5141 rt->info[ix].phy == IEEE80211_T_OFDM)
5142 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5143 /* NB: receive frames include FCS */
5144 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5145 IEEE80211_RADIOTAP_F_FCS;
5146 /* setup blink rate table to avoid per-packet lookup */
5147 for (j = 0; j < N(blinkrates)-1; j++)
5148 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5149 break;
5150 /* NB: this uses the last entry if the rate isn't found */
5151 /* XXX beware of overlow */
5152 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5153 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5155 sc->sc_currates = rt;
5156 sc->sc_curmode = mode;
5158 * All protection frames are transmited at 2Mb/s for
5159 * 11g, otherwise at 1Mb/s.
5161 if (mode == IEEE80211_MODE_11G)
5162 sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5163 else
5164 sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5165 /* rate index used to send management frames */
5166 sc->sc_minrateix = 0;
5168 * Setup multicast rate state.
5170 /* XXX layering violation */
5171 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5172 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5173 /* NB: caller is responsible for reseting rate control state */
5174 #undef N
5177 #ifdef AR_DEBUG
5178 static void
5179 ath_printrxbuf(struct ath_buf *bf, int done)
5181 struct ath_desc *ds;
5182 int i;
5184 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5185 printf("R%d (%p %" PRIx64
5186 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5187 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5188 ds->ds_link, ds->ds_data,
5189 ds->ds_ctl0, ds->ds_ctl1,
5190 ds->ds_hw[0], ds->ds_hw[1],
5191 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5192 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5196 static void
5197 ath_printtxbuf(struct ath_buf *bf, int done)
5199 struct ath_desc *ds;
5200 int i;
5202 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5203 printf("T%d (%p %" PRIx64
5204 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5205 i, ds,
5206 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5207 ds->ds_link, ds->ds_data,
5208 ds->ds_ctl0, ds->ds_ctl1,
5209 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5210 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5213 #endif /* AR_DEBUG */
5215 static void
5216 ath_watchdog(struct ifnet *ifp)
5218 struct ath_softc *sc = ifp->if_softc;
5219 struct ieee80211com *ic = &sc->sc_ic;
5220 struct ath_txq *axq;
5221 int i;
5223 ifp->if_timer = 0;
5224 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5225 !device_is_active(sc->sc_dev))
5226 return;
5227 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5228 if (!ATH_TXQ_SETUP(sc, i))
5229 continue;
5230 axq = &sc->sc_txq[i];
5231 ATH_TXQ_LOCK(axq);
5232 if (axq->axq_timer == 0)
5234 else if (--axq->axq_timer == 0) {
5235 ATH_TXQ_UNLOCK(axq);
5236 if_printf(ifp, "device timeout (txq %d, "
5237 "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5238 if (sc->sc_txintrperiod > 1)
5239 sc->sc_txintrperiod--;
5240 ath_reset(ifp);
5241 ifp->if_oerrors++;
5242 sc->sc_stats.ast_watchdog++;
5243 break;
5244 } else
5245 ifp->if_timer = 1;
5246 ATH_TXQ_UNLOCK(axq);
5248 ieee80211_watchdog(ic);
5252 * Diagnostic interface to the HAL. This is used by various
5253 * tools to do things like retrieve register contents for
5254 * debugging. The mechanism is intentionally opaque so that
5255 * it can change frequently w/o concern for compatiblity.
5257 static int
5258 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5260 struct ath_hal *ah = sc->sc_ah;
5261 u_int id = ad->ad_id & ATH_DIAG_ID;
5262 void *indata = NULL;
5263 void *outdata = NULL;
5264 u_int32_t insize = ad->ad_in_size;
5265 u_int32_t outsize = ad->ad_out_size;
5266 int error = 0;
5268 if (ad->ad_id & ATH_DIAG_IN) {
5270 * Copy in data.
5272 indata = malloc(insize, M_TEMP, M_NOWAIT);
5273 if (indata == NULL) {
5274 error = ENOMEM;
5275 goto bad;
5277 error = copyin(ad->ad_in_data, indata, insize);
5278 if (error)
5279 goto bad;
5281 if (ad->ad_id & ATH_DIAG_DYN) {
5283 * Allocate a buffer for the results (otherwise the HAL
5284 * returns a pointer to a buffer where we can read the
5285 * results). Note that we depend on the HAL leaving this
5286 * pointer for us to use below in reclaiming the buffer;
5287 * may want to be more defensive.
