Don't use .Xo/.Xc. Fix date format.
[netbsd-mini2440.git] / sys / dev / raidframe / rf_paritylogging.c
blob3a8e4de065c4a82740d7267e370463c65192fb20
1 /* $NetBSD: rf_paritylogging.c,v 1.27 2006/11/16 01:33:23 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: William V. Courtright II
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
31 parity logging configuration, dag selection, and mapping is implemented here
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: rf_paritylogging.c,v 1.27 2006/11/16 01:33:23 christos Exp $");
37 #include "rf_archs.h"
39 #if RF_INCLUDE_PARITYLOGGING > 0
41 #include <dev/raidframe/raidframevar.h>
43 #include "rf_raid.h"
44 #include "rf_dag.h"
45 #include "rf_dagutils.h"
46 #include "rf_dagfuncs.h"
47 #include "rf_dagffrd.h"
48 #include "rf_dagffwr.h"
49 #include "rf_dagdegrd.h"
50 #include "rf_dagdegwr.h"
51 #include "rf_paritylog.h"
52 #include "rf_paritylogDiskMgr.h"
53 #include "rf_paritylogging.h"
54 #include "rf_parityloggingdags.h"
55 #include "rf_general.h"
56 #include "rf_map.h"
57 #include "rf_utils.h"
58 #include "rf_shutdown.h"
60 typedef struct RF_ParityLoggingConfigInfo_s {
61 RF_RowCol_t **stripeIdentifier; /* filled in at config time & used by
62 * IdentifyStripe */
63 } RF_ParityLoggingConfigInfo_t;
65 static void FreeRegionInfo(RF_Raid_t * raidPtr, RF_RegionId_t regionID);
66 static void rf_ShutdownParityLogging(RF_ThreadArg_t arg);
67 static void rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg);
68 static void rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg);
69 static void rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg);
70 static void rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg);
71 static void rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg);
73 int
74 rf_ConfigureParityLogging(
75 RF_ShutdownList_t ** listp,
76 RF_Raid_t * raidPtr,
77 RF_Config_t * cfgPtr)
79 int i, j, startdisk, rc;
80 RF_SectorCount_t totalLogCapacity, fragmentation, lastRegionCapacity;
81 RF_SectorCount_t parityBufferCapacity, maxRegionParityRange;
82 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
83 RF_ParityLoggingConfigInfo_t *info;
84 RF_ParityLog_t *l = NULL, *next;
85 void *lHeapPtr;
87 if (rf_numParityRegions <= 0)
88 return(EINVAL);
91 * We create multiple entries on the shutdown list here, since
92 * this configuration routine is fairly complicated in and of
93 * itself, and this makes backing out of a failed configuration
94 * much simpler.
97 raidPtr->numSectorsPerLog = RF_DEFAULT_NUM_SECTORS_PER_LOG;
99 /* create a parity logging configuration structure */
100 RF_MallocAndAdd(info, sizeof(RF_ParityLoggingConfigInfo_t),
101 (RF_ParityLoggingConfigInfo_t *),
102 raidPtr->cleanupList);
103 if (info == NULL)
104 return (ENOMEM);
105 layoutPtr->layoutSpecificInfo = (void *) info;
107 /* the stripe identifier must identify the disks in each stripe, IN
108 * THE ORDER THAT THEY APPEAR IN THE STRIPE. */
109 info->stripeIdentifier = rf_make_2d_array((raidPtr->numCol),
110 (raidPtr->numCol),
111 raidPtr->cleanupList);
112 if (info->stripeIdentifier == NULL)
113 return (ENOMEM);
115 startdisk = 0;
116 for (i = 0; i < (raidPtr->numCol); i++) {
117 for (j = 0; j < (raidPtr->numCol); j++) {
118 info->stripeIdentifier[i][j] = (startdisk + j) %
119 (raidPtr->numCol - 1);
121 if ((--startdisk) < 0)
122 startdisk = raidPtr->numCol - 1 - 1;
125 /* fill in the remaining layout parameters */
126 layoutPtr->numStripe = layoutPtr->stripeUnitsPerDisk;
127 layoutPtr->numParityCol = 1;
128 layoutPtr->numParityLogCol = 1;
129 layoutPtr->numDataCol = raidPtr->numCol - layoutPtr->numParityCol -
130 layoutPtr->numParityLogCol;
131 layoutPtr->dataSectorsPerStripe = layoutPtr->numDataCol *
132 layoutPtr->sectorsPerStripeUnit;
133 layoutPtr->dataStripeUnitsPerDisk = layoutPtr->stripeUnitsPerDisk;
134 raidPtr->sectorsPerDisk = layoutPtr->stripeUnitsPerDisk *
135 layoutPtr->sectorsPerStripeUnit;
137 raidPtr->totalSectors = layoutPtr->stripeUnitsPerDisk *
138 layoutPtr->numDataCol * layoutPtr->sectorsPerStripeUnit;
140 /* configure parity log parameters
142 * parameter comment/constraints
143 * -------------------------------------------
144 * numParityRegions* all regions (except possibly last)
145 * of equal size
146 * totalInCoreLogCapacity* amount of memory in bytes available
147 * for in-core logs (default 1 MB)
148 * numSectorsPerLog# capacity of an in-core log in sectors
149 * (1 * disk track)
150 * numParityLogs total number of in-core logs,
151 * should be at least numParityRegions
152 * regionLogCapacity size of a region log (except possibly
153 * last one) in sectors
154 * totalLogCapacity total amount of log space in sectors
156 * where '*' denotes a user settable parameter.
