Don't use .Xo/.Xc. Fix date format.
[netbsd-mini2440.git] / sys / dev / pci / if_bnx.c
blob8f6b54d7c2968d0d6e7aa6aca677e55942ab20c9
1 /* $NetBSD: if_bnx.c,v 1.29 2009/11/18 23:11:16 bouyer Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch@broadcom.com>. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.29 2009/11/18 23:11:16 bouyer Exp $");
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5716 C0
49 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/microcode/bnx/bnxfw.h>
65 /****************************************************************************/
66 /* BNX Driver Version */
67 /****************************************************************************/
68 #define BNX_DRIVER_VERSION "v0.9.6"
70 /****************************************************************************/
71 /* BNX Debug Options */
72 /****************************************************************************/
73 #ifdef BNX_DEBUG
74 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
76 /* 0 = Never */
77 /* 1 = 1 in 2,147,483,648 */
78 /* 256 = 1 in 8,388,608 */
79 /* 2048 = 1 in 1,048,576 */
80 /* 65536 = 1 in 32,768 */
81 /* 1048576 = 1 in 2,048 */
82 /* 268435456 = 1 in 8 */
83 /* 536870912 = 1 in 4 */
84 /* 1073741824 = 1 in 2 */
86 /* Controls how often the l2_fhdr frame error check will fail. */
87 int bnx_debug_l2fhdr_status_check = 0;
89 /* Controls how often the unexpected attention check will fail. */
90 int bnx_debug_unexpected_attention = 0;
92 /* Controls how often to simulate an mbuf allocation failure. */
93 int bnx_debug_mbuf_allocation_failure = 0;
95 /* Controls how often to simulate a DMA mapping failure. */
96 int bnx_debug_dma_map_addr_failure = 0;
98 /* Controls how often to simulate a bootcode failure. */
99 int bnx_debug_bootcode_running_failure = 0;
100 #endif
102 /****************************************************************************/
103 /* PCI Device ID Table */
104 /* */
105 /* Used by bnx_probe() to identify the devices supported by this driver. */
106 /****************************************************************************/
107 static const struct bnx_product {
108 pci_vendor_id_t bp_vendor;
109 pci_product_id_t bp_product;
110 pci_vendor_id_t bp_subvendor;
111 pci_product_id_t bp_subproduct;
112 const char *bp_name;
113 } bnx_devices[] = {
114 #ifdef PCI_SUBPRODUCT_HP_NC370T
116 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
117 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
118 "HP NC370T Multifunction Gigabit Server Adapter"
120 #endif
121 #ifdef PCI_SUBPRODUCT_HP_NC370i
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
125 "HP NC370i Multifunction Gigabit Server Adapter"
127 #endif
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
130 0, 0,
131 "Broadcom NetXtreme II BCM5706 1000Base-T"
133 #ifdef PCI_SUBPRODUCT_HP_NC370F
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
137 "HP NC370F Multifunction Gigabit Server Adapter"
139 #endif
141 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
142 0, 0,
143 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
147 0, 0,
148 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
152 0, 0,
153 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
157 0, 0,
158 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
162 0, 0,
163 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
167 0, 0,
168 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
172 0, 0,
173 "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 /****************************************************************************/
178 /* Supported Flash NVRAM device data. */
179 /****************************************************************************/
180 static struct flash_spec flash_table[] =
182 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
183 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
184 /* Slow EEPROM */
185 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
186 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
187 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
188 "EEPROM - slow"},
189 /* Expansion entry 0001 */
190 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
191 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
192 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
193 "Entry 0001"},
194 /* Saifun SA25F010 (non-buffered flash) */
195 /* strap, cfg1, & write1 need updates */
196 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
197 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
198 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
199 "Non-buffered flash (128kB)"},
200 /* Saifun SA25F020 (non-buffered flash) */
201 /* strap, cfg1, & write1 need updates */
202 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
205 "Non-buffered flash (256kB)"},
206 /* Expansion entry 0100 */
207 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
209 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
210 "Entry 0100"},
211 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
212 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
213 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
214 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
215 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
216 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
217 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
219 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
220 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
221 /* Saifun SA25F005 (non-buffered flash) */
222 /* strap, cfg1, & write1 need updates */
223 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
226 "Non-buffered flash (64kB)"},
227 /* Fast EEPROM */
228 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
229 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
230 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
231 "EEPROM - fast"},
232 /* Expansion entry 1001 */
233 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
234 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 "Entry 1001"},
237 /* Expansion entry 1010 */
238 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
239 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 "Entry 1010"},
242 /* ATMEL AT45DB011B (buffered flash) */
243 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
244 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
246 "Buffered flash (128kB)"},
247 /* Expansion entry 1100 */
248 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
249 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
250 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
251 "Entry 1100"},
252 /* Expansion entry 1101 */
253 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
254 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
255 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
256 "Entry 1101"},
257 /* Ateml Expansion entry 1110 */
258 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
259 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
260 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
261 "Entry 1110 (Atmel)"},
262 /* ATMEL AT45DB021B (buffered flash) */
263 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
264 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
265 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
266 "Buffered flash (256kB)"},
270 * The BCM5709 controllers transparently handle the
271 * differences between Atmel 264 byte pages and all
272 * flash devices which use 256 byte pages, so no
273 * logical-to-physical mapping is required in the
274 * driver.
276 static struct flash_spec flash_5709 = {
277 .flags = BNX_NV_BUFFERED,
278 .page_bits = BCM5709_FLASH_PAGE_BITS,
279 .page_size = BCM5709_FLASH_PAGE_SIZE,
280 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
281 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
282 .name = "5709 buffered flash (256kB)",
285 /****************************************************************************/
286 /* OpenBSD device entry points. */
287 /****************************************************************************/
288 static int bnx_probe(device_t, cfdata_t, void *);
289 void bnx_attach(device_t, device_t, void *);
290 int bnx_detach(device_t, int);
292 /****************************************************************************/
293 /* BNX Debug Data Structure Dump Routines */
294 /****************************************************************************/
295 #ifdef BNX_DEBUG
296 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
297 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
298 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
299 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
300 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
301 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
302 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
303 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
304 void bnx_dump_status_block(struct bnx_softc *);
305 void bnx_dump_stats_block(struct bnx_softc *);
306 void bnx_dump_driver_state(struct bnx_softc *);
307 void bnx_dump_hw_state(struct bnx_softc *);
308 void bnx_breakpoint(struct bnx_softc *);
309 #endif
311 /****************************************************************************/
312 /* BNX Register/Memory Access Routines */
313 /****************************************************************************/
314 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
315 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
316 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
317 int bnx_miibus_read_reg(device_t, int, int);
318 void bnx_miibus_write_reg(device_t, int, int, int);
319 void bnx_miibus_statchg(device_t);
321 /****************************************************************************/
322 /* BNX NVRAM Access Routines */
323 /****************************************************************************/
324 int bnx_acquire_nvram_lock(struct bnx_softc *);
325 int bnx_release_nvram_lock(struct bnx_softc *);
326 void bnx_enable_nvram_access(struct bnx_softc *);
327 void bnx_disable_nvram_access(struct bnx_softc *);
328 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
329 u_int32_t);
330 int bnx_init_nvram(struct bnx_softc *);
331 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
332 int bnx_nvram_test(struct bnx_softc *);
333 #ifdef BNX_NVRAM_WRITE_SUPPORT
334 int bnx_enable_nvram_write(struct bnx_softc *);
335 void bnx_disable_nvram_write(struct bnx_softc *);
336 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
337 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
338 u_int32_t);
339 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
340 #endif
342 /****************************************************************************/
343 /* */
344 /****************************************************************************/
345 void bnx_get_media(struct bnx_softc *);
346 int bnx_dma_alloc(struct bnx_softc *);
347 void bnx_dma_free(struct bnx_softc *);
348 void bnx_release_resources(struct bnx_softc *);
350 /****************************************************************************/
351 /* BNX Firmware Synchronization and Load */
352 /****************************************************************************/
353 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
354 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
355 u_int32_t);
356 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
357 struct fw_info *);
358 void bnx_init_cpus(struct bnx_softc *);
360 void bnx_stop(struct ifnet *, int);
361 int bnx_reset(struct bnx_softc *, u_int32_t);
362 int bnx_chipinit(struct bnx_softc *);
363 int bnx_blockinit(struct bnx_softc *);
364 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
365 u_int16_t *, u_int32_t *);
366 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
368 int bnx_init_tx_chain(struct bnx_softc *);
369 void bnx_init_tx_context(struct bnx_softc *);
370 int bnx_init_rx_chain(struct bnx_softc *);
371 void bnx_init_rx_context(struct bnx_softc *);
372 void bnx_free_rx_chain(struct bnx_softc *);
373 void bnx_free_tx_chain(struct bnx_softc *);
375 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
376 void bnx_start(struct ifnet *);
377 int bnx_ioctl(struct ifnet *, u_long, void *);
378 void bnx_watchdog(struct ifnet *);
379 int bnx_init(struct ifnet *);
381 void bnx_init_context(struct bnx_softc *);
382 void bnx_get_mac_addr(struct bnx_softc *);
383 void bnx_set_mac_addr(struct bnx_softc *);
384 void bnx_phy_intr(struct bnx_softc *);
385 void bnx_rx_intr(struct bnx_softc *);
386 void bnx_tx_intr(struct bnx_softc *);
387 void bnx_disable_intr(struct bnx_softc *);
388 void bnx_enable_intr(struct bnx_softc *);
390 int bnx_intr(void *);
391 void bnx_iff(struct bnx_softc *);
392 void bnx_stats_update(struct bnx_softc *);
393 void bnx_tick(void *);
395 struct pool *bnx_tx_pool = NULL;
396 int bnx_alloc_pkts(struct bnx_softc *);
398 /****************************************************************************/
399 /* OpenBSD device dispatch table. */
400 /****************************************************************************/
401 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
402 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
404 /****************************************************************************/
405 /* Device probe function. */
406 /* */
407 /* Compares the device to the driver's list of supported devices and */
408 /* reports back to the OS whether this is the right driver for the device. */
409 /* */
410 /* Returns: */
411 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
412 /****************************************************************************/
413 static const struct bnx_product *
414 bnx_lookup(const struct pci_attach_args *pa)
416 int i;
417 pcireg_t subid;
419 for (i = 0; i < __arraycount(bnx_devices); i++) {
420 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
421 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
422 continue;
423 if (!bnx_devices[i].bp_subvendor)
424 return &bnx_devices[i];
425 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
426 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
427 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
428 return &bnx_devices[i];
431 return NULL;
433 static int
434 bnx_probe(device_t parent, cfdata_t match, void *aux)
436 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
438 if (bnx_lookup(pa) != NULL)
439 return (1);
441 return (0);
444 /****************************************************************************/
445 /* Device attach function. */
446 /* */
447 /* Allocates device resources, performs secondary chip identification, */
448 /* resets and initializes the hardware, and initializes driver instance */
449 /* variables. */
450 /* */
451 /* Returns: */
452 /* 0 on success, positive value on failure. */
453 /****************************************************************************/
454 void
455 bnx_attach(device_t parent, device_t self, void *aux)
457 const struct bnx_product *bp;
458 struct bnx_softc *sc = device_private(self);
459 struct pci_attach_args *pa = aux;
460 pci_chipset_tag_t pc = pa->pa_pc;
461 pci_intr_handle_t ih;
462 const char *intrstr = NULL;
463 u_int32_t command;
464 struct ifnet *ifp;
465 u_int32_t val;
466 int mii_flags = MIIF_FORCEANEG;
467 pcireg_t memtype;
469 if (bnx_tx_pool == NULL) {
470 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
471 if (bnx_tx_pool != NULL) {
472 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
473 0, 0, 0, "bnxpkts", NULL, IPL_NET);
474 } else {
475 aprint_error(": can't alloc bnx_tx_pool\n");
476 return;
480 bp = bnx_lookup(pa);
481 if (bp == NULL)
482 panic("unknown device");
484 sc->bnx_dev = self;
486 aprint_naive("\n");
487 aprint_normal(": %s\n", bp->bp_name);
489 sc->bnx_pa = *pa;
492 * Map control/status registers.
494 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
495 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
496 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
497 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
499 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
500 aprint_error_dev(sc->bnx_dev,
501 "failed to enable memory mapping!\n");
502 return;
505 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
506 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
507 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
508 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
509 return;
512 if (pci_intr_map(pa, &ih)) {
513 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
514 goto bnx_attach_fail;
517 intrstr = pci_intr_string(pc, ih);
520 * Configure byte swap and enable indirect register access.
521 * Rely on CPU to do target byte swapping on big endian systems.
522 * Access to registers outside of PCI configurtion space are not
523 * valid until this is done.
525 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
526 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
527 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
529 /* Save ASIC revsion info. */
530 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
533 * Find the base address for shared memory access.
534 * Newer versions of bootcode use a signature and offset
535 * while older versions use a fixed address.
537 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
538 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
539 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
540 (sc->bnx_pa.pa_function << 2));
541 else
542 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
544 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
546 /* Set initial device and PHY flags */
547 sc->bnx_flags = 0;
548 sc->bnx_phy_flags = 0;
550 /* Get PCI bus information (speed and type). */
551 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
552 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
553 u_int32_t clkreg;
555 sc->bnx_flags |= BNX_PCIX_FLAG;
557 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
559 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
560 switch (clkreg) {
561 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
562 sc->bus_speed_mhz = 133;
563 break;
565 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
566 sc->bus_speed_mhz = 100;
567 break;
569 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
571 sc->bus_speed_mhz = 66;
572 break;
574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
576 sc->bus_speed_mhz = 50;
577 break;
579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
581 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
582 sc->bus_speed_mhz = 33;
583 break;
585 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
586 sc->bus_speed_mhz = 66;
587 else
588 sc->bus_speed_mhz = 33;
590 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
591 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
593 /* Reset the controller. */
594 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
595 goto bnx_attach_fail;
597 /* Initialize the controller. */
598 if (bnx_chipinit(sc)) {
599 aprint_error_dev(sc->bnx_dev,
600 "Controller initialization failed!\n");
601 goto bnx_attach_fail;
604 /* Perform NVRAM test. */
605 if (bnx_nvram_test(sc)) {
606 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
607 goto bnx_attach_fail;
610 /* Fetch the permanent Ethernet MAC address. */
611 bnx_get_mac_addr(sc);
612 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
613 ether_sprintf(sc->eaddr));
616 * Trip points control how many BDs
617 * should be ready before generating an
618 * interrupt while ticks control how long
619 * a BD can sit in the chain before
620 * generating an interrupt. Set the default
621 * values for the RX and TX rings.
624 #ifdef BNX_DEBUG
625 /* Force more frequent interrupts. */
626 sc->bnx_tx_quick_cons_trip_int = 1;
627 sc->bnx_tx_quick_cons_trip = 1;
628 sc->bnx_tx_ticks_int = 0;
629 sc->bnx_tx_ticks = 0;
631 sc->bnx_rx_quick_cons_trip_int = 1;
632 sc->bnx_rx_quick_cons_trip = 1;
633 sc->bnx_rx_ticks_int = 0;
634 sc->bnx_rx_ticks = 0;
635 #else
636 sc->bnx_tx_quick_cons_trip_int = 20;
637 sc->bnx_tx_quick_cons_trip = 20;
638 sc->bnx_tx_ticks_int = 80;
639 sc->bnx_tx_ticks = 80;
641 sc->bnx_rx_quick_cons_trip_int = 6;
642 sc->bnx_rx_quick_cons_trip = 6;
643 sc->bnx_rx_ticks_int = 18;
644 sc->bnx_rx_ticks = 18;
645 #endif
647 /* Update statistics once every second. */
648 sc->bnx_stats_ticks = 1000000 & 0xffff00;
650 /* Find the media type for the adapter. */
651 bnx_get_media(sc);
654 * Store config data needed by the PHY driver for
655 * backplane applications
657 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
658 BNX_SHARED_HW_CFG_CONFIG);
659 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
660 BNX_PORT_HW_CFG_CONFIG);
662 /* Allocate DMA memory resources. */
663 sc->bnx_dmatag = pa->pa_dmat;
664 if (bnx_dma_alloc(sc)) {
665 aprint_error_dev(sc->bnx_dev,
666 "DMA resource allocation failed!\n");
667 goto bnx_attach_fail;
670 /* Initialize the ifnet interface. */
671 ifp = &sc->bnx_ec.ec_if;
672 ifp->if_softc = sc;
673 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
674 ifp->if_ioctl = bnx_ioctl;
675 ifp->if_stop = bnx_stop;
676 ifp->if_start = bnx_start;
677 ifp->if_init = bnx_init;
678 ifp->if_timer = 0;
679 ifp->if_watchdog = bnx_watchdog;
680 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
681 IFQ_SET_READY(&ifp->if_snd);
682 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
684 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
685 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
687 ifp->if_capabilities |=
688 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
689 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
690 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
692 /* Hookup IRQ last. */
693 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
694 if (sc->bnx_intrhand == NULL) {
695 aprint_error_dev(self, "couldn't establish interrupt");
696 if (intrstr != NULL)
697 aprint_error(" at %s", intrstr);
698 aprint_error("\n");
699 goto bnx_attach_fail;
701 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
703 sc->bnx_mii.mii_ifp = ifp;
704 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
705 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
706 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
708 sc->bnx_ec.ec_mii = &sc->bnx_mii;
709 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
710 ether_mediastatus);
711 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
712 mii_flags |= MIIF_HAVEFIBER;
713 mii_attach(self, &sc->bnx_mii, 0xffffffff,
714 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
716 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
717 aprint_error_dev(self, "no PHY found!\n");
718 ifmedia_add(&sc->bnx_mii.mii_media,
719 IFM_ETHER|IFM_MANUAL, 0, NULL);
720 ifmedia_set(&sc->bnx_mii.mii_media,
721 IFM_ETHER|IFM_MANUAL);
722 } else {
723 ifmedia_set(&sc->bnx_mii.mii_media,
724 IFM_ETHER|IFM_AUTO);
727 /* Attach to the Ethernet interface list. */
728 if_attach(ifp);
729 ether_ifattach(ifp,sc->eaddr);
731 callout_init(&sc->bnx_timeout, 0);
733 if (pmf_device_register(self, NULL, NULL))
734 pmf_class_network_register(self, ifp);
735 else
736 aprint_error_dev(self, "couldn't establish power handler\n");
738 /* Print some important debugging info. */
739 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
741 goto bnx_attach_exit;
743 bnx_attach_fail:
744 bnx_release_resources(sc);
746 bnx_attach_exit:
747 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
750 /****************************************************************************/
751 /* Device detach function. */
752 /* */
753 /* Stops the controller, resets the controller, and releases resources. */
754 /* */
755 /* Returns: */
756 /* 0 on success, positive value on failure. */
757 /****************************************************************************/
759 bnx_detach(device_t dev, int flags)
761 int s;
762 struct bnx_softc *sc;
763 struct ifnet *ifp;
765 sc = device_private(dev);
766 ifp = &sc->bnx_ec.ec_if;
768 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
770 /* Stop and reset the controller. */
771 s = splnet();
772 if (ifp->if_flags & IFF_RUNNING)
773 bnx_stop(ifp, 1);
774 else {
775 /* Disable the transmit/receive blocks. */
776 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
777 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
778 DELAY(20);
779 bnx_disable_intr(sc);
780 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
783 splx(s);
785 pmf_device_deregister(dev);
786 callout_destroy(&sc->bnx_timeout);
787 ether_ifdetach(ifp);
788 if_detach(ifp);
789 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
791 /* Release all remaining resources. */
792 bnx_release_resources(sc);
794 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
796 return(0);
799 /****************************************************************************/
800 /* Indirect register read. */
801 /* */
802 /* Reads NetXtreme II registers using an index/data register pair in PCI */
803 /* configuration space. Using this mechanism avoids issues with posted */
804 /* reads but is much slower than memory-mapped I/O. */
805 /* */
806 /* Returns: */
807 /* The value of the register. */
808 /****************************************************************************/
809 u_int32_t
810 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
812 struct pci_attach_args *pa = &(sc->bnx_pa);
814 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
815 offset);
816 #ifdef BNX_DEBUG
818 u_int32_t val;
819 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
820 BNX_PCICFG_REG_WINDOW);
821 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
822 "val = 0x%08X\n", __func__, offset, val);
823 return (val);
825 #else
826 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
827 #endif
830 /****************************************************************************/
831 /* Indirect register write. */
832 /* */
833 /* Writes NetXtreme II registers using an index/data register pair in PCI */
834 /* configuration space. Using this mechanism avoids issues with posted */
835 /* writes but is muchh slower than memory-mapped I/O. */
836 /* */
837 /* Returns: */
838 /* Nothing. */
839 /****************************************************************************/
840 void
841 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
843 struct pci_attach_args *pa = &(sc->bnx_pa);
845 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
846 __func__, offset, val);
848 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
849 offset);
850 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
853 /****************************************************************************/
854 /* Context memory write. */
855 /* */
856 /* The NetXtreme II controller uses context memory to track connection */
857 /* information for L2 and higher network protocols. */
858 /* */
859 /* Returns: */
860 /* Nothing. */
861 /****************************************************************************/
862 void
863 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
864 u_int32_t ctx_val)
866 u_int32_t idx, offset = ctx_offset + cid_addr;
867 u_int32_t val, retry_cnt = 5;
869 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
870 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
871 REG_WR(sc, BNX_CTX_CTX_CTRL,
872 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
874 for (idx = 0; idx < retry_cnt; idx++) {
875 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
876 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
877 break;
878 DELAY(5);
881 #if 0
882 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
883 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
884 "cid_addr = 0x%08X, offset = 0x%08X!\n",
885 __FILE__, __LINE__, cid_addr, ctx_offset);
886 #endif
888 } else {
889 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
890 REG_WR(sc, BNX_CTX_DATA, ctx_val);
894 /****************************************************************************/
895 /* PHY register read. */
896 /* */
897 /* Implements register reads on the MII bus. */
898 /* */
899 /* Returns: */
900 /* The value of the register. */
901 /****************************************************************************/
903 bnx_miibus_read_reg(device_t dev, int phy, int reg)
905 struct bnx_softc *sc = device_private(dev);
906 u_int32_t val;
907 int i;
909 /* Make sure we are accessing the correct PHY address. */
910 if (phy != sc->bnx_phy_addr) {
911 DBPRINT(sc, BNX_VERBOSE,
912 "Invalid PHY address %d for PHY read!\n", phy);
913 return(0);
916 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
917 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
918 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
920 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
921 REG_RD(sc, BNX_EMAC_MDIO_MODE);
923 DELAY(40);
926 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
927 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
928 BNX_EMAC_MDIO_COMM_START_BUSY;
929 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
931 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
932 DELAY(10);
934 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
935 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
936 DELAY(5);
938 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
939 val &= BNX_EMAC_MDIO_COMM_DATA;
941 break;
945 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
946 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
947 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
948 val = 0x0;
949 } else
950 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
952 DBPRINT(sc, BNX_EXCESSIVE,
953 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
954 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
956 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
957 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
958 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
960 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
961 REG_RD(sc, BNX_EMAC_MDIO_MODE);
963 DELAY(40);
966 return (val & 0xffff);
969 /****************************************************************************/
970 /* PHY register write. */
971 /* */
972 /* Implements register writes on the MII bus. */
973 /* */
974 /* Returns: */
975 /* The value of the register. */
976 /****************************************************************************/
977 void
978 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
980 struct bnx_softc *sc = device_private(dev);
981 u_int32_t val1;
982 int i;
984 /* Make sure we are accessing the correct PHY address. */
985 if (phy != sc->bnx_phy_addr) {
986 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
987 phy);
988 return;
991 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
992 "val = 0x%04X\n", __func__,
993 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
995 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
996 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
997 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
999 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1000 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1002 DELAY(40);
1005 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1006 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1007 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1008 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1010 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1011 DELAY(10);
1013 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1014 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1015 DELAY(5);
1016 break;
1020 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1021 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1022 __LINE__);
1025 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1026 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1027 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1029 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1030 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1032 DELAY(40);
1036 /****************************************************************************/
1037 /* MII bus status change. */
1038 /* */
1039 /* Called by the MII bus driver when the PHY establishes link to set the */
1040 /* MAC interface registers. */
1041 /* */
1042 /* Returns: */
1043 /* Nothing. */
1044 /****************************************************************************/
1045 void
1046 bnx_miibus_statchg(device_t dev)
1048 struct bnx_softc *sc = device_private(dev);
1049 struct mii_data *mii = &sc->bnx_mii;
1050 int val;
1052 val = REG_RD(sc, BNX_EMAC_MODE);
1053 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1054 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1055 BNX_EMAC_MODE_25G);
1057 /* Set MII or GMII interface based on the speed
1058 * negotiated by the PHY.