5289 outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5290 if (outdata == NULL) {
5291 error = ENOMEM;
5292 goto bad;
5295 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5296 if (outsize < ad->ad_out_size)
5297 ad->ad_out_size = outsize;
5298 if (outdata != NULL)
5299 error = copyout(outdata, ad->ad_out_data,
5300 ad->ad_out_size);
5301 } else {
5302 error = EINVAL;
5304 bad:
5305 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5306 free(indata, M_TEMP);
5307 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5308 free(outdata, M_TEMP);
5309 return error;
5312 static int
5313 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5315 #define IS_RUNNING(ifp) \
5316 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5317 struct ath_softc *sc = ifp->if_softc;
5318 struct ieee80211com *ic = &sc->sc_ic;
5319 struct ifreq *ifr = (struct ifreq *)data;
5320 int error = 0;
5322 ATH_LOCK(sc);
5323 switch (cmd) {
5324 case SIOCSIFFLAGS:
5325 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5326 break;
5327 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5328 case IFF_UP|IFF_RUNNING:
5330 * To avoid rescanning another access point,
5331 * do not call ath_init() here. Instead,
5332 * only reflect promisc mode settings.
5334 ath_mode_init(sc);
5335 break;
5336 case IFF_UP:
5338 * Beware of being called during attach/detach
5339 * to reset promiscuous mode. In that case we
5340 * will still be marked UP but not RUNNING.
5341 * However trying to re-init the interface
5342 * is the wrong thing to do as we've already
5343 * torn down much of our state. There's
5344 * probably a better way to deal with this.
5346 error = ath_init(sc);
5347 break;
5348 case IFF_RUNNING:
5349 ath_stop_locked(ifp, 1);
5350 break;
5351 case 0:
5352 break;
5354 break;
5355 case SIOCADDMULTI:
5356 case SIOCDELMULTI:
5357 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5358 if (ifp->if_flags & IFF_RUNNING)
5359 ath_mode_init(sc);
5360 error = 0;
5362 break;
5363 case SIOCGATHSTATS:
5364 /* NB: embed these numbers to get a consistent view */
5365 sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5366 sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5367 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5368 ATH_UNLOCK(sc);
5370 * NB: Drop the softc lock in case of a page fault;
5371 * we'll accept any potential inconsisentcy in the
5372 * statistics. The alternative is to copy the data
5373 * to a local structure.
5375 return copyout(&sc->sc_stats,
5376 ifr->ifr_data, sizeof (sc->sc_stats));
5377 case SIOCGATHDIAG:
5378 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5379 break;
5380 default:
5381 error = ieee80211_ioctl(ic, cmd, data);
5382 if (error != ENETRESET)
5384 else if (IS_RUNNING(ifp) &&
5385 ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5386 error = ath_init(sc);
5387 else
5388 error = 0;
5389 break;
5391 ATH_UNLOCK(sc);
5392 return error;
5393 #undef IS_RUNNING
5396 #if NBPFILTER > 0
5397 static void
5398 ath_bpfattach(struct ath_softc *sc)
5400 struct ifnet *ifp = &sc->sc_if;
5402 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5403 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5404 &sc->sc_drvbpf);
5406 * Initialize constant fields.
5407 * XXX make header lengths a multiple of 32-bits so subsequent
5408 * headers are properly aligned; this is a kludge to keep
5409 * certain applications happy.
5411 * NB: the channel is setup each time we transition to the
5412 * RUN state to avoid filling it in for each frame.
5414 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5415 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5416 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5418 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5419 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5420 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5422 #endif
5425 * Announce various information on device/driver attach.
5427 static void
5428 ath_announce(struct ath_softc *sc)
5430 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B)
5431 struct ifnet *ifp = &sc->sc_if;
5432 struct ath_hal *ah = sc->sc_ah;
5433 u_int modes, cc;
5435 if_printf(ifp, "mac %d.%d phy %d.%d",
5436 ah->ah_macVersion, ah->ah_macRev,
5437 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5439 * Print radio revision(s). We check the wireless modes
5440 * to avoid falsely printing revs for inoperable parts.
5441 * Dual-band radio revs are returned in the 5 GHz rev number.
5443 ath_hal_getcountrycode(ah, &cc);
5444 modes = ath_hal_getwirelessmodes(ah, cc);
5445 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5446 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5447 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5448 ah->ah_analog5GhzRev >> 4,
5449 ah->ah_analog5GhzRev & 0xf,
5450 ah->ah_analog2GhzRev >> 4,
5451 ah->ah_analog2GhzRev & 0xf);
5452 else
5453 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5454 ah->ah_analog5GhzRev & 0xf);
5455 } else
5456 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5457 ah->ah_analog5GhzRev & 0xf);
5458 printf("\n");
5459 if (bootverbose) {
5460 int i;
5461 for (i = 0; i <= WME_AC_VO; i++) {
5462 struct ath_txq *txq = sc->sc_ac2q[i];
5463 if_printf(ifp, "Use hw queue %u for %s traffic\n",
5464 txq->axq_qnum, ieee80211_wme_acnames[i]);
5466 if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5467 sc->sc_cabq->axq_qnum);
5468 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5470 if (ath_rxbuf != ATH_RXBUF)
5471 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5472 if (ath_txbuf != ATH_TXBUF)
5473 if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5474 #undef HAL_MODE_DUALBAND