157 * Note that logs are fixed to be the size of a disk track,
158 * value #defined in rf_paritylog.h
162 totalLogCapacity = layoutPtr->stripeUnitsPerDisk * layoutPtr->sectorsPerStripeUnit * layoutPtr->numParityLogCol;
163 raidPtr->regionLogCapacity = totalLogCapacity / rf_numParityRegions;
164 if (rf_parityLogDebug)
165 printf("bytes per sector %d\n", raidPtr->bytesPerSector);
167 /* reduce fragmentation within a disk region by adjusting the number
168 * of regions in an attempt to allow an integral number of logs to fit
169 * into a disk region */
170 fragmentation = raidPtr->regionLogCapacity % raidPtr->numSectorsPerLog;
171 if (fragmentation > 0)
172 for (i = 1; i < (raidPtr->numSectorsPerLog / 2); i++) {
173 if (((totalLogCapacity / (rf_numParityRegions + i)) %
174 raidPtr->numSectorsPerLog) < fragmentation) {
175 rf_numParityRegions++;
176 raidPtr->regionLogCapacity = totalLogCapacity /
177 rf_numParityRegions;
178 fragmentation = raidPtr->regionLogCapacity %
179 raidPtr->numSectorsPerLog;
181 if (((totalLogCapacity / (rf_numParityRegions - i)) %
182 raidPtr->numSectorsPerLog) < fragmentation) {
183 rf_numParityRegions--;
184 raidPtr->regionLogCapacity = totalLogCapacity /
185 rf_numParityRegions;
186 fragmentation = raidPtr->regionLogCapacity %
187 raidPtr->numSectorsPerLog;
190 /* ensure integral number of regions per log */
191 raidPtr->regionLogCapacity = (raidPtr->regionLogCapacity /
192 raidPtr->numSectorsPerLog) *
193 raidPtr->numSectorsPerLog;
195 raidPtr->numParityLogs = rf_totalInCoreLogCapacity /
196 (raidPtr->bytesPerSector * raidPtr->numSectorsPerLog);
197 /* to avoid deadlock, must ensure that enough logs exist for each
198 * region to have one simultaneously */
199 if (raidPtr->numParityLogs < rf_numParityRegions)
200 raidPtr->numParityLogs = rf_numParityRegions;
202 /* create region information structs */
203 printf("Allocating %d bytes for in-core parity region info\n",
204 (int) (rf_numParityRegions * sizeof(RF_RegionInfo_t)));
205 RF_Malloc(raidPtr->regionInfo,
206 (rf_numParityRegions * sizeof(RF_RegionInfo_t)),
207 (RF_RegionInfo_t *));
208 if (raidPtr->regionInfo == NULL)
209 return (ENOMEM);
211 /* last region may not be full capacity */
212 lastRegionCapacity = raidPtr->regionLogCapacity;
213 while ((rf_numParityRegions - 1) * raidPtr->regionLogCapacity +
214 lastRegionCapacity > totalLogCapacity)
215 lastRegionCapacity = lastRegionCapacity -
216 raidPtr->numSectorsPerLog;
218 raidPtr->regionParityRange = raidPtr->sectorsPerDisk /
219 rf_numParityRegions;
220 maxRegionParityRange = raidPtr->regionParityRange;
222 /* i can't remember why this line is in the code -wvcii 6/30/95 */
223 /* if (raidPtr->sectorsPerDisk % rf_numParityRegions > 0)
224 regionParityRange++; */
226 /* build pool of unused parity logs */
227 printf("Allocating %d bytes for %d parity logs\n",
228 raidPtr->numParityLogs * raidPtr->numSectorsPerLog *
229 raidPtr->bytesPerSector,
230 raidPtr->numParityLogs);
231 RF_Malloc(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
232 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector,
233 (void *));
234 if (raidPtr->parityLogBufferHeap == NULL)
235 return (ENOMEM);
236 lHeapPtr = raidPtr->parityLogBufferHeap;
237 rf_mutex_init(&raidPtr->parityLogPool.mutex);
238 for (i = 0; i < raidPtr->numParityLogs; i++) {
239 if (i == 0) {
240 RF_Malloc(raidPtr->parityLogPool.parityLogs,
241 sizeof(RF_ParityLog_t), (RF_ParityLog_t *));
242 if (raidPtr->parityLogPool.parityLogs == NULL) {
243 RF_Free(raidPtr->parityLogBufferHeap,
244 raidPtr->numParityLogs *
245 raidPtr->numSectorsPerLog *
246 raidPtr->bytesPerSector);
247 return (ENOMEM);
249 l = raidPtr->parityLogPool.parityLogs;