1060 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1061 case IFM_10_T:
1062 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1063 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1064 val |= BNX_EMAC_MODE_PORT_MII_10;
1065 break;
1067 /* FALLTHROUGH */
1068 case IFM_100_TX:
1069 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1070 val |= BNX_EMAC_MODE_PORT_MII;
1071 break;
1072 case IFM_2500_SX:
1073 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1074 val |= BNX_EMAC_MODE_25G;
1075 /* FALLTHROUGH */
1076 case IFM_1000_T:
1077 case IFM_1000_SX:
1078 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1079 val |= BNX_EMAC_MODE_PORT_GMII;
1080 break;
1081 default:
1082 val |= BNX_EMAC_MODE_PORT_GMII;
1083 break;
1086 /* Set half or full duplex based on the duplicity
1087 * negotiated by the PHY.
1089 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1090 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1091 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1092 } else {
1093 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1096 REG_WR(sc, BNX_EMAC_MODE, val);
1099 /****************************************************************************/
1100 /* Acquire NVRAM lock. */
1101 /* */
1102 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1103 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1104 /* for use by the driver. */
1105 /* */
1106 /* Returns: */
1107 /* 0 on success, positive value on failure. */
1108 /****************************************************************************/
1110 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1112 u_int32_t val;
1113 int j;
1115 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1117 /* Request access to the flash interface. */
1118 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1119 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1120 val = REG_RD(sc, BNX_NVM_SW_ARB);
1121 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1122 break;
1124 DELAY(5);
1127 if (j >= NVRAM_TIMEOUT_COUNT) {
1128 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1129 return (EBUSY);
1132 return (0);
1135 /****************************************************************************/
1136 /* Release NVRAM lock. */
1137 /* */
1138 /* When the caller is finished accessing NVRAM the lock must be released. */
1139 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1140 /* for use by the driver. */
1141 /* */
1142 /* Returns: */
1143 /* 0 on success, positive value on failure. */
1144 /****************************************************************************/
1146 bnx_release_nvram_lock(struct bnx_softc *sc)
1148 int j;
1149 u_int32_t val;
1151 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1153 /* Relinquish nvram interface. */
1154 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1156 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1157 val = REG_RD(sc, BNX_NVM_SW_ARB);
1158 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1159 break;
1161 DELAY(5);
1164 if (j >= NVRAM_TIMEOUT_COUNT) {
1165 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1166 return (EBUSY);
1169 return (0);
1172 #ifdef BNX_NVRAM_WRITE_SUPPORT
1173 /****************************************************************************/
1174 /* Enable NVRAM write access. */
1175 /* */
1176 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1177 /* */
1178 /* Returns: */
1179 /* 0 on success, positive value on failure. */
1180 /****************************************************************************/
1182 bnx_enable_nvram_write(struct bnx_softc *sc)
1184 u_int32_t val;
1186 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1188 val = REG_RD(sc, BNX_MISC_CFG);
1189 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1191 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1192 int j;
1194 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1195 REG_WR(sc, BNX_NVM_COMMAND,
1196 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1198 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1199 DELAY(5);
1201 val = REG_RD(sc, BNX_NVM_COMMAND);
1202 if (val & BNX_NVM_COMMAND_DONE)
1203 break;
1206 if (j >= NVRAM_TIMEOUT_COUNT) {
1207 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1208 return (EBUSY);
1212 return (0);
1215 /****************************************************************************/
1216 /* Disable NVRAM write access. */
1217 /* */
1218 /* When the caller is finished writing to NVRAM write access must be */
1219 /* disabled. */
1220 /* */
1221 /* Returns: */
1222 /* Nothing. */
1223 /****************************************************************************/
1224 void
1225 bnx_disable_nvram_write(struct bnx_softc *sc)
1227 u_int32_t val;
1229 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1231 val = REG_RD(sc, BNX_MISC_CFG);
1232 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1234 #endif
1236 /****************************************************************************/
1237 /* Enable NVRAM access. */
1238 /* */
1239 /* Before accessing NVRAM for read or write operations the caller must */
1240 /* enabled NVRAM access. */
1241 /* */
1242 /* Returns: */
1243 /* Nothing. */
1244 /****************************************************************************/
1245 void
1246 bnx_enable_nvram_access(struct bnx_softc *sc)
1248 u_int32_t val;
1250 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1252 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1253 /* Enable both bits, even on read. */
1254 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1255 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1258 /****************************************************************************/
1259 /* Disable NVRAM access. */
1260 /* */
1261 /* When the caller is finished accessing NVRAM access must be disabled. */
1262 /* */
1263 /* Returns: */
1264 /* Nothing. */
1265 /****************************************************************************/
1266 void
1267 bnx_disable_nvram_access(struct bnx_softc *sc)
1269 u_int32_t val;
1271 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1273 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1275 /* Disable both bits, even after read. */
1276 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1277 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1280 #ifdef BNX_NVRAM_WRITE_SUPPORT
1281 /****************************************************************************/
1282 /* Erase NVRAM page before writing. */
1283 /* */
1284 /* Non-buffered flash parts require that a page be erased before it is */
1285 /* written. */
1286 /* */
1287 /* Returns: */
1288 /* 0 on success, positive value on failure. */
1289 /****************************************************************************/
1291 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1293 u_int32_t cmd;
1294 int j;
1296 /* Buffered flash doesn't require an erase. */
1297 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1298 return (0);
1300 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1302 /* Build an erase command. */
1303 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1304 BNX_NVM_COMMAND_DOIT;
1307 * Clear the DONE bit separately, set the NVRAM adress to erase,
1308 * and issue the erase command.
1310 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1311 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1312 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1314 /* Wait for completion. */
1315 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1316 u_int32_t val;
1318 DELAY(5);
1320 val = REG_RD(sc, BNX_NVM_COMMAND);
1321 if (val & BNX_NVM_COMMAND_DONE)
1322 break;
1325 if (j >= NVRAM_TIMEOUT_COUNT) {
1326 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1327 return (EBUSY);
1330 return (0);
1332 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1334 /****************************************************************************/
1335 /* Read a dword (32 bits) from NVRAM. */
1336 /* */
1337 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1338 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1339 /* */
1340 /* Returns: */
1341 /* 0 on success and the 32 bit value read, positive value on failure. */
1342 /****************************************************************************/
1344 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1345 u_int8_t *ret_val, u_int32_t cmd_flags)
1347 u_int32_t cmd;
1348 int i, rc = 0;
1350 /* Build the command word. */
1351 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1353 /* Calculate the offset for buffered flash if translation is used. */
1354 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1355 offset = ((offset / sc->bnx_flash_info->page_size) <<
1356 sc->bnx_flash_info->page_bits) +
1357 (offset % sc->bnx_flash_info->page_size);
1361 * Clear the DONE bit separately, set the address to read,
1362 * and issue the read.
1364 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1365 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1366 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1368 /* Wait for completion. */
1369 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1370 u_int32_t val;
1372 DELAY(5);
1374 val = REG_RD(sc, BNX_NVM_COMMAND);
1375 if (val & BNX_NVM_COMMAND_DONE) {
1376 val = REG_RD(sc, BNX_NVM_READ);
1378 val = bnx_be32toh(val);
1379 memcpy(ret_val, &val, 4);
1380 break;
1384 /* Check for errors. */
1385 if (i >= NVRAM_TIMEOUT_COUNT) {
1386 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1387 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1388 rc = EBUSY;
1391 return(rc);
1394 #ifdef BNX_NVRAM_WRITE_SUPPORT
1395 /****************************************************************************/
1396 /* Write a dword (32 bits) to NVRAM. */
1397 /* */
1398 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1399 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1400 /* enabled NVRAM write access. */
1401 /* */
1402 /* Returns: */
1403 /* 0 on success, positive value on failure. */
1404 /****************************************************************************/
1406 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1407 u_int32_t cmd_flags)
1409 u_int32_t cmd, val32;
1410 int j;
1412 /* Build the command word. */
1413 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1415 /* Calculate the offset for buffered flash if translation is used. */
1416 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1417 offset = ((offset / sc->bnx_flash_info->page_size) <<
1418 sc->bnx_flash_info->page_bits) +
1419 (offset % sc->bnx_flash_info->page_size);
1423 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1424 * set the NVRAM address to write, and issue the write command
1426 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1427 memcpy(&val32, val, 4);
1428 val32 = htobe32(val32);
1429 REG_WR(sc, BNX_NVM_WRITE, val32);
1430 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1431 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1433 /* Wait for completion. */
1434 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1435 DELAY(5);
1437 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1438 break;
1440 if (j >= NVRAM_TIMEOUT_COUNT) {
1441 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1442 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1443 return (EBUSY);
1446 return (0);
1448 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1450 /****************************************************************************/
1451 /* Initialize NVRAM access. */
1452 /* */
1453 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1454 /* access that device. */
1455 /* */
1456 /* Returns: */
1457 /* 0 on success, positive value on failure. */
1458 /****************************************************************************/
1460 bnx_init_nvram(struct bnx_softc *sc)
1462 u_int32_t val;
1463 int j, entry_count, rc = 0;
1464 struct flash_spec *flash;
1466 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1468 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1469 sc->bnx_flash_info = &flash_5709;
1470 goto bnx_init_nvram_get_flash_size;
1473 /* Determine the selected interface. */
1474 val = REG_RD(sc, BNX_NVM_CFG1);
1476 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1479 * Flash reconfiguration is required to support additional
1480 * NVRAM devices not directly supported in hardware.
1481 * Check if the flash interface was reconfigured
1482 * by the bootcode.
1485 if (val & 0x40000000) {
1486 /* Flash interface reconfigured by bootcode. */
1488 DBPRINT(sc,BNX_INFO_LOAD,
1489 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1491 for (j = 0, flash = &flash_table[0]; j < entry_count;
1492 j++, flash++) {
1493 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1494 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1495 sc->bnx_flash_info = flash;
1496 break;
1499 } else {
1500 /* Flash interface not yet reconfigured. */
1501 u_int32_t mask;
1503 DBPRINT(sc,BNX_INFO_LOAD,
1504 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1506 if (val & (1 << 23))
1507 mask = FLASH_BACKUP_STRAP_MASK;
1508 else
1509 mask = FLASH_STRAP_MASK;
1511 /* Look for the matching NVRAM device configuration data. */
1512 for (j = 0, flash = &flash_table[0]; j < entry_count;
1513 j++, flash++) {
1514 /* Check if the dev matches any of the known devices. */
1515 if ((val & mask) == (flash->strapping & mask)) {
1516 /* Found a device match. */
1517 sc->bnx_flash_info = flash;
1519 /* Request access to the flash interface. */
1520 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1521 return (rc);
1523 /* Reconfigure the flash interface. */
1524 bnx_enable_nvram_access(sc);
1525 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1526 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1527 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1528 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1529 bnx_disable_nvram_access(sc);
1530 bnx_release_nvram_lock(sc);
1532 break;
1537 /* Check if a matching device was found. */
1538 if (j == entry_count) {
1539 sc->bnx_flash_info = NULL;
1540 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1541 __FILE__, __LINE__);
1542 rc = ENODEV;
1545 bnx_init_nvram_get_flash_size:
1546 /* Write the flash config data to the shared memory interface. */
1547 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1548 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1549 if (val)
1550 sc->bnx_flash_size = val;
1551 else
1552 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1554 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1555 "0x%08X\n", sc->bnx_flash_info->total_size);
1557 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1559 return (rc);
1562 /****************************************************************************/
1563 /* Read an arbitrary range of data from NVRAM. */
1564 /* */
1565 /* Prepares the NVRAM interface for access and reads the requested data */
1566 /* into the supplied buffer. */
1567 /* */
1568 /* Returns: */
1569 /* 0 on success and the data read, positive value on failure. */
1570 /****************************************************************************/
1572 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1573 int buf_size)
1575 int rc = 0;
1576 u_int32_t cmd_flags, offset32, len32, extra;
1578 if (buf_size == 0)
1579 return (0);
1581 /* Request access to the flash interface. */
1582 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1583 return (rc);
1585 /* Enable access to flash interface */
1586 bnx_enable_nvram_access(sc);
1588 len32 = buf_size;
1589 offset32 = offset;
1590 extra = 0;
1592 cmd_flags = 0;
1594 if (offset32 & 3) {
1595 u_int8_t buf[4];
1596 u_int32_t pre_len;
1598 offset32 &= ~3;
1599 pre_len = 4 - (offset & 3);
1601 if (pre_len >= len32) {
1602 pre_len = len32;
1603 cmd_flags =
1604 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1605 } else
1606 cmd_flags = BNX_NVM_COMMAND_FIRST;
1608 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1610 if (rc)
1611 return (rc);
1613 memcpy(ret_buf, buf + (offset & 3), pre_len);
1615 offset32 += 4;
1616 ret_buf += pre_len;
1617 len32 -= pre_len;
1620 if (len32 & 3) {
1621 extra = 4 - (len32 & 3);
1622 len32 = (len32 + 4) & ~3;
1625 if (len32 == 4) {
1626 u_int8_t buf[4];
1628 if (cmd_flags)
1629 cmd_flags = BNX_NVM_COMMAND_LAST;
1630 else
1631 cmd_flags =
1632 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1634 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1636 memcpy(ret_buf, buf, 4 - extra);
1637 } else if (len32 > 0) {
1638 u_int8_t buf[4];
1640 /* Read the first word. */
1641 if (cmd_flags)
1642 cmd_flags = 0;
1643 else
1644 cmd_flags = BNX_NVM_COMMAND_FIRST;
1646 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1648 /* Advance to the next dword. */
1649 offset32 += 4;
1650 ret_buf += 4;
1651 len32 -= 4;
1653 while (len32 > 4 && rc == 0) {
1654 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1656 /* Advance to the next dword. */
1657 offset32 += 4;
1658 ret_buf += 4;
1659 len32 -= 4;
1662 if (rc)
1663 return (rc);
1665 cmd_flags = BNX_NVM_COMMAND_LAST;
1666 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1668 memcpy(ret_buf, buf, 4 - extra);
1671 /* Disable access to flash interface and release the lock. */
1672 bnx_disable_nvram_access(sc);
1673 bnx_release_nvram_lock(sc);
1675 return (rc);
1678 #ifdef BNX_NVRAM_WRITE_SUPPORT
1679 /****************************************************************************/
1680 /* Write an arbitrary range of data from NVRAM. */
1681 /* */
1682 /* Prepares the NVRAM interface for write access and writes the requested */
1683 /* data from the supplied buffer. The caller is responsible for */
1684 /* calculating any appropriate CRCs. */
1685 /* */
1686 /* Returns: */
1687 /* 0 on success, positive value on failure. */
1688 /****************************************************************************/
1690 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1691 int buf_size)
1693 u_int32_t written, offset32, len32;
1694 u_int8_t *buf, start[4], end[4];
1695 int rc = 0;
1696 int align_start, align_end;
1698 buf = data_buf;
1699 offset32 = offset;
1700 len32 = buf_size;
1701 align_start = align_end = 0;
1703 if ((align_start = (offset32 & 3))) {
1704 offset32 &= ~3;
1705 len32 += align_start;
1706 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1707 return (rc);
1710 if (len32 & 3) {
1711 if ((len32 > 4) || !align_start) {
1712 align_end = 4 - (len32 & 3);
1713 len32 += align_end;
1714 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1715 end, 4))) {
1716 return (rc);
1721 if (align_start || align_end) {
1722 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1723 if (buf == 0)
1724 return (ENOMEM);
1726 if (align_start)
1727 memcpy(buf, start, 4);
1729 if (align_end)
1730 memcpy(buf + len32 - 4, end, 4);
1732 memcpy(buf + align_start, data_buf, buf_size);
1735 written = 0;
1736 while ((written < len32) && (rc == 0)) {
1737 u_int32_t page_start, page_end, data_start, data_end;
1738 u_int32_t addr, cmd_flags;
1739 int i;
1740 u_int8_t flash_buffer[264];
1742 /* Find the page_start addr */
1743 page_start = offset32 + written;
1744 page_start -= (page_start % sc->bnx_flash_info->page_size);
1745 /* Find the page_end addr */
1746 page_end = page_start + sc->bnx_flash_info->page_size;
1747 /* Find the data_start addr */
1748 data_start = (written == 0) ? offset32 : page_start;
1749 /* Find the data_end addr */
1750 data_end = (page_end > offset32 + len32) ?
