1 /* $NetBSD: if_age.c,v 1.33 2009/09/05 14:09:55 tsutsui Exp $ */
2 /* $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $ */
5 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.33 2009/09/05 14:09:55 tsutsui Exp $");
39 #include <sys/param.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
64 #include <net/if_types.h>
65 #include <net/if_vlanvar.h>
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
80 #include <dev/pci/if_agereg.h>
82 static int age_match(device_t
, cfdata_t
, void *);
83 static void age_attach(device_t
, device_t
, void *);
84 static int age_detach(device_t
, int);
86 static bool age_resume(device_t PMF_FN_PROTO
);
88 static int age_miibus_readreg(device_t
, int, int);
89 static void age_miibus_writereg(device_t
, int, int, int);
90 static void age_miibus_statchg(device_t
);
92 static int age_init(struct ifnet
*);
93 static int age_ioctl(struct ifnet
*, u_long
, void *);
94 static void age_start(struct ifnet
*);
95 static void age_watchdog(struct ifnet
*);
96 static void age_mediastatus(struct ifnet
*, struct ifmediareq
*);
97 static int age_mediachange(struct ifnet
*);
99 static int age_intr(void *);
100 static int age_dma_alloc(struct age_softc
*);
101 static void age_dma_free(struct age_softc
*);
102 static void age_get_macaddr(struct age_softc
*, uint8_t[]);
103 static void age_phy_reset(struct age_softc
*);
105 static int age_encap(struct age_softc
*, struct mbuf
**);
106 static void age_init_tx_ring(struct age_softc
*);
107 static int age_init_rx_ring(struct age_softc
*);
108 static void age_init_rr_ring(struct age_softc
*);
109 static void age_init_cmb_block(struct age_softc
*);
110 static void age_init_smb_block(struct age_softc
*);
111 static int age_newbuf(struct age_softc
*, struct age_rxdesc
*, int);
112 static void age_mac_config(struct age_softc
*);
113 static void age_txintr(struct age_softc
*, int);
114 static void age_rxeof(struct age_softc
*sc
, struct rx_rdesc
*);
115 static void age_rxintr(struct age_softc
*, int);
116 static void age_tick(void *);
117 static void age_reset(struct age_softc
*);
118 static void age_stop(struct ifnet
*, int);
119 static void age_stats_update(struct age_softc
*);
120 static void age_stop_txmac(struct age_softc
*);
121 static void age_stop_rxmac(struct age_softc
*);
122 static void age_rxvlan(struct age_softc
*sc
);
123 static void age_rxfilter(struct age_softc
*);
125 CFATTACH_DECL_NEW(age
, sizeof(struct age_softc
),
126 age_match
, age_attach
, age_detach
, NULL
);
129 #define DPRINTF(x) do { if (agedebug) printf x; } while (0)
131 #define ETHER_ALIGN 2
132 #define AGE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
135 age_match(device_t dev
, cfdata_t match
, void *aux
)
137 struct pci_attach_args
*pa
= aux
;
139 return (PCI_VENDOR(pa
->pa_id
) == PCI_VENDOR_ATTANSIC
&&
140 PCI_PRODUCT(pa
->pa_id
) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA
);
144 age_attach(device_t parent
, device_t self
, void *aux
)
146 struct age_softc
*sc
= device_private(self
);
147 struct pci_attach_args
*pa
= aux
;
148 pci_intr_handle_t ih
;
150 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
155 aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");
158 sc
->sc_dmat
= pa
->pa_dmat
;
159 sc
->sc_pct
= pa
->pa_pc
;
160 sc
->sc_pcitag
= pa
->pa_tag
;
165 memtype
= pci_mapreg_type(sc
->sc_pct
, sc
->sc_pcitag
, AGE_PCIR_BAR
);
167 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_32BIT
:
168 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_32BIT_1M
:
169 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_64BIT
:
172 aprint_error_dev(self
, "invalid base address register\n");
176 if (pci_mapreg_map(pa
, AGE_PCIR_BAR
, memtype
, 0, &sc
->sc_mem_bt
,
177 &sc
->sc_mem_bh
, NULL
, &sc
->sc_mem_size
) != 0) {
178 aprint_error_dev(self
, "could not map mem space\n");
182 if (pci_intr_map(pa
, &ih
) != 0) {
183 aprint_error_dev(self
, "could not map interrupt\n");
190 intrstr
= pci_intr_string(sc
->sc_pct
, ih
);
191 sc
->sc_irq_handle
= pci_intr_establish(sc
->sc_pct
, ih
, IPL_NET
,
193 if (sc
->sc_irq_handle
== NULL
) {
194 aprint_error_dev(self
, "could not establish interrupt");
196 aprint_error(" at %s", intrstr
);
200 aprint_normal_dev(self
, "%s\n", intrstr
);
202 /* Set PHY address. */
203 sc
->age_phyaddr
= AGE_PHY_ADDR
;
208 /* Reset the ethernet controller. */
211 /* Get PCI and chip id/revision. */
212 sc
->age_rev
= PCI_REVISION(pa
->pa_class
);
213 sc
->age_chip_rev
= CSR_READ_4(sc
, AGE_MASTER_CFG
) >>
214 MASTER_CHIP_REV_SHIFT
;
216 aprint_debug_dev(self
, "PCI device revision : 0x%04x\n", sc
->age_rev
);
217 aprint_debug_dev(self
, "Chip id/revision : 0x%04x\n", sc
->age_chip_rev
);
220 aprint_debug_dev(self
, "%d Tx FIFO, %d Rx FIFO\n",
221 CSR_READ_4(sc
, AGE_SRAM_TX_FIFO_LEN
),
222 CSR_READ_4(sc
, AGE_SRAM_RX_FIFO_LEN
));
225 /* Set max allowable DMA size. */
226 sc
->age_dma_rd_burst
= DMA_CFG_RD_BURST_128
;
227 sc
->age_dma_wr_burst
= DMA_CFG_WR_BURST_128
;
229 /* Allocate DMA stuffs */
230 error
= age_dma_alloc(sc
);
234 callout_init(&sc
->sc_tick_ch
, 0);
235 callout_setfunc(&sc
->sc_tick_ch
, age_tick
, sc
);
237 /* Load station address. */
238 age_get_macaddr(sc
, sc
->sc_enaddr
);
240 aprint_normal_dev(self
, "Ethernet address %s\n",
241 ether_sprintf(sc
->sc_enaddr
));
244 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
245 ifp
->if_init
= age_init
;
246 ifp
->if_ioctl
= age_ioctl
;
247 ifp
->if_start
= age_start
;
248 ifp
->if_stop
= age_stop
;
249 ifp
->if_watchdog
= age_watchdog
;
250 ifp
->if_baudrate
= IF_Gbps(1);
251 IFQ_SET_MAXLEN(&ifp
->if_snd
, AGE_TX_RING_CNT
- 1);
252 IFQ_SET_READY(&ifp
->if_snd
);
253 strlcpy(ifp
->if_xname
, device_xname(sc
->sc_dev
), IFNAMSIZ
);
255 sc
->sc_ec
.ec_capabilities
= ETHERCAP_VLAN_MTU
;
257 ifp
->if_capabilities
|= IFCAP_CSUM_IPv4_Rx
|
258 IFCAP_CSUM_TCPv4_Rx
|
261 ifp
->if_capabilities
|= IFCAP_CSUM_IPv4_Tx
|
262 IFCAP_CSUM_TCPv4_Tx
|
267 sc
->sc_ec
.ec_capabilities
|= ETHERCAP_VLAN_HWTAGGING
;
270 /* Set up MII bus. */
271 sc
->sc_miibus
.mii_ifp
= ifp
;
272 sc
->sc_miibus
.mii_readreg
= age_miibus_readreg
;
273 sc
->sc_miibus
.mii_writereg
= age_miibus_writereg
;
274 sc
->sc_miibus
.mii_statchg
= age_miibus_statchg
;
276 sc
->sc_ec
.ec_mii
= &sc
->sc_miibus
;
277 ifmedia_init(&sc
->sc_miibus
.mii_media
, 0, age_mediachange
,
279 mii_attach(self
, &sc
->sc_miibus
, 0xffffffff, MII_PHY_ANY
,
280 MII_OFFSET_ANY
, MIIF_DOPAUSE
);
282 if (LIST_FIRST(&sc
->sc_miibus
.mii_phys
) == NULL
) {
283 aprint_error_dev(self
, "no PHY found!\n");
284 ifmedia_add(&sc
->sc_miibus
.mii_media
, IFM_ETHER
| IFM_MANUAL
,
286 ifmedia_set(&sc
->sc_miibus
.mii_media
, IFM_ETHER
| IFM_MANUAL
);
288 ifmedia_set(&sc
->sc_miibus
.mii_media
, IFM_ETHER
| IFM_AUTO
);
291 ether_ifattach(ifp
, sc
->sc_enaddr
);
293 if (pmf_device_register(self
, NULL
, age_resume
))
294 pmf_class_network_register(self
, ifp
);
296 aprint_error_dev(self
, "couldn't establish power handler\n");
302 if (sc
->sc_irq_handle
!= NULL
) {
303 pci_intr_disestablish(sc
->sc_pct
, sc
->sc_irq_handle
);
304 sc
->sc_irq_handle
= NULL
;
306 if (sc
->sc_mem_size
) {
307 bus_space_unmap(sc
->sc_mem_bt
, sc
->sc_mem_bh
, sc
->sc_mem_size
);
313 age_detach(device_t self
, int flags
)
315 struct age_softc
*sc
= device_private(self
);
316 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
319 pmf_device_deregister(self
);
324 mii_detach(&sc
->sc_miibus
, MII_PHY_ANY
, MII_OFFSET_ANY
);
326 /* Delete all remaining media. */
327 ifmedia_delete_instance(&sc
->sc_miibus
.mii_media
, IFM_INST_ANY
);
333 if (sc
->sc_irq_handle
!= NULL
) {
334 pci_intr_disestablish(sc
->sc_pct
, sc
->sc_irq_handle
);
335 sc
->sc_irq_handle
= NULL
;
337 if (sc
->sc_mem_size
) {
338 bus_space_unmap(sc
->sc_mem_bt
, sc
->sc_mem_bh
, sc
->sc_mem_size
);
345 * Read a PHY register on the MII of the L1.
348 age_miibus_readreg(device_t dev
, int phy
, int reg
)
350 struct age_softc
*sc
= device_private(dev
);
354 if (phy
!= sc
->age_phyaddr
)
357 CSR_WRITE_4(sc
, AGE_MDIO
, MDIO_OP_EXECUTE
| MDIO_OP_READ
|
358 MDIO_SUP_PREAMBLE
| MDIO_CLK_25_4
| MDIO_REG_ADDR(reg
));
359 for (i
= AGE_PHY_TIMEOUT
; i
> 0; i
--) {
361 v
= CSR_READ_4(sc
, AGE_MDIO
);
362 if ((v
& (MDIO_OP_EXECUTE
| MDIO_OP_BUSY
)) == 0)
367 printf("%s: phy read timeout: phy %d, reg %d\n",
368 device_xname(sc
->sc_dev
), phy
, reg
);
372 return ((v
& MDIO_DATA_MASK
) >> MDIO_DATA_SHIFT
);
376 * Write a PHY register on the MII of the L1.