250 } else {
251 RF_Malloc(l->next, sizeof(RF_ParityLog_t),
252 (RF_ParityLog_t *));
253 if (l->next == NULL) {
254 RF_Free(raidPtr->parityLogBufferHeap,
255 raidPtr->numParityLogs *
256 raidPtr->numSectorsPerLog *
257 raidPtr->bytesPerSector);
258 for (l = raidPtr->parityLogPool.parityLogs;
260 l = next) {
261 next = l->next;
262 if (l->records)
263 RF_Free(l->records, (raidPtr->numSectorsPerLog * sizeof(RF_ParityLogRecord_t)));
264 RF_Free(l, sizeof(RF_ParityLog_t));
266 return (ENOMEM);
268 l = l->next;
270 l->bufPtr = lHeapPtr;
271 lHeapPtr = (char *)lHeapPtr + raidPtr->numSectorsPerLog *
272 raidPtr->bytesPerSector;
273 RF_Malloc(l->records, (raidPtr->numSectorsPerLog *
274 sizeof(RF_ParityLogRecord_t)),
275 (RF_ParityLogRecord_t *));
276 if (l->records == NULL) {
277 RF_Free(raidPtr->parityLogBufferHeap,
278 raidPtr->numParityLogs *
279 raidPtr->numSectorsPerLog *
280 raidPtr->bytesPerSector);
281 for (l = raidPtr->parityLogPool.parityLogs;
283 l = next) {
284 next = l->next;
285 if (l->records)
286 RF_Free(l->records,
287 (raidPtr->numSectorsPerLog *
288 sizeof(RF_ParityLogRecord_t)));
289 RF_Free(l, sizeof(RF_ParityLog_t));
291 return (ENOMEM);
294 rf_ShutdownCreate(listp, rf_ShutdownParityLoggingPool, raidPtr);
295 /* build pool of region buffers */
296 rf_mutex_init(&raidPtr->regionBufferPool.mutex);
297 raidPtr->regionBufferPool.cond = 0;
298 raidPtr->regionBufferPool.bufferSize = raidPtr->regionLogCapacity *
299 raidPtr->bytesPerSector;
300 printf("regionBufferPool.bufferSize %d\n",
301 raidPtr->regionBufferPool.bufferSize);
303 /* for now, only one region at a time may be reintegrated */
304 raidPtr->regionBufferPool.totalBuffers = 1;
306 raidPtr->regionBufferPool.availableBuffers =
307 raidPtr->regionBufferPool.totalBuffers;
308 raidPtr->regionBufferPool.availBuffersIndex = 0;
309 raidPtr->regionBufferPool.emptyBuffersIndex = 0;
310 printf("Allocating %d bytes for regionBufferPool\n",
311 (int) (raidPtr->regionBufferPool.totalBuffers *
312 sizeof(void *)));
313 RF_Malloc(raidPtr->regionBufferPool.buffers,
314 raidPtr->regionBufferPool.totalBuffers * sizeof(void *),
315 (void **));
316 if (raidPtr->regionBufferPool.buffers == NULL) {
317 return (ENOMEM);
319 for (i = 0; i < raidPtr->regionBufferPool.totalBuffers; i++) {
320 printf("Allocating %d bytes for regionBufferPool#%d\n",
321 (int) (raidPtr->regionBufferPool.bufferSize *
322 sizeof(char)), i);
323 RF_Malloc(raidPtr->regionBufferPool.buffers[i],
324 raidPtr->regionBufferPool.bufferSize * sizeof(char),
325 (void *));
326 if (raidPtr->regionBufferPool.buffers[i] == NULL) {
327 for (j = 0; j < i; j++) {
328 RF_Free(raidPtr->regionBufferPool.buffers[i],
329 raidPtr->regionBufferPool.bufferSize *
330 sizeof(char));
332 RF_Free(raidPtr->regionBufferPool.buffers,
333 raidPtr->regionBufferPool.totalBuffers *
334 sizeof(void *));
335 return (ENOMEM);
337 printf("raidPtr->regionBufferPool.buffers[%d] = %lx\n", i,
338 (long) raidPtr->regionBufferPool.buffers[i]);
340 rf_ShutdownCreate(listp,
341 rf_ShutdownParityLoggingRegionBufferPool,
342 raidPtr);
343 /* build pool of parity buffers */
344 parityBufferCapacity = maxRegionParityRange;
345 rf_mutex_init(&raidPtr->parityBufferPool.mutex);
346 raidPtr->parityBufferPool.cond = 0;
347 raidPtr->parityBufferPool.bufferSize = parityBufferCapacity *
348 raidPtr->bytesPerSector;
349 printf("parityBufferPool.bufferSize %d\n",
350 raidPtr->parityBufferPool.bufferSize);
352 /* for now, only one region at a time may be reintegrated */
353 raidPtr->parityBufferPool.totalBuffers = 1;
355 raidPtr->parityBufferPool.availableBuffers =
356 raidPtr->parityBufferPool.totalBuffers;
357 raidPtr->parityBufferPool.availBuffersIndex = 0;