1751 (offset32 + len32) : page_end;
1753 /* Request access to the flash interface. */
1754 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1755 goto nvram_write_end;
1757 /* Enable access to flash interface */
1758 bnx_enable_nvram_access(sc);
1760 cmd_flags = BNX_NVM_COMMAND_FIRST;
1761 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1762 int j;
1764 /* Read the whole page into the buffer
1765 * (non-buffer flash only) */
1766 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1767 if (j == (sc->bnx_flash_info->page_size - 4))
1768 cmd_flags |= BNX_NVM_COMMAND_LAST;
1770 rc = bnx_nvram_read_dword(sc,
1771 page_start + j,
1772 &flash_buffer[j],
1773 cmd_flags);
1775 if (rc)
1776 goto nvram_write_end;
1778 cmd_flags = 0;
1782 /* Enable writes to flash interface (unlock write-protect) */
1783 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1784 goto nvram_write_end;
1786 /* Erase the page */
1787 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1788 goto nvram_write_end;
1790 /* Re-enable the write again for the actual write */
1791 bnx_enable_nvram_write(sc);
1793 /* Loop to write back the buffer data from page_start to
1794 * data_start */
1795 i = 0;
1796 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1797 for (addr = page_start; addr < data_start;
1798 addr += 4, i += 4) {
1800 rc = bnx_nvram_write_dword(sc, addr,
1801 &flash_buffer[i], cmd_flags);
1803 if (rc != 0)
1804 goto nvram_write_end;
1806 cmd_flags = 0;
1810 /* Loop to write the new data from data_start to data_end */
1811 for (addr = data_start; addr < data_end; addr += 4, i++) {
1812 if ((addr == page_end - 4) ||
1813 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1814 && (addr == data_end - 4))) {
1816 cmd_flags |= BNX_NVM_COMMAND_LAST;
1819 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1821 if (rc != 0)
1822 goto nvram_write_end;
1824 cmd_flags = 0;
1825 buf += 4;
1828 /* Loop to write back the buffer data from data_end
1829 * to page_end */
1830 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1831 for (addr = data_end; addr < page_end;
1832 addr += 4, i += 4) {
1834 if (addr == page_end-4)
1835 cmd_flags = BNX_NVM_COMMAND_LAST;
1837 rc = bnx_nvram_write_dword(sc, addr,
1838 &flash_buffer[i], cmd_flags);
1840 if (rc != 0)
1841 goto nvram_write_end;
1843 cmd_flags = 0;
1847 /* Disable writes to flash interface (lock write-protect) */
1848 bnx_disable_nvram_write(sc);
1850 /* Disable access to flash interface */
1851 bnx_disable_nvram_access(sc);
1852 bnx_release_nvram_lock(sc);
1854 /* Increment written */
1855 written += data_end - data_start;
1858 nvram_write_end:
1859 if (align_start || align_end)
1860 free(buf, M_DEVBUF);
1862 return (rc);
1864 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1866 /****************************************************************************/
1867 /* Verifies that NVRAM is accessible and contains valid data. */
1868 /* */
1869 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1870 /* correct. */
1871 /* */
1872 /* Returns: */
1873 /* 0 on success, positive value on failure. */
1874 /****************************************************************************/
1876 bnx_nvram_test(struct bnx_softc *sc)
1878 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1879 u_int8_t *data = (u_int8_t *) buf;
1880 int rc = 0;
1881 u_int32_t magic, csum;
1884 * Check that the device NVRAM is valid by reading
1885 * the magic value at offset 0.
1887 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1888 goto bnx_nvram_test_done;
1890 magic = bnx_be32toh(buf[0]);
1891 if (magic != BNX_NVRAM_MAGIC) {
1892 rc = ENODEV;
1893 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1894 "Expected: 0x%08X, Found: 0x%08X\n",
1895 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1896 goto bnx_nvram_test_done;
1900 * Verify that the device NVRAM includes valid
1901 * configuration data.
1903 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1904 goto bnx_nvram_test_done;
1906 csum = ether_crc32_le(data, 0x100);
1907 if (csum != BNX_CRC32_RESIDUAL) {
1908 rc = ENODEV;
1909 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1910 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1911 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1912 goto bnx_nvram_test_done;
1915 csum = ether_crc32_le(data + 0x100, 0x100);
1916 if (csum != BNX_CRC32_RESIDUAL) {
1917 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1918 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1919 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1920 rc = ENODEV;
1923 bnx_nvram_test_done:
1924 return (rc);
1927 /****************************************************************************/
1928 /* Identifies the current media type of the controller and sets the PHY */
1929 /* address. */
1930 /* */
1931 /* Returns: */
1932 /* Nothing. */
1933 /****************************************************************************/
1934 void
1935 bnx_get_media(struct bnx_softc *sc)
1937 sc->bnx_phy_addr = 1;
1939 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1940 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1941 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1942 u_int32_t strap;
1945 * The BCM5709S is software configurable
1946 * for Copper or SerDes operation.
1948 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1949 DBPRINT(sc, BNX_INFO_LOAD,
1950 "5709 bonded for copper.\n");
1951 goto bnx_get_media_exit;
1952 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1953 DBPRINT(sc, BNX_INFO_LOAD,
1954 "5709 bonded for dual media.\n");
1955 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1956 goto bnx_get_media_exit;
1959 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1960 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1961 else {
1962 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
1963 >> 8;
1966 if (sc->bnx_pa.pa_function == 0) {
1967 switch (strap) {
1968 case 0x4:
1969 case 0x5:
1970 case 0x6:
1971 DBPRINT(sc, BNX_INFO_LOAD,
1972 "BCM5709 s/w configured for SerDes.\n");
1973 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1974 default:
1975 DBPRINT(sc, BNX_INFO_LOAD,
1976 "BCM5709 s/w configured for Copper.\n");
1978 } else {
1979 switch (strap) {
1980 case 0x1:
1981 case 0x2:
1982 case 0x4:
1983 DBPRINT(sc, BNX_INFO_LOAD,
1984 "BCM5709 s/w configured for SerDes.\n");
1985 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1986 default:
1987 DBPRINT(sc, BNX_INFO_LOAD,
1988 "BCM5709 s/w configured for Copper.\n");
1992 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
1993 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1995 if (sc->bnx_phy_flags && BNX_PHY_SERDES_FLAG) {
1996 u_int32_t val;
1998 sc->bnx_flags |= BNX_NO_WOL_FLAG;
1999 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2000 sc->bnx_phy_addr = 2;
2001 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2002 BNX_SHARED_HW_CFG_CONFIG);
2003 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2004 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2005 DBPRINT(sc, BNX_INFO_LOAD,
2006 "Found 2.5Gb capable adapter\n");
2009 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2010 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2011 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2013 bnx_get_media_exit:
2014 DBPRINT(sc, (BNX_INFO_LOAD),
2015 "Using PHY address %d.\n", sc->bnx_phy_addr);
2018 /****************************************************************************/
2019 /* Free any DMA memory owned by the driver. */
2020 /* */
2021 /* Scans through each data structre that requires DMA memory and frees */
2022 /* the memory if allocated. */
2023 /* */
2024 /* Returns: */
2025 /* Nothing. */
2026 /****************************************************************************/
2027 void
2028 bnx_dma_free(struct bnx_softc *sc)
2030 int i;
2032 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2034 /* Destroy the status block. */
2035 if (sc->status_block != NULL && sc->status_map != NULL) {
2036 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2037 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2038 BNX_STATUS_BLK_SZ);
2039 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2040 sc->status_rseg);
2041 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2042 sc->status_block = NULL;
2043 sc->status_map = NULL;
2046 /* Destroy the statistics block. */
2047 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2048 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2049 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2050 BNX_STATS_BLK_SZ);
2051 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2052 sc->stats_rseg);
2053 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2054 sc->stats_block = NULL;
2055 sc->stats_map = NULL;
2058 /* Free, unmap and destroy all context memory pages. */
2059 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2060 for (i = 0; i < sc->ctx_pages; i++) {
2061 if (sc->ctx_block[i] != NULL) {
2062 bus_dmamap_unload(sc->bnx_dmatag,
2063 sc->ctx_map[i]);
2064 bus_dmamem_unmap(sc->bnx_dmatag,
2065 (void *)sc->ctx_block[i],
2066 BCM_PAGE_SIZE);
2067 bus_dmamem_free(sc->bnx_dmatag,
2068 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2069 bus_dmamap_destroy(sc->bnx_dmatag,
2070 sc->ctx_map[i]);
2071 sc->ctx_block[i] = NULL;
2076 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2077 for (i = 0; i < TX_PAGES; i++ ) {
2078 if (sc->tx_bd_chain[i] != NULL &&
2079 sc->tx_bd_chain_map[i] != NULL) {
2080 bus_dmamap_unload(sc->bnx_dmatag,
2081 sc->tx_bd_chain_map[i]);
2082 bus_dmamem_unmap(sc->bnx_dmatag,
2083 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2084 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2085 sc->tx_bd_chain_rseg[i]);
2086 bus_dmamap_destroy(sc->bnx_dmatag,
2087 sc->tx_bd_chain_map[i]);
2088 sc->tx_bd_chain[i] = NULL;
2089 sc->tx_bd_chain_map[i] = NULL;
2093 /* Destroy the TX dmamaps. */
2094 /* This isn't necessary since we dont allocate them up front */
2096 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2097 for (i = 0; i < RX_PAGES; i++ ) {
2098 if (sc->rx_bd_chain[i] != NULL &&
2099 sc->rx_bd_chain_map[i] != NULL) {
2100 bus_dmamap_unload(sc->bnx_dmatag,
2101 sc->rx_bd_chain_map[i]);
2102 bus_dmamem_unmap(sc->bnx_dmatag,
2103 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2104 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2105 sc->rx_bd_chain_rseg[i]);
2107 bus_dmamap_destroy(sc->bnx_dmatag,
2108 sc->rx_bd_chain_map[i]);
2109 sc->rx_bd_chain[i] = NULL;
2110 sc->rx_bd_chain_map[i] = NULL;
2114 /* Unload and destroy the RX mbuf maps. */
2115 for (i = 0; i < TOTAL_RX_BD; i++) {
2116 if (sc->rx_mbuf_map[i] != NULL) {
2117 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2118 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2122 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2125 /****************************************************************************/
2126 /* Allocate any DMA memory needed by the driver. */
2127 /* */
2128 /* Allocates DMA memory needed for the various global structures needed by */
2129 /* hardware. */
2130 /* */
2131 /* Returns: */
2132 /* 0 for success, positive value for failure. */
2133 /****************************************************************************/
2135 bnx_dma_alloc(struct bnx_softc *sc)
2137 int i, rc = 0;
2139 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2142 * Allocate DMA memory for the status block, map the memory into DMA
2143 * space, and fetch the physical address of the block.
2145 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2146 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2147 aprint_error_dev(sc->bnx_dev,
2148 "Could not create status block DMA map!\n");
2149 rc = ENOMEM;
2150 goto bnx_dma_alloc_exit;
2153 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2154 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2155 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2156 aprint_error_dev(sc->bnx_dev,
2157 "Could not allocate status block DMA memory!\n");
2158 rc = ENOMEM;
2159 goto bnx_dma_alloc_exit;
2162 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2163 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2164 aprint_error_dev(sc->bnx_dev,
2165 "Could not map status block DMA memory!\n");
2166 rc = ENOMEM;
2167 goto bnx_dma_alloc_exit;
2170 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2171 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2172 aprint_error_dev(sc->bnx_dev,
2173 "Could not load status block DMA memory!\n");
2174 rc = ENOMEM;
2175 goto bnx_dma_alloc_exit;
2178 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2179 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2181 /* DRC - Fix for 64 bit addresses. */
2182 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2183 (u_int32_t) sc->status_block_paddr);
2185 /* BCM5709 uses host memory as cache for context memory. */
2186 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2187 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2188 if (sc->ctx_pages == 0)
2189 sc->ctx_pages = 1;
2190 if (sc->ctx_pages > 4) /* XXX */
2191 sc->ctx_pages = 4;
2193 DBRUNIF((sc->ctx_pages > 512),
2194 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2195 __FILE__, __LINE__, sc->ctx_pages));
2198 for (i = 0; i < sc->ctx_pages; i++) {
2199 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2200 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2201 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2202 &sc->ctx_map[i]) != 0) {
2203 rc = ENOMEM;
2204 goto bnx_dma_alloc_exit;
2207 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2208 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2209 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2210 rc = ENOMEM;
2211 goto bnx_dma_alloc_exit;
2214 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2215 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2216 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2217 rc = ENOMEM;
2218 goto bnx_dma_alloc_exit;
2221 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2222 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2223 BUS_DMA_NOWAIT) != 0) {
2224 rc = ENOMEM;
2225 goto bnx_dma_alloc_exit;
2228 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2233 * Allocate DMA memory for the statistics block, map the memory into
2234 * DMA space, and fetch the physical address of the block.
2236 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2237 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2238 aprint_error_dev(sc->bnx_dev,
2239 "Could not create stats block DMA map!\n");
2240 rc = ENOMEM;
2241 goto bnx_dma_alloc_exit;
2244 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2245 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2246 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2247 aprint_error_dev(sc->bnx_dev,
2248 "Could not allocate stats block DMA memory!\n");
2249 rc = ENOMEM;
2250 goto bnx_dma_alloc_exit;
2253 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2254 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2255 aprint_error_dev(sc->bnx_dev,
2256 "Could not map stats block DMA memory!\n");
2257 rc = ENOMEM;
2258 goto bnx_dma_alloc_exit;
2261 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2262 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2263 aprint_error_dev(sc->bnx_dev,
2264 "Could not load status block DMA memory!\n");
2265 rc = ENOMEM;
2266 goto bnx_dma_alloc_exit;
2269 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2270 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2272 /* DRC - Fix for 64 bit address. */
2273 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2274 (u_int32_t) sc->stats_block_paddr);
2277 * Allocate DMA memory for the TX buffer descriptor chain,
2278 * and fetch the physical address of the block.
2280 for (i = 0; i < TX_PAGES; i++) {
2281 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2282 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2283 &sc->tx_bd_chain_map[i])) {
2284 aprint_error_dev(sc->bnx_dev,
2285 "Could not create Tx desc %d DMA map!\n", i);
2286 rc = ENOMEM;
2287 goto bnx_dma_alloc_exit;
2290 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2291 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2292 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2293 aprint_error_dev(sc->bnx_dev,
2294 "Could not allocate TX desc %d DMA memory!\n",
2296 rc = ENOMEM;
2297 goto bnx_dma_alloc_exit;
2300 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2301 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2302 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2303 aprint_error_dev(sc->bnx_dev,
2304 "Could not map TX desc %d DMA memory!\n", i);
2305 rc = ENOMEM;
2306 goto bnx_dma_alloc_exit;
2309 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2310 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2311 BUS_DMA_NOWAIT)) {
2312 aprint_error_dev(sc->bnx_dev,
2313 "Could not load TX desc %d DMA memory!\n", i);
2314 rc = ENOMEM;
2315 goto bnx_dma_alloc_exit;
2318 sc->tx_bd_chain_paddr[i] =
2319 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2321 /* DRC - Fix for 64 bit systems. */
2322 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2323 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2327 * Create lists to hold TX mbufs.
2329 TAILQ_INIT(&sc->tx_free_pkts);
2330 TAILQ_INIT(&sc->tx_used_pkts);
2331 sc->tx_pkt_count = 0;
2332 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2335 * Allocate DMA memory for the Rx buffer descriptor chain,
2336 * and fetch the physical address of the block.
2338 for (i = 0; i < RX_PAGES; i++) {
2339 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2340 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2341 &sc->rx_bd_chain_map[i])) {
2342 aprint_error_dev(sc->bnx_dev,
2343 "Could not create Rx desc %d DMA map!\n", i);
2344 rc = ENOMEM;
2345 goto bnx_dma_alloc_exit;
2348 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2349 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2350 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2351 aprint_error_dev(sc->bnx_dev,
2352 "Could not allocate Rx desc %d DMA memory!\n", i);
2353 rc = ENOMEM;
2354 goto bnx_dma_alloc_exit;
2357 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2358 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2359 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2360 aprint_error_dev(sc->bnx_dev,
2361 "Could not map Rx desc %d DMA memory!\n", i);
2362 rc = ENOMEM;
2363 goto bnx_dma_alloc_exit;
2366 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2367 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2368 BUS_DMA_NOWAIT)) {
2369 aprint_error_dev(sc->bnx_dev,
2370 "Could not load Rx desc %d DMA memory!\n", i);
2371 rc = ENOMEM;
2372 goto bnx_dma_alloc_exit;
2375 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2376 sc->rx_bd_chain_paddr[i] =
2377 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2379 /* DRC - Fix for 64 bit systems. */
2380 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2381 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2382 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2383 0, BNX_RX_CHAIN_PAGE_SZ,
2384 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2388 * Create DMA maps for the Rx buffer mbufs.