379 age_miibus_writereg(device_t dev
, int phy
, int reg
, int val
)
381 struct age_softc
*sc
= device_private(dev
);
385 if (phy
!= sc
->age_phyaddr
)
388 CSR_WRITE_4(sc
, AGE_MDIO
, MDIO_OP_EXECUTE
| MDIO_OP_WRITE
|
389 (val
& MDIO_DATA_MASK
) << MDIO_DATA_SHIFT
|
390 MDIO_SUP_PREAMBLE
| MDIO_CLK_25_4
| MDIO_REG_ADDR(reg
));
392 for (i
= AGE_PHY_TIMEOUT
; i
> 0; i
--) {
394 v
= CSR_READ_4(sc
, AGE_MDIO
);
395 if ((v
& (MDIO_OP_EXECUTE
| MDIO_OP_BUSY
)) == 0)
400 printf("%s: phy write timeout: phy %d, reg %d\n",
401 device_xname(sc
->sc_dev
), phy
, reg
);
406 * Callback from MII layer when media changes.
409 age_miibus_statchg(device_t dev
)
411 struct age_softc
*sc
= device_private(dev
);
412 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
413 struct mii_data
*mii
;
415 if ((ifp
->if_flags
& IFF_RUNNING
) == 0)
418 mii
= &sc
->sc_miibus
;
420 sc
->age_flags
&= ~AGE_FLAG_LINK
;
421 if ((mii
->mii_media_status
& IFM_AVALID
) != 0) {
422 switch (IFM_SUBTYPE(mii
->mii_media_active
)) {
426 sc
->age_flags
|= AGE_FLAG_LINK
;
433 /* Stop Rx/Tx MACs. */
437 /* Program MACs with resolved speed/duplex/flow-control. */
438 if ((sc
->age_flags
& AGE_FLAG_LINK
) != 0) {
442 reg
= CSR_READ_4(sc
, AGE_MAC_CFG
);
443 /* Restart DMA engine and Tx/Rx MAC. */
444 CSR_WRITE_4(sc
, AGE_DMA_CFG
, CSR_READ_4(sc
, AGE_DMA_CFG
) |
445 DMA_CFG_RD_ENB
| DMA_CFG_WR_ENB
);
446 reg
|= MAC_CFG_TX_ENB
| MAC_CFG_RX_ENB
;
447 CSR_WRITE_4(sc
, AGE_MAC_CFG
, reg
);
452 * Get the current interface media status.
455 age_mediastatus(struct ifnet
*ifp
, struct ifmediareq
*ifmr
)
457 struct age_softc
*sc
= ifp
->if_softc
;
458 struct mii_data
*mii
= &sc
->sc_miibus
;
461 ifmr
->ifm_status
= mii
->mii_media_status
;
462 ifmr
->ifm_active
= mii
->mii_media_active
;
466 * Set hardware to newly-selected media.
469 age_mediachange(struct ifnet
*ifp
)
471 struct age_softc
*sc
= ifp
->if_softc
;
472 struct mii_data
*mii
= &sc
->sc_miibus
;
475 if (mii
->mii_instance
!= 0) {
476 struct mii_softc
*miisc
;
478 LIST_FOREACH(miisc
, &mii
->mii_phys
, mii_list
)
479 mii_phy_reset(miisc
);
481 error
= mii_mediachg(mii
);
489 struct age_softc
*sc
= arg
;
490 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
494 status
= CSR_READ_4(sc
, AGE_INTR_STATUS
);
495 if (status
== 0 || (status
& AGE_INTRS
) == 0)
498 cmb
= sc
->age_rdata
.age_cmb_block
;
500 /* Happens when bringing up the interface
501 * w/o having a carrier. Ack. the interrupt.
503 CSR_WRITE_4(sc
, AGE_INTR_STATUS
, status
);
507 /* Disable interrupts. */
508 CSR_WRITE_4(sc
, AGE_INTR_STATUS
, status
| INTR_DIS_INT
);
510 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_cmb_block_map
, 0,
511 sc
->age_cdata
.age_cmb_block_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
512 status
= le32toh(cmb
->intr_status
);
513 if ((status
& AGE_INTRS
) == 0)
516 sc
->age_tpd_cons
= (le32toh(cmb
->tpd_cons
) & TPD_CONS_MASK
) >>
518 sc
->age_rr_prod
= (le32toh(cmb
->rprod_cons
) & RRD_PROD_MASK
) >>
521 /* Let hardware know CMB was served. */
522 cmb
->intr_status
= 0;
523 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_cmb_block_map
, 0,
524 sc
->age_cdata
.age_cmb_block_map
->dm_mapsize
,
525 BUS_DMASYNC_PREWRITE
);
527 if (ifp
->if_flags
& IFF_RUNNING
) {
528 if (status
& INTR_CMB_RX
)
529 age_rxintr(sc
, sc
->age_rr_prod
);
531 if (status
& INTR_CMB_TX
)
532 age_txintr(sc
, sc
->age_tpd_cons
);
534 if (status
& (INTR_DMA_RD_TO_RST
| INTR_DMA_WR_TO_RST
)) {
535 if (status
& INTR_DMA_RD_TO_RST
)
536 printf("%s: DMA read error! -- resetting\n",
537 device_xname(sc
->sc_dev
));
538 if (status
& INTR_DMA_WR_TO_RST
)
539 printf("%s: DMA write error! -- resetting\n",
540 device_xname(sc
->sc_dev
));
544 if (!IFQ_IS_EMPTY(&ifp
->if_snd
))
547 if (status
& INTR_SMB
)
548 age_stats_update(sc
);
551 /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
552 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_cmb_block_map
, 0,
553 sc
->age_cdata
.age_cmb_block_map
->dm_mapsize
,
554 BUS_DMASYNC_POSTREAD
);
557 /* Re-enable interrupts. */
558 CSR_WRITE_4(sc
, AGE_INTR_STATUS
, 0);
564 age_get_macaddr(struct age_softc
*sc
, uint8_t eaddr
[])
569 reg
= CSR_READ_4(sc
, AGE_SPI_CTRL
);
570 if ((reg
& SPI_VPD_ENB
) != 0) {
571 /* Get VPD stored in TWSI EEPROM. */
573 CSR_WRITE_4(sc
, AGE_SPI_CTRL
, reg
);
576 if (pci_get_capability(sc
->sc_pct
, sc
->sc_pcitag
,
577 PCI_CAP_VPD
, &vpdc
, NULL
)) {
579 * PCI VPD capability found, let TWSI reload EEPROM.
580 * This will set Ethernet address of controller.
582 CSR_WRITE_4(sc
, AGE_TWSI_CTRL
, CSR_READ_4(sc
, AGE_TWSI_CTRL
) |
583 TWSI_CTRL_SW_LD_START
);
584 for (i
= 100; i
> 0; i
++) {
586 reg
= CSR_READ_4(sc
, AGE_TWSI_CTRL
);
587 if ((reg
& TWSI_CTRL_SW_LD_START
) == 0)
591 printf("%s: reloading EEPROM timeout!\n",
592 device_xname(sc
->sc_dev
));
595 printf("%s: PCI VPD capability not found!\n",
596 device_xname(sc
->sc_dev
));
599 ea
[0] = CSR_READ_4(sc
, AGE_PAR0
);
600 ea
[1] = CSR_READ_4(sc
, AGE_PAR1
);
602 eaddr
[0] = (ea
[1] >> 8) & 0xFF;
603 eaddr
[1] = (ea
[1] >> 0) & 0xFF;
604 eaddr
[2] = (ea
[0] >> 24) & 0xFF;
605 eaddr
[3] = (ea
[0] >> 16) & 0xFF;
606 eaddr
[4] = (ea
[0] >> 8) & 0xFF;
607 eaddr
[5] = (ea
[0] >> 0) & 0xFF;
611 age_phy_reset(struct age_softc
*sc
)
617 CSR_WRITE_4(sc
, AGE_GPHY_CTRL
, GPHY_CTRL_RST
);
619 CSR_WRITE_4(sc
, AGE_GPHY_CTRL
, GPHY_CTRL_CLR
);
622 #define ATPHY_DBG_ADDR 0x1D
623 #define ATPHY_DBG_DATA 0x1E
624 #define ATPHY_CDTC 0x16
625 #define PHY_CDTC_ENB 0x0001
626 #define PHY_CDTC_POFF 8
627 #define ATPHY_CDTS 0x1C
628 #define PHY_CDTS_STAT_OK 0x0000
629 #define PHY_CDTS_STAT_SHORT 0x0100
630 #define PHY_CDTS_STAT_OPEN 0x0200
631 #define PHY_CDTS_STAT_INVAL 0x0300
632 #define PHY_CDTS_STAT_MASK 0x0300
634 /* Check power saving mode. Magic from Linux. */
635 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
, MII_BMCR
, BMCR_RESET
);
636 for (linkup
= 0, pn
= 0; pn
< 4; pn
++) {
637 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
, ATPHY_CDTC
,
638 (pn
<< PHY_CDTC_POFF
) | PHY_CDTC_ENB
);
639 for (i
= 200; i
> 0; i
--) {
641 reg
= age_miibus_readreg(sc
->sc_dev
, sc
->age_phyaddr
,
643 if ((reg
& PHY_CDTC_ENB
) == 0)
647 reg
= age_miibus_readreg(sc
->sc_dev
, sc
->age_phyaddr
,
649 if ((reg
& PHY_CDTS_STAT_MASK
) != PHY_CDTS_STAT_OPEN
) {
654 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
, MII_BMCR
,
655 BMCR_RESET
| BMCR_AUTOEN
| BMCR_STARTNEG
);
657 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
,
659 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
,
660 ATPHY_DBG_DATA
, 0x124E);
661 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
,
663 reg
= age_miibus_readreg(sc
->sc_dev
, sc
->age_phyaddr
,
665 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
,
666 ATPHY_DBG_DATA
, reg
| 0x03);
669 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
,
671 age_miibus_writereg(sc
->sc_dev
, sc
->age_phyaddr
,
672 ATPHY_DBG_DATA
, 0x024E);
675 #undef ATPHY_DBG_ADDR
676 #undef ATPHY_DBG_DATA
681 #undef PHY_CDTS_STAT_OK
682 #undef PHY_CDTS_STAT_SHORT
683 #undef PHY_CDTS_STAT_OPEN
684 #undef PHY_CDTS_STAT_INVAL
685 #undef PHY_CDTS_STAT_MASK
689 age_dma_alloc(struct age_softc
*sc
)
691 struct age_txdesc
*txd
;
692 struct age_rxdesc
*rxd
;
696 * Create DMA stuffs for TX ring
698 error
= bus_dmamap_create(sc
->sc_dmat
, AGE_TX_RING_SZ
, 1,
699 AGE_TX_RING_SZ
, 0, BUS_DMA_NOWAIT
, &sc
->age_cdata
.age_tx_ring_map
);
701 sc
->age_cdata
.age_tx_ring_map
= NULL
;
705 /* Allocate DMA'able memory for TX ring */
706 error
= bus_dmamem_alloc(sc
->sc_dmat
, AGE_TX_RING_SZ
,
707 ETHER_ALIGN
, 0, &sc
->age_rdata
.age_tx_ring_seg
, 1,
708 &nsegs
, BUS_DMA_WAITOK
);
710 printf("%s: could not allocate DMA'able memory for Tx ring, "
711 "error = %i\n", device_xname(sc
->sc_dev
), error
);