358 raidPtr->parityBufferPool.emptyBuffersIndex = 0;
359 printf("Allocating %d bytes for parityBufferPool of %d units\n",
360 (int) (raidPtr->parityBufferPool.totalBuffers *
361 sizeof(void *)),
362 raidPtr->parityBufferPool.totalBuffers );
363 RF_Malloc(raidPtr->parityBufferPool.buffers,
364 raidPtr->parityBufferPool.totalBuffers * sizeof(void *),
365 (void **));
366 if (raidPtr->parityBufferPool.buffers == NULL) {
367 return (ENOMEM);
369 for (i = 0; i < raidPtr->parityBufferPool.totalBuffers; i++) {
370 printf("Allocating %d bytes for parityBufferPool#%d\n",
371 (int) (raidPtr->parityBufferPool.bufferSize *
372 sizeof(char)),i);
373 RF_Malloc(raidPtr->parityBufferPool.buffers[i],
374 raidPtr->parityBufferPool.bufferSize * sizeof(char),
375 (void *));
376 if (raidPtr->parityBufferPool.buffers == NULL) {
377 for (j = 0; j < i; j++) {
378 RF_Free(raidPtr->parityBufferPool.buffers[i],
379 raidPtr->regionBufferPool.bufferSize *
380 sizeof(char));
382 RF_Free(raidPtr->parityBufferPool.buffers,
383 raidPtr->regionBufferPool.totalBuffers *
384 sizeof(void *));
385 return (ENOMEM);
387 printf("parityBufferPool.buffers[%d] = %lx\n", i,
388 (long) raidPtr->parityBufferPool.buffers[i]);
390 rf_ShutdownCreate(listp,
391 rf_ShutdownParityLoggingParityBufferPool,
392 raidPtr);
393 /* initialize parityLogDiskQueue */
394 rf_mutex_init(&raidPtr->parityLogDiskQueue.mutex);
395 raidPtr->parityLogDiskQueue.cond = 0;
396 raidPtr->parityLogDiskQueue.flushQueue = NULL;
397 raidPtr->parityLogDiskQueue.reintQueue = NULL;
398 raidPtr->parityLogDiskQueue.bufHead = NULL;
399 raidPtr->parityLogDiskQueue.bufTail = NULL;
400 raidPtr->parityLogDiskQueue.reintHead = NULL;
401 raidPtr->parityLogDiskQueue.reintTail = NULL;
402 raidPtr->parityLogDiskQueue.logBlockHead = NULL;
403 raidPtr->parityLogDiskQueue.logBlockTail = NULL;
404 raidPtr->parityLogDiskQueue.reintBlockHead = NULL;
405 raidPtr->parityLogDiskQueue.reintBlockTail = NULL;
406 raidPtr->parityLogDiskQueue.freeDataList = NULL;
407 raidPtr->parityLogDiskQueue.freeCommonList = NULL;
409 rf_ShutdownCreate(listp,
410 rf_ShutdownParityLoggingDiskQueue,
411 raidPtr);
412 for (i = 0; i < rf_numParityRegions; i++) {
413 rf_mutex_init(&raidPtr->regionInfo[i].mutex);
414 rf_mutex_init(&raidPtr->regionInfo[i].reintMutex);
415 raidPtr->regionInfo[i].reintInProgress = RF_FALSE;
416 raidPtr->regionInfo[i].regionStartAddr =
417 raidPtr->regionLogCapacity * i;
418 raidPtr->regionInfo[i].parityStartAddr =
419 raidPtr->regionParityRange * i;
420 if (i < rf_numParityRegions - 1) {
421 raidPtr->regionInfo[i].capacity =
422 raidPtr->regionLogCapacity;
423 raidPtr->regionInfo[i].numSectorsParity =
424 raidPtr->regionParityRange;
425 } else {
426 raidPtr->regionInfo[i].capacity =
427 lastRegionCapacity;
428 raidPtr->regionInfo[i].numSectorsParity =
429 raidPtr->sectorsPerDisk -
430 raidPtr->regionParityRange * i;
431 if (raidPtr->regionInfo[i].numSectorsParity >
432 maxRegionParityRange)
433 maxRegionParityRange =
434 raidPtr->regionInfo[i].numSectorsParity;
436 raidPtr->regionInfo[i].diskCount = 0;
437 RF_ASSERT(raidPtr->regionInfo[i].capacity +
438 raidPtr->regionInfo[i].regionStartAddr <=
439 totalLogCapacity);
440 RF_ASSERT(raidPtr->regionInfo[i].parityStartAddr +
441 raidPtr->regionInfo[i].numSectorsParity <=
442 raidPtr->sectorsPerDisk);
443 printf("Allocating %d bytes for region %d\n",
444 (int) (raidPtr->regionInfo[i].capacity *
445 sizeof(RF_DiskMap_t)), i);
446 RF_Malloc(raidPtr->regionInfo[i].diskMap,
447 (raidPtr->regionInfo[i].capacity *
448 sizeof(RF_DiskMap_t)),
449 (RF_DiskMap_t *));
450 if (raidPtr->regionInfo[i].diskMap == NULL) {
451 for (j = 0; j < i; j++)
452 FreeRegionInfo(raidPtr, j);