2390 for (i = 0; i < TOTAL_RX_BD; i++) {
2391 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2392 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2393 &sc->rx_mbuf_map[i])) {
2394 aprint_error_dev(sc->bnx_dev,
2395 "Could not create Rx mbuf %d DMA map!\n", i);
2396 rc = ENOMEM;
2397 goto bnx_dma_alloc_exit;
2401 bnx_dma_alloc_exit:
2402 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2404 return(rc);
2407 /****************************************************************************/
2408 /* Release all resources used by the driver. */
2409 /* */
2410 /* Releases all resources acquired by the driver including interrupts, */
2411 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2412 /* */
2413 /* Returns: */
2414 /* Nothing. */
2415 /****************************************************************************/
2416 void
2417 bnx_release_resources(struct bnx_softc *sc)
2419 struct pci_attach_args *pa = &(sc->bnx_pa);
2421 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2423 bnx_dma_free(sc);
2425 if (sc->bnx_intrhand != NULL)
2426 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2428 if (sc->bnx_size)
2429 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2431 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2434 /****************************************************************************/
2435 /* Firmware synchronization. */
2436 /* */
2437 /* Before performing certain events such as a chip reset, synchronize with */
2438 /* the firmware first. */
2439 /* */
2440 /* Returns: */
2441 /* 0 for success, positive value for failure. */
2442 /****************************************************************************/
2444 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2446 int i, rc = 0;
2447 u_int32_t val;
2449 /* Don't waste any time if we've timed out before. */
2450 if (sc->bnx_fw_timed_out) {
2451 rc = EBUSY;
2452 goto bnx_fw_sync_exit;
2455 /* Increment the message sequence number. */
2456 sc->bnx_fw_wr_seq++;
2457 msg_data |= sc->bnx_fw_wr_seq;
2459 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2460 msg_data);
2462 /* Send the message to the bootcode driver mailbox. */
2463 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2465 /* Wait for the bootcode to acknowledge the message. */
2466 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2467 /* Check for a response in the bootcode firmware mailbox. */
2468 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2469 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2470 break;
2471 DELAY(1000);
2474 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2475 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2476 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2477 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2478 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2480 msg_data &= ~BNX_DRV_MSG_CODE;
2481 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2483 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2485 sc->bnx_fw_timed_out = 1;
2486 rc = EBUSY;
2489 bnx_fw_sync_exit:
2490 return (rc);
2493 /****************************************************************************/
2494 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2495 /* */
2496 /* Returns: */
2497 /* Nothing. */
2498 /****************************************************************************/
2499 void
2500 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2501 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2503 int i;
2504 u_int32_t val;
2506 /* Set the page size used by RV2P. */
2507 if (rv2p_proc == RV2P_PROC2) {
2508 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2509 USABLE_RX_BD_PER_PAGE);
2512 for (i = 0; i < rv2p_code_len; i += 8) {
2513 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2514 rv2p_code++;
2515 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2516 rv2p_code++;
2518 if (rv2p_proc == RV2P_PROC1) {
2519 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2520 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2521 } else {
2522 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2523 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2527 /* Reset the processor, un-stall is done later. */
2528 if (rv2p_proc == RV2P_PROC1)
2529 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2530 else
2531 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2534 /****************************************************************************/
2535 /* Load RISC processor firmware. */
2536 /* */
2537 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2538 /* associated with a particular processor. */
2539 /* */
2540 /* Returns: */
2541 /* Nothing. */
2542 /****************************************************************************/
2543 void
2544 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2545 struct fw_info *fw)
2547 u_int32_t offset;
2548 u_int32_t val;
2550 /* Halt the CPU. */
2551 val = REG_RD_IND(sc, cpu_reg->mode);
2552 val |= cpu_reg->mode_value_halt;
2553 REG_WR_IND(sc, cpu_reg->mode, val);
2554 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2556 /* Load the Text area. */
2557 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2558 if (fw->text) {
2559 int j;
2561 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2562 REG_WR_IND(sc, offset, fw->text[j]);
2565 /* Load the Data area. */
2566 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2567 if (fw->data) {
2568 int j;
2570 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2571 REG_WR_IND(sc, offset, fw->data[j]);
2574 /* Load the SBSS area. */
2575 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2576 if (fw->sbss) {
2577 int j;
2579 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2580 REG_WR_IND(sc, offset, fw->sbss[j]);
2583 /* Load the BSS area. */
2584 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2585 if (fw->bss) {
2586 int j;
2588 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2589 REG_WR_IND(sc, offset, fw->bss[j]);
2592 /* Load the Read-Only area. */
2593 offset = cpu_reg->spad_base +
2594 (fw->rodata_addr - cpu_reg->mips_view_base);
2595 if (fw->rodata) {
2596 int j;
2598 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2599 REG_WR_IND(sc, offset, fw->rodata[j]);
2602 /* Clear the pre-fetch instruction. */
2603 REG_WR_IND(sc, cpu_reg->inst, 0);
2604 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2606 /* Start the CPU. */
2607 val = REG_RD_IND(sc, cpu_reg->mode);
2608 val &= ~cpu_reg->mode_value_halt;
2609 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2610 REG_WR_IND(sc, cpu_reg->mode, val);
2613 /****************************************************************************/
2614 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2615 /* */
2616 /* Loads the firmware for each CPU and starts the CPU. */
2617 /* */
2618 /* Returns: */
2619 /* Nothing. */
2620 /****************************************************************************/
2621 void
2622 bnx_init_cpus(struct bnx_softc *sc)
2624 struct cpu_reg cpu_reg;
2625 struct fw_info fw;
2627 switch(BNX_CHIP_NUM(sc)) {
2628 case BNX_CHIP_NUM_5709:
2629 /* Initialize the RV2P processor. */
2630 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2631 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2632 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2633 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2634 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2635 } else {
2636 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2637 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2638 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2639 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2642 /* Initialize the RX Processor. */
2643 cpu_reg.mode = BNX_RXP_CPU_MODE;
2644 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2645 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2646 cpu_reg.state = BNX_RXP_CPU_STATE;
2647 cpu_reg.state_value_clear = 0xffffff;
2648 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2649 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2650 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2651 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2652 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2653 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2654 cpu_reg.mips_view_base = 0x8000000;
2656 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2657 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2658 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2659 fw.start_addr = bnx_RXP_b09FwStartAddr;
2661 fw.text_addr = bnx_RXP_b09FwTextAddr;
2662 fw.text_len = bnx_RXP_b09FwTextLen;
2663 fw.text_index = 0;
2664 fw.text = bnx_RXP_b09FwText;
2666 fw.data_addr = bnx_RXP_b09FwDataAddr;
2667 fw.data_len = bnx_RXP_b09FwDataLen;
2668 fw.data_index = 0;
2669 fw.data = bnx_RXP_b09FwData;
2671 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2672 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2673 fw.sbss_index = 0;
2674 fw.sbss = bnx_RXP_b09FwSbss;
2676 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2677 fw.bss_len = bnx_RXP_b09FwBssLen;
2678 fw.bss_index = 0;
2679 fw.bss = bnx_RXP_b09FwBss;
2681 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2682 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2683 fw.rodata_index = 0;
2684 fw.rodata = bnx_RXP_b09FwRodata;
2686 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2687 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2689 /* Initialize the TX Processor. */
2690 cpu_reg.mode = BNX_TXP_CPU_MODE;
2691 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2692 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2693 cpu_reg.state = BNX_TXP_CPU_STATE;
2694 cpu_reg.state_value_clear = 0xffffff;
2695 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2696 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2697 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2698 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2699 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2700 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2701 cpu_reg.mips_view_base = 0x8000000;
2703 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2704 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2705 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2706 fw.start_addr = bnx_TXP_b09FwStartAddr;
2708 fw.text_addr = bnx_TXP_b09FwTextAddr;
2709 fw.text_len = bnx_TXP_b09FwTextLen;
2710 fw.text_index = 0;
2711 fw.text = bnx_TXP_b09FwText;
2713 fw.data_addr = bnx_TXP_b09FwDataAddr;
2714 fw.data_len = bnx_TXP_b09FwDataLen;
2715 fw.data_index = 0;
2716 fw.data = bnx_TXP_b09FwData;
2718 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2719 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2720 fw.sbss_index = 0;
2721 fw.sbss = bnx_TXP_b09FwSbss;
2723 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2724 fw.bss_len = bnx_TXP_b09FwBssLen;
2725 fw.bss_index = 0;
2726 fw.bss = bnx_TXP_b09FwBss;
2728 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2729 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2730 fw.rodata_index = 0;
2731 fw.rodata = bnx_TXP_b09FwRodata;
2733 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2734 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2736 /* Initialize the TX Patch-up Processor. */
2737 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2738 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2739 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2740 cpu_reg.state = BNX_TPAT_CPU_STATE;
2741 cpu_reg.state_value_clear = 0xffffff;
2742 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2743 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2744 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2745 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2746 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2747 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2748 cpu_reg.mips_view_base = 0x8000000;
2750 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2751 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2752 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2753 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2755 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2756 fw.text_len = bnx_TPAT_b09FwTextLen;
2757 fw.text_index = 0;
2758 fw.text = bnx_TPAT_b09FwText;
2760 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2761 fw.data_len = bnx_TPAT_b09FwDataLen;
2762 fw.data_index = 0;
2763 fw.data = bnx_TPAT_b09FwData;
2765 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2766 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2767 fw.sbss_index = 0;
2768 fw.sbss = bnx_TPAT_b09FwSbss;
2770 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2771 fw.bss_len = bnx_TPAT_b09FwBssLen;
2772 fw.bss_index = 0;
2773 fw.bss = bnx_TPAT_b09FwBss;
2775 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2776 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2777 fw.rodata_index = 0;
2778 fw.rodata = bnx_TPAT_b09FwRodata;
2780 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2781 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2783 /* Initialize the Completion Processor. */
2784 cpu_reg.mode = BNX_COM_CPU_MODE;
2785 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2786 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2787 cpu_reg.state = BNX_COM_CPU_STATE;
2788 cpu_reg.state_value_clear = 0xffffff;
2789 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2790 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2791 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2792 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2793 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2794 cpu_reg.spad_base = BNX_COM_SCRATCH;
2795 cpu_reg.mips_view_base = 0x8000000;
2797 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2798 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2799 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2800 fw.start_addr = bnx_COM_b09FwStartAddr;
2802 fw.text_addr = bnx_COM_b09FwTextAddr;
2803 fw.text_len = bnx_COM_b09FwTextLen;
2804 fw.text_index = 0;
2805 fw.text = bnx_COM_b09FwText;
2807 fw.data_addr = bnx_COM_b09FwDataAddr;
2808 fw.data_len = bnx_COM_b09FwDataLen;
2809 fw.data_index = 0;
2810 fw.data = bnx_COM_b09FwData;
2812 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2813 fw.sbss_len = bnx_COM_b09FwSbssLen;
2814 fw.sbss_index = 0;
2815 fw.sbss = bnx_COM_b09FwSbss;
2817 fw.bss_addr = bnx_COM_b09FwBssAddr;
2818 fw.bss_len = bnx_COM_b09FwBssLen;
2819 fw.bss_index = 0;
2820 fw.bss = bnx_COM_b09FwBss;
2822 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2823 fw.rodata_len = bnx_COM_b09FwRodataLen;
2824 fw.rodata_index = 0;
2825 fw.rodata = bnx_COM_b09FwRodata;
2826 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2827 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2828 break;
2829 default:
2830 /* Initialize the RV2P processor. */
2831 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2832 RV2P_PROC1);
2833 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2834 RV2P_PROC2);
2836 /* Initialize the RX Processor. */
2837 cpu_reg.mode = BNX_RXP_CPU_MODE;
2838 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2839 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2840 cpu_reg.state = BNX_RXP_CPU_STATE;
2841 cpu_reg.state_value_clear = 0xffffff;
2842 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2843 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2844 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2845 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2846 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2847 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2848 cpu_reg.mips_view_base = 0x8000000;
2850 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2851 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2852 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2853 fw.start_addr = bnx_RXP_b06FwStartAddr;
2855 fw.text_addr = bnx_RXP_b06FwTextAddr;
2856 fw.text_len = bnx_RXP_b06FwTextLen;
2857 fw.text_index = 0;
2858 fw.text = bnx_RXP_b06FwText;
2860 fw.data_addr = bnx_RXP_b06FwDataAddr;
2861 fw.data_len = bnx_RXP_b06FwDataLen;
2862 fw.data_index = 0;
2863 fw.data = bnx_RXP_b06FwData;
2865 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2866 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2867 fw.sbss_index = 0;
2868 fw.sbss = bnx_RXP_b06FwSbss;
2870 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2871 fw.bss_len = bnx_RXP_b06FwBssLen;
2872 fw.bss_index = 0;
2873 fw.bss = bnx_RXP_b06FwBss;
2875 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2876 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2877 fw.rodata_index = 0;
2878 fw.rodata = bnx_RXP_b06FwRodata;
2880 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2881 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2883 /* Initialize the TX Processor. */
2884 cpu_reg.mode = BNX_TXP_CPU_MODE;
2885 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2886 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2887 cpu_reg.state = BNX_TXP_CPU_STATE;
2888 cpu_reg.state_value_clear = 0xffffff;
2889 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2890 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2891 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2892 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2893 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2894 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2895 cpu_reg.mips_view_base = 0x8000000;
2897 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2898 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2899 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2900 fw.start_addr = bnx_TXP_b06FwStartAddr;
2902 fw.text_addr = bnx_TXP_b06FwTextAddr;
2903 fw.text_len = bnx_TXP_b06FwTextLen;
2904 fw.text_index = 0;
2905 fw.text = bnx_TXP_b06FwText;
2907 fw.data_addr = bnx_TXP_b06FwDataAddr;
2908 fw.data_len = bnx_TXP_b06FwDataLen;
2909 fw.data_index = 0;
2910 fw.data = bnx_TXP_b06FwData;
2912 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2913 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2914 fw.sbss_index = 0;
2915 fw.sbss = bnx_TXP_b06FwSbss;
2917 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2918 fw.bss_len = bnx_TXP_b06FwBssLen;
2919 fw.bss_index = 0;
2920 fw.bss = bnx_TXP_b06FwBss;
2922 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2923 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2924 fw.rodata_index = 0;
2925 fw.rodata = bnx_TXP_b06FwRodata;
2927 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2928 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2930 /* Initialize the TX Patch-up Processor. */
2931 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2932 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2933 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2934 cpu_reg.state = BNX_TPAT_CPU_STATE;
2935 cpu_reg.state_value_clear = 0xffffff;
2936 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2937 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2938 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2939 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2940 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2941 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2942 cpu_reg.mips_view_base = 0x8000000;
2944 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2945 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2946 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2947 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2949 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2950 fw.text_len = bnx_TPAT_b06FwTextLen;
2951 fw.text_index = 0;
2952 fw.text = bnx_TPAT_b06FwText;
2954 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2955 fw.data_len = bnx_TPAT_b06FwDataLen;
2956 fw.data_index = 0;
2957 fw.data = bnx_TPAT_b06FwData;
2959 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2960 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2961 fw.sbss_index = 0;
2962 fw.sbss = bnx_TPAT_b06FwSbss;
2964 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2965 fw.bss_len = bnx_TPAT_b06FwBssLen;
2966 fw.bss_index = 0;
2967 fw.bss = bnx_TPAT_b06FwBss;
2969 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2970 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2971 fw.rodata_index = 0;
2972 fw.rodata = bnx_TPAT_b06FwRodata;
2974 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2975 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2977 /* Initialize the Completion Processor. */
2978 cpu_reg.mode = BNX_COM_CPU_MODE;
2979 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2980 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2981 cpu_reg.state = BNX_COM_CPU_STATE;
2982 cpu_reg.state_value_clear = 0xffffff;
2983 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2984 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2985 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2986 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2987 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2988 cpu_reg.spad_base = BNX_COM_SCRATCH;
2989 cpu_reg.mips_view_base = 0x8000000;
2991 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2992 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2993 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2994 fw.start_addr = bnx_COM_b06FwStartAddr;
2996 fw.text_addr = bnx_COM_b06FwTextAddr;
2997 fw.text_len = bnx_COM_b06FwTextLen;
2998 fw.text_index = 0;
2999 fw.text = bnx_COM_b06FwText;
3001 fw.data_addr = bnx_COM_b06FwDataAddr;
3002 fw.data_len = bnx_COM_b06FwDataLen;
3003 fw.data_index = 0;
3004 fw.data = bnx_COM_b06FwData;
3006 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3007 fw.sbss_len = bnx_COM_b06FwSbssLen;
3008 fw.sbss_index = 0;
3009 fw.sbss = bnx_COM_b06FwSbss;
3011 fw.bss_addr = bnx_COM_b06FwBssAddr;
3012 fw.bss_len = bnx_COM_b06FwBssLen;
3013 fw.bss_index = 0;
3014 fw.bss = bnx_COM_b06FwBss;
3016 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3017 fw.rodata_len = bnx_COM_b06FwRodataLen;
3018 fw.rodata_index = 0;
3019 fw.rodata = bnx_COM_b06FwRodata;
3020 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3021 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3022 break;
3026 /****************************************************************************/
3027 /* Initialize context memory. */
3028 /* */
3029 /* Clears the memory associated with each Context ID (CID). */
3030 /* */
3031 /* Returns: */
3032 /* Nothing. */
3033 /****************************************************************************/
3034 void
3035 bnx_init_context(struct bnx_softc *sc)
3037 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3038 /* DRC: Replace this constant value with a #define. */
3039 int i, retry_cnt = 10;
3040 u_int32_t val;
3043 * BCM5709 context memory may be cached
3044 * in host memory so prepare the host memory
3045 * for access.
3047 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3048 | (1 << 12);
3049 val |= (BCM_PAGE_BITS - 8) << 16;
3050 REG_WR(sc, BNX_CTX_COMMAND, val);
3052 /* Wait for mem init command to complete. */
3053 for (i = 0; i < retry_cnt; i++) {
3054 val = REG_RD(sc, BNX_CTX_COMMAND);
3055 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3056 break;
3057 DELAY(2);
3061 /* ToDo: Consider returning an error here. */
3063 for (i = 0; i < sc->ctx_pages; i++) {
3064 int j;
3067 /* Set the physaddr of the context memory cache. */
3068 val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3069 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3070 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3071 val = (u_int32_t)
3072 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3073 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3074 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3075 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3078 /* Verify that the context memory write was successful. */
3079 for (j = 0; j < retry_cnt; j++) {
3080 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3081 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3082 break;
3083 DELAY(5);
3086 /* ToDo: Consider returning an error here. */
3088 } else {
3089 u_int32_t vcid_addr, offset;
3092 * For the 5706/5708, context memory is local to
3093 * the controller, so initialize the controller
3094 * context memory.
3097 vcid_addr = GET_CID_ADDR(96);
3098 while (vcid_addr) {
3100 vcid_addr -= PHY_CTX_SIZE;
3102 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3103 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3105 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
3106 CTX_WR(sc, 0x00, offset, 0);
3109 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3110 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3115 /****************************************************************************/
3116 /* Fetch the permanent MAC address of the controller. */
3117 /* */
3118 /* Returns: */
3119 /* Nothing. */
3120 /****************************************************************************/
3121 void
3122 bnx_get_mac_addr(struct bnx_softc *sc)
3124 u_int32_t mac_lo = 0, mac_hi = 0;
3127 * The NetXtreme II bootcode populates various NIC
3128 * power-on and runtime configuration items in a
3129 * shared memory area. The factory configured MAC
3130 * address is available from both NVRAM and the
3131 * shared memory area so we'll read the value from
3132 * shared memory for speed.