715 error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->age_rdata
.age_tx_ring_seg
,
716 nsegs
, AGE_TX_RING_SZ
, (void **)&sc
->age_rdata
.age_tx_ring
,
721 memset(sc
->age_rdata
.age_tx_ring
, 0, AGE_TX_RING_SZ
);
723 /* Load the DMA map for Tx ring. */
724 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->age_cdata
.age_tx_ring_map
,
725 sc
->age_rdata
.age_tx_ring
, AGE_TX_RING_SZ
, NULL
, BUS_DMA_WAITOK
);
727 printf("%s: could not load DMA'able memory for Tx ring, "
728 "error = %i\n", device_xname(sc
->sc_dev
), error
);
729 bus_dmamem_free(sc
->sc_dmat
,
730 &sc
->age_rdata
.age_tx_ring_seg
, 1);
734 sc
->age_rdata
.age_tx_ring_paddr
=
735 sc
->age_cdata
.age_tx_ring_map
->dm_segs
[0].ds_addr
;
738 * Create DMA stuffs for RX ring
740 error
= bus_dmamap_create(sc
->sc_dmat
, AGE_RX_RING_SZ
, 1,
741 AGE_RX_RING_SZ
, 0, BUS_DMA_NOWAIT
, &sc
->age_cdata
.age_rx_ring_map
);
743 sc
->age_cdata
.age_rx_ring_map
= NULL
;
747 /* Allocate DMA'able memory for RX ring */
748 error
= bus_dmamem_alloc(sc
->sc_dmat
, AGE_RX_RING_SZ
,
749 ETHER_ALIGN
, 0, &sc
->age_rdata
.age_rx_ring_seg
, 1,
750 &nsegs
, BUS_DMA_WAITOK
);
752 printf("%s: could not allocate DMA'able memory for Rx ring, "
753 "error = %i.\n", device_xname(sc
->sc_dev
), error
);
757 error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->age_rdata
.age_rx_ring_seg
,
758 nsegs
, AGE_RX_RING_SZ
, (void **)&sc
->age_rdata
.age_rx_ring
,
763 memset(sc
->age_rdata
.age_rx_ring
, 0, AGE_RX_RING_SZ
);
765 /* Load the DMA map for Rx ring. */
766 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->age_cdata
.age_rx_ring_map
,
767 sc
->age_rdata
.age_rx_ring
, AGE_RX_RING_SZ
, NULL
, BUS_DMA_WAITOK
);
769 printf("%s: could not load DMA'able memory for Rx ring, "
770 "error = %i.\n", device_xname(sc
->sc_dev
), error
);
771 bus_dmamem_free(sc
->sc_dmat
,
772 &sc
->age_rdata
.age_rx_ring_seg
, 1);
776 sc
->age_rdata
.age_rx_ring_paddr
=
777 sc
->age_cdata
.age_rx_ring_map
->dm_segs
[0].ds_addr
;
780 * Create DMA stuffs for RX return ring
782 error
= bus_dmamap_create(sc
->sc_dmat
, AGE_RR_RING_SZ
, 1,
783 AGE_RR_RING_SZ
, 0, BUS_DMA_NOWAIT
, &sc
->age_cdata
.age_rr_ring_map
);
785 sc
->age_cdata
.age_rr_ring_map
= NULL
;
789 /* Allocate DMA'able memory for RX return ring */
790 error
= bus_dmamem_alloc(sc
->sc_dmat
, AGE_RR_RING_SZ
,
791 ETHER_ALIGN
, 0, &sc
->age_rdata
.age_rr_ring_seg
, 1,
792 &nsegs
, BUS_DMA_WAITOK
);
794 printf("%s: could not allocate DMA'able memory for Rx "
795 "return ring, error = %i.\n",
796 device_xname(sc
->sc_dev
), error
);
800 error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->age_rdata
.age_rr_ring_seg
,
801 nsegs
, AGE_RR_RING_SZ
, (void **)&sc
->age_rdata
.age_rr_ring
,
806 memset(sc
->age_rdata
.age_rr_ring
, 0, AGE_RR_RING_SZ
);
808 /* Load the DMA map for Rx return ring. */
809 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->age_cdata
.age_rr_ring_map
,
810 sc
->age_rdata
.age_rr_ring
, AGE_RR_RING_SZ
, NULL
, BUS_DMA_WAITOK
);
812 printf("%s: could not load DMA'able memory for Rx return ring, "
813 "error = %i\n", device_xname(sc
->sc_dev
), error
);
814 bus_dmamem_free(sc
->sc_dmat
,
815 &sc
->age_rdata
.age_rr_ring_seg
, 1);
819 sc
->age_rdata
.age_rr_ring_paddr
=
820 sc
->age_cdata
.age_rr_ring_map
->dm_segs
[0].ds_addr
;
823 * Create DMA stuffs for CMB block
825 error
= bus_dmamap_create(sc
->sc_dmat
, AGE_CMB_BLOCK_SZ
, 1,
826 AGE_CMB_BLOCK_SZ
, 0, BUS_DMA_NOWAIT
,
827 &sc
->age_cdata
.age_cmb_block_map
);
829 sc
->age_cdata
.age_cmb_block_map
= NULL
;
833 /* Allocate DMA'able memory for CMB block */
834 error
= bus_dmamem_alloc(sc
->sc_dmat
, AGE_CMB_BLOCK_SZ
,
835 ETHER_ALIGN
, 0, &sc
->age_rdata
.age_cmb_block_seg
, 1,
836 &nsegs
, BUS_DMA_WAITOK
);
838 printf("%s: could not allocate DMA'able memory for "
839 "CMB block, error = %i\n", device_xname(sc
->sc_dev
), error
);
843 error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->age_rdata
.age_cmb_block_seg
,
844 nsegs
, AGE_CMB_BLOCK_SZ
, (void **)&sc
->age_rdata
.age_cmb_block
,
849 memset(sc
->age_rdata
.age_cmb_block
, 0, AGE_CMB_BLOCK_SZ
);
851 /* Load the DMA map for CMB block. */
852 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->age_cdata
.age_cmb_block_map
,
853 sc
->age_rdata
.age_cmb_block
, AGE_CMB_BLOCK_SZ
, NULL
,
856 printf("%s: could not load DMA'able memory for CMB block, "
857 "error = %i\n", device_xname(sc
->sc_dev
), error
);
858 bus_dmamem_free(sc
->sc_dmat
,
859 &sc
->age_rdata
.age_cmb_block_seg
, 1);
863 sc
->age_rdata
.age_cmb_block_paddr
=
864 sc
->age_cdata
.age_cmb_block_map
->dm_segs
[0].ds_addr
;
867 * Create DMA stuffs for SMB block
869 error
= bus_dmamap_create(sc
->sc_dmat
, AGE_SMB_BLOCK_SZ
, 1,
870 AGE_SMB_BLOCK_SZ
, 0, BUS_DMA_NOWAIT
,
871 &sc
->age_cdata
.age_smb_block_map
);
873 sc
->age_cdata
.age_smb_block_map
= NULL
;
877 /* Allocate DMA'able memory for SMB block */
878 error
= bus_dmamem_alloc(sc
->sc_dmat
, AGE_SMB_BLOCK_SZ
,
879 ETHER_ALIGN
, 0, &sc
->age_rdata
.age_smb_block_seg
, 1,
880 &nsegs
, BUS_DMA_WAITOK
);
882 printf("%s: could not allocate DMA'able memory for "
883 "SMB block, error = %i\n", device_xname(sc
->sc_dev
), error
);
887 error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->age_rdata
.age_smb_block_seg
,
888 nsegs
, AGE_SMB_BLOCK_SZ
, (void **)&sc
->age_rdata
.age_smb_block
,
893 memset(sc
->age_rdata
.age_smb_block
, 0, AGE_SMB_BLOCK_SZ
);
895 /* Load the DMA map for SMB block */
896 error
= bus_dmamap_load(sc
->sc_dmat
, sc
->age_cdata
.age_smb_block_map
,
897 sc
->age_rdata
.age_smb_block
, AGE_SMB_BLOCK_SZ
, NULL
,
900 printf("%s: could not load DMA'able memory for SMB block, "
901 "error = %i\n", device_xname(sc
->sc_dev
), error
);
902 bus_dmamem_free(sc
->sc_dmat
,
903 &sc
->age_rdata
.age_smb_block_seg
, 1);
907 sc
->age_rdata
.age_smb_block_paddr
=
908 sc
->age_cdata
.age_smb_block_map
->dm_segs
[0].ds_addr
;
910 /* Create DMA maps for Tx buffers. */
911 for (i
= 0; i
< AGE_TX_RING_CNT
; i
++) {
912 txd
= &sc
->age_cdata
.age_txdesc
[i
];
914 txd
->tx_dmamap
= NULL
;
915 error
= bus_dmamap_create(sc
->sc_dmat
, AGE_TSO_MAXSIZE
,
916 AGE_MAXTXSEGS
, AGE_TSO_MAXSEGSIZE
, 0, BUS_DMA_NOWAIT
,
919 txd
->tx_dmamap
= NULL
;
920 printf("%s: could not create Tx dmamap, error = %i.\n",
921 device_xname(sc
->sc_dev
), error
);
926 /* Create DMA maps for Rx buffers. */
927 error
= bus_dmamap_create(sc
->sc_dmat
, MCLBYTES
, 1, MCLBYTES
, 0,
928 BUS_DMA_NOWAIT
, &sc
->age_cdata
.age_rx_sparemap
);
930 sc
->age_cdata
.age_rx_sparemap
= NULL
;
931 printf("%s: could not create spare Rx dmamap, error = %i.\n",
932 device_xname(sc
->sc_dev
), error
);
935 for (i
= 0; i
< AGE_RX_RING_CNT
; i
++) {
936 rxd
= &sc
->age_cdata
.age_rxdesc
[i
];
938 rxd
->rx_dmamap
= NULL
;
939 error
= bus_dmamap_create(sc
->sc_dmat
, MCLBYTES
, 1,
940 MCLBYTES
, 0, BUS_DMA_NOWAIT
, &rxd
->rx_dmamap
);
942 rxd
->rx_dmamap
= NULL
;
943 printf("%s: could not create Rx dmamap, error = %i.\n",
944 device_xname(sc
->sc_dev
), error
);
953 age_dma_free(struct age_softc
*sc
)
955 struct age_txdesc
*txd
;
956 struct age_rxdesc
*rxd
;
960 for (i
= 0; i
< AGE_TX_RING_CNT
; i
++) {
961 txd
= &sc
->age_cdata
.age_txdesc
[i
];
962 if (txd
->tx_dmamap
!= NULL
) {
963 bus_dmamap_destroy(sc
->sc_dmat
, txd
->tx_dmamap
);
964 txd
->tx_dmamap
= NULL
;
968 for (i
= 0; i
< AGE_RX_RING_CNT
; i
++) {
969 rxd
= &sc
->age_cdata
.age_rxdesc
[i
];
970 if (rxd
->rx_dmamap
!= NULL
) {
971 bus_dmamap_destroy(sc
->sc_dmat
, rxd
->rx_dmamap
);
972 rxd
->rx_dmamap
= NULL
;
975 if (sc
->age_cdata
.age_rx_sparemap
!= NULL
) {
976 bus_dmamap_destroy(sc
->sc_dmat
, sc
->age_cdata
.age_rx_sparemap
);
977 sc
->age_cdata
.age_rx_sparemap
= NULL
;
981 if (sc
->age_cdata
.age_tx_ring_map
!= NULL
)
982 bus_dmamap_unload(sc
->sc_dmat
, sc
->age_cdata
.age_tx_ring_map
);
983 if (sc