453 RF_Free(raidPtr->regionInfo,
454 (rf_numParityRegions *
455 sizeof(RF_RegionInfo_t)));
456 return (ENOMEM);
458 raidPtr->regionInfo[i].loggingEnabled = RF_FALSE;
459 raidPtr->regionInfo[i].coreLog = NULL;
461 rf_ShutdownCreate(listp,
462 rf_ShutdownParityLoggingRegionInfo,
463 raidPtr);
464 RF_ASSERT(raidPtr->parityLogDiskQueue.threadState == 0);
465 raidPtr->parityLogDiskQueue.threadState = RF_PLOG_CREATED;
466 rc = RF_CREATE_THREAD(raidPtr->pLogDiskThreadHandle,
467 rf_ParityLoggingDiskManager, raidPtr,"rf_log");
468 if (rc) {
469 raidPtr->parityLogDiskQueue.threadState = 0;
470 RF_ERRORMSG3("Unable to create parity logging disk thread file %s line %d rc=%d\n",
471 __FILE__, __LINE__, rc);
472 return (ENOMEM);
474 /* wait for thread to start */
475 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
476 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_RUNNING)) {
477 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
478 raidPtr->parityLogDiskQueue.mutex);
480 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
482 rf_ShutdownCreate(listp, rf_ShutdownParityLogging, raidPtr);
483 if (rf_parityLogDebug) {
484 printf(" size of disk log in sectors: %d\n",
485 (int) totalLogCapacity);
486 printf(" total number of parity regions is %d\n", (int) rf_numParityRegions);
487 printf(" nominal sectors of log per parity region is %d\n", (int) raidPtr->regionLogCapacity);
488 printf(" nominal region fragmentation is %d sectors\n", (int) fragmentation);
489 printf(" total number of parity logs is %d\n", raidPtr->numParityLogs);
490 printf(" parity log size is %d sectors\n", raidPtr->numSectorsPerLog);
491 printf(" total in-core log space is %d bytes\n", (int) rf_totalInCoreLogCapacity);
493 rf_EnableParityLogging(raidPtr);
495 return (0);
498 static void
499 FreeRegionInfo(
500 RF_Raid_t * raidPtr,
501 RF_RegionId_t regionID)
503 RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
504 RF_Free(raidPtr->regionInfo[regionID].diskMap,
505 (raidPtr->regionInfo[regionID].capacity *
506 sizeof(RF_DiskMap_t)));
507 if (!rf_forceParityLogReint && raidPtr->regionInfo[regionID].coreLog) {
508 rf_ReleaseParityLogs(raidPtr,
509 raidPtr->regionInfo[regionID].coreLog);
510 raidPtr->regionInfo[regionID].coreLog = NULL;
511 } else {
512 RF_ASSERT(raidPtr->regionInfo[regionID].coreLog == NULL);
513 RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == 0);
515 RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
519 static void
520 FreeParityLogQueue(
521 RF_Raid_t * raidPtr,
522 RF_ParityLogQueue_t * queue)
524 RF_ParityLog_t *l1, *l2;
526 RF_LOCK_MUTEX(queue->mutex);
527 l1 = queue->parityLogs;
528 while (l1) {
529 l2 = l1;
530 l1 = l2->next;
531 RF_Free(l2->records, (raidPtr->numSectorsPerLog *
532 sizeof(RF_ParityLogRecord_t)));
533 RF_Free(l2, sizeof(RF_ParityLog_t));
535 RF_UNLOCK_MUTEX(queue->mutex);
539 static void
540 FreeRegionBufferQueue(RF_RegionBufferQueue_t * queue)
542 int i;
544 RF_LOCK_MUTEX(queue->mutex);
545 if (queue->availableBuffers != queue->totalBuffers) {
546 printf("Attempt to free region queue which is still in use!\n");
547 RF_ASSERT(0);
549 for (i = 0; i < queue->totalBuffers; i++)
550 RF_Free(queue->buffers[i], queue->bufferSize);
551 RF_Free(queue->buffers, queue->totalBuffers * sizeof(void *));
552 RF_UNLOCK_MUTEX(queue->mutex);
555 static void
556 rf_ShutdownParityLoggingRegionInfo(RF_ThreadArg_t arg)
558 RF_Raid_t *raidPtr;
559 RF_RegionId_t i;
561 raidPtr = (RF_Raid_t *) arg;
562 if (rf_parityLogDebug) {
563 printf("raid%d: ShutdownParityLoggingRegionInfo\n",
564 raidPtr->raidid);
566 /* free region information structs */
567 for (i = 0; i < rf_numParityRegions; i++)
568 FreeRegionInfo(raidPtr, i);