3135 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3136 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3138 if ((mac_lo == 0) && (mac_hi == 0)) {
3139 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3140 __FILE__, __LINE__);
3141 } else {
3142 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3143 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3144 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3145 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3146 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3147 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3150 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3151 "%s\n", ether_sprintf(sc->eaddr));
3154 /****************************************************************************/
3155 /* Program the MAC address. */
3156 /* */
3157 /* Returns: */
3158 /* Nothing. */
3159 /****************************************************************************/
3160 void
3161 bnx_set_mac_addr(struct bnx_softc *sc)
3163 u_int32_t val;
3164 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3166 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3167 "%s\n", ether_sprintf(sc->eaddr));
3169 val = (mac_addr[0] << 8) | mac_addr[1];
3171 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3173 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3174 (mac_addr[4] << 8) | mac_addr[5];
3176 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3179 /****************************************************************************/
3180 /* Stop the controller. */
3181 /* */
3182 /* Returns: */
3183 /* Nothing. */
3184 /****************************************************************************/
3185 void
3186 bnx_stop(struct ifnet *ifp, int disable)
3188 struct bnx_softc *sc = ifp->if_softc;
3190 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3192 if ((ifp->if_flags & IFF_RUNNING) == 0)
3193 return;
3195 callout_stop(&sc->bnx_timeout);
3197 mii_down(&sc->bnx_mii);
3199 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3201 /* Disable the transmit/receive blocks. */
3202 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3203 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3204 DELAY(20);
3206 bnx_disable_intr(sc);
3208 /* Tell firmware that the driver is going away. */
3209 if (disable)
3210 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3211 else
3212 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3214 /* Free RX buffers. */
3215 bnx_free_rx_chain(sc);
3217 /* Free TX buffers. */
3218 bnx_free_tx_chain(sc);
3220 ifp->if_timer = 0;
3222 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3227 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3229 struct pci_attach_args *pa = &(sc->bnx_pa);
3230 u_int32_t val;
3231 int i, rc = 0;
3233 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3235 /* Wait for pending PCI transactions to complete. */
3236 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3237 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3238 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3239 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3240 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3241 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3242 DELAY(5);
3244 /* Disable DMA */
3245 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3246 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3247 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3248 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3251 /* Assume bootcode is running. */
3252 sc->bnx_fw_timed_out = 0;
3254 /* Give the firmware a chance to prepare for the reset. */
3255 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3256 if (rc)
3257 goto bnx_reset_exit;
3259 /* Set a firmware reminder that this is a soft reset. */
3260 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3261 BNX_DRV_RESET_SIGNATURE_MAGIC);
3263 /* Dummy read to force the chip to complete all current transactions. */
3264 val = REG_RD(sc, BNX_MISC_ID);
3266 /* Chip reset. */
3267 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3268 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3269 REG_RD(sc, BNX_MISC_COMMAND);
3270 DELAY(5);
3272 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3273 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3275 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3276 val);
3277 } else {
3278 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3279 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3280 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3281 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3283 /* Allow up to 30us for reset to complete. */
3284 for (i = 0; i < 10; i++) {
3285 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3286 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3287 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3288 break;
3290 DELAY(10);
3293 /* Check that reset completed successfully. */
3294 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3295 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3296 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3297 __FILE__, __LINE__);
3298 rc = EBUSY;
3299 goto bnx_reset_exit;
3303 /* Make sure byte swapping is properly configured. */
3304 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3305 if (val != 0x01020304) {
3306 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3307 __FILE__, __LINE__);
3308 rc = ENODEV;
3309 goto bnx_reset_exit;
3312 /* Just completed a reset, assume that firmware is running again. */
3313 sc->bnx_fw_timed_out = 0;
3315 /* Wait for the firmware to finish its initialization. */
3316 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3317 if (rc)
3318 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3319 "initialization!\n", __FILE__, __LINE__);
3321 bnx_reset_exit:
3322 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3324 return (rc);
3328 bnx_chipinit(struct bnx_softc *sc)
3330 struct pci_attach_args *pa = &(sc->bnx_pa);
3331 u_int32_t val;
3332 int rc = 0;
3334 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3336 /* Make sure the interrupt is not active. */
3337 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3339 /* Initialize DMA byte/word swapping, configure the number of DMA */
3340 /* channels and PCI clock compensation delay. */
3341 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3342 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3343 #if BYTE_ORDER == BIG_ENDIAN
3344 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3345 #endif
3346 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3347 DMA_READ_CHANS << 12 |
3348 DMA_WRITE_CHANS << 16;
3350 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3352 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3353 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3356 * This setting resolves a problem observed on certain Intel PCI
3357 * chipsets that cannot handle multiple outstanding DMA operations.
3358 * See errata E9_5706A1_65.
3360 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3361 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3362 !(sc->bnx_flags & BNX_PCIX_FLAG))
3363 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3365 REG_WR(sc, BNX_DMA_CONFIG, val);
3367 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3368 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3369 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3370 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3371 val & ~0x20000);
3374 /* Enable the RX_V2P and Context state machines before access. */
3375 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3376 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3377 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3378 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3380 /* Initialize context mapping and zero out the quick contexts. */
3381 bnx_init_context(sc);
3383 /* Initialize the on-boards CPUs */
3384 bnx_init_cpus(sc);
3386 /* Prepare NVRAM for access. */
3387 if (bnx_init_nvram(sc)) {
3388 rc = ENODEV;
3389 goto bnx_chipinit_exit;
3392 /* Set the kernel bypass block size */
3393 val = REG_RD(sc, BNX_MQ_CONFIG);
3394 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3395 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3397 /* Enable bins used on the 5709. */
3398 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3399 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3400 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3401 val |= BNX_MQ_CONFIG_HALT_DIS;
3404 REG_WR(sc, BNX_MQ_CONFIG, val);
3406 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3407 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3408 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3410 val = (BCM_PAGE_BITS - 8) << 24;
3411 REG_WR(sc, BNX_RV2P_CONFIG, val);
3413 /* Configure page size. */
3414 val = REG_RD(sc, BNX_TBDR_CONFIG);
3415 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3416 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3417 REG_WR(sc, BNX_TBDR_CONFIG, val);
3419 #if 0
3420 /* Set the perfect match control register to default. */
3421 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3422 #endif
3424 bnx_chipinit_exit:
3425 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3427 return(rc);
3430 /****************************************************************************/
3431 /* Initialize the controller in preparation to send/receive traffic. */
3432 /* */
3433 /* Returns: */
3434 /* 0 for success, positive value for failure. */
3435 /****************************************************************************/
3437 bnx_blockinit(struct bnx_softc *sc)
3439 u_int32_t reg, val;
3440 int rc = 0;
3442 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3444 /* Load the hardware default MAC address. */
3445 bnx_set_mac_addr(sc);
3447 /* Set the Ethernet backoff seed value */
3448 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3449 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3450 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3452 sc->last_status_idx = 0;
3453 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3455 /* Set up link change interrupt generation. */
3456 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3457 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3459 /* Program the physical address of the status block. */
3460 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3461 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3462 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3464 /* Program the physical address of the statistics block. */
3465 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3466 (u_int32_t)(sc->stats_block_paddr));
3467 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3468 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3470 /* Program various host coalescing parameters. */
3471 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3472 << 16) | sc->bnx_tx_quick_cons_trip);
3473 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3474 << 16) | sc->bnx_rx_quick_cons_trip);
3475 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3476 sc->bnx_comp_prod_trip);
3477 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3478 sc->bnx_tx_ticks);
3479 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3480 sc->bnx_rx_ticks);
3481 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3482 sc->bnx_com_ticks);
3483 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3484 sc->bnx_cmd_ticks);
3485 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3486 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3487 REG_WR(sc, BNX_HC_CONFIG,
3488 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3489 BNX_HC_CONFIG_COLLECT_STATS));
3491 /* Clear the internal statistics counters. */
3492 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3494 /* Verify that bootcode is running. */
3495 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3497 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3498 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3499 __FILE__, __LINE__); reg = 0);
3501 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3502 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3503 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3504 "Expected: 08%08X\n", __FILE__, __LINE__,
3505 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3506 BNX_DEV_INFO_SIGNATURE_MAGIC);
3507 rc = ENODEV;
3508 goto bnx_blockinit_exit;
3511 /* Check if any management firmware is running. */
3512 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3513 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3514 BNX_PORT_FEATURE_IMD_ENABLED)) {
3515 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3516 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3519 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3520 BNX_DEV_INFO_BC_REV);
3522 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3524 /* Enable DMA */
3525 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3526 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3527 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3528 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3531 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3532 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3534 /* Enable link state change interrupt generation. */
3535 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3536 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3537 BNX_MISC_ENABLE_DEFAULT_XI);
3538 } else
3539 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3541 /* Enable all remaining blocks in the MAC. */
3542 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3543 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3544 DELAY(20);
3546 bnx_blockinit_exit:
3547 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3549 return (rc);
3552 static int
3553 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3554 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3556 bus_dmamap_t map;
3557 struct rx_bd *rxbd;
3558 u_int32_t addr;
3559 int i;
3560 #ifdef BNX_DEBUG
3561 u_int16_t debug_chain_prod = *chain_prod;
3562 #endif
3563 u_int16_t first_chain_prod;
3565 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3567 /* Map the mbuf cluster into device memory. */
3568 map = sc->rx_mbuf_map[*chain_prod];
3569 first_chain_prod = *chain_prod;
3570 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3571 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3572 __FILE__, __LINE__);
3574 m_freem(m_new);
3576 DBRUNIF(1, sc->rx_mbuf_alloc--);
3578 return ENOBUFS;
3580 /* Make sure there is room in the receive chain. */
3581 if (map->dm_nsegs > sc->free_rx_bd) {
3582 bus_dmamap_unload(sc->bnx_dmatag, map);
3583 m_freem(m_new);
3584 return EFBIG;
3586 #ifdef BNX_DEBUG
3587 /* Track the distribution of buffer segments. */
3588 sc->rx_mbuf_segs[map->dm_nsegs]++;
3589 #endif
3591 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3592 BUS_DMASYNC_PREREAD);
3594 /* Update some debug statistics counters */
3595 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3596 sc->rx_low_watermark = sc->free_rx_bd);
3597 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3600 * Setup the rx_bd for the first segment
3602 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3604 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3605 rxbd->rx_bd_haddr_lo = htole32(addr);
3606 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3607 rxbd->rx_bd_haddr_hi = htole32(addr);
3608 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3609 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3610 *prod_bseq += map->dm_segs[0].ds_len;
3611 bus_dmamap_sync(sc->bnx_dmatag,
3612 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3613 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3614 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3616 for (i = 1; i < map->dm_nsegs; i++) {
3617 *prod = NEXT_RX_BD(*prod);
3618 *chain_prod = RX_CHAIN_IDX(*prod);
3620 rxbd =
3621 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3623 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3624 rxbd->rx_bd_haddr_lo = htole32(addr);
3625 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3626 rxbd->rx_bd_haddr_hi = htole32(addr);
3627 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3628 rxbd->rx_bd_flags = 0;
3629 *prod_bseq += map->dm_segs[i].ds_len;
3630 bus_dmamap_sync(sc->bnx_dmatag,
3631 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3632 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3633 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3636 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3637 bus_dmamap_sync(sc->bnx_dmatag,
3638 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3639 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3640 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3643 * Save the mbuf, ajust the map pointer (swap map for first and
3644 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3645 * and update counter.
3647 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3648 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3649 sc->rx_mbuf_map[*chain_prod] = map;
3650 sc->free_rx_bd -= map->dm_nsegs;
3652 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3653 map->dm_nsegs));
3654 *prod = NEXT_RX_BD(*prod);
3655 *chain_prod = RX_CHAIN_IDX(*prod);
3657 return 0;
3660 /****************************************************************************/
3661 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3662 /* */
3663 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3664 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3665 /* necessary. */
3666 /* */
3667 /* Returns: */
3668 /* 0 for success, positive value for failure. */
3669 /****************************************************************************/
3671 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3672 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3674 struct mbuf *m_new = NULL;
3675 int rc = 0;
3676 u_int16_t min_free_bd;
3678 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3679 __func__);
3681 /* Make sure the inputs are valid. */
3682 DBRUNIF((*chain_prod > MAX_RX_BD),
3683 aprint_error_dev(sc->bnx_dev,
3684 "RX producer out of range: 0x%04X > 0x%04X\n",
3685 *chain_prod, (u_int16_t)MAX_RX_BD));
3687 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3688 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3689 *prod_bseq);
3691 /* try to get in as many mbufs as possible */
3692 if (sc->mbuf_alloc_size == MCLBYTES)
3693 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3694 else
3695 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3696 while (sc->free_rx_bd >= min_free_bd) {
3697 /* Simulate an mbuf allocation failure. */
3698 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3699 aprint_error_dev(sc->bnx_dev,
3700 "Simulating mbuf allocation failure.\n");
3701 sc->mbuf_sim_alloc_failed++;
3702 rc = ENOBUFS;
3703 goto bnx_get_buf_exit);
3705 /* This is a new mbuf allocation. */
3706 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3707 if (m_new == NULL) {
3708 DBPRINT(sc, BNX_WARN,
3709 "%s(%d): RX mbuf header allocation failed!\n",
3710 __FILE__, __LINE__);
3712 sc->mbuf_alloc_failed++;
3714 rc = ENOBUFS;
3715 goto bnx_get_buf_exit;
3718 DBRUNIF(1, sc->rx_mbuf_alloc++);
3720 /* Simulate an mbuf cluster allocation failure. */
3721 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3722 m_freem(m_new);
3723 sc->rx_mbuf_alloc--;
3724 sc->mbuf_alloc_failed++;
3725 sc->mbuf_sim_alloc_failed++;
3726 rc = ENOBUFS;
3727 goto bnx_get_buf_exit);
3729 if (sc->mbuf_alloc_size == MCLBYTES)
3730 MCLGET(m_new, M_DONTWAIT);
3731 else
3732 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3733 M_DONTWAIT);
3734 if (!(m_new->m_flags & M_EXT)) {
3735 DBPRINT(sc, BNX_WARN,
3736 "%s(%d): RX mbuf chain allocation failed!\n",
3737 __FILE__, __LINE__);
3739 m_freem(m_new);
3741 DBRUNIF(1, sc->rx_mbuf_alloc--);
3742 sc->mbuf_alloc_failed++;
3744 rc = ENOBUFS;
3745 goto bnx_get_buf_exit;
3748 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3749 if (rc != 0)
3750 goto bnx_get_buf_exit;
3753 bnx_get_buf_exit:
3754 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3755 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3756 *chain_prod, *prod_bseq);
3758 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3759 __func__);
3761 return(rc);
3765 bnx_alloc_pkts(struct bnx_softc *sc)
3767 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3768 struct bnx_pkt *pkt;
3769 int i;
3771 for (i = 0; i < 4; i++) { /* magic! */
3772 pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3773 if (pkt == NULL)
3774 break;
3776 if (bus_dmamap_create(sc->bnx_dmatag,
3777 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3778 MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3779 &pkt->pkt_dmamap) != 0)
3780 goto put;
3782 if (!ISSET(ifp->if_flags, IFF_UP))
3783 goto stopping;
3785 mutex_enter(&sc->tx_pkt_mtx);
3786 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3787 sc->tx_pkt_count++;
3788 mutex_exit(&sc->tx_pkt_mtx);
3791 return (i == 0) ? ENOMEM : 0;
3793 stopping:
3794 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3795 put:
3796 pool_put(bnx_tx_pool, pkt);
3797 return (i == 0) ? ENOMEM : 0;
3800 /****************************************************************************/
3801 /* Initialize the TX context memory. */
3802 /* */
3803 /* Returns: */
3804 /* Nothing */
3805 /****************************************************************************/
3806 void
3807 bnx_init_tx_context(struct bnx_softc *sc)
3809 u_int32_t val;
3811 /* Initialize the context ID for an L2 TX chain. */
3812 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3813 /* Set the CID type to support an L2 connection. */
3814 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3815 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3816 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3817 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3819 /* Point the hardware to the first page in the chain. */
3820 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3821 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3822 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3823 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3824 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3825 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3826 } else {
3827 /* Set the CID type to support an L2 connection. */
3828 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3829 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3830 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3831 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3833 /* Point the hardware to the first page in the chain. */
3834 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3835 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3836 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3837 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3842 /****************************************************************************/
3843 /* Allocate memory and initialize the TX data structures. */
3844 /* */
3845 /* Returns: */
3846 /* 0 for success, positive value for failure. */
3847 /****************************************************************************/
3849 bnx_init_tx_chain(struct bnx_softc *sc)
3851 struct tx_bd *txbd;
3852 u_int32_t addr;
3853 int i, rc = 0;
3855 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3857 /* Force an allocation of some dmamaps for tx up front */
3858 bnx_alloc_pkts(sc);
3860 /* Set the initial TX producer/consumer indices. */
3861 sc->tx_prod = 0;
3862 sc->tx_cons = 0;
3863 sc->tx_prod_bseq = 0;
3864 sc->used_tx_bd = 0;
3865 sc->max_tx_bd = USABLE_TX_BD;
3866 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3867 DBRUNIF(1, sc->tx_full_count = 0);
3870 * The NetXtreme II supports a linked-list structure called
3871 * a Buffer Descriptor Chain (or BD chain). A BD chain
3872 * consists of a series of 1 or more chain pages, each of which
3873 * consists of a fixed number of BD entries.
3874 * The last BD entry on each page is a pointer to the next page
3875 * in the chain, and the last pointer in the BD chain
3876 * points back to the beginning of the chain.
3879 /* Set the TX next pointer chain entries. */
3880 for (i = 0; i < TX_PAGES; i++) {
3881 int j;
3883 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3885 /* Check if we've reached the last page. */
3886 if (i == (TX_PAGES - 1))
3887 j = 0;
3888 else
3889 j = i + 1;
3891 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3892 txbd->tx_bd_haddr_lo = htole32(addr);
3893 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3894 txbd->tx_bd_haddr_hi = htole32(addr);
3895 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3896 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3900 * Initialize the context ID for an L2 TX chain.