->age_cdata
.age_tx_ring_map
!= NULL
&&
984 sc
->age_rdata
.age_tx_ring
!= NULL
)
985 bus_dmamem_free(sc
->sc_dmat
,
986 &sc
->age_rdata
.age_tx_ring_seg
, 1);
987 sc
->age_rdata
.age_tx_ring
= NULL
;
988 sc
->age_cdata
.age_tx_ring_map
= NULL
;
991 if (sc
->age_cdata
.age_rx_ring_map
!= NULL
)
992 bus_dmamap_unload(sc
->sc_dmat
, sc
->age_cdata
.age_rx_ring_map
);
993 if (sc
->age_cdata
.age_rx_ring_map
!= NULL
&&
994 sc
->age_rdata
.age_rx_ring
!= NULL
)
995 bus_dmamem_free(sc
->sc_dmat
,
996 &sc
->age_rdata
.age_rx_ring_seg
, 1);
997 sc
->age_rdata
.age_rx_ring
= NULL
;
998 sc
->age_cdata
.age_rx_ring_map
= NULL
;
1000 /* Rx return ring. */
1001 if (sc
->age_cdata
.age_rr_ring_map
!= NULL
)
1002 bus_dmamap_unload(sc
->sc_dmat
, sc
->age_cdata
.age_rr_ring_map
);
1003 if (sc
->age_cdata
.age_rr_ring_map
!= NULL
&&
1004 sc
->age_rdata
.age_rr_ring
!= NULL
)
1005 bus_dmamem_free(sc
->sc_dmat
,
1006 &sc
->age_rdata
.age_rr_ring_seg
, 1);
1007 sc
->age_rdata
.age_rr_ring
= NULL
;
1008 sc
->age_cdata
.age_rr_ring_map
= NULL
;
1011 if (sc
->age_cdata
.age_cmb_block_map
!= NULL
)
1012 bus_dmamap_unload(sc
->sc_dmat
, sc
->age_cdata
.age_cmb_block_map
);
1013 if (sc
->age_cdata
.age_cmb_block_map
!= NULL
&&
1014 sc
->age_rdata
.age_cmb_block
!= NULL
)
1015 bus_dmamem_free(sc
->sc_dmat
,
1016 &sc
->age_rdata
.age_cmb_block_seg
, 1);
1017 sc
->age_rdata
.age_cmb_block
= NULL
;
1018 sc
->age_cdata
.age_cmb_block_map
= NULL
;
1021 if (sc
->age_cdata
.age_smb_block_map
!= NULL
)
1022 bus_dmamap_unload(sc
->sc_dmat
, sc
->age_cdata
.age_smb_block_map
);
1023 if (sc
->age_cdata
.age_smb_block_map
!= NULL
&&
1024 sc
->age_rdata
.age_smb_block
!= NULL
)
1025 bus_dmamem_free(sc
->sc_dmat
,
1026 &sc
->age_rdata
.age_smb_block_seg
, 1);
1027 sc
->age_rdata
.age_smb_block
= NULL
;
1028 sc
->age_cdata
.age_smb_block_map
= NULL
;
1032 age_start(struct ifnet
*ifp
)
1034 struct age_softc
*sc
= ifp
->if_softc
;
1035 struct mbuf
*m_head
;
1038 if ((ifp
->if_flags
& (IFF_RUNNING
| IFF_OACTIVE
)) != IFF_RUNNING
)
1043 IFQ_DEQUEUE(&ifp
->if_snd
, m_head
);
1048 * Pack the data into the transmit ring. If we
1049 * don't have room, set the OACTIVE flag and wait
1050 * for the NIC to drain the ring.
1052 if (age_encap(sc
, &m_head
)) {
1055 IF_PREPEND(&ifp
->if_snd
, m_head
);
1056 ifp
->if_flags
|= IFF_OACTIVE
;
1063 * If there's a BPF listener, bounce a copy of this frame
1066 if (ifp
->if_bpf
!= NULL
)
1067 bpf_mtap(ifp
->if_bpf
, m_head
);
1073 AGE_COMMIT_MBOX(sc
);
1074 /* Set a timeout in case the chip goes out to lunch. */
1075 ifp
->if_timer
= AGE_TX_TIMEOUT
;
1080 age_watchdog(struct ifnet
*ifp
)
1082 struct age_softc
*sc
= ifp
->if_softc
;
1084 if ((sc
->age_flags
& AGE_FLAG_LINK
) == 0) {
1085 printf("%s: watchdog timeout (missed link)\n",
1086 device_xname(sc
->sc_dev
));
1092 if (sc
->age_cdata
.age_tx_cnt
== 0) {
1093 printf("%s: watchdog timeout (missed Tx interrupts) "
1094 "-- recovering\n", device_xname(sc
->sc_dev
));
1095 if (!IFQ_IS_EMPTY(&ifp
->if_snd
))
1100 printf("%s: watchdog timeout\n", device_xname(sc
->sc_dev
));
1104 if (!IFQ_IS_EMPTY(&ifp
->if_snd
))
1109 age_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
1111 struct age_softc
*sc
= ifp
->if_softc
;
1116 error
= ether_ioctl(ifp
, cmd
, data
);
1117 if (error
== ENETRESET
) {
1118 if (ifp
->if_flags
& IFF_RUNNING
)
1128 age_mac_config(struct age_softc
*sc
)
1130 struct mii_data
*mii
;
1133 mii
= &sc
->sc_miibus
;
1135 reg
= CSR_READ_4(sc
, AGE_MAC_CFG
);
1136 reg
&= ~MAC_CFG_FULL_DUPLEX
;
1137 reg
&= ~(MAC_CFG_TX_FC
| MAC_CFG_RX_FC
);
1138 reg
&= ~MAC_CFG_SPEED_MASK
;
1140 /* Reprogram MAC with resolved speed/duplex. */
1141 switch (IFM_SUBTYPE(mii
->mii_media_active
)) {
1144 reg
|= MAC_CFG_SPEED_10_100
;
1147 reg
|= MAC_CFG_SPEED_1000
;
1150 if ((IFM_OPTIONS(mii
->mii_media_active
) & IFM_FDX
) != 0) {
1151 reg
|= MAC_CFG_FULL_DUPLEX
;
1152 if ((IFM_OPTIONS(mii
->mii_media_active
) & IFM_ETH_TXPAUSE
) != 0)
1153 reg
|= MAC_CFG_TX_FC
;
1154 if ((IFM_OPTIONS(mii
->mii_media_active
) & IFM_ETH_RXPAUSE
) != 0)
1155 reg
|= MAC_CFG_RX_FC
;
1158 CSR_WRITE_4(sc
, AGE_MAC_CFG
, reg
);
1162 age_resume(device_t dv PMF_FN_ARGS
)
1164 struct age_softc
*sc
= device_private(dv
);
1168 * Clear INTx emulation disable for hardware that
1169 * is set in resume event. From Linux.
1171 cmd
= pci_conf_read(sc
->sc_pct
, sc
->sc_pcitag
, PCI_COMMAND_STATUS_REG
);
1172 if ((cmd
& PCI_COMMAND_INTERRUPT_DISABLE
) != 0) {
1173 cmd
&= ~PCI_COMMAND_INTERRUPT_DISABLE
;
1174 pci_conf_write(sc
->sc_pct
, sc
->sc_pcitag
,
1175 PCI_COMMAND_STATUS_REG
, cmd
);
1182 age_encap(struct age_softc
*sc
, struct mbuf
**m_head
)
1184 struct age_txdesc
*txd
, *txd_last
;
1185 struct tx_desc
*desc
;
1188 uint32_t cflags
, poff
, vtag
;
1189 int error
, i
, nsegs
, prod
;
1198 prod
= sc
->age_cdata
.age_tx_prod
;
1199 txd
= &sc
->age_cdata
.age_txdesc
[prod
];
1201 map
= txd
->tx_dmamap
;
1203 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, map
, *m_head
, BUS_DMA_NOWAIT
);
1205 if (error
== EFBIG
) {
1208 *m_head
= m_pullup(*m_head
, MHLEN
);
1209 if (*m_head
== NULL
) {
1210 printf("%s: can't defrag TX mbuf\n",
1211 device_xname(sc
->sc_dev
));
1215 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, map
, *m_head
,
1219 printf("%s: could not load defragged TX mbuf\n",
1220 device_xname(sc
->sc_dev
));
1226 printf("%s: could not load TX mbuf\n", device_xname(sc
->sc_dev
));
1230 nsegs
= map
->dm_nsegs
;
1238 /* Check descriptor overrun. */
1239 if (sc
->age_cdata
.age_tx_cnt
+ nsegs
>= AGE_TX_RING_CNT
- 2) {
1240 bus_dmamap_unload(sc
->sc_dmat
, map
);
1245 /* Configure Tx IP/TCP/UDP checksum offload. */
1246 if ((m
->m_pkthdr
.csum_flags
& AGE_CSUM_FEATURES
) != 0) {
1247 cflags
|= AGE_TD_CSUM
;
1248 if ((m
->m_pkthdr
.csum_flags
& M_CSUM_TCPv4
) != 0)
1249 cflags
|= AGE_TD_TCPCSUM
;
1250 if ((m
->m_pkthdr
.csum_flags
& M_CSUM_UDPv4
) != 0)
1251 cflags
|= AGE_TD_UDPCSUM
;
1252 /* Set checksum start offset. */
1253 cflags
|= (poff
<< AGE_TD_CSUM_PLOADOFFSET_SHIFT
);
1257 /* Configure VLAN hardware tag insertion. */
1258 if ((mtag
= VLAN_OUTPUT_TAG(&sc
->sc_ec
, m
))) {
1259 vtag
= AGE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag
)));
1260 vtag
= ((vtag
<< AGE_TD_VLAN_SHIFT
) & AGE_TD_VLAN_MASK
);
1261 cflags
|= AGE_TD_INSERT_VLAN_TAG
;
1266 for (i
= 0; i
< nsegs
; i
++) {
1267 desc
= &sc
->age_rdata
.age_tx_ring
[prod
];
1268 desc
->addr
= htole64(map
->dm_segs
[i
].ds_addr
);
1270 htole32(AGE_TX_BYTES(map
->dm_segs
[i
].ds_len
) | vtag
);
1271 desc
->flags
= htole32(cflags
);
1272 sc
->age_cdata
.age_tx_cnt
++;
1273 AGE_DESC_INC(prod
, AGE_TX_RING_CNT
);
1276 /* Update producer index. */
1277 sc
->age_cdata
.age_tx_prod
= prod
;
1279 /* Set EOP on the last descriptor. */
1280 prod
= (prod
+ AGE_TX_RING_CNT
- 1) % AGE_TX_RING_CNT
;
1281 desc
= &sc
->age_rdata
.age_tx_ring
[prod
];
1282 desc
->flags
|= htole32(AGE_TD_EOP
);
1284 /* Swap dmamap of the first and the last. */
1285 txd
= &sc
->age_cdata
.age_txdesc
[prod
];
1286 map
= txd_last
->tx_dmamap
;
1287 txd_last
->tx_dmamap
= txd
->tx_dmamap
;
1288 txd
->tx_dmamap
= map
;
1291 /* Sync descriptors. */
1292 bus_dmamap_sync(sc
->sc_dmat
, map
, 0, map
->dm_mapsize
,
1293 BUS_DMASYNC_PREWRITE
);
1294 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_tx_ring_map
, 0,
1295 sc
->age_cdata
.age_tx_ring_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1301 age_txintr(struct age_softc
*sc
, int tpd_cons
)
1303 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1304 struct age_txdesc
*txd
;
1307 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_tx_ring_map
, 0,
1308 sc
->age_cdata
.age_tx_ring_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1311 * Go through our Tx list and free mbufs for those
1312 * frames which have been transmitted.
1314 cons
= sc
->age_cdata
.age_tx_cons
;
1315 for (prog
= 0; cons
!= tpd_cons
; AGE_DESC_INC(cons
, AGE_TX_RING_CNT
)) {
1316 if (sc
->age_cdata
.age_tx_cnt
<= 0)
1319 ifp
->if_flags
&= ~IFF_OACTIVE
;
1320 sc
->age_cdata
.age_tx_cnt
--;
1321 txd
= &sc
->age_cdata
.age_txdesc
[cons
];
1323 * Clear Tx descriptors, it's not required but would
1324 * help debugging in case of Tx issues.
1326 txd
->tx_desc
->addr
= 0;
1327 txd
->tx_desc
->len
= 0;
1328 txd
->tx_desc
->flags
= 0;
1330 if (txd
->tx_m
== NULL
)
1332 /* Reclaim transmitted mbufs. */
1333 bus_dmamap_unload(sc
->sc_dmat
, txd
->tx_dmamap
);
1339 sc
->age_cdata
.age_tx_cons
= cons
;
1342 * Unarm watchdog timer only when there are no pending
1343 * Tx descriptors in queue.
1345 if (sc
->age_cdata
.age_tx_cnt
== 0)
1348 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_tx_ring_map
, 0,
1349 sc
->age_cdata
.age_tx_ring_map
->dm_mapsize
,
1350 BUS_DMASYNC_PREWRITE
);
1354 /* Receive a frame. */
1356 age_rxeof(struct age_softc
*sc
, struct rx_rdesc
*rxrd
)
1358 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1359 struct age_rxdesc
*rxd
;
1360 struct rx_desc
*desc
;
1361 struct mbuf
*mp
, *m
;
1362 uint32_t status
, index
;
1363 int count
, nsegs
, pktlen
;
1366 status
= le32toh(rxrd
->flags
);
1367 index
= le32toh(rxrd
->index
);
1368 rx_cons
= AGE_RX_CONS(index
);
1369 nsegs
= AGE_RX_NSEGS(index
);
1371 sc
->age_cdata
.age_rxlen
= AGE_RX_BYTES(le32toh(rxrd
->len
));
1372 if ((status
& AGE_RRD_ERROR
) != 0 &&
1373 (status
& (AGE_RRD_CRC
| AGE_RRD_CODE
| AGE_RRD_DRIBBLE
|
1374 AGE_RRD_RUNT
| AGE_RRD_OFLOW
| AGE_RRD_TRUNC
)) != 0) {
1376 * We want to pass the following frames to upper
1377 * layer regardless of error status of Rx return
1380 * o IP/TCP/UDP checksum is bad.
1381 * o frame length and protocol specific length
1384 sc
->age_cdata
.age_rx_cons
+= nsegs
;
1385 sc
->age_cdata
.age_rx_cons
%= AGE_RX_RING_CNT
;
1390 for (count
= 0; count
< nsegs
; count
++,
1391 AGE_DESC_INC(rx_cons
, AGE_RX_RING_CNT
)) {
1392 rxd
= &sc
->age_cdata
.age_rxdesc
[rx_cons
];
1394 desc
= rxd
->rx_desc
;
1395 /* Add a new receive buffer to the ring. */
1396 if (age_newbuf(sc
, rxd
, 0) != 0) {
1398 /* Reuse Rx buffers. */
1399 if (sc
->age_cdata
.age_rxhead
!= NULL
) {
1400 m_freem(sc
->age_cdata
.age_rxhead
);
1401 AGE_RXCHAIN_RESET(sc
);
1406 /* The length of the first mbuf is computed last. */
1408 mp
->m_len
= AGE_RX_BYTES(le32toh(desc
->len
));
1409 pktlen
+= mp
->m_len
;
1412 /* Chain received mbufs. */
1413 if (sc
->age_cdata
.age_rxhead
== NULL
) {
1414 sc
->age_cdata
.age_rxhead
= mp
;
1415 sc
->age_cdata
.age_rxtail
= mp
;
1417 mp
->m_flags
&= ~M_PKTHDR
;
1418 sc
->age_cdata
.age_rxprev_tail
=
1419 sc
->age_cdata
.age_rxtail
;
1420 sc
->age_cdata
.age_rxtail
->m_next
= mp
;
1421 sc
->age_cdata
.age_rxtail
= mp
;
1424 if (count
== nsegs
- 1) {
1426 * It seems that L1 controller has no way
1427 * to tell hardware to strip CRC bytes.
1429 sc
->age_cdata
.age_rxlen
-= ETHER_CRC_LEN
;
1431 /* Remove the CRC bytes in chained mbufs. */
1432 pktlen
-= ETHER_CRC_LEN
;
1433 if (mp
->m_len
<= ETHER_CRC_LEN
) {
1434 sc
->age_cdata
.age_rxtail
=
1435 sc
->age_cdata
.age_rxprev_tail
;
1436 sc
->age_cdata
.age_rxtail
->m_len
-=
1437 (ETHER_CRC_LEN
- mp
->m_len
);
1438 sc
->age_cdata
.age_rxtail
->m_next
= NULL
;
1441 mp
->m_len
-= ETHER_CRC_LEN
;
1445 m
= sc
->age_cdata
.age_rxhead
;
1446 m
->m_flags
|= M_PKTHDR
;
1447 m
->m_pkthdr
.rcvif
= ifp
;
1448 m
->m_pkthdr
.len
= sc
->age_cdata
.age_rxlen
;
1449 /* Set the first mbuf length. */
1450 m
->m_len
= sc
->age_cdata
.age_rxlen
- pktlen
;
1453 * Set checksum information.
1454 * It seems that L1 controller can compute partial
1455 * checksum. The partial checksum value can be used
1456 * to accelerate checksum computation for fragmented
1457 * TCP/UDP packets. Upper network stack already
1458 * takes advantage of the partial checksum value in
1459 * IP reassembly stage. But I'm not sure the
1460 * correctness of the partial hardware checksum
1461 * assistance due to lack of data sheet. If it is
1462 * proven to work on L1 I'll enable it.
1464 if (status
& AGE_RRD_IPV4
) {
1465 if (status
& AGE_RRD_IPCSUM_NOK
)
1466 m
->m_pkthdr
.csum_flags
|=
1468 if ((status
& (AGE_RRD_TCP
| AGE_RRD_UDP
)) &&
1469 (status
& AGE_RRD_TCP_UDPCSUM_NOK
)) {
1470 m
->m_pkthdr
.csum_flags
|=
1474 * Don't mark bad checksum for TCP/UDP frames
1475 * as fragmented frames may always have set
1476 * bad checksummed bit of descriptor status.
1480 /* Check for VLAN tagged frames. */
1481 if (status
& AGE_RRD_VLAN
) {
1482 uint32_t vtag
= AGE_RX_VLAN(le32toh(rxrd
->vtags
));
1483 VLAN_INPUT_TAG(ifp
, m
, AGE_RX_VLAN_TAG(vtag
),
1490 bpf_mtap(ifp
->if_bpf
, m
);
1493 ether_input(ifp
, m
);
1495 /* Reset mbuf chains. */
1496 AGE_RXCHAIN_RESET(sc
);
1500 if (count
!= nsegs
) {
1501 sc
->age_cdata
.age_rx_cons
+= nsegs
;
1502 sc
->age_cdata
.age_rx_cons
%= AGE_RX_RING_CNT
;
1504 sc
->age_cdata
.age_rx_cons
= rx_cons
;
1508 age_rxintr(struct age_softc
*sc
, int rr_prod
)
1510 struct rx_rdesc
*rxrd
;
1511 int rr_cons
, nsegs
, pktlen
, prog
;
1513 rr_cons
= sc
->age_cdata
.age_rr_cons
;
1514 if (rr_cons
== rr_prod
)
1517 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_rr_ring_map
, 0,
1518 sc
->age_cdata
.age_rr_ring_map
->dm_mapsize
,
1519 BUS_DMASYNC_POSTREAD
);
1521 for (prog
= 0; rr_cons
!= rr_prod
; prog
++) {
1522 rxrd
= &sc
->age_rdata
.age_rr_ring
[rr_cons
];
1523 nsegs
= AGE_RX_NSEGS(le32toh(rxrd
->index
));
1527 * Check number of segments against received bytes
1528 * Non-matching value would indicate that hardware
1529 * is still trying to update Rx return descriptors.
1530 * I'm not sure whether this check is really needed.
1532 pktlen
= AGE_RX_BYTES(le32toh(rxrd
->len
));
1533 if (nsegs
!= ((pktlen
+ (MCLBYTES
- ETHER_ALIGN
- 1)) /
1534 (MCLBYTES
- ETHER_ALIGN
)))
1537 /* Received a frame. */
1538 age_rxeof(sc
, rxrd
);
1540 /* Clear return ring. */
1542 AGE_DESC_INC(rr_cons
, AGE_RR_RING_CNT
);
1546 /* Update the consumer index. */
1547 sc
->age_cdata
.age_rr_cons
= rr_cons
;
1549 /* Sync descriptors. */
1550 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_rr_ring_map
, 0,
1551 sc
->age_cdata
.age_rr_ring_map
->dm_mapsize
,
1552 BUS_DMASYNC_PREWRITE
);
1554 /* Notify hardware availability of new Rx buffers. */
1555 AGE_COMMIT_MBOX(sc
);
1562 struct age_softc
*sc
= xsc
;
1563 struct mii_data
*mii
= &sc
->sc_miibus
;
1570 callout_schedule(&sc
->sc_tick_ch
, hz
);
1574 age_reset(struct age_softc
*sc
)
1579 CSR_WRITE_4(sc
, AGE_MASTER_CFG
, MASTER_RESET
);
1580 CSR_READ_4(sc
, AGE_MASTER_CFG
);
1582 for (i
= AGE_RESET_TIMEOUT
; i
> 0; i
--) {
1583 if ((reg
= CSR_READ_4(sc
, AGE_IDLE_STATUS
)) == 0)
1589 printf("%s: reset timeout(0x%08x)!\n", device_xname(sc
->sc_dev
),
1592 /* Initialize PCIe module. From Linux. */
1593 CSR_WRITE_4(sc
, 0x12FC, 0x6500);
1594 CSR_WRITE_4(sc
, 0x1008, CSR_READ_4(sc
, 0x1008) | 0x8000);
1598 age_init(struct ifnet
*ifp
)
1600 struct age_softc
*sc
= ifp
->if_softc
;
1601 struct mii_data
*mii
;
1602 uint8_t eaddr
[ETHER_ADDR_LEN
];
1604 uint32_t reg
, fsize
;
1605 uint32_t rxf_hi
, rxf_lo
, rrd_hi
, rrd_lo
;
1609 * Cancel any pending I/O.
1614 * Reset the chip to a known state.
1618 /* Initialize descriptors. */
1619 error
= age_init_rx_ring(sc
);
1621 printf("%s: no memory for Rx buffers.\n", device_xname(sc
->sc_dev
));
1625 age_init_rr_ring(sc
);
1626 age_init_tx_ring(sc
);
1627 age_init_cmb_block(sc
);
1628 age_init_smb_block(sc
);
1630 /* Reprogram the station address. */
1631 memcpy(eaddr
, CLLADDR(ifp
->if_sadl
), sizeof(eaddr
));
1632 CSR_WRITE_4(sc
, AGE_PAR0
,
1633 eaddr
[2] << 24 | eaddr
[3] << 16 | eaddr
[4] << 8 | eaddr
[5]);
1634 CSR_WRITE_4(sc
, AGE_PAR1
, eaddr
[0] << 8 | eaddr
[1]);
1636 /* Set descriptor base addresses. */
1637 paddr
= sc
->age_rdata
.age_tx_ring_paddr
;
1638 CSR_WRITE_4(sc
, AGE_DESC_ADDR_HI
, AGE_ADDR_HI(paddr
));
1639 paddr
= sc
->age_rdata
.age_rx_ring_paddr
;
1640 CSR_WRITE_4(sc
, AGE_DESC_RD_ADDR_LO
, AGE_ADDR_LO(paddr
));
1641 paddr
= sc
->age_rdata
.age_rr_ring_paddr
;
1642 CSR_WRITE_4(sc
, AGE_DESC_RRD_ADDR_LO
, AGE_ADDR_LO(paddr
));
1643 paddr
= sc
->age_rdata
.age_tx_ring_paddr
;
1644 CSR_WRITE_4(sc
, AGE_DESC_TPD_ADDR_LO
, AGE_ADDR_LO(paddr
));
1645 paddr
= sc
->age_rdata
.age_cmb_block_paddr
;
1646 CSR_WRITE_4(sc
, AGE_DESC_CMB_ADDR_LO
, AGE_ADDR_LO(paddr
));
1647 paddr
= sc
->age_rdata
.age_smb_block_paddr
;
1648 CSR_WRITE_4(sc
, AGE_DESC_SMB_ADDR_LO
, AGE_ADDR_LO(paddr
));
1650 /* Set Rx/Rx return descriptor counter. */
1651 CSR_WRITE_4(sc
, AGE_DESC_RRD_RD_CNT
,
1652 ((AGE_RR_RING_CNT
<< DESC_RRD_CNT_SHIFT
) &
1653 DESC_RRD_CNT_MASK
) |
1654 ((AGE_RX_RING_CNT
<< DESC_RD_CNT_SHIFT
) & DESC_RD_CNT_MASK
));
1656 /* Set Tx descriptor counter. */
1657 CSR_WRITE_4(sc
, AGE_DESC_TPD_CNT
,
1658 (AGE_TX_RING_CNT
<< DESC_TPD_CNT_SHIFT
) & DESC_TPD_CNT_MASK
);
1660 /* Tell hardware that we're ready to load descriptors. */
1661 CSR_WRITE_4(sc
, AGE_DMA_BLOCK
, DMA_BLOCK_LOAD
);
1664 * Initialize mailbox register.
1665 * Updated producer/consumer index information is exchanged
1666 * through this mailbox register. However Tx producer and
1667 * Rx return consumer/Rx producer are all shared such that
1668 * it's hard to separate code path between Tx and Rx without
1669 * locking. If L1 hardware have a separate mail box register
1670 * for Tx and Rx consumer/producer management we could have
1671 * indepent Tx/Rx handler which in turn Rx handler could have
1672 * been run without any locking.
1674 AGE_COMMIT_MBOX(sc
);
1676 /* Configure IPG/IFG parameters. */
1677 CSR_WRITE_4(sc
, AGE_IPG_IFG_CFG
,
1678 ((IPG_IFG_IPG2_DEFAULT
<< IPG_IFG_IPG2_SHIFT
) & IPG_IFG_IPG2_MASK
) |
1679 ((IPG_IFG_IPG1_DEFAULT
<< IPG_IFG_IPG1_SHIFT
) & IPG_IFG_IPG1_MASK
) |
1680 ((IPG_IFG_MIFG_DEFAULT
<< IPG_IFG_MIFG_SHIFT
) & IPG_IFG_MIFG_MASK
) |
1681 ((IPG_IFG_IPGT_DEFAULT
<< IPG_IFG_IPGT_SHIFT
) & IPG_IFG_IPGT_MASK
));
1683 /* Set parameters for half-duplex media. */
1684 CSR_WRITE_4(sc
, AGE_HDPX_CFG
,
1685 ((HDPX_CFG_LCOL_DEFAULT
<< HDPX_CFG_LCOL_SHIFT
) &
1686 HDPX_CFG_LCOL_MASK
) |
1687 ((HDPX_CFG_RETRY_DEFAULT
<< HDPX_CFG_RETRY_SHIFT
) &
1688 HDPX_CFG_RETRY_MASK
) | HDPX_CFG_EXC_DEF_EN
|
1689 ((HDPX_CFG_ABEBT_DEFAULT
<< HDPX_CFG_ABEBT_SHIFT
) &
1690 HDPX_CFG_ABEBT_MASK
) |
1691 ((HDPX_CFG_JAMIPG_DEFAULT
<< HDPX_CFG_JAMIPG_SHIFT
) &
1692 HDPX_CFG_JAMIPG_MASK
));
1694 /* Configure interrupt moderation timer. */
1695 sc
->age_int_mod
= AGE_IM_TIMER_DEFAULT
;
1696 CSR_WRITE_2(sc
, AGE_IM_TIMER
, AGE_USECS(sc
->age_int_mod
));
1697 reg
= CSR_READ_4(sc
, AGE_MASTER_CFG
);
1698 reg
&= ~MASTER_MTIMER_ENB
;
1699 if (AGE_USECS(sc
->age_int_mod
) == 0)
1700 reg
&= ~MASTER_ITIMER_ENB
;
1702 reg
|= MASTER_ITIMER_ENB
;
1703 CSR_WRITE_4(sc
, AGE_MASTER_CFG
, reg
);
1705 printf("%s: interrupt moderation is %d us.\n",
1706 device_xname(sc
->sc_dev
), sc
->age_int_mod
);
1707 CSR_WRITE_2(sc
, AGE_INTR_CLR_TIMER
, AGE_USECS(1000));
1709 /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1710 if (ifp
->if_mtu
< ETHERMTU
)
1711 sc
->age_max_frame_size
= ETHERMTU
;
1713 sc
->age_max_frame_size
= ifp
->if_mtu
;
1714 sc
->age_max_frame_size
+= ETHER_HDR_LEN
+
1715 sizeof(struct ether_vlan_header
) + ETHER_CRC_LEN
;
1716 CSR_WRITE_4(sc
, AGE_FRAME_SIZE
, sc
->age_max_frame_size
);
1718 /* Configure jumbo frame. */
1719 fsize
= roundup(sc
->age_max_frame_size
, sizeof(uint64_t));
1720 CSR_WRITE_4(sc
, AGE_RXQ_JUMBO_CFG
,
1721 (((fsize
/ sizeof(uint64_t)) <<
1722 RXQ_JUMBO_CFG_SZ_THRESH_SHIFT
) & RXQ_JUMBO_CFG_SZ_THRESH_MASK
) |
1723 ((RXQ_JUMBO_CFG_LKAH_DEFAULT
<<
1724 RXQ_JUMBO_CFG_LKAH_SHIFT
) & RXQ_JUMBO_CFG_LKAH_MASK
) |
1725 ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT
) &
1726 RXQ_JUMBO_CFG_RRD_TIMER_MASK
));
1728 /* Configure flow-control parameters. From Linux. */
1729 if ((sc
->age_flags
& AGE_FLAG_PCIE
) != 0) {
1731 * Magic workaround for old-L1.
1732 * Don't know which hw revision requires this magic.
1734 CSR_WRITE_4(sc
, 0x12FC, 0x6500);
1736 * Another magic workaround for flow-control mode
1737 * change. From Linux.
1739 CSR_WRITE_4(sc
, 0x1008, CSR_READ_4(sc
, 0x1008) | 0x8000);
1743 * Should understand pause parameter relationships between FIFO
1744 * size and number of Rx descriptors and Rx return descriptors.
1746 * Magic parameters came from Linux.
1748 switch (sc
->age_chip_rev
) {
1753 rxf_hi
= AGE_RX_RING_CNT
/ 16;
1754 rxf_lo
= (AGE_RX_RING_CNT
* 7) / 8;
1755 rrd_hi
= (AGE_RR_RING_CNT
* 7) / 8;
1756 rrd_lo
= AGE_RR_RING_CNT
/ 16;
1759 reg
= CSR_READ_4(sc
, AGE_SRAM_RX_FIFO_LEN
);
1763 rxf_hi
= (reg
* 7) / 8;
1764 if (rxf_hi
< rxf_lo
)
1765 rxf_hi
= rxf_lo
+ 16;
1766 reg
= CSR_READ_4(sc
, AGE_SRAM_RRD_LEN
);
1768 rrd_hi
= (reg
* 7) / 8;
1771 if (rrd_hi
< rrd_lo
)
1772 rrd_hi
= rrd_lo
+ 3;
1775 CSR_WRITE_4(sc
, AGE_RXQ_FIFO_PAUSE_THRESH
,
1776 ((rxf_lo
<< RXQ_FIFO_PAUSE_THRESH_LO_SHIFT
) &
1777 RXQ_FIFO_PAUSE_THRESH_LO_MASK
) |
1778 ((rxf_hi
<< RXQ_FIFO_PAUSE_THRESH_HI_SHIFT
) &
1779 RXQ_FIFO_PAUSE_THRESH_HI_MASK
));
1780 CSR_WRITE_4(sc
, AGE_RXQ_RRD_PAUSE_THRESH
,
1781 ((rrd_lo
<< RXQ_RRD_PAUSE_THRESH_LO_SHIFT
) &
1782 RXQ_RRD_PAUSE_THRESH_LO_MASK
) |
1783 ((rrd_hi
<< RXQ_RRD_PAUSE_THRESH_HI_SHIFT
) &
1784 RXQ_RRD_PAUSE_THRESH_HI_MASK
));
1786 /* Configure RxQ. */
1787 CSR_WRITE_4(sc
, AGE_RXQ_CFG
,
1788 ((RXQ_CFG_RD_BURST_DEFAULT
<< RXQ_CFG_RD_BURST_SHIFT
) &
1789 RXQ_CFG_RD_BURST_MASK
) |
1790 ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT
<<
1791 RXQ_CFG_RRD_BURST_THRESH_SHIFT
) & RXQ_CFG_RRD_BURST_THRESH_MASK
) |
1792 ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT
<<
1793 RXQ_CFG_RD_PREF_MIN_IPG_SHIFT
) & RXQ_CFG_RD_PREF_MIN_IPG_MASK
) |
1794 RXQ_CFG_CUT_THROUGH_ENB
| RXQ_CFG_ENB
);
1796 /* Configure TxQ. */
1797 CSR_WRITE_4(sc
, AGE_TXQ_CFG
,
1798 ((TXQ_CFG_TPD_BURST_DEFAULT
<< TXQ_CFG_TPD_BURST_SHIFT
) &
1799 TXQ_CFG_TPD_BURST_MASK
) |
1800 ((TXQ_CFG_TX_FIFO_BURST_DEFAULT
<< TXQ_CFG_TX_FIFO_BURST_SHIFT
) &
1801 TXQ_CFG_TX_FIFO_BURST_MASK
) |
1802 ((TXQ_CFG_TPD_FETCH_DEFAULT
<<
1803 TXQ_CFG_TPD_FETCH_THRESH_SHIFT
) & TXQ_CFG_TPD_FETCH_THRESH_MASK
) |
1806 /* Configure DMA parameters. */
1807 CSR_WRITE_4(sc
, AGE_DMA_CFG
,
1808 DMA_CFG_ENH_ORDER
| DMA_CFG_RCB_64
|
1809 sc
->age_dma_rd_burst
| DMA_CFG_RD_ENB
|
1810 sc
->age_dma_wr_burst
| DMA_CFG_WR_ENB
);
1812 /* Configure CMB DMA write threshold. */
1813 CSR_WRITE_4(sc
, AGE_CMB_WR_THRESH
,
1814 ((CMB_WR_THRESH_RRD_DEFAULT
<< CMB_WR_THRESH_RRD_SHIFT
) &
1815 CMB_WR_THRESH_RRD_MASK
) |
1816 ((CMB_WR_THRESH_TPD_DEFAULT
<< CMB_WR_THRESH_TPD_SHIFT
) &
1817 CMB_WR_THRESH_TPD_MASK
));
1819 /* Set CMB/SMB timer and enable them. */
1820 CSR_WRITE_4(sc
, AGE_CMB_WR_TIMER
,
1821 ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT
) & CMB_WR_TIMER_TX_MASK
) |
1822 ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT
) & CMB_WR_TIMER_RX_MASK
));
1824 /* Request SMB updates for every seconds. */
1825 CSR_WRITE_4(sc
, AGE_SMB_TIMER
, AGE_USECS(1000 * 1000));
1826 CSR_WRITE_4(sc
, AGE_CSMB_CTRL
, CSMB_CTRL_SMB_ENB
| CSMB_CTRL_CMB_ENB
);
1829 * Disable all WOL bits as WOL can interfere normal Rx
1832 CSR_WRITE_4(sc
, AGE_WOL_CFG
, 0);
1835 * Configure Tx/Rx MACs.
1836 * - Auto-padding for short frames.
1837 * - Enable CRC generation.
1838 * Start with full-duplex/1000Mbps media. Actual reconfiguration
1839 * of MAC is followed after link establishment.
1841 CSR_WRITE_4(sc
, AGE_MAC_CFG
,
1842 MAC_CFG_TX_CRC_ENB
| MAC_CFG_TX_AUTO_PAD
|
1843 MAC_CFG_FULL_DUPLEX
| MAC_CFG_SPEED_1000
|
1844 ((MAC_CFG_PREAMBLE_DEFAULT
<< MAC_CFG_PREAMBLE_SHIFT
) &
1845 MAC_CFG_PREAMBLE_MASK
));
1847 /* Set up the receive filter. */
1851 reg
= CSR_READ_4(sc
, AGE_MAC_CFG
);
1852 reg
|= MAC_CFG_RXCSUM_ENB
;
1854 /* Ack all pending interrupts and clear it. */
1855 CSR_WRITE_4(sc
, AGE_INTR_STATUS
, 0);
1856 CSR_WRITE_4(sc
, AGE_INTR_MASK
, AGE_INTRS
);
1858 /* Finally enable Tx/Rx MAC. */
1859 CSR_WRITE_4(sc
, AGE_MAC_CFG
, reg
| MAC_CFG_TX_ENB
| MAC_CFG_RX_ENB
);
1861 sc
->age_flags
&= ~AGE_FLAG_LINK
;
1863 /* Switch to the current media. */
1864 mii
= &sc
->sc_miibus
;
1867 callout_schedule(&sc
->sc_tick_ch
, hz
);
1869 ifp
->if_flags
|= IFF_RUNNING
;
1870 ifp
->if_flags
&= ~IFF_OACTIVE
;
1876 age_stop(struct ifnet
*ifp
, int disable
)
1878 struct age_softc
*sc
= ifp
->if_softc
;
1879 struct age_txdesc
*txd
;
1880 struct age_rxdesc
*rxd
;
1884 callout_stop(&sc
->sc_tick_ch
);
1887 * Mark the interface down and cancel the watchdog timer.
1889 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
1892 sc
->age_flags
&= ~AGE_FLAG_LINK
;
1894 mii_down(&sc
->sc_miibus
);
1897 * Disable interrupts.
1899 CSR_WRITE_4(sc
, AGE_INTR_MASK
, 0);
1900 CSR_WRITE_4(sc
, AGE_INTR_STATUS
, 0xFFFFFFFF);
1902 /* Stop CMB/SMB updates. */
1903 CSR_WRITE_4(sc
, AGE_CSMB_CTRL
, 0);
1905 /* Stop Rx/Tx MAC. */
1910 CSR_WRITE_4(sc
, AGE_DMA_CFG
,
1911 CSR_READ_4(sc
, AGE_DMA_CFG
) & ~(DMA_CFG_RD_ENB
| DMA_CFG_WR_ENB
));
1914 CSR_WRITE_4(sc
, AGE_TXQ_CFG
,
1915 CSR_READ_4(sc
, AGE_TXQ_CFG
) & ~TXQ_CFG_ENB
);
1916 CSR_WRITE_4(sc
, AGE_RXQ_CFG
,
1917 CSR_READ_4(sc
, AGE_RXQ_CFG
) & ~RXQ_CFG_ENB
);
1918 for (i
= AGE_RESET_TIMEOUT
; i
> 0; i
--) {
1919 if ((reg
= CSR_READ_4(sc
, AGE_IDLE_STATUS
)) == 0)
1924 printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1925 device_xname(sc
->sc_dev
), reg
);
1927 /* Reclaim Rx buffers that have been processed. */
1928 if (sc
->age_cdata
.age_rxhead
!= NULL
)
1929 m_freem(sc
->age_cdata
.age_rxhead
);
1930 AGE_RXCHAIN_RESET(sc
);
1933 * Free RX and TX mbufs still in the queues.
1935 for (i
= 0; i
< AGE_RX_RING_CNT
; i
++) {
1936 rxd
= &sc
->age_cdata
.age_rxdesc
[i
];
1937 if (rxd
->rx_m
!= NULL
) {
1938 bus_dmamap_unload(sc
->sc_dmat
, rxd
->rx_dmamap
);
1943 for (i
= 0; i
< AGE_TX_RING_CNT
; i
++) {
1944 txd
= &sc
->age_cdata
.age_txdesc
[i
];
1945 if (txd
->tx_m
!= NULL
) {
1946 bus_dmamap_unload(sc
->sc_dmat
, txd
->tx_dmamap
);
1954 age_stats_update(struct age_softc
*sc
)
1956 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
1957 struct age_stats
*stat
;
1960 stat
= &sc
->age_stat
;
1962 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_smb_block_map
, 0,
1963 sc
->age_cdata
.age_smb_block_map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1965 smb
= sc
->age_rdata
.age_smb_block
;
1966 if (smb
->updated
== 0)
1970 stat
->rx_frames
+= smb
->rx_frames
;
1971 stat
->rx_bcast_frames
+= smb
->rx_bcast_frames
;
1972 stat
->rx_mcast_frames
+= smb
->rx_mcast_frames
;
1973 stat
->rx_pause_frames
+= smb
->rx_pause_frames
;
1974 stat
->rx_control_frames
+= smb
->rx_control_frames
;
1975 stat
->rx_crcerrs
+= smb
->rx_crcerrs
;
1976 stat
->rx_lenerrs
+= smb
->rx_lenerrs
;
1977 stat
->rx_bytes
+= smb
->rx_bytes
;
1978 stat
->rx_runts
+= smb
->rx_runts
;
1979 stat
->rx_fragments
+= smb
->rx_fragments
;
1980 stat
->rx_pkts_64
+= smb
->rx_pkts_64
;
1981 stat
->rx_pkts_65_127
+= smb
->rx_pkts_65_127
;
1982 stat
->rx_pkts_128_255
+= smb
->rx_pkts_128_255
;
1983 stat
->rx_pkts_256_511
+= smb
->rx_pkts_256_511
;
1984 stat
->rx_pkts_512_1023
+= smb
->rx_pkts_512_1023
;
1985 stat
->rx_pkts_1024_1518
+= smb
->rx_pkts_1024_1518
;
1986 stat
->rx_pkts_1519_max
+= smb
->rx_pkts_1519_max
;
1987 stat
->rx_pkts_truncated
+= smb
->rx_pkts_truncated
;
1988 stat
->rx_fifo_oflows
+= smb
->rx_fifo_oflows
;
1989 stat
->rx_desc_oflows
+= smb
->rx_desc_oflows
;
1990 stat
->rx_alignerrs
+= smb
->rx_alignerrs
;
1991 stat
->rx_bcast_bytes
+= smb
->rx_bcast_bytes
;
1992 stat
->rx_mcast_bytes
+= smb
->rx_mcast_bytes
;
1993 stat
->rx_pkts_filtered
+= smb
->rx_pkts_filtered
;
1996 stat
->tx_frames
+= smb
->tx_frames
;
1997 stat
->tx_bcast_frames
+= smb
->tx_bcast_frames
;
1998 stat
->tx_mcast_frames
+= smb
->tx_mcast_frames
;
1999 stat
->tx_pause_frames
+= smb
->tx_pause_frames
;
2000 stat
->tx_excess_defer
+= smb
->tx_excess_defer
;
2001 stat
->tx_control_frames
+= smb
->tx_control_frames
;
2002 stat
->tx_deferred
+= smb
->tx_deferred
;
2003 stat
->tx_bytes
+= smb
->tx_bytes
;
2004 stat
->tx_pkts_64
+= smb
->tx_pkts_64
;
2005 stat
->tx_pkts_65_127
+= smb
->tx_pkts_65_127
;
2006 stat
->tx_pkts_128_255
+= smb
->tx_pkts_128_255
;
2007 stat
->tx_pkts_256_511
+= smb
->tx_pkts_256_511
;
2008 stat
->tx_pkts_512_1023
+= smb
->tx_pkts_512_1023
;
2009 stat
->tx_pkts_1024_1518
+= smb
->tx_pkts_1024_1518
;
2010 stat
->tx_pkts_1519_max
+= smb
->tx_pkts_1519_max
;
2011 stat
->tx_single_colls
+= smb
->tx_single_colls
;
2012 stat
->tx_multi_colls
+= smb
->tx_multi_colls
;
2013 stat
->tx_late_colls
+= smb
->tx_late_colls
;
2014 stat
->tx_excess_colls
+= smb
->tx_excess_colls
;
2015 stat
->tx_underrun
+= smb
->tx_underrun
;
2016 stat
->tx_desc_underrun
+= smb
->tx_desc_underrun
;
2017 stat
->tx_lenerrs
+= smb
->tx_lenerrs
;
2018 stat
->tx_pkts_truncated
+= smb
->tx_pkts_truncated
;
2019 stat
->tx_bcast_bytes
+= smb
->tx_bcast_bytes
;
2020 stat
->tx_mcast_bytes
+= smb
->tx_mcast_bytes
;
2022 /* Update counters in ifnet. */
2023 ifp
->if_opackets
+= smb
->tx_frames
;
2025 ifp
->if_collisions
+= smb
->tx_single_colls
+
2026 smb
->tx_multi_colls
+ smb
->tx_late_colls
+
2027 smb
->tx_excess_colls
* HDPX_CFG_RETRY_DEFAULT
;
2029 ifp
->if_oerrors
+= smb
->tx_excess_colls
+
2030 smb
->tx_late_colls
+ smb
->tx_underrun
+
2031 smb
->tx_pkts_truncated
;
2033 ifp
->if_ipackets
+= smb
->rx_frames
;
2035 ifp
->if_ierrors
+= smb
->rx_crcerrs
+ smb
->rx_lenerrs
+
2036 smb
->rx_runts
+ smb
->rx_pkts_truncated
+
2037 smb
->rx_fifo_oflows
+ smb
->rx_desc_oflows
+
2040 /* Update done, clear. */
2043 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_smb_block_map
, 0,
2044 sc
->age_cdata
.age_smb_block_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
2048 age_stop_txmac(struct age_softc
*sc
)
2053 reg
= CSR_READ_4(sc
, AGE_MAC_CFG
);
2054 if ((reg
& MAC_CFG_TX_ENB
) != 0) {
2055 reg
&= ~MAC_CFG_TX_ENB
;
2056 CSR_WRITE_4(sc
, AGE_MAC_CFG
, reg
);
2058 /* Stop Tx DMA engine. */
2059 reg
= CSR_READ_4(sc
, AGE_DMA_CFG
);
2060 if ((reg
& DMA_CFG_RD_ENB
) != 0) {
2061 reg
&= ~DMA_CFG_RD_ENB
;
2062 CSR_WRITE_4(sc
, AGE_DMA_CFG
, reg
);
2064 for (i
= AGE_RESET_TIMEOUT
; i
> 0; i
--) {
2065 if ((CSR_READ_4(sc
, AGE_IDLE_STATUS
) &
2066 (IDLE_STATUS_TXMAC
| IDLE_STATUS_DMARD
)) == 0)
2071 printf("%s: stopping TxMAC timeout!\n", device_xname(sc
->sc_dev
));
2075 age_stop_rxmac(struct age_softc
*sc
)
2080 reg
= CSR_READ_4(sc
, AGE_MAC_CFG
);
2081 if ((reg
& MAC_CFG_RX_ENB
) != 0) {
2082 reg
&= ~MAC_CFG_RX_ENB
;
2083 CSR_WRITE_4(sc
, AGE_MAC_CFG
, reg
);
2085 /* Stop Rx DMA engine. */
2086 reg
= CSR_READ_4(sc
, AGE_DMA_CFG
);
2087 if ((reg
& DMA_CFG_WR_ENB
) != 0) {
2088 reg
&= ~DMA_CFG_WR_ENB
;
2089 CSR_WRITE_4(sc
, AGE_DMA_CFG
, reg
);
2091 for (i
= AGE_RESET_TIMEOUT
; i
> 0; i
--) {
2092 if ((CSR_READ_4(sc
, AGE_IDLE_STATUS
) &
2093 (IDLE_STATUS_RXMAC
| IDLE_STATUS_DMAWR
)) == 0)
2098 printf("%s: stopping RxMAC timeout!\n", device_xname(sc
->sc_dev
));
2102 age_init_tx_ring(struct age_softc
*sc
)
2104 struct age_ring_data
*rd
;
2105 struct age_txdesc
*txd
;
2108 sc
->age_cdata
.age_tx_prod
= 0;
2109 sc
->age_cdata
.age_tx_cons
= 0;
2110 sc
->age_cdata
.age_tx_cnt
= 0;
2112 rd
= &sc
->age_rdata
;
2113 memset(rd
->age_tx_ring
, 0, AGE_TX_RING_SZ
);
2114 for (i
= 0; i
< AGE_TX_RING_CNT
; i
++) {
2115 txd
= &sc
->age_cdata
.age_txdesc
[i
];
2116 txd
->tx_desc
= &rd
->age_tx_ring
[i
];
2119 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_tx_ring_map
, 0,
2120 sc
->age_cdata
.age_tx_ring_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
2124 age_init_rx_ring(struct age_softc
*sc
)
2126 struct age_ring_data
*rd
;
2127 struct age_rxdesc
*rxd
;
2130 sc
->age_cdata
.age_rx_cons
= AGE_RX_RING_CNT
- 1;
2131 rd
= &sc
->age_rdata
;
2132 memset(rd
->age_rx_ring
, 0, AGE_RX_RING_SZ
);
2133 for (i
= 0; i
< AGE_RX_RING_CNT
; i
++) {
2134 rxd
= &sc
->age_cdata
.age_rxdesc
[i
];
2136 rxd
->rx_desc
= &rd
->age_rx_ring
[i
];
2137 if (age_newbuf(sc
, rxd
, 1) != 0)
2141 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_rx_ring_map
, 0,
2142 sc
->age_cdata
.age_rx_ring_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
2148 age_init_rr_ring(struct age_softc
*sc
)
2150 struct age_ring_data
*rd
;
2152 sc
->age_cdata
.age_rr_cons
= 0;
2153 AGE_RXCHAIN_RESET(sc
);
2155 rd
= &sc
->age_rdata
;
2156 memset(rd
->age_rr_ring
, 0, AGE_RR_RING_SZ
);
2157 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_rr_ring_map
, 0,
2158 sc
->age_cdata
.age_rr_ring_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
2162 age_init_cmb_block(struct age_softc
*sc
)
2164 struct age_ring_data
*rd
;
2166 rd
= &sc
->age_rdata
;
2167 memset(rd
->age_cmb_block
, 0, AGE_CMB_BLOCK_SZ
);
2168 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_cmb_block_map
, 0,
2169 sc
->age_cdata
.age_cmb_block_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
2173 age_init_smb_block(struct age_softc
*sc
)
2175 struct age_ring_data
*rd
;
2177 rd
= &sc
->age_rdata
;
2178 memset(rd
->age_smb_block
, 0, AGE_SMB_BLOCK_SZ
);
2179 bus_dmamap_sync(sc
->sc_dmat
, sc
->age_cdata
.age_smb_block_map
, 0,
2180 sc
->age_cdata
.age_smb_block_map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
2184 age_newbuf(struct age_softc
*sc
, struct age_rxdesc
*rxd
, int init
)
2186 struct rx_desc
*desc
;
2191 MGETHDR(m
, init
? M_WAITOK
: M_DONTWAIT
, MT_DATA
);
2194 MCLGET(m
, init
? M_WAITOK
: M_DONTWAIT
);
2195 if (!(m
->m_flags
& M_EXT
)) {
2200 m
->m_len
= m
->m_pkthdr
.len
= MCLBYTES
;
2201 m_adj(m
, ETHER_ALIGN
);
2203 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
,
2204 sc
->age_cdata
.age_rx_sparemap
, m
, BUS_DMA_NOWAIT
);
2208 bus_dmamap_unload(sc
->sc_dmat
,
2209 sc
->age_cdata
.age_rx_sparemap
);
2211 printf("%s: too many segments?!\n",
2212 device_xname(sc
->sc_dev
));
2217 printf("%s: can't load RX mbuf\n", device_xname(sc
->sc_dev
));
2221 if (rxd
->rx_m
!= NULL
) {
2222 bus_dmamap_sync(sc
->sc_dmat
, rxd
->rx_dmamap
, 0,
2223 rxd
->rx_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
2224 bus_dmamap_unload(sc
->sc_dmat
, rxd
->rx_dmamap
);
2226 map
= rxd
->rx_dmamap
;
2227 rxd
->rx_dmamap
= sc
->age_cdata
.age_rx_sparemap
;
2228 sc
->age_cdata
.age_rx_sparemap
= map
;
2231 desc
= rxd
->rx_desc
;
2232 desc
->addr
= htole64(rxd
->rx_dmamap
->dm_segs
[0].ds_addr
);
2234 htole32((rxd
->rx_dmamap
->dm_segs
[0].ds_len
& AGE_RD_LEN_MASK
) <<
2241 age_rxvlan(struct age_softc
*sc
)
2245 reg
= CSR_READ_4(sc
, AGE_MAC_CFG
);
2246 reg
&= ~MAC_CFG_VLAN_TAG_STRIP
;
2247 if (sc
->sc_ec
.ec_capabilities
& ETHERCAP_VLAN_HWTAGGING
)
2248 reg
|= MAC_CFG_VLAN_TAG_STRIP
;
2249 CSR_WRITE_4(sc
, AGE_MAC_CFG
, reg
);
2253 age_rxfilter(struct age_softc
*sc
)
2255 struct ethercom
*ec
= &sc
->sc_ec
;
2256 struct ifnet
*ifp
= &sc
->sc_ec
.ec_if
;
2257 struct ether_multi
*enm
;
2258 struct ether_multistep step
;
2263 rxcfg
= CSR_READ_4(sc
, AGE_MAC_CFG
);
2264 rxcfg
&= ~(MAC_CFG_ALLMULTI
| MAC_CFG_BCAST
| MAC_CFG_PROMISC
);
2265 ifp
->if_flags
&= ~IFF_ALLMULTI
;
2268 * Always accept broadcast frames.
2270 rxcfg
|= MAC_CFG_BCAST
;
2272 if (ifp
->if_flags
& IFF_PROMISC
|| ec
->ec_multicnt
> 0) {
2273 ifp
->if_flags
|= IFF_ALLMULTI
;
2274 if (ifp
->if_flags
& IFF_PROMISC
)
2275 rxcfg
|= MAC_CFG_PROMISC
;
2277 rxcfg
|= MAC_CFG_ALLMULTI
;
2278 mchash
[0] = mchash
[1] = 0xFFFFFFFF;
2280 /* Program new filter. */
2281 memset(mchash
, 0, sizeof(mchash
));
2283 ETHER_FIRST_MULTI(step
, ec
, enm
);
2284 while (enm
!= NULL
) {
2285 crc
= ether_crc32_le(enm
->enm_addrlo
, ETHER_ADDR_LEN
);
2286 mchash
[crc
>> 31] |= 1 << ((crc
>> 26) & 0x1f);
2287 ETHER_NEXT_MULTI(step
, enm
);
2291 CSR_WRITE_4(sc
, AGE_MAR0
, mchash
[0]);
2292 CSR_WRITE_4(sc
, AGE_MAR1
, mchash
[1]);
2293 CSR_WRITE_4(sc
, AGE_MAC_CFG
, rxcfg
);