569 RF_Free(raidPtr->regionInfo, (rf_numParityRegions *
570 sizeof(raidPtr->regionInfo)));
571 raidPtr->regionInfo = NULL;
574 static void
575 rf_ShutdownParityLoggingPool(RF_ThreadArg_t arg)
577 RF_Raid_t *raidPtr;
579 raidPtr = (RF_Raid_t *) arg;
580 if (rf_parityLogDebug) {
581 printf("raid%d: ShutdownParityLoggingPool\n", raidPtr->raidid);
583 /* free contents of parityLogPool */
584 FreeParityLogQueue(raidPtr, &raidPtr->parityLogPool);
585 RF_Free(raidPtr->parityLogBufferHeap, raidPtr->numParityLogs *
586 raidPtr->numSectorsPerLog * raidPtr->bytesPerSector);
589 static void
590 rf_ShutdownParityLoggingRegionBufferPool(RF_ThreadArg_t arg)
592 RF_Raid_t *raidPtr;
594 raidPtr = (RF_Raid_t *) arg;
595 if (rf_parityLogDebug) {
596 printf("raid%d: ShutdownParityLoggingRegionBufferPool\n",
597 raidPtr->raidid);
599 FreeRegionBufferQueue(&raidPtr->regionBufferPool);
602 static void
603 rf_ShutdownParityLoggingParityBufferPool(RF_ThreadArg_t arg)
605 RF_Raid_t *raidPtr;
607 raidPtr = (RF_Raid_t *) arg;
608 if (rf_parityLogDebug) {
609 printf("raid%d: ShutdownParityLoggingParityBufferPool\n",
610 raidPtr->raidid);
612 FreeRegionBufferQueue(&raidPtr->parityBufferPool);
615 static void
616 rf_ShutdownParityLoggingDiskQueue(RF_ThreadArg_t arg)
618 RF_ParityLogData_t *d;
619 RF_CommonLogData_t *c;
620 RF_Raid_t *raidPtr;
622 raidPtr = (RF_Raid_t *) arg;
623 if (rf_parityLogDebug) {
624 printf("raid%d: ShutdownParityLoggingDiskQueue\n",
625 raidPtr->raidid);
627 /* free disk manager stuff */
628 RF_ASSERT(raidPtr->parityLogDiskQueue.bufHead == NULL);
629 RF_ASSERT(raidPtr->parityLogDiskQueue.bufTail == NULL);
630 RF_ASSERT(raidPtr->parityLogDiskQueue.reintHead == NULL);
631 RF_ASSERT(raidPtr->parityLogDiskQueue.reintTail == NULL);
632 while (raidPtr->parityLogDiskQueue.freeDataList) {
633 d = raidPtr->parityLogDiskQueue.freeDataList;
634 raidPtr->parityLogDiskQueue.freeDataList =
635 raidPtr->parityLogDiskQueue.freeDataList->next;
636 RF_Free(d, sizeof(RF_ParityLogData_t));
638 while (raidPtr->parityLogDiskQueue.freeCommonList) {
639 c = raidPtr->parityLogDiskQueue.freeCommonList;
640 raidPtr->parityLogDiskQueue.freeCommonList =
641 raidPtr->parityLogDiskQueue.freeCommonList->next;
642 RF_Free(c, sizeof(RF_CommonLogData_t));
646 static void
647 rf_ShutdownParityLogging(RF_ThreadArg_t arg)
649 RF_Raid_t *raidPtr;
651 raidPtr = (RF_Raid_t *) arg;
652 if (rf_parityLogDebug) {
653 printf("raid%d: ShutdownParityLogging\n", raidPtr->raidid);
655 /* shutdown disk thread */
656 /* This has the desirable side-effect of forcing all regions to be
657 * reintegrated. This is necessary since all parity log maps are
658 * currently held in volatile memory. */
660 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
661 raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_TERMINATE;
662 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
663 RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
665 * pLogDiskThread will now terminate when queues are cleared
666 * now wait for it to be done
668 RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
669 while (!(raidPtr->parityLogDiskQueue.threadState & RF_PLOG_SHUTDOWN)) {
670 RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
671 raidPtr->parityLogDiskQueue.mutex);
673 RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
674 if (rf_parityLogDebug) {
675 printf("raid%d: ShutdownParityLogging done (thread completed)\n", raidPtr->raidid);
680 rf_GetDefaultNumFloatingReconBuffersParityLogging(RF_Raid_t * raidPtr)
682 return (20);
685 RF_HeadSepLimit_t
686 rf_GetDefaultHeadSepLimitParityLogging(RF_Raid_t * raidPtr)
688 return (10);
690 /* return the region ID for a given RAID address */