3902 bnx_init_tx_context(sc);
3904 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3906 return(rc);
3909 /****************************************************************************/
3910 /* Free memory and clear the TX data structures. */
3911 /* */
3912 /* Returns: */
3913 /* Nothing. */
3914 /****************************************************************************/
3915 void
3916 bnx_free_tx_chain(struct bnx_softc *sc)
3918 struct bnx_pkt *pkt;
3919 int i;
3921 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3923 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3924 mutex_enter(&sc->tx_pkt_mtx);
3925 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
3926 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
3927 mutex_exit(&sc->tx_pkt_mtx);
3929 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
3930 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3931 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
3933 m_freem(pkt->pkt_mbuf);
3934 DBRUNIF(1, sc->tx_mbuf_alloc--);
3936 mutex_enter(&sc->tx_pkt_mtx);
3937 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3940 /* Destroy all the dmamaps we allocated for TX */
3941 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
3942 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
3943 sc->tx_pkt_count--;
3944 mutex_exit(&sc->tx_pkt_mtx);
3946 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3947 pool_put(bnx_tx_pool, pkt);
3949 mutex_enter(&sc->tx_pkt_mtx);
3951 mutex_exit(&sc->tx_pkt_mtx);
3955 /* Clear each TX chain page. */
3956 for (i = 0; i < TX_PAGES; i++) {
3957 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
3958 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3959 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3962 sc->used_tx_bd = 0;
3964 /* Check if we lost any mbufs in the process. */
3965 DBRUNIF((sc->tx_mbuf_alloc),
3966 aprint_error_dev(sc->bnx_dev,
3967 "Memory leak! Lost %d mbufs from tx chain!\n",
3968 sc->tx_mbuf_alloc));
3970 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3973 /****************************************************************************/
3974 /* Initialize the RX context memory. */
3975 /* */
3976 /* Returns: */
3977 /* Nothing */
3978 /****************************************************************************/
3979 void
3980 bnx_init_rx_context(struct bnx_softc *sc)
3982 u_int32_t val;
3984 /* Initialize the context ID for an L2 RX chain. */
3985 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
3986 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
3988 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3989 u_int32_t lo_water, hi_water;
3991 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
3992 hi_water = USABLE_RX_BD / 4;
3994 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
3995 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
3997 if (hi_water > 0xf)
3998 hi_water = 0xf;
3999 else if (hi_water == 0)
4000 lo_water = 0;
4001 val |= lo_water |
4002 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4005 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4007 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4008 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4009 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4010 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4013 /* Point the hardware to the first page in the chain. */
4014 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4015 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4016 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4017 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4020 /****************************************************************************/
4021 /* Allocate memory and initialize the RX data structures. */
4022 /* */
4023 /* Returns: */
4024 /* 0 for success, positive value for failure. */
4025 /****************************************************************************/
4027 bnx_init_rx_chain(struct bnx_softc *sc)
4029 struct rx_bd *rxbd;
4030 int i, rc = 0;
4031 u_int16_t prod, chain_prod;
4032 u_int32_t prod_bseq, addr;
4034 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4036 /* Initialize the RX producer and consumer indices. */
4037 sc->rx_prod = 0;
4038 sc->rx_cons = 0;
4039 sc->rx_prod_bseq = 0;
4040 sc->free_rx_bd = USABLE_RX_BD;
4041 sc->max_rx_bd = USABLE_RX_BD;
4042 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4043 DBRUNIF(1, sc->rx_empty_count = 0);
4045 /* Initialize the RX next pointer chain entries. */
4046 for (i = 0; i < RX_PAGES; i++) {
4047 int j;
4049 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4051 /* Check if we've reached the last page. */
4052 if (i == (RX_PAGES - 1))
4053 j = 0;
4054 else
4055 j = i + 1;
4057 /* Setup the chain page pointers. */
4058 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4059 rxbd->rx_bd_haddr_hi = htole32(addr);
4060 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
4061 rxbd->rx_bd_haddr_lo = htole32(addr);
4062 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4063 0, BNX_RX_CHAIN_PAGE_SZ,
4064 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4067 /* Allocate mbuf clusters for the rx_bd chain. */
4068 prod = prod_bseq = 0;
4069 chain_prod = RX_CHAIN_IDX(prod);
4070 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4071 BNX_PRINTF(sc,
4072 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4075 /* Save the RX chain producer index. */
4076 sc->rx_prod = prod;
4077 sc->rx_prod_bseq = prod_bseq;
4079 for (i = 0; i < RX_PAGES; i++)
4080 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4081 sc->rx_bd_chain_map[i]->dm_mapsize,
4082 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4084 /* Tell the chip about the waiting rx_bd's. */
4085 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4086 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4088 bnx_init_rx_context(sc);
4090 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4092 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4094 return(rc);
4097 /****************************************************************************/
4098 /* Free memory and clear the RX data structures. */
4099 /* */
4100 /* Returns: */
4101 /* Nothing. */
4102 /****************************************************************************/
4103 void
4104 bnx_free_rx_chain(struct bnx_softc *sc)
4106 int i;
4108 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4110 /* Free any mbufs still in the RX mbuf chain. */
4111 for (i = 0; i < TOTAL_RX_BD; i++) {
4112 if (sc->rx_mbuf_ptr[i] != NULL) {
4113 if (sc->rx_mbuf_map[i] != NULL) {
4114 bus_dmamap_sync(sc->bnx_dmatag,
4115 sc->rx_mbuf_map[i], 0,
4116 sc->rx_mbuf_map[i]->dm_mapsize,
4117 BUS_DMASYNC_POSTREAD);
4118 bus_dmamap_unload(sc->bnx_dmatag,
4119 sc->rx_mbuf_map[i]);
4121 m_freem(sc->rx_mbuf_ptr[i]);
4122 sc->rx_mbuf_ptr[i] = NULL;
4123 DBRUNIF(1, sc->rx_mbuf_alloc--);
4127 /* Clear each RX chain page. */
4128 for (i = 0; i < RX_PAGES; i++)
4129 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4131 sc->free_rx_bd = sc->max_rx_bd;
4133 /* Check if we lost any mbufs in the process. */
4134 DBRUNIF((sc->rx_mbuf_alloc),
4135 aprint_error_dev(sc->bnx_dev,
4136 "Memory leak! Lost %d mbufs from rx chain!\n",
4137 sc->rx_mbuf_alloc));
4139 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4142 /****************************************************************************/
4143 /* Handles PHY generated interrupt events. */
4144 /* */
4145 /* Returns: */
4146 /* Nothing. */
4147 /****************************************************************************/
4148 void
4149 bnx_phy_intr(struct bnx_softc *sc)
4151 u_int32_t new_link_state, old_link_state;
4153 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4154 BUS_DMASYNC_POSTREAD);
4155 new_link_state = sc->status_block->status_attn_bits &
4156 STATUS_ATTN_BITS_LINK_STATE;
4157 old_link_state = sc->status_block->status_attn_bits_ack &
4158 STATUS_ATTN_BITS_LINK_STATE;
4160 /* Handle any changes if the link state has changed. */
4161 if (new_link_state != old_link_state) {
4162 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4164 callout_stop(&sc->bnx_timeout);
4165 bnx_tick(sc);
4167 /* Update the status_attn_bits_ack field in the status block. */
4168 if (new_link_state) {
4169 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4170 STATUS_ATTN_BITS_LINK_STATE);
4171 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4172 } else {
4173 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4174 STATUS_ATTN_BITS_LINK_STATE);
4175 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4179 /* Acknowledge the link change interrupt. */
4180 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4183 /****************************************************************************/
4184 /* Handles received frame interrupt events. */
4185 /* */
4186 /* Returns: */
4187 /* Nothing. */
4188 /****************************************************************************/
4189 void
4190 bnx_rx_intr(struct bnx_softc *sc)
4192 struct status_block *sblk = sc->status_block;
4193 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4194 u_int16_t hw_cons, sw_cons, sw_chain_cons;
4195 u_int16_t sw_prod, sw_chain_prod;
4196 u_int32_t sw_prod_bseq;
4197 struct l2_fhdr *l2fhdr;
4198 int i;
4200 DBRUNIF(1, sc->rx_interrupts++);
4201 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4202 BUS_DMASYNC_POSTREAD);
4204 /* Prepare the RX chain pages to be accessed by the host CPU. */
4205 for (i = 0; i < RX_PAGES; i++)
4206 bus_dmamap_sync(sc->bnx_dmatag,
4207 sc->rx_bd_chain_map[i], 0,
4208 sc->rx_bd_chain_map[i]->dm_mapsize,
4209 BUS_DMASYNC_POSTWRITE);
4211 /* Get the hardware's view of the RX consumer index. */
4212 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4213 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4214 hw_cons++;
4216 /* Get working copies of the driver's view of the RX indices. */
4217 sw_cons = sc->rx_cons;
4218 sw_prod = sc->rx_prod;
4219 sw_prod_bseq = sc->rx_prod_bseq;
4221 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4222 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4223 __func__, sw_prod, sw_cons, sw_prod_bseq);
4225 /* Prevent speculative reads from getting ahead of the status block. */
4226 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4227 BUS_SPACE_BARRIER_READ);
4229 /* Update some debug statistics counters */
4230 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4231 sc->rx_low_watermark = sc->free_rx_bd);
4232 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4235 * Scan through the receive chain as long
4236 * as there is work to do.
4238 while (sw_cons != hw_cons) {
4239 struct mbuf *m;
4240 struct rx_bd *rxbd;
4241 unsigned int len;
4242 u_int32_t status;
4244 /* Convert the producer/consumer indices to an actual
4245 * rx_bd index.
4247 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4248 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4250 /* Get the used rx_bd. */
4251 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4252 sc->free_rx_bd++;
4254 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4255 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4257 /* The mbuf is stored with the last rx_bd entry of a packet. */
4258 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4259 #ifdef DIAGNOSTIC
4260 /* Validate that this is the last rx_bd. */
4261 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4262 printf("%s: Unexpected mbuf found in "
4263 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4264 sw_chain_cons);
4266 #endif
4268 /* DRC - ToDo: If the received packet is small, say less
4269 * than 128 bytes, allocate a new mbuf here,
4270 * copy the data to that mbuf, and recycle
4271 * the mapped jumbo frame.
4274 /* Unmap the mbuf from DMA space. */
4275 #ifdef DIAGNOSTIC
4276 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4277 printf("invalid map sw_cons 0x%x "
4278 "sw_prod 0x%x "
4279 "sw_chain_cons 0x%x "
4280 "sw_chain_prod 0x%x "
4281 "hw_cons 0x%x "
4282 "TOTAL_RX_BD_PER_PAGE 0x%x "
4283 "TOTAL_RX_BD 0x%x\n",
4284 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4285 hw_cons,
4286 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4288 #endif
4289 bus_dmamap_sync(sc->bnx_dmatag,
4290 sc->rx_mbuf_map[sw_chain_cons], 0,
4291 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4292 BUS_DMASYNC_POSTREAD);
4293 bus_dmamap_unload(sc->bnx_dmatag,
4294 sc->rx_mbuf_map[sw_chain_cons]);
4296 /* Remove the mbuf from the driver's chain. */
4297 m = sc->rx_mbuf_ptr[sw_chain_cons];
4298 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4301 * Frames received on the NetXteme II are prepended
4302 * with the l2_fhdr structure which provides status
4303 * information about the received frame (including
4304 * VLAN tags and checksum info) and are also
4305 * automatically adjusted to align the IP header
4306 * (i.e. two null bytes are inserted before the
4307 * Ethernet header).
4309 l2fhdr = mtod(m, struct l2_fhdr *);
4311 len = l2fhdr->l2_fhdr_pkt_len;
4312 status = l2fhdr->l2_fhdr_status;
4314 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4315 aprint_error("Simulating l2_fhdr status error.\n");
4316 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4318 /* Watch for unusual sized frames. */
4319 DBRUNIF(((len < BNX_MIN_MTU) ||
4320 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4321 aprint_error_dev(sc->bnx_dev,
4322 "Unusual frame size found. "
4323 "Min(%d), Actual(%d), Max(%d)\n",
4324 (int)BNX_MIN_MTU, len,
4325 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4327 bnx_dump_mbuf(sc, m);
4328 bnx_breakpoint(sc));
4330 len -= ETHER_CRC_LEN;
4332 /* Check the received frame for errors. */
4333 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4334 L2_FHDR_ERRORS_PHY_DECODE |
4335 L2_FHDR_ERRORS_ALIGNMENT |
4336 L2_FHDR_ERRORS_TOO_SHORT |
4337 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4338 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4339 len >
4340 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4341 ifp->if_ierrors++;
4342 DBRUNIF(1, sc->l2fhdr_status_errors++);
4344 /* Reuse the mbuf for a new frame. */
4345 if (bnx_add_buf(sc, m, &sw_prod,
4346 &sw_chain_prod, &sw_prod_bseq)) {
4347 DBRUNIF(1, bnx_breakpoint(sc));
4348 panic("%s: Can't reuse RX mbuf!\n",
4349 device_xname(sc->bnx_dev));
4351 continue;
4355 * Get a new mbuf for the rx_bd. If no new
4356 * mbufs are available then reuse the current mbuf,
4357 * log an ierror on the interface, and generate
4358 * an error in the system log.
4360 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4361 &sw_prod_bseq)) {
4362 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4363 "Failed to allocate "
4364 "new mbuf, incoming frame dropped!\n"));
4366 ifp->if_ierrors++;
4368 /* Try and reuse the exisitng mbuf. */
4369 if (bnx_add_buf(sc, m, &sw_prod,
4370 &sw_chain_prod, &sw_prod_bseq)) {
4371 DBRUNIF(1, bnx_breakpoint(sc));
4372 panic("%s: Double mbuf allocation "
4373 "failure!",
4374 device_xname(sc->bnx_dev));
4376 continue;
4379 /* Skip over the l2_fhdr when passing the data up
4380 * the stack.
4382 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4384 /* Adjust the pckt length to match the received data. */
4385 m->m_pkthdr.len = m->m_len = len;
4387 /* Send the packet to the appropriate interface. */
4388 m->m_pkthdr.rcvif = ifp;
4390 DBRUN(BNX_VERBOSE_RECV,
4391 struct ether_header *eh;
4392 eh = mtod(m, struct ether_header *);
4393 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4394 __func__, ether_sprintf(eh->ether_dhost),
4395 ether_sprintf(eh->ether_shost),
4396 htons(eh->ether_type)));
4398 /* Validate the checksum. */
4400 /* Check for an IP datagram. */
4401 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4402 /* Check if the IP checksum is valid. */
4403 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4404 == 0)
4405 m->m_pkthdr.csum_flags |=
4406 M_CSUM_IPv4;
4407 #ifdef BNX_DEBUG
4408 else
4409 DBPRINT(sc, BNX_WARN_SEND,
4410 "%s(): Invalid IP checksum "
4411 "= 0x%04X!\n",
4412 __func__,
4413 l2fhdr->l2_fhdr_ip_xsum
4415 #endif
4418 /* Check for a valid TCP/UDP frame. */
4419 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4420 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4421 /* Check for a good TCP/UDP checksum. */
4422 if ((status &
4423 (L2_FHDR_ERRORS_TCP_XSUM |
4424 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4425 m->m_pkthdr.csum_flags |=
4426 M_CSUM_TCPv4 |
4427 M_CSUM_UDPv4;
4428 } else {
4429 DBPRINT(sc, BNX_WARN_SEND,
4430 "%s(): Invalid TCP/UDP "
4431 "checksum = 0x%04X!\n",
4432 __func__,
4433 l2fhdr->l2_fhdr_tcp_udp_xsum);
4438 * If we received a packet with a vlan tag,
4439 * attach that information to the packet.
4441 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4442 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4443 VLAN_INPUT_TAG(ifp, m,
4444 l2fhdr->l2_fhdr_vlan_tag,
4445 continue);
4448 #if NBPFILTER > 0
4450 * Handle BPF listeners. Let the BPF
4451 * user see the packet.
4453 if (ifp->if_bpf)
4454 bpf_mtap(ifp->if_bpf, m);
4455 #endif
4457 /* Pass the mbuf off to the upper layers. */
4458 ifp->if_ipackets++;
4459 DBPRINT(sc, BNX_VERBOSE_RECV,
4460 "%s(): Passing received frame up.\n", __func__);
4461 (*ifp->if_input)(ifp, m);
4462 DBRUNIF(1, sc->rx_mbuf_alloc--);
4466 sw_cons = NEXT_RX_BD(sw_cons);
4468 /* Refresh hw_cons to see if there's new work */
4469 if (sw_cons == hw_cons) {
4470 hw_cons = sc->hw_rx_cons =
4471 sblk->status_rx_quick_consumer_index0;
4472 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4473 USABLE_RX_BD_PER_PAGE)
4474 hw_cons++;
4477 /* Prevent speculative reads from getting ahead of
4478 * the status block.
4480 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4481 BUS_SPACE_BARRIER_READ);
4484 for (i = 0; i < RX_PAGES; i++)
4485 bus_dmamap_sync(sc->bnx_dmatag,
4486 sc->rx_bd_chain_map[i], 0,
4487 sc->rx_bd_chain_map[i]->dm_mapsize,
4488 BUS_DMASYNC_PREWRITE);
4490 sc->rx_cons = sw_cons;
4491 sc->rx_prod = sw_prod;
4492 sc->rx_prod_bseq = sw_prod_bseq;
4494 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4495 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4497 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4498 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4499 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4502 /****************************************************************************/
4503 /* Handles transmit completion interrupt events. */
4504 /* */
4505 /* Returns: */
4506 /* Nothing. */
4507 /****************************************************************************/
4508 void
4509 bnx_tx_intr(struct bnx_softc *sc)
4511 struct status_block *sblk = sc->status_block;
4512 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4513 struct bnx_pkt *pkt;
4514 bus_dmamap_t map;
4515 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4517 DBRUNIF(1, sc->tx_interrupts++);
4518 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4519 BUS_DMASYNC_POSTREAD);
4521 /* Get the hardware's view of the TX consumer index. */
4522 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4524 /* Skip to the next entry if this is a chain page pointer. */
4525 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4526 hw_tx_cons++;
4528 sw_tx_cons = sc->tx_cons;
4530 /* Prevent speculative reads from getting ahead of the status block. */
4531 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4532 BUS_SPACE_BARRIER_READ);
4534 /* Cycle through any completed TX chain page entries. */
4535 while (sw_tx_cons != hw_tx_cons) {
4536 #ifdef BNX_DEBUG
4537 struct tx_bd *txbd = NULL;
4538 #endif
4539 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4541 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4542 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4543 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4545 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4546 aprint_error_dev(sc->bnx_dev,
4547 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4548 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4550 DBRUNIF(1, txbd = &sc->tx_bd_chain
4551 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4553 DBRUNIF((txbd == NULL),
4554 aprint_error_dev(sc->bnx_dev,
4555 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4556 bnx_breakpoint(sc));
4558 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4559 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4562 mutex_enter(&sc->tx_pkt_mtx);
4563 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4564 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4565 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4566 mutex_exit(&sc->tx_pkt_mtx);
4568 * Free the associated mbuf. Remember
4569 * that only the last tx_bd of a packet
4570 * has an mbuf pointer and DMA map.
4572 map = pkt->pkt_dmamap;
4573 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4574 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4575 bus_dmamap_unload(sc->bnx_dmatag, map);
4577 m_freem(pkt->pkt_mbuf);
4578 DBRUNIF(1, sc->tx_mbuf_alloc--);
4580 ifp->if_opackets++;
4582 mutex_enter(&sc->tx_pkt_mtx);
4583 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4585 mutex_exit(&sc->tx_pkt_mtx);
4587 sc->used_tx_bd--;
4588 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4589 __FILE__, __LINE__, sc->used_tx_bd);
4591 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4593 /* Refresh hw_cons to see if there's new work. */
4594 hw_tx_cons = sc->hw_tx_cons =
4595 sblk->status_tx_quick_consumer_index0;
4596 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4597 USABLE_TX_BD_PER_PAGE)
4598 hw_tx_cons++;
4600 /* Prevent speculative reads from getting ahead of
4601 * the status block.
4603 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4604 BUS_SPACE_BARRIER_READ);
4607 /* Clear the TX timeout timer. */
4608 ifp->if_timer = 0;
4610 /* Clear the tx hardware queue full flag. */
4611 if (sc->used_tx_bd < sc->max_tx_bd) {
4612 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4613 aprint_debug_dev(sc->bnx_dev,
4614 "Open TX chain! %d/%d (used/total)\n",
4615 sc->used_tx_bd, sc->max_tx_bd));
4616 ifp->if_flags &= ~IFF_OACTIVE;
4619 sc->tx_cons = sw_tx_cons;
4622 /****************************************************************************/
4623 /* Disables interrupt generation. */
4624 /* */
4625 /* Returns: */
4626 /* Nothing. */
4627 /****************************************************************************/
4628 void
4629 bnx_disable_intr(struct bnx_softc *sc)
4631 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4632 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4635 /****************************************************************************/
4636 /* Enables interrupt generation. */
4637 /* */
4638 /* Returns: */
4639 /* Nothing. */
4640 /****************************************************************************/
4641 void
4642 bnx_enable_intr(struct bnx_softc *sc)
4644 u_int32_t val;
4646 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4647 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4649 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4650 sc->last_status_idx);
4652 val = REG_RD(sc, BNX_HC_COMMAND);
4653 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4656 /****************************************************************************/
4657 /* Handles controller initialization. */
4658 /* */
4659 /****************************************************************************/
4661 bnx_init(struct ifnet *ifp)
4663 struct bnx_softc *sc = ifp->if_softc;
4664 u_int32_t ether_mtu;
4665 int s, error = 0;
4667 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4669 s = splnet();
4671 bnx_stop(ifp, 0);
4673 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4674 aprint_error_dev(sc->bnx_dev,
4675 "Controller reset failed!\n");
4676 goto bnx_init_exit;
4679 if ((error = bnx_chipinit(sc)) != 0) {
4680 aprint_error_dev(sc->bnx_dev,
4681 "Controller initialization failed!\n");
4682 goto bnx_init_exit;
4685 if ((error = bnx_blockinit(sc)) != 0) {
4686 aprint_error_dev(sc->bnx_dev,
4687 "Block initialization failed!\n");
4688 goto bnx_init_exit;
4691 /* Calculate and program the Ethernet MRU size. */
4692 if (ifp->if_mtu <= ETHERMTU) {
4693 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4694 sc->mbuf_alloc_size = MCLBYTES;
4695 } else {
4696 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4697 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4701 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4702 __func__, ether_mtu);
4705 * Program the MRU and enable Jumbo frame
4706 * support.
4708 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4709 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4711 /* Calculate the RX Ethernet frame size for rx_bd's. */
4712 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4714 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4715 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4716 sc->mbuf_alloc_size, sc->max_frame_size);
4718 /* Program appropriate promiscuous/multicast filtering. */
4719 bnx_iff(sc);
4721 /* Init RX buffer descriptor chain. */
4722 bnx_init_rx_chain(sc);
4724 /* Init TX buffer descriptor chain. */
4725 bnx_init_tx_chain(sc);
4727 /* Enable host interrupts. */
4728 bnx_enable_intr(sc);
4730 if ((error = ether_mediachange(ifp)) != 0)
4731 goto bnx_init_exit;
4733 ifp->if_flags |= IFF_RUNNING;
4734 ifp->if_flags &= ~IFF_OACTIVE;
4736 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4738 bnx_init_exit:
4739 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4741 splx(s);
4743 return(error);
4746 /****************************************************************************/
4747 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4748 /* memory visible to the controller. */
4749 /* */
4750 /* Returns: */
4751 /* 0 for success, positive value for failure. */
4752 /****************************************************************************/
4754 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4756 struct bnx_pkt *pkt;
4757 bus_dmamap_t map;
4758 struct tx_bd *txbd = NULL;
4759 u_int16_t vlan_tag = 0, flags = 0;
4760 u_int16_t chain_prod, prod;
4761 #ifdef BNX_DEBUG
4762 u_int16_t debug_prod;
4763 #endif
4764 u_int32_t addr, prod_bseq;
4765 int i, error;
4766 struct m_tag *mtag;
4768 again:
4769 mutex_enter(&sc->tx_pkt_mtx);
4770 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4771 if (pkt == NULL) {
4772 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4773 mutex_exit(&sc->tx_pkt_mtx);
4774 return ENETDOWN;
4776 if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4777 mutex_exit(&sc->tx_pkt_mtx);
4778 if (bnx_alloc_pkts(sc) == 0)
4779 goto again;
4780 } else {
4781 mutex_exit(&sc->tx_pkt_mtx);
4783 return (ENOMEM);
4785 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4786 mutex_exit(&sc->tx_pkt_mtx);
4788 /* Transfer any checksum offload flags to the bd. */
4789 if (m->m_pkthdr.csum_flags) {
4790 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4791 flags |= TX_BD_FLAGS_IP_CKSUM;
4792 if (m->m_pkthdr.csum_flags &
4793 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4794 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4797 /* Transfer any VLAN tags to the bd. */
4798 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4799 if (mtag != NULL) {
4800 flags |= TX_BD_FLAGS_VLAN_TAG;
4801 vlan_tag = VLAN_TAG_VALUE(mtag);
4804 /* Map the mbuf into DMAable memory. */
4805 prod = sc->tx_prod;
4806 chain_prod = TX_CHAIN_IDX(prod);
4807 map = pkt->pkt_dmamap;
4809 /* Map the mbuf into our DMA address space. */
4810 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4811 if (error != 0) {
4812 aprint_error_dev(sc->bnx_dev,
4813 "Error mapping mbuf into TX chain!\n");
4814 sc->tx_dma_map_failures++;
4815 goto maperr;
4817 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4818 BUS_DMASYNC_PREWRITE);
4819 /* Make sure there's room in the chain */
4820 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4821 goto nospace;
4823 /* prod points to an empty tx_bd at this point. */
4824 prod_bseq = sc->tx_prod_bseq;
4825 #ifdef BNX_DEBUG
4826 debug_prod = chain_prod;
4827 #endif
4828 DBPRINT(sc, BNX_INFO_SEND,
4829 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4830 "prod_bseq = 0x%08X\n",
4831 __func__, prod, chain_prod, prod_bseq);
4834 * Cycle through each mbuf segment that makes up
4835 * the outgoing frame, gathering the mapping info
4836 * for that segment and creating a tx_bd for the
4837 * mbuf.
4839 for (i = 0; i < map->dm_nsegs ; i++) {
4840 chain_prod = TX_CHAIN_IDX(prod);
4841 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4843 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4844 txbd->tx_bd_haddr_lo = htole32(addr);
4845 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4846 txbd->tx_bd_haddr_hi = htole32(addr);
4847 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4848 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4849 txbd->tx_bd_flags = htole16(flags);
4850 prod_bseq += map->dm_segs[i].ds_len;
4851 if (i == 0)
4852 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4853 prod = NEXT_TX_BD(prod);
4855 /* Set the END flag on the last TX buffer descriptor. */
4856 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4858 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4860 DBPRINT(sc, BNX_INFO_SEND,
4861 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4862 "prod_bseq = 0x%08X\n",
4863 __func__, prod, chain_prod, prod_bseq);
4865 pkt->pkt_mbuf = m;
4866 pkt->pkt_end_desc = chain_prod;
4868 mutex_enter(&sc->tx_pkt_mtx);
4869 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4870 mutex_exit(&sc->tx_pkt_mtx);
4872 sc->used_tx_bd += map->dm_nsegs;
4873 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4874 __FILE__, __LINE__, sc->used_tx_bd);
4876 /* Update some debug statistics counters */
4877 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4878 sc->tx_hi_watermark = sc->used_tx_bd);
4879 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4880 DBRUNIF(1, sc->tx_mbuf_alloc++);
4882 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4883 map->dm_nsegs));
4885 /* prod points to the next free tx_bd at this point. */
4886 sc->tx_prod = prod;
4887 sc->tx_prod_bseq = prod_bseq;
4889 return (0);
4892 nospace:
4893 bus_dmamap_unload(sc->bnx_dmatag, map);
4894 maperr:
4895 mutex_enter(&sc->tx_pkt_mtx);
4896 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4897 mutex_exit(&sc->tx_pkt_mtx);
4899 return (ENOMEM);
4902 /****************************************************************************/
4903 /* Main transmit routine. */
4904 /* */
4905 /* Returns: */
4906 /* Nothing. */
4907 /****************************************************************************/
4908 void
4909 bnx_start(struct ifnet *ifp)
4911 struct bnx_softc *sc = ifp->if_softc;
4912 struct mbuf *m_head = NULL;
4913 int count = 0;
4914 u_int16_t tx_prod, tx_chain_prod;
4916 /* If there's no link or the transmit queue is empty then just exit. */
4917 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4918 DBPRINT(sc, BNX_INFO_SEND,
4919 "%s(): output active or device not running.\n", __func__);
4920 goto bnx_start_exit;
4923 /* prod points to the next free tx_bd. */
4924 tx_prod = sc->tx_prod;
4925 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4927 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4928 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
4929 "used_tx %d max_tx %d\n",
4930 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
4931 sc->used_tx_bd, sc->max_tx_bd);
4934 * Keep adding entries while there is space in the ring.
4936 while (sc->used_tx_bd < sc->max_tx_bd) {
4937 /* Check for any frames to send. */
4938 IFQ_POLL(&ifp->if_snd, m_head);
4939 if (m_head == NULL)
4940 break;
4943 * Pack the data into the transmit ring. If we
4944 * don't have room, set the OACTIVE flag to wait
4945 * for the NIC to drain the chain.
4947 if (bnx_tx_encap(sc, m_head)) {
4948 ifp->if_flags |= IFF_OACTIVE;
4949 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4950 "business! Total tx_bd used = %d\n",
4951 sc->used_tx_bd);
4952 break;
4955 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4956 count++;
4958 #if NBPFILTER > 0
4959 /* Send a copy of the frame to any BPF listeners. */
4960 if (ifp->if_bpf)
4961 bpf_mtap(ifp->if_bpf, m_head);
4962 #endif
4965 if (count == 0) {
4966 /* no packets were dequeued */
4967 DBPRINT(sc, BNX_VERBOSE_SEND,
4968 "%s(): No packets were dequeued\n", __func__);
4969 goto bnx_start_exit;
4972 /* Update the driver's counters. */
4973 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4975 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4976 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4977 tx_chain_prod, sc->tx_prod_bseq);
4979 /* Start the transmit. */
4980 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4981 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4983 /* Set the tx timeout. */
4984 ifp->if_timer = BNX_TX_TIMEOUT;
4986 bnx_start_exit:
4987 return;
4990 /****************************************************************************/
4991 /* Handles any IOCTL calls from the operating system. */
4992 /* */
4993 /* Returns: */
4994 /* 0 for success, positive value for failure. */
4995 /****************************************************************************/
4997 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4999 struct bnx_softc *sc = ifp->if_softc;
5000 struct ifreq *ifr = (struct ifreq *) data;
5001 struct mii_data *mii = &sc->bnx_mii;
5002 int s, error = 0;
5004 s = splnet();
5006 switch (command) {
5007 case SIOCSIFFLAGS:
5008 if ((error = ifioctl_common(ifp, command, data)) != 0)
5009 break;
5010 /* XXX set an ifflags callback and let ether_ioctl
5011 * handle all of this.
5013 if (ifp->if_flags & IFF_UP) {
5014 if (ifp->if_flags & IFF_RUNNING)
5015 error = ENETRESET;
5016 else
5017 bnx_init(ifp);
5018 } else if (ifp->if_flags & IFF_RUNNING)
5019 bnx_stop(ifp, 1);
5020 break;
5022 case SIOCSIFMEDIA:
5023 case SIOCGIFMEDIA:
5024 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5025 sc->bnx_phy_flags);
5027 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5028 break;
5030 default:
5031 error = ether_ioctl(ifp, command, data);
5034 if (error == ENETRESET) {
5035 if (ifp->if_flags & IFF_RUNNING)
5036 bnx_iff(sc);
5037 error = 0;
5040 splx(s);
5041 return (error);
5044 /****************************************************************************/
5045 /* Transmit timeout handler. */
5046 /* */
5047 /* Returns: */
5048 /* Nothing. */
5049 /****************************************************************************/
5050 void
5051 bnx_watchdog(struct ifnet *ifp)
5053 struct bnx_softc *sc = ifp->if_softc;
5055 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5056 bnx_dump_status_block(sc));
5058 * If we are in this routine because of pause frames, then
5059 * don't reset the hardware.
5061 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5062 return;
5064 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5066 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5068 bnx_init(ifp);
5070 ifp->if_oerrors++;
5074 * Interrupt handler.
5076 /****************************************************************************/
5077 /* Main interrupt entry point. Verifies that the controller generated the */
5078 /* interrupt and then calls a separate routine for handle the various */
5079 /* interrupt causes (PHY, TX, RX). */
5080 /* */
5081 /* Returns: */
5082 /* 0 for success, positive value for failure. */
5083 /****************************************************************************/
5085 bnx_intr(void *xsc)
5087 struct bnx_softc *sc;
5088 struct ifnet *ifp;
5089 u_int32_t status_attn_bits;
5090 const struct status_block *sblk;
5092 sc = xsc;
5093 if (!device_is_active(sc->bnx_dev))
5094 return 0;
5096 ifp = &sc->bnx_ec.ec_if;
5098 DBRUNIF(1, sc->interrupts_generated++);
5100 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5101 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5104 * If the hardware status block index
5105 * matches the last value read by the
5106 * driver and we haven't asserted our
5107 * interrupt then there's nothing to do.
5109 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5110 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5111 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5112 return (0);
5114 /* Ack the interrupt and stop others from occuring. */
5115 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5116 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5117 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5119 /* Keep processing data as long as there is work to do. */
5120 for (;;) {
5121 sblk = sc->status_block;
5122 status_attn_bits = sblk->status_attn_bits;
5124 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5125 aprint_debug("Simulating unexpected status attention bit set.");
5126 status_attn_bits = status_attn_bits |
5127 STATUS_ATTN_BITS_PARITY_ERROR);
5129 /* Was it a link change interrupt? */
5130 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5131 (sblk->status_attn_bits_ack &
5132 STATUS_ATTN_BITS_LINK_STATE))
5133 bnx_phy_intr(sc);
5135 /* If any other attention is asserted then the chip is toast. */
5136 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5137 (sblk->status_attn_bits_ack &
5138 ~STATUS_ATTN_BITS_LINK_STATE))) {
5139 DBRUN(1, sc->unexpected_attentions++);
5141 BNX_PRINTF(sc,
5142 "Fatal attention detected: 0x%08X\n",
5143 sblk->status_attn_bits);
5145 DBRUN(BNX_FATAL,
5146 if (bnx_debug_unexpected_attention == 0)
5147 bnx_breakpoint(sc));
5149 bnx_init(ifp);
5150 return (1);
5153 /* Check for any completed RX frames. */
5154 if (sblk->status_rx_quick_consumer_index0 !=
5155 sc->hw_rx_cons)
5156 bnx_rx_intr(sc);
5158 /* Check for any completed TX frames. */
5159 if (sblk->status_tx_quick_consumer_index0 !=
5160 sc->hw_tx_cons)
5161 bnx_tx_intr(sc);
5163 /* Save the status block index value for use during the
5164 * next interrupt.
5166 sc->last_status_idx = sblk->status_idx;
5168 /* Prevent speculative reads from getting ahead of the
5169 * status block.
5171 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5172 BUS_SPACE_BARRIER_READ);
5174 /* If there's no work left then exit the isr. */
5175 if ((sblk->status_rx_quick_consumer_index0 ==
5176 sc->hw_rx_cons) &&
5177 (sblk->status_tx_quick_consumer_index0 ==
5178 sc->hw_tx_cons))
5179 break;
5182 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5183 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5185 /* Re-enable interrupts. */
5186 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5187 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5188 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5189 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5190 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5192 /* Handle any frames that arrived while handling the interrupt. */
5193 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5194 bnx_start(ifp);
5196 return (1);
5199 /****************************************************************************/
5200 /* Programs the various packet receive modes (broadcast and multicast). */
5201 /* */
5202 /* Returns: */
5203 /* Nothing. */
5204 /****************************************************************************/
5205 void
5206 bnx_iff(struct bnx_softc *sc)
5208 struct ethercom *ec = &sc->bnx_ec;
5209 struct ifnet *ifp = &ec->ec_if;
5210 struct ether_multi *enm;
5211 struct ether_multistep step;
5212 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5213 u_int32_t rx_mode, sort_mode;
5214 int h, i;
5216 /* Initialize receive mode default settings. */
5217 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5218 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5219 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5220 ifp->if_flags &= ~IFF_ALLMULTI;
5223 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5224 * be enbled.
5226 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5227 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5230 * Check for promiscuous, all multicast, or selected
5231 * multicast address filtering.
5233 if (ifp->if_flags & IFF_PROMISC) {
5234 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5236 ifp->if_flags |= IFF_ALLMULTI;
5237 /* Enable promiscuous mode. */
5238 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5239 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5240 } else if (ifp->if_flags & IFF_ALLMULTI) {
5241 allmulti:
5242 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5244 ifp->if_flags |= IFF_ALLMULTI;
5245 /* Enable all multicast addresses. */
5246 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5247 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5248 0xffffffff);
5249 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5250 } else {
5251 /* Accept one or more multicast(s). */
5252 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5254 ETHER_FIRST_MULTI(step, ec, enm);
5255 while (enm != NULL) {
5256 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5257 ETHER_ADDR_LEN)) {
5258 goto allmulti;
5260 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5261 0xFF;
5262 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5263 ETHER_NEXT_MULTI(step, enm);
5266 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5267 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5268 hashes[i]);
5270 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5273 /* Only make changes if the recive mode has actually changed. */
5274 if (rx_mode != sc->rx_mode) {
5275 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5276 rx_mode);
5278 sc->rx_mode = rx_mode;
5279 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5282 /* Disable and clear the exisitng sort before enabling a new sort. */
5283 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5284 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5285 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5288 /****************************************************************************/
5289 /* Called periodically to updates statistics from the controllers */
5290 /* statistics block. */
5291 /* */
5292 /* Returns: */
5293 /* Nothing. */
5294 /****************************************************************************/
5295 void
5296 bnx_stats_update(struct bnx_softc *sc)
5298 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5299 struct statistics_block *stats;
5301 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5302 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5303 BUS_DMASYNC_POSTREAD);
5305 stats = (struct statistics_block *)sc->stats_block;
5308 * Update the interface statistics from the
5309 * hardware statistics.
5311 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5313 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5314 (u_long)stats->stat_EtherStatsOverrsizePkts +
5315 (u_long)stats->stat_IfInMBUFDiscards +
5316 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5317 (u_long)stats->stat_Dot3StatsFCSErrors;
5319 ifp->if_oerrors = (u_long)
5320 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5321 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5322 (u_long)stats->stat_Dot3StatsLateCollisions;
5325 * Certain controllers don't report
5326 * carrier sense errors correctly.
5327 * See errata E11_5708CA0_1165.
5329 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5330 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5331 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5334 * Update the sysctl statistics from the
5335 * hardware statistics.
5337 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5338 (u_int64_t) stats->stat_IfHCInOctets_lo;
5340 sc->stat_IfHCInBadOctets =
5341 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5342 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5344 sc->stat_IfHCOutOctets =
5345 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5346 (u_int64_t) stats->stat_IfHCOutOctets_lo;
5348 sc->stat_IfHCOutBadOctets =
5349 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5350 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5352 sc->stat_IfHCInUcastPkts =
5353 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5354 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5356 sc->stat_IfHCInMulticastPkts =
5357 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5358 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5360 sc->stat_IfHCInBroadcastPkts =
5361 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5362 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5364 sc->stat_IfHCOutUcastPkts =
5365 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5366 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5368 sc->stat_IfHCOutMulticastPkts =
5369 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5370 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5372 sc->stat_IfHCOutBroadcastPkts =
5373 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5374 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5376 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5377 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5379 sc->stat_Dot3StatsCarrierSenseErrors =
5380 stats->stat_Dot3StatsCarrierSenseErrors;
5382 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5384 sc->stat_Dot3StatsAlignmentErrors =
5385 stats->stat_Dot3StatsAlignmentErrors;
5387 sc->stat_Dot3StatsSingleCollisionFrames =
5388 stats->stat_Dot3StatsSingleCollisionFrames;
5390 sc->stat_Dot3StatsMultipleCollisionFrames =
5391 stats->stat_Dot3StatsMultipleCollisionFrames;
5393 sc->stat_Dot3StatsDeferredTransmissions =
5394 stats->stat_Dot3StatsDeferredTransmissions;
5396 sc->stat_Dot3StatsExcessiveCollisions =
5397 stats->stat_Dot3StatsExcessiveCollisions;
5399 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5401 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5403 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5405 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5407 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5409 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5411 sc->stat_EtherStatsPktsRx64Octets =
5412 stats->stat_EtherStatsPktsRx64Octets;
5414 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5415 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5417 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5418 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5420 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5421 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5423 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5424 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5426 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5427 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5429 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5430 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5432 sc->stat_EtherStatsPktsTx64Octets =
5433 stats->stat_EtherStatsPktsTx64Octets;
5435 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5436 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5438 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5439 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5441 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5442 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5444 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5445 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5447 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5448 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5450 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5451 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5453 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5455 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5457 sc->stat_OutXonSent = stats->stat_OutXonSent;
5459 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5461 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5463 sc->stat_MacControlFramesReceived =
5464 stats->stat_MacControlFramesReceived;
5466 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5468 sc->stat_IfInFramesL2FilterDiscards =
5469 stats->stat_IfInFramesL2FilterDiscards;
5471 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5473 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5475 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5477 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5479 sc->stat_CatchupInRuleCheckerDiscards =
5480 stats->stat_CatchupInRuleCheckerDiscards;
5482 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5484 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5486 sc->stat_CatchupInRuleCheckerP4Hit =
5487 stats->stat_CatchupInRuleCheckerP4Hit;
5489 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5492 void
5493 bnx_tick(void *xsc)
5495 struct bnx_softc *sc = xsc;
5496 struct mii_data *mii;
5497 u_int32_t msg;
5498 u_int16_t prod, chain_prod;
5499 u_int32_t prod_bseq;
5500 int s = splnet();
5502 /* Tell the firmware that the driver is still running. */
5503 #ifdef BNX_DEBUG
5504 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5505 #else
5506 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5507 #endif
5508 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5510 /* Update the statistics from the hardware statistics block. */
5511 bnx_stats_update(sc);
5513 /* Schedule the next tick. */
5514 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5516 mii = &sc->bnx_mii;
5517 mii_tick(mii);
5519 /* try to get more RX buffers, just in case */
5520 prod = sc->rx_prod;
5521 prod_bseq = sc->rx_prod_bseq;
5522 chain_prod = RX_CHAIN_IDX(prod);
5523 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5524 sc->rx_prod = prod;
5525 sc->rx_prod_bseq = prod_bseq;
5526 splx(s);
5527 return;
5530 /****************************************************************************/
5531 /* BNX Debug Routines */
5532 /****************************************************************************/
5533 #ifdef BNX_DEBUG
5535 /****************************************************************************/
5536 /* Prints out information about an mbuf. */
5537 /* */
5538 /* Returns: */
5539 /* Nothing. */
5540 /****************************************************************************/
5541 void
5542 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5544 struct mbuf *mp = m;
5546 if (m == NULL) {
5547 /* Index out of range. */
5548 aprint_error("mbuf ptr is null!\n");
5549 return;
5552 while (mp) {
5553 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5554 mp, mp->m_len);
5556 if (mp->m_flags & M_EXT)
5557 aprint_debug("M_EXT ");
5558 if (mp->m_flags & M_PKTHDR)
5559 aprint_debug("M_PKTHDR ");
5560 aprint_debug("\n");
5562 if (mp->m_flags & M_EXT)
5563 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5564 mp, mp->m_ext.ext_size);
5566 mp = mp->m_next;
5570 /****************************************************************************/
5571 /* Prints out the mbufs in the TX mbuf chain. */
5572 /* */
5573 /* Returns: */
5574 /* Nothing. */
5575 /****************************************************************************/
5576 void
5577 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5579 #if 0
5580 struct mbuf *m;
5581 int i;
5583 aprint_debug_dev(sc->bnx_dev,
5584 "----------------------------"
5585 " tx mbuf data "
5586 "----------------------------\n");
5588 for (i = 0; i < count; i++) {
5589 m = sc->tx_mbuf_ptr[chain_prod];
5590 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5591 bnx_dump_mbuf(sc, m);
5592 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5595 aprint_debug_dev(sc->bnx_dev,
5596 "--------------------------------------------"
5597 "----------------------------\n");
5598 #endif
5602 * This routine prints the RX mbuf chain.
5604 void
5605 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5607 struct mbuf *m;
5608 int i;
5610 aprint_debug_dev(sc->bnx_dev,
5611 "----------------------------"
5612 " rx mbuf data "
5613 "----------------------------\n");
5615 for (i = 0; i < count; i++) {
5616 m = sc->rx_mbuf_ptr[chain_prod];
5617 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5618 bnx_dump_mbuf(sc, m);
5619 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5623 aprint_debug_dev(sc->bnx_dev,
5624 "--------------------------------------------"
5625 "----------------------------\n");
5628 void
5629 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5631 if (idx > MAX_TX_BD)
5632 /* Index out of range. */
5633 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5634 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5635 /* TX Chain page pointer. */
5636 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5637 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5638 txbd->tx_bd_haddr_lo);
5639 else
5640 /* Normal tx_bd entry. */
5641 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5642 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5643 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5644 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5645 txbd->tx_bd_flags);
5648 void
5649 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5651 if (idx > MAX_RX_BD)
5652 /* Index out of range. */
5653 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5654 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5655 /* TX Chain page pointer. */
5656 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5657 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5658 rxbd->rx_bd_haddr_lo);
5659 else
5660 /* Normal tx_bd entry. */
5661 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5662 "0x%08X, flags = 0x%08X\n", idx,
5663 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5664 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5667 void
5668 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5670 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5671 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5672 "tcp_udp_xsum = 0x%04X\n", idx,
5673 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5674 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5675 l2fhdr->l2_fhdr_tcp_udp_xsum);
5679 * This routine prints the TX chain.
5681 void
5682 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5684 struct tx_bd *txbd;
5685 int i;
5687 /* First some info about the tx_bd chain structure. */
5688 aprint_debug_dev(sc->bnx_dev,
5689 "----------------------------"
5690 " tx_bd chain "
5691 "----------------------------\n");
5693 BNX_PRINTF(sc,
5694 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5695 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5697 BNX_PRINTF(sc,
5698 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5699 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5701 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5703 aprint_error_dev(sc->bnx_dev, ""
5704 "-----------------------------"
5705 " tx_bd data "
5706 "-----------------------------\n");
5708 /* Now print out the tx_bd's themselves. */
5709 for (i = 0; i < count; i++) {
5710 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5711 bnx_dump_txbd(sc, tx_prod, txbd);
5712 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5715 aprint_debug_dev(sc->bnx_dev,
5716 "-----------------------------"
5717 "--------------"
5718 "-----------------------------\n");
5722 * This routine prints the RX chain.
5724 void
5725 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5727 struct rx_bd *rxbd;
5728 int i;
5730 /* First some info about the tx_bd chain structure. */
5731 aprint_debug_dev(sc->bnx_dev,
5732 "----------------------------"
5733 " rx_bd chain "
5734 "----------------------------\n");
5736 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5738 BNX_PRINTF(sc,
5739 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5740 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5742 BNX_PRINTF(sc,
5743 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5744 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5746 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5748 aprint_error_dev(sc->bnx_dev,
5749 "----------------------------"
5750 " rx_bd data "
5751 "----------------------------\n");
5753 /* Now print out the rx_bd's themselves. */
5754 for (i = 0; i < count; i++) {
5755 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5756 bnx_dump_rxbd(sc, rx_prod, rxbd);
5757 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5760 aprint_debug_dev(sc->bnx_dev,
5761 "----------------------------"
5762 "--------------"
5763 "----------------------------\n");
5767 * This routine prints the status block.
5769 void
5770 bnx_dump_status_block(struct bnx_softc *sc)
5772 struct status_block *sblk;
5773 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5774 BUS_DMASYNC_POSTREAD);
5776 sblk = sc->status_block;
5778 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5779 "-----------------------------\n");
5781 BNX_PRINTF(sc,
5782 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5783 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5784 sblk->status_idx);
5786 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5787 sblk->status_rx_quick_consumer_index0,
5788 sblk->status_tx_quick_consumer_index0);
5790 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5792 /* Theses indices are not used for normal L2 drivers. */
5793 if (sblk->status_rx_quick_consumer_index1 ||
5794 sblk->status_tx_quick_consumer_index1)
5795 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5796 sblk->status_rx_quick_consumer_index1,
5797 sblk->status_tx_quick_consumer_index1);
5799 if (sblk->status_rx_quick_consumer_index2 ||
5800 sblk->status_tx_quick_consumer_index2)
5801 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5802 sblk->status_rx_quick_consumer_index2,
5803 sblk->status_tx_quick_consumer_index2);
5805 if (sblk->status_rx_quick_consumer_index3 ||
5806 sblk->status_tx_quick_consumer_index3)
5807 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5808 sblk->status_rx_quick_consumer_index3,
5809 sblk->status_tx_quick_consumer_index3);
5811 if (sblk->status_rx_quick_consumer_index4 ||
5812 sblk->status_rx_quick_consumer_index5)
5813 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5814 sblk->status_rx_quick_consumer_index4,
5815 sblk->status_rx_quick_consumer_index5);
5817 if (sblk->status_rx_quick_consumer_index6 ||
5818 sblk->status_rx_quick_consumer_index7)
5819 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5820 sblk->status_rx_quick_consumer_index6,
5821 sblk->status_rx_quick_consumer_index7);
5823 if (sblk->status_rx_quick_consumer_index8 ||
5824 sblk->status_rx_quick_consumer_index9)
5825 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5826 sblk->status_rx_quick_consumer_index8,
5827 sblk->status_rx_quick_consumer_index9);
5829 if (sblk->status_rx_quick_consumer_index10 ||
5830 sblk->status_rx_quick_consumer_index11)
5831 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5832 sblk->status_rx_quick_consumer_index10,
5833 sblk->status_rx_quick_consumer_index11);
5835 if (sblk->status_rx_quick_consumer_index12 ||
5836 sblk->status_rx_quick_consumer_index13)
5837 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5838 sblk->status_rx_quick_consumer_index12,
5839 sblk->status_rx_quick_consumer_index13);
5841 if (sblk->status_rx_quick_consumer_index14 ||
5842 sblk->status_rx_quick_consumer_index15)
5843 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5844 sblk->status_rx_quick_consumer_index14,
5845 sblk->status_rx_quick_consumer_index15);
5847 if (sblk->status_completion_producer_index ||
5848 sblk->status_cmd_consumer_index)
5849 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5850 sblk->status_completion_producer_index,
5851 sblk->status_cmd_consumer_index);
5853 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5854 "-----------------------------\n");
5858 * This routine prints the statistics block.
5860 void
5861 bnx_dump_stats_block(struct bnx_softc *sc)
5863 struct statistics_block *sblk;
5864 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5865 BUS_DMASYNC_POSTREAD);
5867 sblk = sc->stats_block;
5869 aprint_debug_dev(sc->bnx_dev, ""
5870 "-----------------------------"
5871 " Stats Block "
5872 "-----------------------------\n");
5874 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5875 "IfHcInBadOctets = 0x%08X:%08X\n",
5876 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5877 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5879 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5880 "IfHcOutBadOctets = 0x%08X:%08X\n",
5881 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5882 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5884 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5885 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5886 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5887 sblk->stat_IfHCInMulticastPkts_hi,
5888 sblk->stat_IfHCInMulticastPkts_lo);
5890 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5891 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5892 sblk->stat_IfHCInBroadcastPkts_hi,
5893 sblk->stat_IfHCInBroadcastPkts_lo,
5894 sblk->stat_IfHCOutUcastPkts_hi,
5895 sblk->stat_IfHCOutUcastPkts_lo);
5897 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5898 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5899 sblk->stat_IfHCOutMulticastPkts_hi,
5900 sblk->stat_IfHCOutMulticastPkts_lo,
5901 sblk->stat_IfHCOutBroadcastPkts_hi,
5902 sblk->stat_IfHCOutBroadcastPkts_lo);
5904 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5905 BNX_PRINTF(sc, "0x%08X : "
5906 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5907 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5909 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5910 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5911 sblk->stat_Dot3StatsCarrierSenseErrors);
5913 if (sblk->stat_Dot3StatsFCSErrors)
5914 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5915 sblk->stat_Dot3StatsFCSErrors);
5917 if (sblk->stat_Dot3StatsAlignmentErrors)
5918 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5919 sblk->stat_Dot3StatsAlignmentErrors);
5921 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5922 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5923 sblk->stat_Dot3StatsSingleCollisionFrames);
5925 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5926 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5927 sblk->stat_Dot3StatsMultipleCollisionFrames);
5929 if (sblk->stat_Dot3StatsDeferredTransmissions)
5930 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5931 sblk->stat_Dot3StatsDeferredTransmissions);
5933 if (sblk->stat_Dot3StatsExcessiveCollisions)
5934 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5935 sblk->stat_Dot3StatsExcessiveCollisions);
5937 if (sblk->stat_Dot3StatsLateCollisions)
5938 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5939 sblk->stat_Dot3StatsLateCollisions);
5941 if (sblk->stat_EtherStatsCollisions)
5942 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5943 sblk->stat_EtherStatsCollisions);
5945 if (sblk->stat_EtherStatsFragments)
5946 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5947 sblk->stat_EtherStatsFragments);
5949 if (sblk->stat_EtherStatsJabbers)
5950 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5951 sblk->stat_EtherStatsJabbers);
5953 if (sblk->stat_EtherStatsUndersizePkts)
5954 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5955 sblk->stat_EtherStatsUndersizePkts);
5957 if (sblk->stat_EtherStatsOverrsizePkts)
5958 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5959 sblk->stat_EtherStatsOverrsizePkts);
5961 if (sblk->stat_EtherStatsPktsRx64Octets)
5962 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5963 sblk->stat_EtherStatsPktsRx64Octets);
5965 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5966 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5967 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5969 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5970 BNX_PRINTF(sc, "0x%08X : "
5971 "EtherStatsPktsRx128Octetsto255Octets\n",
5972 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5974 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5975 BNX_PRINTF(sc, "0x%08X : "
5976 "EtherStatsPktsRx256Octetsto511Octets\n",
5977 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5979 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5980 BNX_PRINTF(sc, "0x%08X : "
5981 "EtherStatsPktsRx512Octetsto1023Octets\n",
5982 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5984 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5985 BNX_PRINTF(sc, "0x%08X : "
5986 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5987 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5989 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5990 BNX_PRINTF(sc, "0x%08X : "
5991 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5992 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5994 if (sblk->stat_EtherStatsPktsTx64Octets)
5995 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5996 sblk->stat_EtherStatsPktsTx64Octets);
5998 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5999 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6000 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6002 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6003 BNX_PRINTF(sc, "0x%08X : "
6004 "EtherStatsPktsTx128Octetsto255Octets\n",
6005 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6007 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6008 BNX_PRINTF(sc, "0x%08X : "
6009 "EtherStatsPktsTx256Octetsto511Octets\n",
6010 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6012 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6013 BNX_PRINTF(sc, "0x%08X : "
6014 "EtherStatsPktsTx512Octetsto1023Octets\n",
6015 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6017 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6018 BNX_PRINTF(sc, "0x%08X : "
6019 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6020 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6022 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6023 BNX_PRINTF(sc, "0x%08X : "
6024 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6025 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6027 if (sblk->stat_XonPauseFramesReceived)
6028 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6029 sblk->stat_XonPauseFramesReceived);
6031 if (sblk->stat_XoffPauseFramesReceived)
6032 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6033 sblk->stat_XoffPauseFramesReceived);
6035 if (sblk->stat_OutXonSent)
6036 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6037 sblk->stat_OutXonSent);
6039 if (sblk->stat_OutXoffSent)
6040 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6041 sblk->stat_OutXoffSent);
6043 if (sblk->stat_FlowControlDone)
6044 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6045 sblk->stat_FlowControlDone);
6047 if (sblk->stat_MacControlFramesReceived)
6048 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6049 sblk->stat_MacControlFramesReceived);
6051 if (sblk->stat_XoffStateEntered)
6052 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6053 sblk->stat_XoffStateEntered);
6055 if (sblk->stat_IfInFramesL2FilterDiscards)
6056 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6057 sblk->stat_IfInFramesL2FilterDiscards);
6059 if (sblk->stat_IfInRuleCheckerDiscards)
6060 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6061 sblk->stat_IfInRuleCheckerDiscards);
6063 if (sblk->stat_IfInFTQDiscards)
6064 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6065 sblk->stat_IfInFTQDiscards);
6067 if (sblk->stat_IfInMBUFDiscards)
6068 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6069 sblk->stat_IfInMBUFDiscards);
6071 if (sblk->stat_IfInRuleCheckerP4Hit)
6072 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6073 sblk->stat_IfInRuleCheckerP4Hit);
6075 if (sblk->stat_CatchupInRuleCheckerDiscards)
6076 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6077 sblk->stat_CatchupInRuleCheckerDiscards);
6079 if (sblk->stat_CatchupInFTQDiscards)
6080 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6081 sblk->stat_CatchupInFTQDiscards);
6083 if (sblk->stat_CatchupInMBUFDiscards)
6084 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6085 sblk->stat_CatchupInMBUFDiscards);
6087 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6088 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6089 sblk->stat_CatchupInRuleCheckerP4Hit);
6091 aprint_debug_dev(sc->bnx_dev,
6092 "-----------------------------"
6093 "--------------"
6094 "-----------------------------\n");
6097 void
6098 bnx_dump_driver_state(struct bnx_softc *sc)
6100 aprint_debug_dev(sc->bnx_dev,
6101 "-----------------------------"
6102 " Driver State "
6103 "-----------------------------\n");
6105 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6106 "address\n", sc);
6108 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6109 sc->status_block);
6111 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6112 "address\n", sc->stats_block);
6114 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6115 "adddress\n", sc->tx_bd_chain);
6117 #if 0
6118 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6119 sc->rx_bd_chain);
6121 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6122 sc->tx_mbuf_ptr);
6123 #endif
6125 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6126 sc->rx_mbuf_ptr);
6128 BNX_PRINTF(sc,
6129 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6130 sc->interrupts_generated);
6132 BNX_PRINTF(sc,
6133 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6134 sc->rx_interrupts);
6136 BNX_PRINTF(sc,
6137 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6138 sc->tx_interrupts);
6140 BNX_PRINTF(sc,
6141 " 0x%08X - (sc->last_status_idx) status block index\n",
6142 sc->last_status_idx);
6144 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6145 sc->tx_prod);
6147 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6148 sc->tx_cons);
6150 BNX_PRINTF(sc,
6151 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6152 sc->tx_prod_bseq);
6153 BNX_PRINTF(sc,
6154 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6155 sc->tx_mbuf_alloc);
6157 BNX_PRINTF(sc,
6158 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6159 sc->used_tx_bd);
6161 BNX_PRINTF(sc,
6162 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6163 sc->tx_hi_watermark, sc->max_tx_bd);
6166 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6167 sc->rx_prod);
6169 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6170 sc->rx_cons);
6172 BNX_PRINTF(sc,
6173 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6174 sc->rx_prod_bseq);
6176 BNX_PRINTF(sc,
6177 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6178 sc->rx_mbuf_alloc);
6180 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6181 sc->free_rx_bd);
6183 BNX_PRINTF(sc,
6184 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6185 sc->rx_low_watermark, sc->max_rx_bd);
6187 BNX_PRINTF(sc,
6188 " 0x%08X - (sc->mbuf_alloc_failed) "
6189 "mbuf alloc failures\n",
6190 sc->mbuf_alloc_failed);
6192 BNX_PRINTF(sc,
6193 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6194 "simulated mbuf alloc failures\n",
6195 sc->mbuf_sim_alloc_failed);
6197 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6198 "-----------------------------\n");
6201 void
6202 bnx_dump_hw_state(struct bnx_softc *sc)
6204 u_int32_t val1;
6205 int i;
6207 aprint_debug_dev(sc->bnx_dev,
6208 "----------------------------"
6209 " Hardware State "
6210 "----------------------------\n");
6212 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6214 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6215 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6216 val1, BNX_MISC_ENABLE_STATUS_BITS);
6218 val1 = REG_RD(sc, BNX_DMA_STATUS);
6219 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6221 val1 = REG_RD(sc, BNX_CTX_STATUS);
6222 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6224 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6225 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6226 BNX_EMAC_STATUS);
6228 val1 = REG_RD(sc, BNX_RPM_STATUS);
6229 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6231 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6232 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6233 BNX_TBDR_STATUS);
6235 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6236 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6237 BNX_TDMA_STATUS);
6239 val1 = REG_RD(sc, BNX_HC_STATUS);
6240 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6242 aprint_debug_dev(sc->bnx_dev,
6243 "----------------------------"
6244 "----------------"
6245 "----------------------------\n");
6247 aprint_debug_dev(sc->bnx_dev,
6248 "----------------------------"
6249 " Register Dump "
6250 "----------------------------\n");
6252 for (i = 0x400; i < 0x8000; i += 0x10)
6253 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6254 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6255 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6257 aprint_debug_dev(sc->bnx_dev,
6258 "----------------------------"
6259 "----------------"
6260 "----------------------------\n");
6263 void
6264 bnx_breakpoint(struct bnx_softc *sc)
6266 /* Unreachable code to shut the compiler up about unused functions. */
6267 if (0) {
6268 bnx_dump_txbd(sc, 0, NULL);
6269 bnx_dump_rxbd(sc, 0, NULL);
6270 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6271 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6272 bnx_dump_l2fhdr(sc, 0, NULL);
6273 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6274 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6275 bnx_dump_status_block(sc);
6276 bnx_dump_stats_block(sc);
6277 bnx_dump_driver_state(sc);
6278 bnx_dump_hw_state(sc);
6281 bnx_dump_driver_state(sc);
6282 /* Print the important status block fields. */
6283 bnx_dump_status_block(sc);
6285 #if 0
6286 /* Call the debugger. */
6287 breakpoint();
6288 #endif
6290 return;
6292 #endif