691 RF_RegionId_t
692 rf_MapRegionIDParityLogging(
693 RF_Raid_t * raidPtr,
694 RF_SectorNum_t address)
696 RF_RegionId_t regionID;
698 /* regionID = address / (raidPtr->regionParityRange * raidPtr->Layout.numDataCol); */
699 regionID = address / raidPtr->regionParityRange;
700 if (regionID == rf_numParityRegions) {
701 /* last region may be larger than other regions */
702 regionID--;
704 RF_ASSERT(address >= raidPtr->regionInfo[regionID].parityStartAddr);
705 RF_ASSERT(address < raidPtr->regionInfo[regionID].parityStartAddr +
706 raidPtr->regionInfo[regionID].numSectorsParity);
707 RF_ASSERT(regionID < rf_numParityRegions);
708 return (regionID);
712 /* given a logical RAID sector, determine physical disk address of data */
713 void
714 rf_MapSectorParityLogging(
715 RF_Raid_t * raidPtr,
716 RF_RaidAddr_t raidSector,
717 RF_RowCol_t * col,
718 RF_SectorNum_t * diskSector,
719 int remap)
721 RF_StripeNum_t SUID = raidSector /
722 raidPtr->Layout.sectorsPerStripeUnit;
723 /* *col = (SUID % (raidPtr->numCol -
724 * raidPtr->Layout.numParityLogCol)); */
725 *col = SUID % raidPtr->Layout.numDataCol;
726 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
727 raidPtr->Layout.sectorsPerStripeUnit +
728 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
732 /* given a logical RAID sector, determine physical disk address of parity */
733 void
734 rf_MapParityParityLogging(
735 RF_Raid_t * raidPtr,
736 RF_RaidAddr_t raidSector,
737 RF_RowCol_t * col,
738 RF_SectorNum_t * diskSector,
739 int remap)
741 RF_StripeNum_t SUID = raidSector /
742 raidPtr->Layout.sectorsPerStripeUnit;
744 /* *col =
745 * raidPtr->Layout.numDataCol-(SUID/raidPtr->Layout.numDataCol)%(raidPt
746 * r->numCol - raidPtr->Layout.numParityLogCol); */
747 *col = raidPtr->Layout.numDataCol;
748 *diskSector = (SUID / (raidPtr->Layout.numDataCol)) *
749 raidPtr->Layout.sectorsPerStripeUnit +
750 (raidSector % raidPtr->Layout.sectorsPerStripeUnit);
754 /* given a regionID and sector offset, determine the physical disk address of the parity log */
755 void
756 rf_MapLogParityLogging(
757 RF_Raid_t * raidPtr,
758 RF_RegionId_t regionID,
759 RF_SectorNum_t regionOffset,
760 RF_RowCol_t * col,
761 RF_SectorNum_t * startSector)
763 *col = raidPtr->numCol - 1;
764 *startSector = raidPtr->regionInfo[regionID].regionStartAddr + regionOffset;
768 /* given a regionID, determine the physical disk address of the logged
769 parity for that region */
770 void
771 rf_MapRegionParity(
772 RF_Raid_t * raidPtr,
773 RF_RegionId_t regionID,
774 RF_RowCol_t * col,
775 RF_SectorNum_t * startSector,
776 RF_SectorCount_t * numSector)
778 *col = raidPtr->numCol - 2;
779 *startSector = raidPtr->regionInfo[regionID].parityStartAddr;
780 *numSector = raidPtr->regionInfo[regionID].numSectorsParity;
784 /* given a logical RAID address, determine the participating disks in
785 the stripe */
786 void
787 rf_IdentifyStripeParityLogging(
788 RF_Raid_t * raidPtr,
789 RF_RaidAddr_t addr,
790 RF_RowCol_t ** diskids)
792 RF_StripeNum_t stripeID = rf_RaidAddressToStripeID(&raidPtr->Layout,
793 addr);
794 RF_ParityLoggingConfigInfo_t *info = (RF_ParityLoggingConfigInfo_t *)
795 raidPtr->Layout.layoutSpecificInfo;
796 *diskids = info->stripeIdentifier[stripeID % raidPtr->numCol];
800 void
801 rf_MapSIDToPSIDParityLogging(
802 RF_RaidLayout_t * layoutPtr,
803 RF_StripeNum_t stripeID,
804 RF_StripeNum_t * psID,
805 RF_ReconUnitNum_t * which_ru)
807 *which_ru = 0;
808 *psID = stripeID;
812 /* select an algorithm for performing an access. Returns two pointers,
813 * one to a function that will return information about the DAG, and
814 * another to a function that will create the dag.
816 void
817 rf_ParityLoggingDagSelect(
818 RF_Raid_t * raidPtr,
819 RF_IoType_t type,
820 RF_AccessStripeMap_t * asmp,
821 RF_VoidFuncPtr * createFunc)
823 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
824 RF_PhysDiskAddr_t *failedPDA = NULL;
825 RF_RowCol_t fcol;
826 RF_RowStatus_t rstat;
827 int prior_recon;
829 RF_ASSERT(RF_IO_IS_R_OR_W(type));
831 if (asmp->numDataFailed + asmp->numParityFailed > 1) {
832 RF_ERRORMSG("Multiple disks failed in a single group! Aborting I/O operation.\n");
833 *createFunc = NULL;
834 return;
835 } else
836 if (asmp->numDataFailed + asmp->numParityFailed == 1) {
838 /* if under recon & already reconstructed, redirect
839 * the access to the spare drive and eliminate the
840 * failure indication */
841 failedPDA = asmp->failedPDAs[0];
842 fcol = failedPDA->col;
843 rstat = raidPtr->status;
844 prior_recon = (rstat == rf_rs_reconfigured) || (
845 (rstat == rf_rs_reconstructing) ?
846 rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, failedPDA->startSector) : 0
848 if (prior_recon) {
849 RF_RowCol_t oc = failedPDA->col;
850 RF_SectorNum_t oo = failedPDA->startSector;
851 if (layoutPtr->map->flags &
852 RF_DISTRIBUTE_SPARE) {
853 /* redirect to dist spare space */
855 if (failedPDA == asmp->parityInfo) {
857 /* parity has failed */
858 (layoutPtr->map->MapParity) (raidPtr, failedPDA->raidAddress,
859 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
861 if (asmp->parityInfo->next) { /* redir 2nd component,
862 * if any */
863 RF_PhysDiskAddr_t *p = asmp->parityInfo->next;
864 RF_SectorNum_t SUoffs = p->startSector % layoutPtr->sectorsPerStripeUnit;
865 p->col = failedPDA->col;
866 p->startSector = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, failedPDA->startSector) +
867 SUoffs; /* cheating:
868 * startSector is not
869 * really a RAID address */
871 } else
872 if (asmp->parityInfo->next && failedPDA == asmp->parityInfo->next) {
873 RF_ASSERT(0); /* should not ever
874 * happen */
875 } else {
877 /* data has failed */
878 (layoutPtr->map->MapSector) (raidPtr, failedPDA->raidAddress,
879 &failedPDA->col, &failedPDA->startSector, RF_REMAP);
883 } else {
884 /* redirect to dedicated spare space */
886 failedPDA->col = raidPtr->Disks[fcol].spareCol;
888 /* the parity may have two distinct
889 * components, both of which may need
890 * to be redirected */
891 if (asmp->parityInfo->next) {
892 if (failedPDA == asmp->parityInfo) {
893 failedPDA->next->col = failedPDA->col;
894 } else
895 if (failedPDA == asmp->parityInfo->next) { /* paranoid: should never occur */
896 asmp->parityInfo->col = failedPDA->col;
901 RF_ASSERT(failedPDA->col != -1);
903 if (rf_dagDebug || rf_mapDebug) {
904 printf("raid%d: Redirected type '%c' c %d o %ld -> c %d o %ld\n",
905 raidPtr->raidid, type, oc, (long) oo, failedPDA->col, (long) failedPDA->startSector);
907 asmp->numDataFailed = asmp->numParityFailed = 0;
910 if (type == RF_IO_TYPE_READ) {
912 if (asmp->numDataFailed == 0)
913 *createFunc = (RF_VoidFuncPtr) rf_CreateFaultFreeReadDAG;
914 else
915 *createFunc = (RF_VoidFuncPtr) rf_CreateRaidFiveDegradedReadDAG;
917 } else {
920 /* if mirroring, always use large writes. If the access
921 * requires two distinct parity updates, always do a small
922 * write. If the stripe contains a failure but the access
923 * does not, do a small write. The first conditional
924 * (numStripeUnitsAccessed <= numDataCol/2) uses a
925 * less-than-or-equal rather than just a less-than because
926 * when G is 3 or 4, numDataCol/2 is 1, and I want
927 * single-stripe-unit updates to use just one disk. */
928 if ((asmp->numDataFailed + asmp->numParityFailed) == 0) {
929 if (((asmp->numStripeUnitsAccessed <=
930 (layoutPtr->numDataCol / 2)) &&
931 (layoutPtr->numDataCol != 1)) ||
932 (asmp->parityInfo->next != NULL) ||
933 rf_CheckStripeForFailures(raidPtr, asmp)) {
934 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingSmallWriteDAG;
935 } else
936 *createFunc = (RF_VoidFuncPtr) rf_CreateParityLoggingLargeWriteDAG;
937 } else
938 if (asmp->numParityFailed == 1)
939 *createFunc = (RF_VoidFuncPtr) rf_CreateNonRedundantWriteDAG;
940 else
941 if (asmp->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit)
942 *createFunc = NULL;
943 else
944 *createFunc = (RF_VoidFuncPtr) rf_CreateDegradedWriteDAG;
947 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */