1 /* $NetBSD: if_sip.c,v 1.142 2009/09/16 16:34:50 dyoung Exp $ */
4 * Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
7 * This code is derived from software contributed to The NetBSD Foundation
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Copyright (c) 1999 Network Computer, Inc.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of Network Computer, Inc. nor the names of its
45 * contributors may be used to endorse or promote products derived
46 * from this software without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
49 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
50 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
51 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
52 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
53 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
54 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
55 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
56 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
57 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
58 * POSSIBILITY OF SUCH DAMAGE.
62 * Device driver for the Silicon Integrated Systems SiS 900,
63 * SiS 7016 10/100, National Semiconductor DP83815 10/100, and
64 * National Semiconductor DP83820 10/100/1000 PCI Ethernet
67 * Originally written to support the SiS 900 by Jason R. Thorpe for
68 * Network Computer, Inc.
72 * - Reduce the Rx interrupt load.
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.142 2009/09/16 16:34:50 dyoung Exp $");
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/callout.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 #include <sys/ioctl.h>
89 #include <sys/errno.h>
90 #include <sys/device.h>
91 #include <sys/queue.h>
93 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
109 #include <sys/intr.h>
110 #include <machine/endian.h>
112 #include <dev/mii/mii.h>
113 #include <dev/mii/miivar.h>
114 #include <dev/mii/mii_bitbang.h>
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118 #include <dev/pci/pcidevs.h>
120 #include <dev/pci/if_sipreg.h>
123 * Transmit descriptor list size. This is arbitrary, but allocate
124 * enough descriptors for 128 pending transmissions, and 8 segments
125 * per packet (64 for DP83820 for jumbo frames).
127 * This MUST work out to a power of 2.
129 #define GSIP_NTXSEGS_ALLOC 16
130 #define SIP_NTXSEGS_ALLOC 8
132 #define SIP_TXQUEUELEN 256
133 #define MAX_SIP_NTXDESC \
134 (SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
137 * Receive descriptor list size. We have one Rx buffer per incoming
138 * packet, so this logic is a little simpler.
140 * Actually, on the DP83820, we allow the packet to consume more than
141 * one buffer, in order to support jumbo Ethernet frames. In that
142 * case, a packet may consume up to 5 buffers (assuming a 2048 byte
143 * mbuf cluster). 256 receive buffers is only 51 maximum size packets,
144 * so we'd better be quick about handling receive interrupts.
146 #define GSIP_NRXDESC 256
147 #define SIP_NRXDESC 128
149 #define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
152 * Control structures are DMA'd to the SiS900 chip. We allocate them in
153 * a single clump that maps to a single DMA segment to make several things
156 struct sip_control_data
{
158 * The transmit descriptors.
160 struct sip_desc scd_txdescs
[MAX_SIP_NTXDESC
];
163 * The receive descriptors.
165 struct sip_desc scd_rxdescs
[MAX_SIP_NRXDESC
];
168 #define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
169 #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
170 #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
173 * Software state for transmit jobs.
176 struct mbuf
*txs_mbuf
; /* head of our mbuf chain */
177 bus_dmamap_t txs_dmamap
; /* our DMA map */
178 int txs_firstdesc
; /* first descriptor in packet */
179 int txs_lastdesc
; /* last descriptor in packet */
180 SIMPLEQ_ENTRY(sip_txsoft
) txs_q
;
183 SIMPLEQ_HEAD(sip_txsq
, sip_txsoft
);
186 * Software state for receive jobs.
189 struct mbuf
*rxs_mbuf
; /* head of our mbuf chain */
190 bus_dmamap_t rxs_dmamap
; /* our DMA map */
193 enum sip_attach_stage
{
195 , SIP_ATTACH_CREATE_RXMAP
196 , SIP_ATTACH_CREATE_TXMAP
197 , SIP_ATTACH_LOAD_MAP
198 , SIP_ATTACH_CREATE_MAP
200 , SIP_ATTACH_ALLOC_MEM
206 * Software state per device.
209 device_t sc_dev
; /* generic device information */
210 struct device_suspensor sc_suspensor
;
211 struct pmf_qual sc_qual
;
213 bus_space_tag_t sc_st
; /* bus space tag */
214 bus_space_handle_t sc_sh
; /* bus space handle */
215 bus_size_t sc_sz
; /* bus space size */
216 bus_dma_tag_t sc_dmat
; /* bus DMA tag */
217 pci_chipset_tag_t sc_pc
;
218 bus_dma_segment_t sc_seg
;
219 struct ethercom sc_ethercom
; /* ethernet common data */
221 const struct sip_product
*sc_model
; /* which model are we? */
222 int sc_gigabit
; /* 1: 83820, 0: other */
223 int sc_rev
; /* chip revision */
225 void *sc_ih
; /* interrupt cookie */
227 struct mii_data sc_mii
; /* MII/media information */
229 callout_t sc_tick_ch
; /* tick callout */
231 bus_dmamap_t sc_cddmamap
; /* control data DMA map */
232 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
235 * Software state for transmit and receive descriptors.
237 struct sip_txsoft sc_txsoft
[SIP_TXQUEUELEN
];
238 struct sip_rxsoft sc_rxsoft
[MAX_SIP_NRXDESC
];
241 * Control data structures.
243 struct sip_control_data
*sc_control_data
;
244 #define sc_txdescs sc_control_data->scd_txdescs
245 #define sc_rxdescs sc_control_data->scd_rxdescs
247 #ifdef SIP_EVENT_COUNTERS
251 struct evcnt sc_ev_txsstall
; /* Tx stalled due to no txs */
252 struct evcnt sc_ev_txdstall
; /* Tx stalled due to no txd */
253 struct evcnt sc_ev_txforceintr
; /* Tx interrupts forced */
254 struct evcnt sc_ev_txdintr
; /* Tx descriptor interrupts */
255 struct evcnt sc_ev_txiintr
; /* Tx idle interrupts */
256 struct evcnt sc_ev_rxintr
; /* Rx interrupts */
257 struct evcnt sc_ev_hiberr
; /* HIBERR interrupts */
258 struct evcnt sc_ev_rxpause
; /* PAUSE received */
260 struct evcnt sc_ev_txpause
; /* PAUSE transmitted */
261 struct evcnt sc_ev_rxipsum
; /* IP checksums checked in-bound */
262 struct evcnt sc_ev_rxtcpsum
; /* TCP checksums checked in-bound */
263 struct evcnt sc_ev_rxudpsum
; /* UDP checksums checked in-boudn */
264 struct evcnt sc_ev_txipsum
; /* IP checksums comp. out-bound */
265 struct evcnt sc_ev_txtcpsum
; /* TCP checksums comp. out-bound */
266 struct evcnt sc_ev_txudpsum
; /* UDP checksums comp. out-bound */
267 #endif /* SIP_EVENT_COUNTERS */
269 u_int32_t sc_txcfg
; /* prototype TXCFG register */
270 u_int32_t sc_rxcfg
; /* prototype RXCFG register */
271 u_int32_t sc_imr
; /* prototype IMR register */
272 u_int32_t sc_rfcr
; /* prototype RFCR register */
274 u_int32_t sc_cfg
; /* prototype CFG register */
276 u_int32_t sc_gpior
; /* prototype GPIOR register */
278 u_int32_t sc_tx_fill_thresh
; /* transmit fill threshold */
279 u_int32_t sc_tx_drain_thresh
; /* transmit drain threshold */
281 u_int32_t sc_rx_drain_thresh
; /* receive drain threshold */
283 int sc_flowflags
; /* 802.3x flow control flags */
284 int sc_rx_flow_thresh
; /* Rx FIFO threshold for flow control */
285 int sc_paused
; /* paused indication */
287 int sc_txfree
; /* number of free Tx descriptors */
288 int sc_txnext
; /* next ready Tx descriptor */
289 int sc_txwin
; /* Tx descriptors since last intr */
291 struct sip_txsq sc_txfreeq
; /* free Tx descsofts */
292 struct sip_txsq sc_txdirtyq
; /* dirty Tx descsofts */
294 /* values of interface state at last init */
297 uint64_t if_capenable
;
306 int sc_rxptr
; /* next ready Rx descriptor/descsoft */
309 struct mbuf
*sc_rxhead
;
310 struct mbuf
*sc_rxtail
;
311 struct mbuf
**sc_rxtailp
;
318 const struct sip_parm
{
319 const struct sip_regs
{
324 const struct sip_bits
{
325 uint32_t b_txcfg_mxdma_8
;
326 uint32_t b_txcfg_mxdma_16
;
327 uint32_t b_txcfg_mxdma_32
;
328 uint32_t b_txcfg_mxdma_64
;
329 uint32_t b_txcfg_mxdma_128
;
330 uint32_t b_txcfg_mxdma_256
;
331 uint32_t b_txcfg_mxdma_512
;
332 uint32_t b_txcfg_flth_mask
;
333 uint32_t b_txcfg_drth_mask
;
335 uint32_t b_rxcfg_mxdma_8
;
336 uint32_t b_rxcfg_mxdma_16
;
337 uint32_t b_rxcfg_mxdma_32
;
338 uint32_t b_rxcfg_mxdma_64
;
339 uint32_t b_rxcfg_mxdma_128
;
340 uint32_t b_rxcfg_mxdma_256
;
341 uint32_t b_rxcfg_mxdma_512
;
343 uint32_t b_isr_txrcmp
;
344 uint32_t b_isr_rxrcmp
;
345 uint32_t b_isr_dperr
;
346 uint32_t b_isr_sserr
;
347 uint32_t b_isr_rmabt
;
348 uint32_t b_isr_rtabt
;
350 uint32_t b_cmdsts_size_mask
;
354 bus_size_t p_tx_dmamap_size
;
360 void (*sc_rxintr
)(struct sip_softc
*);
363 rndsource_element_t rnd_source
; /* random source */
367 #define sc_bits sc_parm->p_bits
368 #define sc_regs sc_parm->p_regs
370 static const struct sip_parm sip_parm
= {
371 .p_filtmem
= OTHER_RFCR_NS_RFADDR_FILTMEM
372 , .p_rxbuf_len
= MCLBYTES
- 1 /* field width */
373 , .p_tx_dmamap_size
= MCLBYTES
375 , .p_ntxsegs_alloc
= SIP_NTXSEGS_ALLOC
376 , .p_nrxdesc
= SIP_NRXDESC
378 .b_txcfg_mxdma_8
= 0x00200000 /* 8 bytes */
379 , .b_txcfg_mxdma_16
= 0x00300000 /* 16 bytes */
380 , .b_txcfg_mxdma_32
= 0x00400000 /* 32 bytes */
381 , .b_txcfg_mxdma_64
= 0x00500000 /* 64 bytes */
382 , .b_txcfg_mxdma_128
= 0x00600000 /* 128 bytes */
383 , .b_txcfg_mxdma_256
= 0x00700000 /* 256 bytes */
384 , .b_txcfg_mxdma_512
= 0x00000000 /* 512 bytes */
385 , .b_txcfg_flth_mask
= 0x00003f00 /* Tx fill threshold */
386 , .b_txcfg_drth_mask
= 0x0000003f /* Tx drain threshold */
388 , .b_rxcfg_mxdma_8
= 0x00200000 /* 8 bytes */
389 , .b_rxcfg_mxdma_16
= 0x00300000 /* 16 bytes */
390 , .b_rxcfg_mxdma_32
= 0x00400000 /* 32 bytes */
391 , .b_rxcfg_mxdma_64
= 0x00500000 /* 64 bytes */
392 , .b_rxcfg_mxdma_128
= 0x00600000 /* 128 bytes */
393 , .b_rxcfg_mxdma_256
= 0x00700000 /* 256 bytes */
394 , .b_rxcfg_mxdma_512
= 0x00000000 /* 512 bytes */
396 , .b_isr_txrcmp
= 0x02000000 /* transmit reset complete */
397 , .b_isr_rxrcmp
= 0x01000000 /* receive reset complete */
398 , .b_isr_dperr
= 0x00800000 /* detected parity error */
399 , .b_isr_sserr
= 0x00400000 /* signalled system error */
400 , .b_isr_rmabt
= 0x00200000 /* received master abort */
401 , .b_isr_rtabt
= 0x00100000 /* received target abort */
402 , .b_cmdsts_size_mask
= OTHER_CMDSTS_SIZE_MASK
405 .r_rxcfg
= OTHER_SIP_RXCFG
,
406 .r_txcfg
= OTHER_SIP_TXCFG
409 .p_filtmem
= DP83820_RFCR_NS_RFADDR_FILTMEM
410 , .p_rxbuf_len
= MCLBYTES
- 8
411 , .p_tx_dmamap_size
= ETHER_MAX_LEN_JUMBO
413 , .p_ntxsegs_alloc
= GSIP_NTXSEGS_ALLOC
414 , .p_nrxdesc
= GSIP_NRXDESC
416 .b_txcfg_mxdma_8
= 0x00100000 /* 8 bytes */
417 , .b_txcfg_mxdma_16
= 0x00200000 /* 16 bytes */
418 , .b_txcfg_mxdma_32
= 0x00300000 /* 32 bytes */
419 , .b_txcfg_mxdma_64
= 0x00400000 /* 64 bytes */
420 , .b_txcfg_mxdma_128
= 0x00500000 /* 128 bytes */
421 , .b_txcfg_mxdma_256
= 0x00600000 /* 256 bytes */
422 , .b_txcfg_mxdma_512
= 0x00700000 /* 512 bytes */
423 , .b_txcfg_flth_mask
= 0x0000ff00 /* Fx fill threshold */
424 , .b_txcfg_drth_mask
= 0x000000ff /* Tx drain threshold */
426 , .b_rxcfg_mxdma_8
= 0x00100000 /* 8 bytes */
427 , .b_rxcfg_mxdma_16
= 0x00200000 /* 16 bytes */
428 , .b_rxcfg_mxdma_32
= 0x00300000 /* 32 bytes */
429 , .b_rxcfg_mxdma_64
= 0x00400000 /* 64 bytes */
430 , .b_rxcfg_mxdma_128
= 0x00500000 /* 128 bytes */
431 , .b_rxcfg_mxdma_256
= 0x00600000 /* 256 bytes */
432 , .b_rxcfg_mxdma_512
= 0x00700000 /* 512 bytes */
434 , .b_isr_txrcmp
= 0x00400000 /* transmit reset complete */
435 , .b_isr_rxrcmp
= 0x00200000 /* receive reset complete */
436 , .b_isr_dperr
= 0x00100000 /* detected parity error */
437 , .b_isr_sserr
= 0x00080000 /* signalled system error */
438 , .b_isr_rmabt
= 0x00040000 /* received master abort */
439 , .b_isr_rtabt
= 0x00020000 /* received target abort */
440 , .b_cmdsts_size_mask
= DP83820_CMDSTS_SIZE_MASK
443 .r_rxcfg
= DP83820_SIP_RXCFG
,
444 .r_txcfg
= DP83820_SIP_TXCFG
449 sip_nexttx(const struct sip_softc
*sc
, int x
)
451 return (x
+ 1) & sc
->sc_ntxdesc_mask
;
455 sip_nextrx(const struct sip_softc
*sc
, int x
)
457 return (x
+ 1) & sc
->sc_nrxdesc_mask
;
462 sip_rxchain_reset(struct sip_softc
*sc
)
464 sc
->sc_rxtailp
= &sc
->sc_rxhead
;
465 *sc
->sc_rxtailp
= NULL
;
471 sip_rxchain_link(struct sip_softc
*sc
, struct mbuf
*m
)
473 *sc
->sc_rxtailp
= sc
->sc_rxtail
= m
;
474 sc
->sc_rxtailp
= &m
->m_next
;
477 #ifdef SIP_EVENT_COUNTERS
478 #define SIP_EVCNT_INCR(ev) (ev)->ev_count++
480 #define SIP_EVCNT_INCR(ev) /* nothing */
483 #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
484 #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
487 sip_cdtxsync(struct sip_softc
*sc
, const int x0
, const int n0
, const int ops
)
494 /* If it will wrap around, sync to the end of the ring. */
495 if (x
+ n
> sc
->sc_ntxdesc
) {
496 bus_dmamap_sync(sc
->sc_dmat
, sc
->sc_cddmamap
,
497 SIP_CDTXOFF(x
), sizeof(struct sip_desc
) *
498 (sc
->sc_ntxdesc
- x
), ops
);
499 n
-= (sc
->sc_ntxdesc
- x
);
503 /* Now sync whatever is left. */
504 bus_dmamap_sync(sc
->sc_dmat
, sc
->sc_cddmamap
,
505 SIP_CDTXOFF(x
), sizeof(struct sip_desc
) * n
, ops
);
509 sip_cdrxsync(struct sip_softc
*sc
, int x
, int ops
)
511 bus_dmamap_sync(sc
->sc_dmat
, sc
->sc_cddmamap
,
512 SIP_CDRXOFF(x
), sizeof(struct sip_desc
), ops
);
517 u_int32_t sipd_bufptr
; /* pointer to DMA segment */
518 u_int32_t sipd_cmdsts
; /* command/status word */
520 u_int32_t sipd_cmdsts
; /* command/status word */
521 u_int32_t sipd_bufptr
; /* pointer to DMA segment */
525 static inline volatile uint32_t *
526 sipd_cmdsts(struct sip_softc
*sc
, struct sip_desc
*sipd
)
528 return &sipd
->sipd_cbs
[(sc
->sc_gigabit
) ? 1 : 0];
531 static inline volatile uint32_t *
532 sipd_bufptr(struct sip_softc
*sc
, struct sip_desc
*sipd
)
534 return &sipd
->sipd_cbs
[(sc
->sc_gigabit
) ? 0 : 1];
538 sip_init_rxdesc(struct sip_softc
*sc
, int x
)
540 struct sip_rxsoft
*rxs
= &sc
->sc_rxsoft
[x
];
541 struct sip_desc
*sipd
= &sc
->sc_rxdescs
[x
];
543 sipd
->sipd_link
= htole32(SIP_CDRXADDR(sc
, sip_nextrx(sc
, x
)));
544 *sipd_bufptr(sc
, sipd
) = htole32(rxs
->rxs_dmamap
->dm_segs
[0].ds_addr
);
545 *sipd_cmdsts(sc
, sipd
) = htole32(CMDSTS_INTR
|
546 (sc
->sc_parm
->p_rxbuf_len
& sc
->sc_bits
.b_cmdsts_size_mask
));
547 sipd
->sipd_extsts
= 0;
548 sip_cdrxsync(sc
, x
, BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
551 #define SIP_CHIP_VERS(sc, v, p, r) \
552 ((sc)->sc_model->sip_vendor == (v) && \
553 (sc)->sc_model->sip_product == (p) && \
556 #define SIP_CHIP_MODEL(sc, v, p) \
557 ((sc)->sc_model->sip_vendor == (v) && \
558 (sc)->sc_model->sip_product == (p))
560 #define SIP_SIS900_REV(sc, rev) \
561 SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
563 #define SIP_TIMEOUT 1000
565 static int sip_ifflags_cb(struct ethercom
*);
566 static void sipcom_start(struct ifnet
*);
567 static void sipcom_watchdog(struct ifnet
*);
568 static int sipcom_ioctl(struct ifnet
*, u_long
, void *);
569 static int sipcom_init(struct ifnet
*);
570 static void sipcom_stop(struct ifnet
*, int);
572 static bool sipcom_reset(struct sip_softc
*);
573 static void sipcom_rxdrain(struct sip_softc
*);
574 static int sipcom_add_rxbuf(struct sip_softc
*, int);
575 static void sipcom_read_eeprom(struct sip_softc
*, int, int,
577 static void sipcom_tick(void *);
579 static void sipcom_sis900_set_filter(struct sip_softc
*);
580 static void sipcom_dp83815_set_filter(struct sip_softc
*);
582 static void sipcom_dp83820_read_macaddr(struct sip_softc
*,
583 const struct pci_attach_args
*, u_int8_t
*);
584 static void sipcom_sis900_eeprom_delay(struct sip_softc
*sc
);
585 static void sipcom_sis900_read_macaddr(struct sip_softc
*,
586 const struct pci_attach_args
*, u_int8_t
*);
587 static void sipcom_dp83815_read_macaddr(struct sip_softc
*,
588 const struct pci_attach_args
*, u_int8_t
*);
590 static int sipcom_intr(void *);
591 static void sipcom_txintr(struct sip_softc
*);
592 static void sip_rxintr(struct sip_softc
*);
593 static void gsip_rxintr(struct sip_softc
*);
595 static int sipcom_dp83820_mii_readreg(device_t
, int, int);
596 static void sipcom_dp83820_mii_writereg(device_t
, int, int, int);
597 static void sipcom_dp83820_mii_statchg(device_t
);
599 static int sipcom_sis900_mii_readreg(device_t
, int, int);
600 static void sipcom_sis900_mii_writereg(device_t
, int, int, int);
601 static void sipcom_sis900_mii_statchg(device_t
);
603 static int sipcom_dp83815_mii_readreg(device_t
, int, int);
604 static void sipcom_dp83815_mii_writereg(device_t
, int, int, int);
605 static void sipcom_dp83815_mii_statchg(device_t
);
607 static void sipcom_mediastatus(struct ifnet
*, struct ifmediareq
*);
609 static int sipcom_match(device_t
, cfdata_t
, void *);
610 static void sipcom_attach(device_t
, device_t
, void *);
611 static void sipcom_do_detach(device_t
, enum sip_attach_stage
);
612 static int sipcom_detach(device_t
, int);
613 static bool sipcom_resume(device_t PMF_FN_PROTO
);
614 static bool sipcom_suspend(device_t PMF_FN_PROTO
);
616 int gsip_copy_small
= 0;
617 int sip_copy_small
= 0;
619 CFATTACH_DECL3_NEW(gsip
, sizeof(struct sip_softc
),
620 sipcom_match
, sipcom_attach
, sipcom_detach
, NULL
, NULL
, NULL
,
621 DVF_DETACH_SHUTDOWN
);
622 CFATTACH_DECL3_NEW(sip
, sizeof(struct sip_softc
),
623 sipcom_match
, sipcom_attach
, sipcom_detach
, NULL
, NULL
, NULL
,
624 DVF_DETACH_SHUTDOWN
);
627 * Descriptions of the variants of the SiS900.
630 int (*sipv_mii_readreg
)(device_t
, int, int);
631 void (*sipv_mii_writereg
)(device_t
, int, int, int);
632 void (*sipv_mii_statchg
)(device_t
);
633 void (*sipv_set_filter
)(struct sip_softc
*);
634 void (*sipv_read_macaddr
)(struct sip_softc
*,
635 const struct pci_attach_args
*, u_int8_t
*);
638 static u_int32_t
sipcom_mii_bitbang_read(device_t
);
639 static void sipcom_mii_bitbang_write(device_t
, u_int32_t
);
641 static const struct mii_bitbang_ops sipcom_mii_bitbang_ops
= {
642 sipcom_mii_bitbang_read
,
643 sipcom_mii_bitbang_write
,
645 EROMAR_MDIO
, /* MII_BIT_MDO */
646 EROMAR_MDIO
, /* MII_BIT_MDI */
647 EROMAR_MDC
, /* MII_BIT_MDC */
648 EROMAR_MDDIR
, /* MII_BIT_DIR_HOST_PHY */
649 0, /* MII_BIT_DIR_PHY_HOST */
653 static const struct sip_variant sipcom_variant_dp83820
= {
654 sipcom_dp83820_mii_readreg
,
655 sipcom_dp83820_mii_writereg
,
656 sipcom_dp83820_mii_statchg
,
657 sipcom_dp83815_set_filter
,
658 sipcom_dp83820_read_macaddr
,
661 static const struct sip_variant sipcom_variant_sis900
= {
662 sipcom_sis900_mii_readreg
,
663 sipcom_sis900_mii_writereg
,
664 sipcom_sis900_mii_statchg
,
665 sipcom_sis900_set_filter
,
666 sipcom_sis900_read_macaddr
,
669 static const struct sip_variant sipcom_variant_dp83815
= {
670 sipcom_dp83815_mii_readreg
,
671 sipcom_dp83815_mii_writereg
,
672 sipcom_dp83815_mii_statchg
,
673 sipcom_dp83815_set_filter
,
674 sipcom_dp83815_read_macaddr
,
679 * Devices supported by this driver.
681 static const struct sip_product
{
682 pci_vendor_id_t sip_vendor
;
683 pci_product_id_t sip_product
;
684 const char *sip_name
;
685 const struct sip_variant
*sip_variant
;
687 } sipcom_products
[] = {
688 { PCI_VENDOR_NS
, PCI_PRODUCT_NS_DP83820
,
689 "NatSemi DP83820 Gigabit Ethernet",
690 &sipcom_variant_dp83820
, 1 },
691 { PCI_VENDOR_SIS
, PCI_PRODUCT_SIS_900
,
692 "SiS 900 10/100 Ethernet",
693 &sipcom_variant_sis900
, 0 },
694 { PCI_VENDOR_SIS
, PCI_PRODUCT_SIS_7016
,
695 "SiS 7016 10/100 Ethernet",
696 &sipcom_variant_sis900
, 0 },
698 { PCI_VENDOR_NS
, PCI_PRODUCT_NS_DP83815
,
699 "NatSemi DP83815 10/100 Ethernet",
700 &sipcom_variant_dp83815
, 0 },
707 static const struct sip_product
*
708 sipcom_lookup(const struct pci_attach_args
*pa
, bool gigabit
)
710 const struct sip_product
*sip
;
712 for (sip
= sipcom_products
; sip
->sip_name
!= NULL
; sip
++) {
713 if (PCI_VENDOR(pa
->pa_id
) == sip
->sip_vendor
&&
714 PCI_PRODUCT(pa
->pa_id
) == sip
->sip_product
&&
715 sip
->sip_gigabit
== gigabit
)
722 * I really hate stupid hardware vendors. There's a bit in the EEPROM
723 * which indicates if the card can do 64-bit data transfers. Unfortunately,
724 * several vendors of 32-bit cards fail to clear this bit in the EEPROM,
725 * which means we try to use 64-bit data transfers on those cards if we
726 * happen to be plugged into a 32-bit slot.
728 * What we do is use this table of cards known to be 64-bit cards. If
729 * you have a 64-bit card who's subsystem ID is not listed in this table,
730 * send the output of "pcictl dump ..." of the device to me so that your
731 * card will use the 64-bit data path when plugged into a 64-bit slot.
733 * -- Jason R. Thorpe <thorpej@NetBSD.org>
737 sipcom_check_64bit(const struct pci_attach_args
*pa
)
739 static const struct {
740 pci_vendor_id_t c64_vendor
;
741 pci_product_id_t c64_product
;
746 /* Accton EN1407-T, Planex GN-1000TE */
760 subsys
= pci_conf_read(pa
->pa_pc
, pa
->pa_tag
, PCI_SUBSYS_ID_REG
);
762 for (i
= 0; card64
[i
].c64_vendor
!= 0; i
++) {
763 if (PCI_VENDOR(subsys
) == card64
[i
].c64_vendor
&&
764 PCI_PRODUCT(subsys
) == card64
[i
].c64_product
)
772 sipcom_match(device_t parent
, cfdata_t cf
, void *aux
)
774 struct pci_attach_args
*pa
= aux
;
776 if (sipcom_lookup(pa
, strcmp(cf
->cf_name
, "gsip") == 0) != NULL
)
783 sipcom_dp83820_attach(struct sip_softc
*sc
, struct pci_attach_args
*pa
)
789 * Cause the chip to load configuration data from the EEPROM.
791 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_PTSCR
, PTSCR_EELOAD_EN
);
792 for (i
= 0; i
< 10000; i
++) {
794 if ((bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_PTSCR
) &
795 PTSCR_EELOAD_EN
) == 0)
798 if (bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_PTSCR
) &
800 printf("%s: timeout loading configuration from EEPROM\n",
801 device_xname(sc
->sc_dev
));
805 sc
->sc_gpior
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_GPIOR
);
807 reg
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_CFG
);
808 if (reg
& CFG_PCI64_DET
) {
809 printf("%s: 64-bit PCI slot detected", device_xname(sc
->sc_dev
));
811 * Check to see if this card is 64-bit. If so, enable 64-bit
814 * We can't use the DATA64_EN bit in the EEPROM, because
815 * vendors of 32-bit cards fail to clear that bit in many
816 * cases (yet the card still detects that it's in a 64-bit
819 if (sipcom_check_64bit(pa
)) {
820 sc
->sc_cfg
|= CFG_DATA64_EN
;
821 printf(", using 64-bit data transfers");
827 * XXX Need some PCI flags indicating support for
828 * XXX 64-bit addressing.
831 if (reg
& CFG_M64ADDR
)
832 sc
->sc_cfg
|= CFG_M64ADDR
;
833 if (reg
& CFG_T64ADDR
)
834 sc
->sc_cfg
|= CFG_T64ADDR
;
837 if (reg
& (CFG_TBI_EN
|CFG_EXT_125
)) {
838 const char *sep
= "";
839 printf("%s: using ", device_xname(sc
->sc_dev
));
840 if (reg
& CFG_EXT_125
) {
841 sc
->sc_cfg
|= CFG_EXT_125
;
842 printf("%s125MHz clock", sep
);
845 if (reg
& CFG_TBI_EN
) {
846 sc
->sc_cfg
|= CFG_TBI_EN
;
847 printf("%sten-bit interface", sep
);
852 if ((pa
->pa_flags
& PCI_FLAGS_MRM_OKAY
) == 0 ||
853 (reg
& CFG_MRM_DIS
) != 0)
854 sc
->sc_cfg
|= CFG_MRM_DIS
;
855 if ((pa
->pa_flags
& PCI_FLAGS_MWI_OKAY
) == 0 ||
856 (reg
& CFG_MWI_DIS
) != 0)
857 sc
->sc_cfg
|= CFG_MWI_DIS
;
860 * Use the extended descriptor format on the DP83820. This
861 * gives us an interface to VLAN tagging and IPv4/TCP/UDP
864 sc
->sc_cfg
|= CFG_EXTSTS_EN
;
868 sipcom_detach(device_t self
, int flags
)
873 sipcom_do_detach(self
, SIP_ATTACH_FIN
);
880 sipcom_do_detach(device_t self
, enum sip_attach_stage stage
)
883 struct sip_softc
*sc
= device_private(self
);
884 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
887 * Free any resources we've allocated during attach.
888 * Do this in reverse order and fall through.
893 pmf_device_deregister(self
);
894 #ifdef SIP_EVENT_COUNTERS
896 * Attach event counters.
898 evcnt_detach(&sc
->sc_ev_txforceintr
);
899 evcnt_detach(&sc
->sc_ev_txdstall
);
900 evcnt_detach(&sc
->sc_ev_txsstall
);
901 evcnt_detach(&sc
->sc_ev_hiberr
);
902 evcnt_detach(&sc
->sc_ev_rxintr
);
903 evcnt_detach(&sc
->sc_ev_txiintr
);
904 evcnt_detach(&sc
->sc_ev_txdintr
);
905 if (!sc
->sc_gigabit
) {
906 evcnt_detach(&sc
->sc_ev_rxpause
);
908 evcnt_detach(&sc
->sc_ev_txudpsum
);
909 evcnt_detach(&sc
->sc_ev_txtcpsum
);
910 evcnt_detach(&sc
->sc_ev_txipsum
);
911 evcnt_detach(&sc
->sc_ev_rxudpsum
);
912 evcnt_detach(&sc
->sc_ev_rxtcpsum
);
913 evcnt_detach(&sc
->sc_ev_rxipsum
);
914 evcnt_detach(&sc
->sc_ev_txpause
);
915 evcnt_detach(&sc
->sc_ev_rxpause
);
917 #endif /* SIP_EVENT_COUNTERS */
920 rnd_detach_source(&sc
->rnd_source
);
925 mii_detach(&sc
->sc_mii
, MII_PHY_ANY
, MII_OFFSET_ANY
);
928 case SIP_ATTACH_CREATE_RXMAP
:
929 for (i
= 0; i
< sc
->sc_parm
->p_nrxdesc
; i
++) {
930 if (sc
->sc_rxsoft
[i
].rxs_dmamap
!= NULL
)
931 bus_dmamap_destroy(sc
->sc_dmat
,
932 sc
->sc_rxsoft
[i
].rxs_dmamap
);
935 case SIP_ATTACH_CREATE_TXMAP
:
936 for (i
= 0; i
< SIP_TXQUEUELEN
; i
++) {
937 if (sc
->sc_txsoft
[i
].txs_dmamap
!= NULL
)
938 bus_dmamap_destroy(sc
->sc_dmat
,
939 sc
->sc_txsoft
[i
].txs_dmamap
);
942 case SIP_ATTACH_LOAD_MAP
:
943 bus_dmamap_unload(sc
->sc_dmat
, sc
->sc_cddmamap
);
945 case SIP_ATTACH_CREATE_MAP
:
946 bus_dmamap_destroy(sc
->sc_dmat
, sc
->sc_cddmamap
);
948 case SIP_ATTACH_MAP_MEM
:
949 bus_dmamem_unmap(sc
->sc_dmat
, (void *)sc
->sc_control_data
,
950 sizeof(struct sip_control_data
));
952 case SIP_ATTACH_ALLOC_MEM
:
953 bus_dmamem_free(sc
->sc_dmat
, &sc
->sc_seg
, 1);
955 case SIP_ATTACH_INTR
:
956 pci_intr_disestablish(sc
->sc_pc
, sc
->sc_ih
);
959 bus_space_unmap(sc
->sc_st
, sc
->sc_sh
, sc
->sc_sz
);
968 sipcom_resume(device_t self PMF_FN_ARGS
)
970 struct sip_softc
*sc
= device_private(self
);
972 return sipcom_reset(sc
);
976 sipcom_suspend(device_t self PMF_FN_ARGS
)
978 struct sip_softc
*sc
= device_private(self
);
985 sipcom_attach(device_t parent
, device_t self
, void *aux
)
987 struct sip_softc
*sc
= device_private(self
);
988 struct pci_attach_args
*pa
= aux
;
989 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
990 pci_chipset_tag_t pc
= pa
->pa_pc
;
991 pci_intr_handle_t ih
;
992 const char *intrstr
= NULL
;
993 bus_space_tag_t iot
, memt
;
994 bus_space_handle_t ioh
, memh
;
995 bus_size_t iosz
, memsz
;
996 int ioh_valid
, memh_valid
;
998 const struct sip_product
*sip
;
999 u_int8_t enaddr
[ETHER_ADDR_LEN
];
1002 bus_size_t tx_dmamap_size
;
1004 cfdata_t cf
= device_cfdata(self
);
1006 callout_init(&sc
->sc_tick_ch
, 0);
1008 sip
= sipcom_lookup(pa
, strcmp(cf
->cf_name
, "gsip") == 0);
1011 panic("%s: impossible", __func__
);
1014 sc
->sc_gigabit
= sip
->sip_gigabit
;
1015 pmf_self_suspensor_init(self
, &sc
->sc_suspensor
, &sc
->sc_qual
);
1018 if (sc
->sc_gigabit
) {
1019 sc
->sc_rxintr
= gsip_rxintr
;
1020 sc
->sc_parm
= &gsip_parm
;
1022 sc
->sc_rxintr
= sip_rxintr
;
1023 sc
->sc_parm
= &sip_parm
;
1025 tx_dmamap_size
= sc
->sc_parm
->p_tx_dmamap_size
;
1026 ntxsegs_alloc
= sc
->sc_parm
->p_ntxsegs_alloc
;
1027 sc
->sc_ntxdesc
= SIP_TXQUEUELEN
* ntxsegs_alloc
;
1028 sc
->sc_ntxdesc_mask
= sc
->sc_ntxdesc
- 1;
1029 sc
->sc_nrxdesc_mask
= sc
->sc_parm
->p_nrxdesc
- 1;
1031 sc
->sc_rev
= PCI_REVISION(pa
->pa_class
);
1033 printf(": %s, rev %#02x\n", sip
->sip_name
, sc
->sc_rev
);
1038 * XXX Work-around broken PXE firmware on some boards.
1040 * The DP83815 shares an address decoder with the MEM BAR
1041 * and the ROM BAR. Make sure the ROM BAR is disabled,
1042 * so that memory mapped access works.
1044 pci_conf_write(pa
->pa_pc
, pa
->pa_tag
, PCI_MAPREG_ROM
,
1045 pci_conf_read(pa
->pa_pc
, pa
->pa_tag
, PCI_MAPREG_ROM
) &
1046 ~PCI_MAPREG_ROM_ENABLE
);
1051 ioh_valid
= (pci_mapreg_map(pa
, SIP_PCI_CFGIOA
,
1052 PCI_MAPREG_TYPE_IO
, 0,
1053 &iot
, &ioh
, NULL
, &iosz
) == 0);
1054 if (sc
->sc_gigabit
) {
1055 memtype
= pci_mapreg_type(pa
->pa_pc
, pa
->pa_tag
, SIP_PCI_CFGMA
);
1057 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_32BIT
:
1058 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_64BIT
:
1059 memh_valid
= (pci_mapreg_map(pa
, SIP_PCI_CFGMA
,
1060 memtype
, 0, &memt
, &memh
, NULL
, &memsz
) == 0);
1066 memh_valid
= (pci_mapreg_map(pa
, SIP_PCI_CFGMA
,
1067 PCI_MAPREG_TYPE_MEM
|PCI_MAPREG_MEM_TYPE_32BIT
, 0,
1068 &memt
, &memh
, NULL
, &memsz
) == 0);
1075 } else if (ioh_valid
) {
1080 printf("%s: unable to map device registers\n",
1081 device_xname(sc
->sc_dev
));
1085 sc
->sc_dmat
= pa
->pa_dmat
;
1088 * Make sure bus mastering is enabled. Also make sure
1089 * Write/Invalidate is enabled if we're allowed to use it.
1091 csr
= pci_conf_read(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
);
1092 if (pa
->pa_flags
& PCI_FLAGS_MWI_OKAY
)
1093 csr
|= PCI_COMMAND_INVALIDATE_ENABLE
;
1094 pci_conf_write(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
,
1095 csr
| PCI_COMMAND_MASTER_ENABLE
);
1098 error
= pci_activate(pa
->pa_pc
, pa
->pa_tag
, self
, pci_activate_null
);
1099 if (error
!= 0 && error
!= EOPNOTSUPP
) {
1100 aprint_error_dev(sc
->sc_dev
, "cannot activate %d\n", error
);
1105 * Map and establish our interrupt.
1107 if (pci_intr_map(pa
, &ih
)) {
1108 aprint_error_dev(sc
->sc_dev
, "unable to map interrupt\n");
1111 intrstr
= pci_intr_string(pc
, ih
);
1112 sc
->sc_ih
= pci_intr_establish(pc
, ih
, IPL_NET
, sipcom_intr
, sc
);
1113 if (sc
->sc_ih
== NULL
) {
1114 aprint_error_dev(sc
->sc_dev
, "unable to establish interrupt");
1115 if (intrstr
!= NULL
)
1116 aprint_error(" at %s", intrstr
);
1118 return sipcom_do_detach(self
, SIP_ATTACH_MAP
);
1120 aprint_normal_dev(sc
->sc_dev
, "interrupting at %s\n", intrstr
);
1122 SIMPLEQ_INIT(&sc
->sc_txfreeq
);
1123 SIMPLEQ_INIT(&sc
->sc_txdirtyq
);
1126 * Allocate the control data structures, and create and load the
1129 if ((error
= bus_dmamem_alloc(sc
->sc_dmat
,
1130 sizeof(struct sip_control_data
), PAGE_SIZE
, 0, &sc
->sc_seg
, 1,
1132 aprint_error_dev(sc
->sc_dev
, "unable to allocate control data, error = %d\n",
1134 return sipcom_do_detach(self
, SIP_ATTACH_INTR
);
1137 if ((error
= bus_dmamem_map(sc
->sc_dmat
, &sc
->sc_seg
, rseg
,
1138 sizeof(struct sip_control_data
), (void **)&sc
->sc_control_data
,
1139 BUS_DMA_COHERENT
|BUS_DMA_NOCACHE
)) != 0) {
1140 aprint_error_dev(sc
->sc_dev
, "unable to map control data, error = %d\n",
1142 sipcom_do_detach(self
, SIP_ATTACH_ALLOC_MEM
);
1145 if ((error
= bus_dmamap_create(sc
->sc_dmat
,
1146 sizeof(struct sip_control_data
), 1,
1147 sizeof(struct sip_control_data
), 0, 0, &sc
->sc_cddmamap
)) != 0) {
1148 aprint_error_dev(sc
->sc_dev
, "unable to create control data DMA map, "
1149 "error = %d\n", error
);
1150 sipcom_do_detach(self
, SIP_ATTACH_MAP_MEM
);
1153 if ((error
= bus_dmamap_load(sc
->sc_dmat
, sc
->sc_cddmamap
,
1154 sc
->sc_control_data
, sizeof(struct sip_control_data
), NULL
,
1156 aprint_error_dev(sc
->sc_dev
, "unable to load control data DMA map, error = %d\n",
1158 sipcom_do_detach(self
, SIP_ATTACH_CREATE_MAP
);
1162 * Create the transmit buffer DMA maps.
1164 for (i
= 0; i
< SIP_TXQUEUELEN
; i
++) {
1165 if ((error
= bus_dmamap_create(sc
->sc_dmat
, tx_dmamap_size
,
1166 sc
->sc_parm
->p_ntxsegs
, MCLBYTES
, 0, 0,
1167 &sc
->sc_txsoft
[i
].txs_dmamap
)) != 0) {
1168 aprint_error_dev(sc
->sc_dev
, "unable to create tx DMA map %d, "
1169 "error = %d\n", i
, error
);
1170 sipcom_do_detach(self
, SIP_ATTACH_CREATE_TXMAP
);
1175 * Create the receive buffer DMA maps.
1177 for (i
= 0; i
< sc
->sc_parm
->p_nrxdesc
; i
++) {
1178 if ((error
= bus_dmamap_create(sc
->sc_dmat
, MCLBYTES
, 1,
1179 MCLBYTES
, 0, 0, &sc
->sc_rxsoft
[i
].rxs_dmamap
)) != 0) {
1180 aprint_error_dev(sc
->sc_dev
, "unable to create rx DMA map %d, "
1181 "error = %d\n", i
, error
);
1182 sipcom_do_detach(self
, SIP_ATTACH_CREATE_RXMAP
);
1184 sc
->sc_rxsoft
[i
].rxs_mbuf
= NULL
;
1188 * Reset the chip to a known state.
1193 * Read the Ethernet address from the EEPROM. This might
1194 * also fetch other stuff from the EEPROM and stash it
1198 if (!sc
->sc_gigabit
) {
1199 if (SIP_SIS900_REV(sc
,SIS_REV_635
) ||
1200 SIP_SIS900_REV(sc
,SIS_REV_900B
))
1201 sc
->sc_cfg
|= (CFG_PESEL
| CFG_RNDCNT
);
1203 if (SIP_SIS900_REV(sc
,SIS_REV_635
) ||
1204 SIP_SIS900_REV(sc
,SIS_REV_960
) ||
1205 SIP_SIS900_REV(sc
,SIS_REV_900B
))
1207 (bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_CFG
) &
1211 (*sip
->sip_variant
->sipv_read_macaddr
)(sc
, pa
, enaddr
);
1213 printf("%s: Ethernet address %s\n", device_xname(sc
->sc_dev
),
1214 ether_sprintf(enaddr
));
1217 * Initialize the configuration register: aggressive PCI
1218 * bus request algorithm, default backoff, default OW timer,
1219 * default parity error detection.
1221 * NOTE: "Big endian mode" is useless on the SiS900 and
1222 * friends -- it affects packet data, not descriptors.
1225 sipcom_dp83820_attach(sc
, pa
);
1228 * Initialize our media structures and probe the MII.
1230 sc
->sc_mii
.mii_ifp
= ifp
;
1231 sc
->sc_mii
.mii_readreg
= sip
->sip_variant
->sipv_mii_readreg
;
1232 sc
->sc_mii
.mii_writereg
= sip
->sip_variant
->sipv_mii_writereg
;
1233 sc
->sc_mii
.mii_statchg
= sip
->sip_variant
->sipv_mii_statchg
;
1234 sc
->sc_ethercom
.ec_mii
= &sc
->sc_mii
;
1235 ifmedia_init(&sc
->sc_mii
.mii_media
, IFM_IMASK
, ether_mediachange
,
1236 sipcom_mediastatus
);
1239 * XXX We cannot handle flow control on the DP83815.
1241 if (SIP_CHIP_MODEL(sc
, PCI_VENDOR_NS
, PCI_PRODUCT_NS_DP83815
))
1242 mii_attach(sc
->sc_dev
, &sc
->sc_mii
, 0xffffffff, MII_PHY_ANY
,
1245 mii_attach(sc
->sc_dev
, &sc
->sc_mii
, 0xffffffff, MII_PHY_ANY
,
1246 MII_OFFSET_ANY
, MIIF_DOPAUSE
);
1247 if (LIST_FIRST(&sc
->sc_mii
.mii_phys
) == NULL
) {
1248 ifmedia_add(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
, 0, NULL
);
1249 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
);
1251 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_AUTO
);
1253 ifp
= &sc
->sc_ethercom
.ec_if
;
1254 strlcpy(ifp
->if_xname
, device_xname(sc
->sc_dev
), IFNAMSIZ
);
1256 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
1257 sc
->sc_if_flags
= ifp
->if_flags
;
1258 ifp
->if_ioctl
= sipcom_ioctl
;
1259 ifp
->if_start
= sipcom_start
;
1260 ifp
->if_watchdog
= sipcom_watchdog
;
1261 ifp
->if_init
= sipcom_init
;
1262 ifp
->if_stop
= sipcom_stop
;
1263 IFQ_SET_READY(&ifp
->if_snd
);
1266 * We can support 802.1Q VLAN-sized frames.
1268 sc
->sc_ethercom
.ec_capabilities
|= ETHERCAP_VLAN_MTU
;
1270 if (sc
->sc_gigabit
) {
1272 * And the DP83820 can do VLAN tagging in hardware, and
1273 * support the jumbo Ethernet MTU.
1275 sc
->sc_ethercom
.ec_capabilities
|=
1276 ETHERCAP_VLAN_HWTAGGING
| ETHERCAP_JUMBO_MTU
;
1279 * The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
1282 ifp
->if_capabilities
|=
1283 IFCAP_CSUM_IPv4_Tx
| IFCAP_CSUM_IPv4_Rx
|
1284 IFCAP_CSUM_TCPv4_Tx
| IFCAP_CSUM_TCPv4_Rx
|
1285 IFCAP_CSUM_UDPv4_Tx
| IFCAP_CSUM_UDPv4_Rx
;
1289 * Attach the interface.
1292 ether_ifattach(ifp
, enaddr
);
1293 ether_set_ifflags_cb(&sc
->sc_ethercom
, sip_ifflags_cb
);
1294 sc
->sc_prev
.ec_capenable
= sc
->sc_ethercom
.ec_capenable
;
1295 sc
->sc_prev
.is_vlan
= VLAN_ATTACHED(&(sc
)->sc_ethercom
);
1296 sc
->sc_prev
.if_capenable
= ifp
->if_capenable
;
1298 rnd_attach_source(&sc
->rnd_source
, device_xname(sc
->sc_dev
),
1303 * The number of bytes that must be available in
1304 * the Tx FIFO before the bus master can DMA more
1305 * data into the FIFO.
1307 sc
->sc_tx_fill_thresh
= 64 / 32;
1310 * Start at a drain threshold of 512 bytes. We will
1311 * increase it if a DMA underrun occurs.
1313 * XXX The minimum value of this variable should be
1314 * tuned. We may be able to improve performance
1315 * by starting with a lower value. That, however,
1316 * may trash the first few outgoing packets if the
1317 * PCI bus is saturated.
1320 sc
->sc_tx_drain_thresh
= 6400 / 32; /* from FreeBSD nge(4) */
1322 sc
->sc_tx_drain_thresh
= 1504 / 32;
1325 * Initialize the Rx FIFO drain threshold.
1327 * This is in units of 8 bytes.
1329 * We should never set this value lower than 2; 14 bytes are
1330 * required to filter the packet.
1332 sc
->sc_rx_drain_thresh
= 128 / 8;
1334 #ifdef SIP_EVENT_COUNTERS
1336 * Attach event counters.
1338 evcnt_attach_dynamic(&sc
->sc_ev_txsstall
, EVCNT_TYPE_MISC
,
1339 NULL
, device_xname(sc
->sc_dev
), "txsstall");
1340 evcnt_attach_dynamic(&sc
->sc_ev_txdstall
, EVCNT_TYPE_MISC
,
1341 NULL
, device_xname(sc
->sc_dev
), "txdstall");
1342 evcnt_attach_dynamic(&sc
->sc_ev_txforceintr
, EVCNT_TYPE_INTR
,
1343 NULL
, device_xname(sc
->sc_dev
), "txforceintr");
1344 evcnt_attach_dynamic(&sc
->sc_ev_txdintr
, EVCNT_TYPE_INTR
,
1345 NULL
, device_xname(sc
->sc_dev
), "txdintr");
1346 evcnt_attach_dynamic(&sc
->sc_ev_txiintr
, EVCNT_TYPE_INTR
,
1347 NULL
, device_xname(sc
->sc_dev
), "txiintr");
1348 evcnt_attach_dynamic(&sc
->sc_ev_rxintr
, EVCNT_TYPE_INTR
,
1349 NULL
, device_xname(sc
->sc_dev
), "rxintr");
1350 evcnt_attach_dynamic(&sc
->sc_ev_hiberr
, EVCNT_TYPE_INTR
,
1351 NULL
, device_xname(sc
->sc_dev
), "hiberr");
1352 if (!sc
->sc_gigabit
) {
1353 evcnt_attach_dynamic(&sc
->sc_ev_rxpause
, EVCNT_TYPE_INTR
,
1354 NULL
, device_xname(sc
->sc_dev
), "rxpause");
1356 evcnt_attach_dynamic(&sc
->sc_ev_rxpause
, EVCNT_TYPE_MISC
,
1357 NULL
, device_xname(sc
->sc_dev
), "rxpause");
1358 evcnt_attach_dynamic(&sc
->sc_ev_txpause
, EVCNT_TYPE_MISC
,
1359 NULL
, device_xname(sc
->sc_dev
), "txpause");
1360 evcnt_attach_dynamic(&sc
->sc_ev_rxipsum
, EVCNT_TYPE_MISC
,
1361 NULL
, device_xname(sc
->sc_dev
), "rxipsum");
1362 evcnt_attach_dynamic(&sc
->sc_ev_rxtcpsum
, EVCNT_TYPE_MISC
,
1363 NULL
, device_xname(sc
->sc_dev
), "rxtcpsum");
1364 evcnt_attach_dynamic(&sc
->sc_ev_rxudpsum
, EVCNT_TYPE_MISC
,
1365 NULL
, device_xname(sc
->sc_dev
), "rxudpsum");
1366 evcnt_attach_dynamic(&sc
->sc_ev_txipsum
, EVCNT_TYPE_MISC
,
1367 NULL
, device_xname(sc
->sc_dev
), "txipsum");
1368 evcnt_attach_dynamic(&sc
->sc_ev_txtcpsum
, EVCNT_TYPE_MISC
,
1369 NULL
, device_xname(sc
->sc_dev
), "txtcpsum");
1370 evcnt_attach_dynamic(&sc
->sc_ev_txudpsum
, EVCNT_TYPE_MISC
,
1371 NULL
, device_xname(sc
->sc_dev
), "txudpsum");
1373 #endif /* SIP_EVENT_COUNTERS */
1375 if (pmf_device_register(self
, sipcom_suspend
, sipcom_resume
))
1376 pmf_class_network_register(self
, ifp
);
1378 aprint_error_dev(self
, "couldn't establish power handler\n");
1382 sipcom_set_extsts(struct sip_softc
*sc
, int lasttx
, struct mbuf
*m0
,
1388 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1391 * If VLANs are enabled and the packet has a VLAN tag, set
1392 * up the descriptor to encapsulate the packet for us.
1394 * This apparently has to be on the last descriptor of
1399 * Byte swapping is tricky. We need to provide the tag
1400 * in a network byte order. On a big-endian machine,
1401 * the byteorder is correct, but we need to swap it
1402 * anyway, because this will be undone by the outside
1403 * htole32(). That's why there must be an
1404 * unconditional swap instead of htons() inside.
1406 if ((mtag
= VLAN_OUTPUT_TAG(&sc
->sc_ethercom
, m0
)) != NULL
) {
1407 sc
->sc_txdescs
[lasttx
].sipd_extsts
|=
1408 htole32(EXTSTS_VPKT
|
1409 (bswap16(VLAN_TAG_VALUE(mtag
)) &
1414 * If the upper-layer has requested IPv4/TCPv4/UDPv4
1415 * checksumming, set up the descriptor to do this work
1418 * This apparently has to be on the first descriptor of
1421 * Byte-swap constants so the compiler can optimize.
1424 if (m0
->m_pkthdr
.csum_flags
& M_CSUM_IPv4
) {
1425 KDASSERT(ifp
->if_capenable
& IFCAP_CSUM_IPv4_Tx
);
1426 SIP_EVCNT_INCR(&sc
->sc_ev_txipsum
);
1427 extsts
|= htole32(EXTSTS_IPPKT
);
1429 if (m0
->m_pkthdr
.csum_flags
& M_CSUM_TCPv4
) {
1430 KDASSERT(ifp
->if_capenable
& IFCAP_CSUM_TCPv4_Tx
);
1431 SIP_EVCNT_INCR(&sc
->sc_ev_txtcpsum
);
1432 extsts
|= htole32(EXTSTS_TCPPKT
);
1433 } else if (m0
->m_pkthdr
.csum_flags
& M_CSUM_UDPv4
) {
1434 KDASSERT(ifp
->if_capenable
& IFCAP_CSUM_UDPv4_Tx
);
1435 SIP_EVCNT_INCR(&sc
->sc_ev_txudpsum
);
1436 extsts
|= htole32(EXTSTS_UDPPKT
);
1438 sc
->sc_txdescs
[sc
->sc_txnext
].sipd_extsts
|= extsts
;
1442 * sip_start: [ifnet interface function]
1444 * Start packet transmission on the interface.
1447 sipcom_start(struct ifnet
*ifp
)
1449 struct sip_softc
*sc
= ifp
->if_softc
;
1452 struct sip_txsoft
*txs
;
1453 bus_dmamap_t dmamap
;
1454 int error
, nexttx
, lasttx
, seg
;
1455 int ofree
= sc
->sc_txfree
;
1457 int firsttx
= sc
->sc_txnext
;
1461 * If we've been told to pause, don't transmit any more packets.
1463 if (!sc
->sc_gigabit
&& sc
->sc_paused
)
1464 ifp
->if_flags
|= IFF_OACTIVE
;
1466 if ((ifp
->if_flags
& (IFF_RUNNING
|IFF_OACTIVE
)) != IFF_RUNNING
)
1470 * Loop through the send queue, setting up transmit descriptors
1471 * until we drain the queue, or use up all available transmit
1475 /* Get a work queue entry. */
1476 if ((txs
= SIMPLEQ_FIRST(&sc
->sc_txfreeq
)) == NULL
) {
1477 SIP_EVCNT_INCR(&sc
->sc_ev_txsstall
);
1482 * Grab a packet off the queue.
1484 IFQ_POLL(&ifp
->if_snd
, m0
);
1489 dmamap
= txs
->txs_dmamap
;
1492 * Load the DMA map. If this fails, the packet either
1493 * didn't fit in the alloted number of segments, or we
1494 * were short on resources.
1496 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, dmamap
, m0
,
1497 BUS_DMA_WRITE
|BUS_DMA_NOWAIT
);
1498 /* In the non-gigabit case, we'll copy and try again. */
1499 if (error
!= 0 && !sc
->sc_gigabit
) {
1500 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1502 printf("%s: unable to allocate Tx mbuf\n",
1503 device_xname(sc
->sc_dev
));
1506 MCLAIM(m
, &sc
->sc_ethercom
.ec_tx_mowner
);
1507 if (m0
->m_pkthdr
.len
> MHLEN
) {
1508 MCLGET(m
, M_DONTWAIT
);
1509 if ((m
->m_flags
& M_EXT
) == 0) {
1510 printf("%s: unable to allocate Tx "
1511 "cluster\n", device_xname(sc
->sc_dev
));
1516 m_copydata(m0
, 0, m0
->m_pkthdr
.len
, mtod(m
, void *));
1517 m
->m_pkthdr
.len
= m
->m_len
= m0
->m_pkthdr
.len
;
1518 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, dmamap
,
1519 m
, BUS_DMA_WRITE
|BUS_DMA_NOWAIT
);
1521 printf("%s: unable to load Tx buffer, "
1522 "error = %d\n", device_xname(sc
->sc_dev
), error
);
1525 } else if (error
== EFBIG
) {
1527 * For the too-many-segments case, we simply
1528 * report an error and drop the packet,
1529 * since we can't sanely copy a jumbo packet
1530 * to a single buffer.
1532 printf("%s: Tx packet consumes too many "
1533 "DMA segments, dropping...\n", device_xname(sc
->sc_dev
));
1534 IFQ_DEQUEUE(&ifp
->if_snd
, m0
);
1537 } else if (error
!= 0) {
1539 * Short on resources, just stop for now.
1545 * Ensure we have enough descriptors free to describe
1546 * the packet. Note, we always reserve one descriptor
1547 * at the end of the ring as a termination point, to
1548 * prevent wrap-around.
1550 if (dmamap
->dm_nsegs
> (sc
->sc_txfree
- 1)) {
1552 * Not enough free descriptors to transmit this
1553 * packet. We haven't committed anything yet,
1554 * so just unload the DMA map, put the packet
1555 * back on the queue, and punt. Notify the upper
1556 * layer that there are not more slots left.
1558 * XXX We could allocate an mbuf and copy, but
1559 * XXX is it worth it?
1561 ifp
->if_flags
|= IFF_OACTIVE
;
1562 bus_dmamap_unload(sc
->sc_dmat
, dmamap
);
1565 SIP_EVCNT_INCR(&sc
->sc_ev_txdstall
);
1569 IFQ_DEQUEUE(&ifp
->if_snd
, m0
);
1576 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1579 /* Sync the DMA map. */
1580 bus_dmamap_sync(sc
->sc_dmat
, dmamap
, 0, dmamap
->dm_mapsize
,
1581 BUS_DMASYNC_PREWRITE
);
1584 * Initialize the transmit descriptors.
1586 for (nexttx
= lasttx
= sc
->sc_txnext
, seg
= 0;
1587 seg
< dmamap
->dm_nsegs
;
1588 seg
++, nexttx
= sip_nexttx(sc
, nexttx
)) {
1590 * If this is the first descriptor we're
1591 * enqueueing, don't set the OWN bit just
1592 * yet. That could cause a race condition.
1593 * We'll do it below.
1595 *sipd_bufptr(sc
, &sc
->sc_txdescs
[nexttx
]) =
1596 htole32(dmamap
->dm_segs
[seg
].ds_addr
);
1597 *sipd_cmdsts(sc
, &sc
->sc_txdescs
[nexttx
]) =
1598 htole32((nexttx
== sc
->sc_txnext
? 0 : CMDSTS_OWN
) |
1599 CMDSTS_MORE
| dmamap
->dm_segs
[seg
].ds_len
);
1600 sc
->sc_txdescs
[nexttx
].sipd_extsts
= 0;
1604 /* Clear the MORE bit on the last segment. */
1605 *sipd_cmdsts(sc
, &sc
->sc_txdescs
[lasttx
]) &=
1606 htole32(~CMDSTS_MORE
);
1609 * If we're in the interrupt delay window, delay the
1612 if (++sc
->sc_txwin
>= (SIP_TXQUEUELEN
* 2 / 3)) {
1613 SIP_EVCNT_INCR(&sc
->sc_ev_txforceintr
);
1614 *sipd_cmdsts(sc
, &sc
->sc_txdescs
[lasttx
]) |=
1615 htole32(CMDSTS_INTR
);
1620 sipcom_set_extsts(sc
, lasttx
, m0
, ifp
->if_capenable
);
1622 /* Sync the descriptors we're using. */
1623 sip_cdtxsync(sc
, sc
->sc_txnext
, dmamap
->dm_nsegs
,
1624 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1627 * The entire packet is set up. Give the first descrptor
1630 *sipd_cmdsts(sc
, &sc
->sc_txdescs
[sc
->sc_txnext
]) |=
1631 htole32(CMDSTS_OWN
);
1632 sip_cdtxsync(sc
, sc
->sc_txnext
, 1,
1633 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1636 * Store a pointer to the packet so we can free it later,
1637 * and remember what txdirty will be once the packet is
1641 txs
->txs_firstdesc
= sc
->sc_txnext
;
1642 txs
->txs_lastdesc
= lasttx
;
1644 /* Advance the tx pointer. */
1645 sc
->sc_txfree
-= dmamap
->dm_nsegs
;
1646 sc
->sc_txnext
= nexttx
;
1648 SIMPLEQ_REMOVE_HEAD(&sc
->sc_txfreeq
, txs_q
);
1649 SIMPLEQ_INSERT_TAIL(&sc
->sc_txdirtyq
, txs
, txs_q
);
1653 * Pass the packet to any BPF listeners.
1656 bpf_mtap(ifp
->if_bpf
, m0
);
1657 #endif /* NBPFILTER > 0 */
1660 if (txs
== NULL
|| sc
->sc_txfree
== 0) {
1661 /* No more slots left; notify upper layer. */
1662 ifp
->if_flags
|= IFF_OACTIVE
;
1665 if (sc
->sc_txfree
!= ofree
) {
1667 * Start the transmit process. Note, the manual says
1668 * that if there are no pending transmissions in the
1669 * chip's internal queue (indicated by TXE being clear),
1670 * then the driver software must set the TXDP to the
1671 * first descriptor to be transmitted. However, if we
1672 * do this, it causes serious performance degredation on
1673 * the DP83820 under load, not setting TXDP doesn't seem
1674 * to adversely affect the SiS 900 or DP83815.
1676 * Well, I guess it wouldn't be the first time a manual
1677 * has lied -- and they could be speaking of the NULL-
1678 * terminated descriptor list case, rather than OWN-
1682 if ((bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_CR
) &
1684 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_TXDP
,
1685 SIP_CDTXADDR(sc
, firsttx
));
1686 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_CR
, CR_TXE
);
1689 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_CR
, CR_TXE
);
1692 /* Set a watchdog timer in case the chip flakes out. */
1693 /* Gigabit autonegotiation takes 5 seconds. */
1694 ifp
->if_timer
= (sc
->sc_gigabit
) ? 10 : 5;
1699 * sip_watchdog: [ifnet interface function]
1701 * Watchdog timer handler.
1704 sipcom_watchdog(struct ifnet
*ifp
)
1706 struct sip_softc
*sc
= ifp
->if_softc
;
1709 * The chip seems to ignore the CMDSTS_INTR bit sometimes!
1710 * If we get a timeout, try and sweep up transmit descriptors.
1711 * If we manage to sweep them all up, ignore the lack of
1716 if (sc
->sc_txfree
!= sc
->sc_ntxdesc
) {
1717 printf("%s: device timeout\n", device_xname(sc
->sc_dev
));
1720 /* Reset the interface. */
1721 (void) sipcom_init(ifp
);
1722 } else if (ifp
->if_flags
& IFF_DEBUG
)
1723 printf("%s: recovered from device timeout\n",
1724 device_xname(sc
->sc_dev
));
1726 /* Try to get more packets going. */
1730 /* If the interface is up and running, only modify the receive
1731 * filter when setting promiscuous or debug mode. Otherwise fall
1732 * through to ether_ioctl, which will reset the chip.
1735 sip_ifflags_cb(struct ethercom
*ec
)
1737 #define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
1738 == (sc)->sc_ethercom.ec_capenable) \
1739 && ((sc)->sc_prev.is_vlan == \
1740 VLAN_ATTACHED(&(sc)->sc_ethercom) ))
1741 #define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
1742 struct ifnet
*ifp
= &ec
->ec_if
;
1743 struct sip_softc
*sc
= ifp
->if_softc
;
1744 int change
= ifp
->if_flags
^ sc
->sc_if_flags
;
1746 if ((change
& ~(IFF_CANTCHANGE
|IFF_DEBUG
)) != 0 || !COMPARE_EC(sc
) ||
1747 !COMPARE_IC(sc
, ifp
))
1749 /* Set up the receive filter. */
1750 (*sc
->sc_model
->sip_variant
->sipv_set_filter
)(sc
);
1755 * sip_ioctl: [ifnet interface function]
1757 * Handle control requests from the operator.
1760 sipcom_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
1762 struct sip_softc
*sc
= ifp
->if_softc
;
1763 struct ifreq
*ifr
= (struct ifreq
*)data
;
1770 /* Flow control requires full-duplex mode. */
1771 if (IFM_SUBTYPE(ifr
->ifr_media
) == IFM_AUTO
||
1772 (ifr
->ifr_media
& IFM_FDX
) == 0)
1773 ifr
->ifr_media
&= ~IFM_ETH_FMASK
;
1776 if (SIP_CHIP_MODEL(sc
, PCI_VENDOR_NS
, PCI_PRODUCT_NS_DP83815
))
1777 ifr
->ifr_media
&= ~IFM_ETH_FMASK
;
1778 if (IFM_SUBTYPE(ifr
->ifr_media
) != IFM_AUTO
) {
1779 if (sc
->sc_gigabit
&&
1780 (ifr
->ifr_media
& IFM_ETH_FMASK
) == IFM_FLOW
) {
1781 /* We can do both TXPAUSE and RXPAUSE. */
1783 IFM_ETH_TXPAUSE
| IFM_ETH_RXPAUSE
;
1784 } else if (ifr
->ifr_media
& IFM_FLOW
) {
1786 * Both TXPAUSE and RXPAUSE must be set.
1787 * (SiS900 and DP83815 don't have PAUSE_ASYM
1790 * XXX Can SiS900 and DP83815 send PAUSE?
1793 IFM_ETH_TXPAUSE
| IFM_ETH_RXPAUSE
;
1795 sc
->sc_flowflags
= ifr
->ifr_media
& IFM_ETH_FMASK
;
1799 if ((error
= ether_ioctl(ifp
, cmd
, data
)) != ENETRESET
)
1804 if (cmd
== SIOCSIFCAP
)
1805 error
= (*ifp
->if_init
)(ifp
);
1806 else if (cmd
!= SIOCADDMULTI
&& cmd
!= SIOCDELMULTI
)
1808 else if (ifp
->if_flags
& IFF_RUNNING
) {
1810 * Multicast list has changed; set the hardware filter
1813 (*sc
->sc_model
->sip_variant
->sipv_set_filter
)(sc
);
1818 /* Try to get more packets going. */
1821 sc
->sc_if_flags
= ifp
->if_flags
;
1829 * Interrupt service routine.
1832 sipcom_intr(void *arg
)
1834 struct sip_softc
*sc
= arg
;
1835 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1839 if (!device_activation(sc
->sc_dev
, DEVACT_LEVEL_DRIVER
))
1842 /* Disable interrupts. */
1843 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_IER
, 0);
1846 /* Reading clears interrupt. */
1847 isr
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_ISR
);
1848 if ((isr
& sc
->sc_imr
) == 0)
1852 if (RND_ENABLED(&sc
->rnd_source
))
1853 rnd_add_uint32(&sc
->rnd_source
, isr
);
1858 if ((ifp
->if_flags
& IFF_RUNNING
) == 0)
1861 if (isr
& (ISR_RXORN
|ISR_RXIDLE
|ISR_RXDESC
)) {
1862 SIP_EVCNT_INCR(&sc
->sc_ev_rxintr
);
1864 /* Grab any new packets. */
1865 (*sc
->sc_rxintr
)(sc
);
1867 if (isr
& ISR_RXORN
) {
1868 printf("%s: receive FIFO overrun\n",
1869 device_xname(sc
->sc_dev
));
1871 /* XXX adjust rx_drain_thresh? */
1874 if (isr
& ISR_RXIDLE
) {
1875 printf("%s: receive ring overrun\n",
1876 device_xname(sc
->sc_dev
));
1878 /* Get the receive process going again. */
1879 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
,
1880 SIP_RXDP
, SIP_CDRXADDR(sc
, sc
->sc_rxptr
));
1881 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
,
1886 if (isr
& (ISR_TXURN
|ISR_TXDESC
|ISR_TXIDLE
)) {
1887 #ifdef SIP_EVENT_COUNTERS
1888 if (isr
& ISR_TXDESC
)
1889 SIP_EVCNT_INCR(&sc
->sc_ev_txdintr
);
1890 else if (isr
& ISR_TXIDLE
)
1891 SIP_EVCNT_INCR(&sc
->sc_ev_txiintr
);
1894 /* Sweep up transmit descriptors. */
1897 if (isr
& ISR_TXURN
) {
1899 int txfifo_size
= (sc
->sc_gigabit
)
1900 ? DP83820_SIP_TXFIFO_SIZE
1901 : OTHER_SIP_TXFIFO_SIZE
;
1903 printf("%s: transmit FIFO underrun",
1904 device_xname(sc
->sc_dev
));
1905 thresh
= sc
->sc_tx_drain_thresh
+ 1;
1906 if (thresh
<= __SHIFTOUT_MASK(sc
->sc_bits
.b_txcfg_drth_mask
)
1907 && (thresh
* 32) <= (txfifo_size
-
1908 (sc
->sc_tx_fill_thresh
* 32))) {
1909 printf("; increasing Tx drain "
1910 "threshold to %u bytes\n",
1912 sc
->sc_tx_drain_thresh
= thresh
;
1913 (void) sipcom_init(ifp
);
1915 (void) sipcom_init(ifp
);
1921 if (sc
->sc_imr
& (ISR_PAUSE_END
|ISR_PAUSE_ST
)) {
1922 if (isr
& ISR_PAUSE_ST
) {
1924 SIP_EVCNT_INCR(&sc
->sc_ev_rxpause
);
1925 ifp
->if_flags
|= IFF_OACTIVE
;
1927 if (isr
& ISR_PAUSE_END
) {
1929 ifp
->if_flags
&= ~IFF_OACTIVE
;
1933 if (isr
& ISR_HIBERR
) {
1936 SIP_EVCNT_INCR(&sc
->sc_ev_hiberr
);
1938 #define PRINTERR(bit, str) \
1940 if ((isr & (bit)) != 0) { \
1941 if ((ifp->if_flags & IFF_DEBUG) != 0) \
1942 printf("%s: %s\n", \
1943 device_xname(sc->sc_dev), str); \
1946 } while (/*CONSTCOND*/0)
1948 PRINTERR(sc
->sc_bits
.b_isr_dperr
, "parity error");
1949 PRINTERR(sc
->sc_bits
.b_isr_sserr
, "system error");
1950 PRINTERR(sc
->sc_bits
.b_isr_rmabt
, "master abort");
1951 PRINTERR(sc
->sc_bits
.b_isr_rtabt
, "target abort");
1952 PRINTERR(ISR_RXSOVR
, "receive status FIFO overrun");
1959 (void) sipcom_init(ifp
);
1964 /* Re-enable interrupts. */
1965 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_IER
, IER_IE
);
1967 /* Try to get more packets going. */
1976 * Helper; handle transmit interrupts.
1979 sipcom_txintr(struct sip_softc
*sc
)
1981 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1982 struct sip_txsoft
*txs
;
1985 if (sc
->sc_paused
== 0)
1986 ifp
->if_flags
&= ~IFF_OACTIVE
;
1989 * Go through our Tx list and free mbufs for those
1990 * frames which have been transmitted.
1992 while ((txs
= SIMPLEQ_FIRST(&sc
->sc_txdirtyq
)) != NULL
) {
1993 sip_cdtxsync(sc
, txs
->txs_firstdesc
, txs
->txs_dmamap
->dm_nsegs
,
1994 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
1996 cmdsts
= le32toh(*sipd_cmdsts(sc
, &sc
->sc_txdescs
[txs
->txs_lastdesc
]));
1997 if (cmdsts
& CMDSTS_OWN
)
2000 SIMPLEQ_REMOVE_HEAD(&sc
->sc_txdirtyq
, txs_q
);
2002 sc
->sc_txfree
+= txs
->txs_dmamap
->dm_nsegs
;
2004 bus_dmamap_sync(sc
->sc_dmat
, txs
->txs_dmamap
,
2005 0, txs
->txs_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
2006 bus_dmamap_unload(sc
->sc_dmat
, txs
->txs_dmamap
);
2007 m_freem(txs
->txs_mbuf
);
2008 txs
->txs_mbuf
= NULL
;
2010 SIMPLEQ_INSERT_TAIL(&sc
->sc_txfreeq
, txs
, txs_q
);
2013 * Check for errors and collisions.
2016 (CMDSTS_Tx_TXA
|CMDSTS_Tx_TFU
|CMDSTS_Tx_ED
|CMDSTS_Tx_EC
)) {
2018 if (cmdsts
& CMDSTS_Tx_EC
)
2019 ifp
->if_collisions
+= 16;
2020 if (ifp
->if_flags
& IFF_DEBUG
) {
2021 if (cmdsts
& CMDSTS_Tx_ED
)
2022 printf("%s: excessive deferral\n",
2023 device_xname(sc
->sc_dev
));
2024 if (cmdsts
& CMDSTS_Tx_EC
)
2025 printf("%s: excessive collisions\n",
2026 device_xname(sc
->sc_dev
));
2029 /* Packet was transmitted successfully. */
2031 ifp
->if_collisions
+= CMDSTS_COLLISIONS(cmdsts
);
2036 * If there are no more pending transmissions, cancel the watchdog
2048 * Helper; handle receive interrupts on gigabit parts.
2051 gsip_rxintr(struct sip_softc
*sc
)
2053 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
2054 struct sip_rxsoft
*rxs
;
2056 u_int32_t cmdsts
, extsts
;
2059 for (i
= sc
->sc_rxptr
;; i
= sip_nextrx(sc
, i
)) {
2060 rxs
= &sc
->sc_rxsoft
[i
];
2062 sip_cdrxsync(sc
, i
, BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
2064 cmdsts
= le32toh(*sipd_cmdsts(sc
, &sc
->sc_rxdescs
[i
]));
2065 extsts
= le32toh(sc
->sc_rxdescs
[i
].sipd_extsts
);
2066 len
= CMDSTS_SIZE(sc
, cmdsts
);
2069 * NOTE: OWN is set if owned by _consumer_. We're the
2070 * consumer of the receive ring, so if the bit is clear,
2071 * we have processed all of the packets.
2073 if ((cmdsts
& CMDSTS_OWN
) == 0) {
2075 * We have processed all of the receive buffers.
2080 if (__predict_false(sc
->sc_rxdiscard
)) {
2081 sip_init_rxdesc(sc
, i
);
2082 if ((cmdsts
& CMDSTS_MORE
) == 0) {
2083 /* Reset our state. */
2084 sc
->sc_rxdiscard
= 0;
2089 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
, 0,
2090 rxs
->rxs_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
2095 * Add a new receive buffer to the ring.
2097 if (sipcom_add_rxbuf(sc
, i
) != 0) {
2099 * Failed, throw away what we've done so
2100 * far, and discard the rest of the packet.
2103 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
, 0,
2104 rxs
->rxs_dmamap
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
2105 sip_init_rxdesc(sc
, i
);
2106 if (cmdsts
& CMDSTS_MORE
)
2107 sc
->sc_rxdiscard
= 1;
2108 if (sc
->sc_rxhead
!= NULL
)
2109 m_freem(sc
->sc_rxhead
);
2110 sip_rxchain_reset(sc
);
2114 sip_rxchain_link(sc
, m
);
2119 * If this is not the end of the packet, keep
2122 if (cmdsts
& CMDSTS_MORE
) {
2123 sc
->sc_rxlen
+= len
;
2128 * Okay, we have the entire packet now. The chip includes
2129 * the FCS, so we need to trim it.
2131 m
->m_len
-= ETHER_CRC_LEN
;
2133 *sc
->sc_rxtailp
= NULL
;
2134 len
= m
->m_len
+ sc
->sc_rxlen
;
2137 sip_rxchain_reset(sc
);
2140 * If an error occurred, update stats and drop the packet.
2142 if (cmdsts
& (CMDSTS_Rx_RXA
|CMDSTS_Rx_RUNT
|
2143 CMDSTS_Rx_ISE
|CMDSTS_Rx_CRCE
|CMDSTS_Rx_FAE
)) {
2145 if ((cmdsts
& CMDSTS_Rx_RXA
) != 0 &&
2146 (cmdsts
& CMDSTS_Rx_RXO
) == 0) {
2147 /* Receive overrun handled elsewhere. */
2148 printf("%s: receive descriptor error\n",
2149 device_xname(sc
->sc_dev
));
2151 #define PRINTERR(bit, str) \
2152 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2153 (cmdsts & (bit)) != 0) \
2154 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2155 PRINTERR(CMDSTS_Rx_RUNT
, "runt packet");
2156 PRINTERR(CMDSTS_Rx_ISE
, "invalid symbol error");
2157 PRINTERR(CMDSTS_Rx_CRCE
, "CRC error");
2158 PRINTERR(CMDSTS_Rx_FAE
, "frame alignment error");
2165 * If the packet is small enough to fit in a
2166 * single header mbuf, allocate one and copy
2167 * the data into it. This greatly reduces
2168 * memory consumption when we receive lots
2171 if (gsip_copy_small
!= 0 && len
<= (MHLEN
- 2)) {
2173 MGETHDR(nm
, M_DONTWAIT
, MT_DATA
);
2179 MCLAIM(m
, &sc
->sc_ethercom
.ec_rx_mowner
);
2181 nm
->m_pkthdr
.len
= nm
->m_len
= len
;
2182 m_copydata(m
, 0, len
, mtod(nm
, void *));
2186 #ifndef __NO_STRICT_ALIGNMENT
2189 * The DP83820's receive buffers must be 4-byte
2190 * aligned. But this means that the data after
2191 * the Ethernet header is misaligned. To compensate,
2192 * we have artificially shortened the buffer size
2193 * in the descriptor, and we do an overlapping copy
2194 * of the data two bytes further in (in the first
2195 * buffer of the chain only).
2197 memmove(mtod(m
, char *) + 2, mtod(m
, void *),
2201 #endif /* ! __NO_STRICT_ALIGNMENT */
2204 * If VLANs are enabled, VLAN packets have been unwrapped
2205 * for us. Associate the tag with the packet.
2209 * Again, byte swapping is tricky. Hardware provided
2210 * the tag in the network byte order, but extsts was
2211 * passed through le32toh() in the meantime. On a
2212 * big-endian machine, we need to swap it again. On a
2213 * little-endian machine, we need to convert from the
2214 * network to host byte order. This means that we must
2215 * swap it in any case, so unconditional swap instead
2216 * of htons() is used.
2218 if ((extsts
& EXTSTS_VPKT
) != 0) {
2219 VLAN_INPUT_TAG(ifp
, m
, bswap16(extsts
& EXTSTS_VTCI
),
2224 * Set the incoming checksum information for the
2227 if ((extsts
& EXTSTS_IPPKT
) != 0) {
2228 SIP_EVCNT_INCR(&sc
->sc_ev_rxipsum
);
2229 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4
;
2230 if (extsts
& EXTSTS_Rx_IPERR
)
2231 m
->m_pkthdr
.csum_flags
|= M_CSUM_IPv4_BAD
;
2232 if (extsts
& EXTSTS_TCPPKT
) {
2233 SIP_EVCNT_INCR(&sc
->sc_ev_rxtcpsum
);
2234 m
->m_pkthdr
.csum_flags
|= M_CSUM_TCPv4
;
2235 if (extsts
& EXTSTS_Rx_TCPERR
)
2236 m
->m_pkthdr
.csum_flags
|=
2238 } else if (extsts
& EXTSTS_UDPPKT
) {
2239 SIP_EVCNT_INCR(&sc
->sc_ev_rxudpsum
);
2240 m
->m_pkthdr
.csum_flags
|= M_CSUM_UDPv4
;
2241 if (extsts
& EXTSTS_Rx_UDPERR
)
2242 m
->m_pkthdr
.csum_flags
|=
2248 m
->m_pkthdr
.rcvif
= ifp
;
2249 m
->m_pkthdr
.len
= len
;
2253 * Pass this up to any BPF listeners, but only
2254 * pass if up the stack if it's for us.
2257 bpf_mtap(ifp
->if_bpf
, m
);
2258 #endif /* NBPFILTER > 0 */
2261 (*ifp
->if_input
)(ifp
, m
);
2264 /* Update the receive pointer. */
2271 * Helper; handle receive interrupts on 10/100 parts.
2274 sip_rxintr(struct sip_softc
*sc
)
2276 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
2277 struct sip_rxsoft
*rxs
;
2282 for (i
= sc
->sc_rxptr
;; i
= sip_nextrx(sc
, i
)) {
2283 rxs
= &sc
->sc_rxsoft
[i
];
2285 sip_cdrxsync(sc
, i
, BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
2287 cmdsts
= le32toh(*sipd_cmdsts(sc
, &sc
->sc_rxdescs
[i
]));
2290 * NOTE: OWN is set if owned by _consumer_. We're the
2291 * consumer of the receive ring, so if the bit is clear,
2292 * we have processed all of the packets.
2294 if ((cmdsts
& CMDSTS_OWN
) == 0) {
2296 * We have processed all of the receive buffers.
2302 * If any collisions were seen on the wire, count one.
2304 if (cmdsts
& CMDSTS_Rx_COL
)
2305 ifp
->if_collisions
++;
2308 * If an error occurred, update stats, clear the status
2309 * word, and leave the packet buffer in place. It will
2310 * simply be reused the next time the ring comes around.
2312 if (cmdsts
& (CMDSTS_Rx_RXA
|CMDSTS_Rx_RUNT
|
2313 CMDSTS_Rx_ISE
|CMDSTS_Rx_CRCE
|CMDSTS_Rx_FAE
)) {
2315 if ((cmdsts
& CMDSTS_Rx_RXA
) != 0 &&
2316 (cmdsts
& CMDSTS_Rx_RXO
) == 0) {
2317 /* Receive overrun handled elsewhere. */
2318 printf("%s: receive descriptor error\n",
2319 device_xname(sc
->sc_dev
));
2321 #define PRINTERR(bit, str) \
2322 if ((ifp->if_flags & IFF_DEBUG) != 0 && \
2323 (cmdsts & (bit)) != 0) \
2324 printf("%s: %s\n", device_xname(sc->sc_dev), str)
2325 PRINTERR(CMDSTS_Rx_RUNT
, "runt packet");
2326 PRINTERR(CMDSTS_Rx_ISE
, "invalid symbol error");
2327 PRINTERR(CMDSTS_Rx_CRCE
, "CRC error");
2328 PRINTERR(CMDSTS_Rx_FAE
, "frame alignment error");
2330 sip_init_rxdesc(sc
, i
);
2334 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
, 0,
2335 rxs
->rxs_dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
2338 * No errors; receive the packet. Note, the SiS 900
2339 * includes the CRC with every packet.
2341 len
= CMDSTS_SIZE(sc
, cmdsts
) - ETHER_CRC_LEN
;
2343 #ifdef __NO_STRICT_ALIGNMENT
2345 * If the packet is small enough to fit in a
2346 * single header mbuf, allocate one and copy
2347 * the data into it. This greatly reduces
2348 * memory consumption when we receive lots
2351 * Otherwise, we add a new buffer to the receive
2352 * chain. If this fails, we drop the packet and
2353 * recycle the old buffer.
2355 if (sip_copy_small
!= 0 && len
<= MHLEN
) {
2356 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
2359 MCLAIM(m
, &sc
->sc_ethercom
.ec_rx_mowner
);
2360 memcpy(mtod(m
, void *),
2361 mtod(rxs
->rxs_mbuf
, void *), len
);
2362 sip_init_rxdesc(sc
, i
);
2363 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
, 0,
2364 rxs
->rxs_dmamap
->dm_mapsize
,
2365 BUS_DMASYNC_PREREAD
);
2368 if (sipcom_add_rxbuf(sc
, i
) != 0) {
2371 sip_init_rxdesc(sc
, i
);
2372 bus_dmamap_sync(sc
->sc_dmat
,
2374 rxs
->rxs_dmamap
->dm_mapsize
,
2375 BUS_DMASYNC_PREREAD
);
2381 * The SiS 900's receive buffers must be 4-byte aligned.
2382 * But this means that the data after the Ethernet header
2383 * is misaligned. We must allocate a new buffer and
2384 * copy the data, shifted forward 2 bytes.
2386 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
2390 sip_init_rxdesc(sc
, i
);
2391 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
, 0,
2392 rxs
->rxs_dmamap
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
2395 MCLAIM(m
, &sc
->sc_ethercom
.ec_rx_mowner
);
2396 if (len
> (MHLEN
- 2)) {
2397 MCLGET(m
, M_DONTWAIT
);
2398 if ((m
->m_flags
& M_EXT
) == 0) {
2406 * Note that we use clusters for incoming frames, so the
2407 * buffer is virtually contiguous.
2409 memcpy(mtod(m
, void *), mtod(rxs
->rxs_mbuf
, void *), len
);
2411 /* Allow the receive descriptor to continue using its mbuf. */
2412 sip_init_rxdesc(sc
, i
);
2413 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
, 0,
2414 rxs
->rxs_dmamap
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
2415 #endif /* __NO_STRICT_ALIGNMENT */
2418 m
->m_pkthdr
.rcvif
= ifp
;
2419 m
->m_pkthdr
.len
= m
->m_len
= len
;
2423 * Pass this up to any BPF listeners, but only
2424 * pass if up the stack if it's for us.
2427 bpf_mtap(ifp
->if_bpf
, m
);
2428 #endif /* NBPFILTER > 0 */
2431 (*ifp
->if_input
)(ifp
, m
);
2434 /* Update the receive pointer. */
2441 * One second timer, used to tick the MII.
2444 sipcom_tick(void *arg
)
2446 struct sip_softc
*sc
= arg
;
2450 #ifdef SIP_EVENT_COUNTERS
2451 if (sc
->sc_gigabit
) {
2452 /* Read PAUSE related counts from MIB registers. */
2453 sc
->sc_ev_rxpause
.ev_count
+=
2454 bus_space_read_4(sc
->sc_st
, sc
->sc_sh
,
2455 SIP_NS_MIB(MIB_RXPauseFrames
)) & 0xffff;
2456 sc
->sc_ev_txpause
.ev_count
+=
2457 bus_space_read_4(sc
->sc_st
, sc
->sc_sh
,
2458 SIP_NS_MIB(MIB_TXPauseFrames
)) & 0xffff;
2459 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_NS_MIBC
, MIBC_ACLR
);
2461 #endif /* SIP_EVENT_COUNTERS */
2462 mii_tick(&sc
->sc_mii
);
2465 callout_reset(&sc
->sc_tick_ch
, hz
, sipcom_tick
, sc
);
2471 * Perform a soft reset on the SiS 900.
2474 sipcom_reset(struct sip_softc
*sc
)
2476 bus_space_tag_t st
= sc
->sc_st
;
2477 bus_space_handle_t sh
= sc
->sc_sh
;
2480 bus_space_write_4(st
, sh
, SIP_IER
, 0);
2481 bus_space_write_4(st
, sh
, SIP_IMR
, 0);
2482 bus_space_write_4(st
, sh
, SIP_RFCR
, 0);
2483 bus_space_write_4(st
, sh
, SIP_CR
, CR_RST
);
2485 for (i
= 0; i
< SIP_TIMEOUT
; i
++) {
2486 if ((bus_space_read_4(st
, sh
, SIP_CR
) & CR_RST
) == 0)
2491 if (i
== SIP_TIMEOUT
) {
2492 printf("%s: reset failed to complete\n", device_xname(sc
->sc_dev
));
2498 if (sc
->sc_gigabit
) {
2500 * Set the general purpose I/O bits. Do it here in case we
2501 * need to have GPIO set up to talk to the media interface.
2503 bus_space_write_4(st
, sh
, SIP_GPIOR
, sc
->sc_gpior
);
2510 sipcom_dp83820_init(struct sip_softc
*sc
, uint64_t capenable
)
2513 bus_space_tag_t st
= sc
->sc_st
;
2514 bus_space_handle_t sh
= sc
->sc_sh
;
2516 * Initialize the VLAN/IP receive control register.
2517 * We enable checksum computation on all incoming
2518 * packets, and do not reject packets w/ bad checksums.
2522 (IFCAP_CSUM_IPv4_Rx
|IFCAP_CSUM_TCPv4_Rx
|IFCAP_CSUM_UDPv4_Rx
))
2524 if (VLAN_ATTACHED(&sc
->sc_ethercom
))
2525 reg
|= VRCR_VTDEN
|VRCR_VTREN
;
2526 bus_space_write_4(st
, sh
, SIP_VRCR
, reg
);
2529 * Initialize the VLAN/IP transmit control register.
2530 * We enable outgoing checksum computation on a
2535 (IFCAP_CSUM_IPv4_Tx
|IFCAP_CSUM_TCPv4_Tx
|IFCAP_CSUM_UDPv4_Tx
))
2537 if (VLAN_ATTACHED(&sc
->sc_ethercom
))
2539 bus_space_write_4(st
, sh
, SIP_VTCR
, reg
);
2542 * If we're using VLANs, initialize the VLAN data register.
2543 * To understand why we bswap the VLAN Ethertype, see section
2544 * 4.2.36 of the DP83820 manual.
2546 if (VLAN_ATTACHED(&sc
->sc_ethercom
))
2547 bus_space_write_4(st
, sh
, SIP_VDR
, bswap16(ETHERTYPE_VLAN
));
2551 * sip_init: [ ifnet interface function ]
2553 * Initialize the interface. Must be called at splnet().
2556 sipcom_init(struct ifnet
*ifp
)
2558 struct sip_softc
*sc
= ifp
->if_softc
;
2559 bus_space_tag_t st
= sc
->sc_st
;
2560 bus_space_handle_t sh
= sc
->sc_sh
;
2561 struct sip_txsoft
*txs
;
2562 struct sip_rxsoft
*rxs
;
2563 struct sip_desc
*sipd
;
2566 if (device_is_active(sc
->sc_dev
)) {
2568 * Cancel any pending I/O.
2570 sipcom_stop(ifp
, 0);
2571 } else if (!pmf_device_subtree_resume(sc
->sc_dev
, &sc
->sc_qual
) ||
2572 !device_is_active(sc
->sc_dev
))
2576 * Reset the chip to a known state.
2578 if (!sipcom_reset(sc
))
2581 if (SIP_CHIP_MODEL(sc
, PCI_VENDOR_NS
, PCI_PRODUCT_NS_DP83815
)) {
2583 * DP83815 manual, page 78:
2584 * 4.4 Recommended Registers Configuration
2585 * For optimum performance of the DP83815, version noted
2586 * as DP83815CVNG (SRR = 203h), the listed register
2587 * modifications must be followed in sequence...
2589 * It's not clear if this should be 302h or 203h because that
2590 * chip name is listed as SRR 302h in the description of the
2591 * SRR register. However, my revision 302h DP83815 on the
2592 * Netgear FA311 purchased in 02/2001 needs these settings
2593 * to avoid tons of errors in AcceptPerfectMatch (non-
2594 * IFF_PROMISC) mode. I do not know if other revisions need
2595 * this set or not. [briggs -- 09 March 2001]
2597 * Note that only the low-order 12 bits of 0xe4 are documented
2598 * and that this sets reserved bits in that register.
2600 bus_space_write_4(st
, sh
, 0x00cc, 0x0001);
2602 bus_space_write_4(st
, sh
, 0x00e4, 0x189C);
2603 bus_space_write_4(st
, sh
, 0x00fc, 0x0000);
2604 bus_space_write_4(st
, sh
, 0x00f4, 0x5040);
2605 bus_space_write_4(st
, sh
, 0x00f8, 0x008c);
2607 bus_space_write_4(st
, sh
, 0x00cc, 0x0000);
2611 * Initialize the transmit descriptor ring.
2613 for (i
= 0; i
< sc
->sc_ntxdesc
; i
++) {
2614 sipd
= &sc
->sc_txdescs
[i
];
2615 memset(sipd
, 0, sizeof(struct sip_desc
));
2616 sipd
->sipd_link
= htole32(SIP_CDTXADDR(sc
, sip_nexttx(sc
, i
)));
2618 sip_cdtxsync(sc
, 0, sc
->sc_ntxdesc
,
2619 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
2620 sc
->sc_txfree
= sc
->sc_ntxdesc
;
2625 * Initialize the transmit job descriptors.
2627 SIMPLEQ_INIT(&sc
->sc_txfreeq
);
2628 SIMPLEQ_INIT(&sc
->sc_txdirtyq
);
2629 for (i
= 0; i
< SIP_TXQUEUELEN
; i
++) {
2630 txs
= &sc
->sc_txsoft
[i
];
2631 txs
->txs_mbuf
= NULL
;
2632 SIMPLEQ_INSERT_TAIL(&sc
->sc_txfreeq
, txs
, txs_q
);
2636 * Initialize the receive descriptor and receive job
2639 for (i
= 0; i
< sc
->sc_parm
->p_nrxdesc
; i
++) {
2640 rxs
= &sc
->sc_rxsoft
[i
];
2641 if (rxs
->rxs_mbuf
== NULL
) {
2642 if ((error
= sipcom_add_rxbuf(sc
, i
)) != 0) {
2643 printf("%s: unable to allocate or map rx "
2644 "buffer %d, error = %d\n",
2645 device_xname(sc
->sc_dev
), i
, error
);
2647 * XXX Should attempt to run with fewer receive
2648 * XXX buffers instead of just failing.
2654 sip_init_rxdesc(sc
, i
);
2657 sc
->sc_rxdiscard
= 0;
2658 sip_rxchain_reset(sc
);
2661 * Set the configuration register; it's already initialized
2664 bus_space_write_4(st
, sh
, SIP_CFG
, sc
->sc_cfg
);
2667 * Initialize the prototype TXCFG register.
2669 if (sc
->sc_gigabit
) {
2670 sc
->sc_txcfg
= sc
->sc_bits
.b_txcfg_mxdma_512
;
2671 sc
->sc_rxcfg
= sc
->sc_bits
.b_rxcfg_mxdma_512
;
2672 } else if ((SIP_SIS900_REV(sc
, SIS_REV_635
) ||
2673 SIP_SIS900_REV(sc
, SIS_REV_960
) ||
2674 SIP_SIS900_REV(sc
, SIS_REV_900B
)) &&
2675 (sc
->sc_cfg
& CFG_EDBMASTEN
)) {
2676 sc
->sc_txcfg
= sc
->sc_bits
.b_txcfg_mxdma_64
;
2677 sc
->sc_rxcfg
= sc
->sc_bits
.b_rxcfg_mxdma_64
;
2679 sc
->sc_txcfg
= sc
->sc_bits
.b_txcfg_mxdma_512
;
2680 sc
->sc_rxcfg
= sc
->sc_bits
.b_rxcfg_mxdma_512
;
2683 sc
->sc_txcfg
|= TXCFG_ATP
|
2684 __SHIFTIN(sc
->sc_tx_fill_thresh
, sc
->sc_bits
.b_txcfg_flth_mask
) |
2685 sc
->sc_tx_drain_thresh
;
2686 bus_space_write_4(st
, sh
, sc
->sc_regs
.r_txcfg
, sc
->sc_txcfg
);
2689 * Initialize the receive drain threshold if we have never
2692 if (sc
->sc_rx_drain_thresh
== 0) {
2694 * XXX This value should be tuned. This is set to the
2695 * maximum of 248 bytes, and we may be able to improve
2696 * performance by decreasing it (although we should never
2697 * set this value lower than 2; 14 bytes are required to
2698 * filter the packet).
2700 sc
->sc_rx_drain_thresh
= __SHIFTOUT_MASK(RXCFG_DRTH_MASK
);
2704 * Initialize the prototype RXCFG register.
2706 sc
->sc_rxcfg
|= __SHIFTIN(sc
->sc_rx_drain_thresh
, RXCFG_DRTH_MASK
);
2708 * Accept long packets (including FCS) so we can handle
2709 * 802.1q-tagged frames and jumbo frames properly.
2711 if ((sc
->sc_gigabit
&& ifp
->if_mtu
> ETHERMTU
) ||
2712 (sc
->sc_ethercom
.ec_capenable
& ETHERCAP_VLAN_MTU
))
2713 sc
->sc_rxcfg
|= RXCFG_ALP
;
2716 * Checksum offloading is disabled if the user selects an MTU
2717 * larger than 8109. (FreeBSD says 8152, but there is emperical
2718 * evidence that >8109 does not work on some boards, such as the
2719 * Planex GN-1000TE).
2721 if (sc
->sc_gigabit
&& ifp
->if_mtu
> 8109 &&
2722 (ifp
->if_capenable
&
2723 (IFCAP_CSUM_IPv4_Tx
|IFCAP_CSUM_IPv4_Rx
|
2724 IFCAP_CSUM_TCPv4_Tx
|IFCAP_CSUM_TCPv4_Rx
|
2725 IFCAP_CSUM_UDPv4_Tx
|IFCAP_CSUM_UDPv4_Rx
))) {
2726 printf("%s: Checksum offloading does not work if MTU > 8109 - "
2727 "disabled.\n", device_xname(sc
->sc_dev
));
2728 ifp
->if_capenable
&=
2729 ~(IFCAP_CSUM_IPv4_Tx
|IFCAP_CSUM_IPv4_Rx
|
2730 IFCAP_CSUM_TCPv4_Tx
|IFCAP_CSUM_TCPv4_Rx
|
2731 IFCAP_CSUM_UDPv4_Tx
|IFCAP_CSUM_UDPv4_Rx
);
2732 ifp
->if_csum_flags_tx
= 0;
2733 ifp
->if_csum_flags_rx
= 0;
2736 bus_space_write_4(st
, sh
, sc
->sc_regs
.r_rxcfg
, sc
->sc_rxcfg
);
2739 sipcom_dp83820_init(sc
, ifp
->if_capenable
);
2742 * Give the transmit and receive rings to the chip.
2744 bus_space_write_4(st
, sh
, SIP_TXDP
, SIP_CDTXADDR(sc
, sc
->sc_txnext
));
2745 bus_space_write_4(st
, sh
, SIP_RXDP
, SIP_CDRXADDR(sc
, sc
->sc_rxptr
));
2748 * Initialize the interrupt mask.
2750 sc
->sc_imr
= sc
->sc_bits
.b_isr_dperr
|
2751 sc
->sc_bits
.b_isr_sserr
|
2752 sc
->sc_bits
.b_isr_rmabt
|
2753 sc
->sc_bits
.b_isr_rtabt
| ISR_RXSOVR
|
2754 ISR_TXURN
|ISR_TXDESC
|ISR_TXIDLE
|ISR_RXORN
|ISR_RXIDLE
|ISR_RXDESC
;
2755 bus_space_write_4(st
, sh
, SIP_IMR
, sc
->sc_imr
);
2757 /* Set up the receive filter. */
2758 (*sc
->sc_model
->sip_variant
->sipv_set_filter
)(sc
);
2761 * Tune sc_rx_flow_thresh.
2762 * XXX "More than 8KB" is too short for jumbo frames.
2763 * XXX TODO: Threshold value should be user-settable.
2765 sc
->sc_rx_flow_thresh
= (PCR_PS_STHI_8
| PCR_PS_STLO_4
|
2766 PCR_PS_FFHI_8
| PCR_PS_FFLO_4
|
2767 (PCR_PAUSE_CNT
& PCR_PAUSE_CNT_MASK
));
2770 * Set the current media. Do this after initializing the prototype
2771 * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
2774 if ((error
= ether_mediachange(ifp
)) != 0)
2778 * Set the interrupt hold-off timer to 100us.
2781 bus_space_write_4(st
, sh
, SIP_IHR
, 0x01);
2784 * Enable interrupts.
2786 bus_space_write_4(st
, sh
, SIP_IER
, IER_IE
);
2789 * Start the transmit and receive processes.
2791 bus_space_write_4(st
, sh
, SIP_CR
, CR_RXE
| CR_TXE
);
2794 * Start the one second MII clock.
2796 callout_reset(&sc
->sc_tick_ch
, hz
, sipcom_tick
, sc
);
2801 ifp
->if_flags
|= IFF_RUNNING
;
2802 ifp
->if_flags
&= ~IFF_OACTIVE
;
2803 sc
->sc_if_flags
= ifp
->if_flags
;
2804 sc
->sc_prev
.ec_capenable
= sc
->sc_ethercom
.ec_capenable
;
2805 sc
->sc_prev
.is_vlan
= VLAN_ATTACHED(&(sc
)->sc_ethercom
);
2806 sc
->sc_prev
.if_capenable
= ifp
->if_capenable
;
2810 printf("%s: interface not running\n", device_xname(sc
->sc_dev
));
2817 * Drain the receive queue.
2820 sipcom_rxdrain(struct sip_softc
*sc
)
2822 struct sip_rxsoft
*rxs
;
2825 for (i
= 0; i
< sc
->sc_parm
->p_nrxdesc
; i
++) {
2826 rxs
= &sc
->sc_rxsoft
[i
];
2827 if (rxs
->rxs_mbuf
!= NULL
) {
2828 bus_dmamap_unload(sc
->sc_dmat
, rxs
->rxs_dmamap
);
2829 m_freem(rxs
->rxs_mbuf
);
2830 rxs
->rxs_mbuf
= NULL
;
2836 * sip_stop: [ ifnet interface function ]
2838 * Stop transmission on the interface.
2841 sipcom_stop(struct ifnet
*ifp
, int disable
)
2843 struct sip_softc
*sc
= ifp
->if_softc
;
2844 bus_space_tag_t st
= sc
->sc_st
;
2845 bus_space_handle_t sh
= sc
->sc_sh
;
2846 struct sip_txsoft
*txs
;
2847 u_int32_t cmdsts
= 0; /* DEBUG */
2850 * Stop the one second clock.
2852 callout_stop(&sc
->sc_tick_ch
);
2855 mii_down(&sc
->sc_mii
);
2857 if (device_is_active(sc
->sc_dev
)) {
2859 * Disable interrupts.
2861 bus_space_write_4(st
, sh
, SIP_IER
, 0);
2864 * Stop receiver and transmitter.
2866 bus_space_write_4(st
, sh
, SIP_CR
, CR_RXD
| CR_TXD
);
2870 * Release any queued transmit buffers.
2872 while ((txs
= SIMPLEQ_FIRST(&sc
->sc_txdirtyq
)) != NULL
) {
2873 if ((ifp
->if_flags
& IFF_DEBUG
) != 0 &&
2874 SIMPLEQ_NEXT(txs
, txs_q
) == NULL
&&
2875 (le32toh(*sipd_cmdsts(sc
, &sc
->sc_txdescs
[txs
->txs_lastdesc
])) &
2877 printf("%s: sip_stop: last descriptor does not "
2878 "have INTR bit set\n", device_xname(sc
->sc_dev
));
2879 SIMPLEQ_REMOVE_HEAD(&sc
->sc_txdirtyq
, txs_q
);
2881 if (txs
->txs_mbuf
== NULL
) {
2882 printf("%s: dirty txsoft with no mbuf chain\n",
2883 device_xname(sc
->sc_dev
));
2887 cmdsts
|= /* DEBUG */
2888 le32toh(*sipd_cmdsts(sc
, &sc
->sc_txdescs
[txs
->txs_lastdesc
]));
2889 bus_dmamap_unload(sc
->sc_dmat
, txs
->txs_dmamap
);
2890 m_freem(txs
->txs_mbuf
);
2891 txs
->txs_mbuf
= NULL
;
2892 SIMPLEQ_INSERT_TAIL(&sc
->sc_txfreeq
, txs
, txs_q
);
2896 * Mark the interface down and cancel the watchdog timer.
2898 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
2902 pmf_device_recursive_suspend(sc
->sc_dev
, &sc
->sc_qual
);
2904 if ((ifp
->if_flags
& IFF_DEBUG
) != 0 &&
2905 (cmdsts
& CMDSTS_INTR
) == 0 && sc
->sc_txfree
!= sc
->sc_ntxdesc
)
2906 printf("%s: sip_stop: no INTR bits set in dirty tx "
2907 "descriptors\n", device_xname(sc
->sc_dev
));
2913 * Read data from the serial EEPROM.
2916 sipcom_read_eeprom(struct sip_softc
*sc
, int word
, int wordcnt
,
2919 bus_space_tag_t st
= sc
->sc_st
;
2920 bus_space_handle_t sh
= sc
->sc_sh
;
2924 for (i
= 0; i
< wordcnt
; i
++) {
2925 /* Send CHIP SELECT. */
2927 bus_space_write_4(st
, sh
, SIP_EROMAR
, reg
);
2929 /* Shift in the READ opcode. */
2930 for (x
= 3; x
> 0; x
--) {
2931 if (SIP_EEPROM_OPC_READ
& (1 << (x
- 1)))
2934 reg
&= ~EROMAR_EEDI
;
2935 bus_space_write_4(st
, sh
, SIP_EROMAR
, reg
);
2936 bus_space_write_4(st
, sh
, SIP_EROMAR
,
2939 bus_space_write_4(st
, sh
, SIP_EROMAR
, reg
);
2943 /* Shift in address. */
2944 for (x
= 6; x
> 0; x
--) {
2945 if ((word
+ i
) & (1 << (x
- 1)))
2948 reg
&= ~EROMAR_EEDI
;
2949 bus_space_write_4(st
, sh
, SIP_EROMAR
, reg
);
2950 bus_space_write_4(st
, sh
, SIP_EROMAR
,
2953 bus_space_write_4(st
, sh
, SIP_EROMAR
, reg
);
2957 /* Shift out data. */
2960 for (x
= 16; x
> 0; x
--) {
2961 bus_space_write_4(st
, sh
, SIP_EROMAR
,
2964 if (bus_space_read_4(st
, sh
, SIP_EROMAR
) & EROMAR_EEDO
)
2965 data
[i
] |= (1 << (x
- 1));
2966 bus_space_write_4(st
, sh
, SIP_EROMAR
, reg
);
2970 /* Clear CHIP SELECT. */
2971 bus_space_write_4(st
, sh
, SIP_EROMAR
, 0);
2979 * Add a receive buffer to the indicated descriptor.
2982 sipcom_add_rxbuf(struct sip_softc
*sc
, int idx
)
2984 struct sip_rxsoft
*rxs
= &sc
->sc_rxsoft
[idx
];
2988 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
2991 MCLAIM(m
, &sc
->sc_ethercom
.ec_rx_mowner
);
2993 MCLGET(m
, M_DONTWAIT
);
2994 if ((m
->m_flags
& M_EXT
) == 0) {
2999 /* XXX I don't believe this is necessary. --dyoung */
3001 m
->m_len
= sc
->sc_parm
->p_rxbuf_len
;
3003 if (rxs
->rxs_mbuf
!= NULL
)
3004 bus_dmamap_unload(sc
->sc_dmat
, rxs
->rxs_dmamap
);
3008 error
= bus_dmamap_load(sc
->sc_dmat
, rxs
->rxs_dmamap
,
3009 m
->m_ext
.ext_buf
, m
->m_ext
.ext_size
, NULL
,
3010 BUS_DMA_READ
|BUS_DMA_NOWAIT
);
3012 printf("%s: can't load rx DMA map %d, error = %d\n",
3013 device_xname(sc
->sc_dev
), idx
, error
);
3014 panic("%s", __func__
); /* XXX */
3017 bus_dmamap_sync(sc
->sc_dmat
, rxs
->rxs_dmamap
, 0,
3018 rxs
->rxs_dmamap
->dm_mapsize
, BUS_DMASYNC_PREREAD
);
3020 sip_init_rxdesc(sc
, idx
);
3026 * sip_sis900_set_filter:
3028 * Set up the receive filter.
3031 sipcom_sis900_set_filter(struct sip_softc
*sc
)
3033 bus_space_tag_t st
= sc
->sc_st
;
3034 bus_space_handle_t sh
= sc
->sc_sh
;
3035 struct ethercom
*ec
= &sc
->sc_ethercom
;
3036 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
3037 struct ether_multi
*enm
;
3039 struct ether_multistep step
;
3040 u_int32_t crc
, mchash
[16];
3043 * Initialize the prototype RFCR.
3045 sc
->sc_rfcr
= RFCR_RFEN
;
3046 if (ifp
->if_flags
& IFF_BROADCAST
)
3047 sc
->sc_rfcr
|= RFCR_AAB
;
3048 if (ifp
->if_flags
& IFF_PROMISC
) {
3049 sc
->sc_rfcr
|= RFCR_AAP
;
3054 * Set up the multicast address filter by passing all multicast
3055 * addresses through a CRC generator, and then using the high-order
3056 * 6 bits as an index into the 128 bit multicast hash table (only
3057 * the lower 16 bits of each 32 bit multicast hash register are
3058 * valid). The high order bits select the register, while the
3059 * rest of the bits select the bit within the register.
3062 memset(mchash
, 0, sizeof(mchash
));
3065 * SiS900 (at least SiS963) requires us to register the address of
3066 * the PAUSE packet (01:80:c2:00:00:01) into the address filter.
3070 if (SIP_SIS900_REV(sc
, SIS_REV_635
) ||
3071 SIP_SIS900_REV(sc
, SIS_REV_960
) ||
3072 SIP_SIS900_REV(sc
, SIS_REV_900B
)) {
3073 /* Just want the 8 most significant bits. */
3076 /* Just want the 7 most significant bits. */
3080 /* Set the corresponding bit in the hash table. */
3081 mchash
[crc
>> 4] |= 1 << (crc
& 0xf);
3083 ETHER_FIRST_MULTI(step
, ec
, enm
);
3084 while (enm
!= NULL
) {
3085 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
, ETHER_ADDR_LEN
)) {
3087 * We must listen to a range of multicast addresses.
3088 * For now, just accept all multicasts, rather than
3089 * trying to set only those filter bits needed to match
3090 * the range. (At this time, the only use of address
3091 * ranges is for IP multicast routing, for which the
3092 * range is big enough to require all bits set.)
3097 crc
= ether_crc32_be(enm
->enm_addrlo
, ETHER_ADDR_LEN
);
3099 if (SIP_SIS900_REV(sc
, SIS_REV_635
) ||
3100 SIP_SIS900_REV(sc
, SIS_REV_960
) ||
3101 SIP_SIS900_REV(sc
, SIS_REV_900B
)) {
3102 /* Just want the 8 most significant bits. */
3105 /* Just want the 7 most significant bits. */
3109 /* Set the corresponding bit in the hash table. */
3110 mchash
[crc
>> 4] |= 1 << (crc
& 0xf);
3112 ETHER_NEXT_MULTI(step
, enm
);
3115 ifp
->if_flags
&= ~IFF_ALLMULTI
;
3119 ifp
->if_flags
|= IFF_ALLMULTI
;
3120 sc
->sc_rfcr
|= RFCR_AAM
;
3123 #define FILTER_EMIT(addr, data) \
3124 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3126 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3130 * Disable receive filter, and program the node address.
3132 cp
= CLLADDR(ifp
->if_sadl
);
3133 FILTER_EMIT(RFCR_RFADDR_NODE0
, (cp
[1] << 8) | cp
[0]);
3134 FILTER_EMIT(RFCR_RFADDR_NODE2
, (cp
[3] << 8) | cp
[2]);
3135 FILTER_EMIT(RFCR_RFADDR_NODE4
, (cp
[5] << 8) | cp
[4]);
3137 if ((ifp
->if_flags
& IFF_ALLMULTI
) == 0) {
3139 * Program the multicast hash table.
3141 FILTER_EMIT(RFCR_RFADDR_MC0
, mchash
[0]);
3142 FILTER_EMIT(RFCR_RFADDR_MC1
, mchash
[1]);
3143 FILTER_EMIT(RFCR_RFADDR_MC2
, mchash
[2]);
3144 FILTER_EMIT(RFCR_RFADDR_MC3
, mchash
[3]);
3145 FILTER_EMIT(RFCR_RFADDR_MC4
, mchash
[4]);
3146 FILTER_EMIT(RFCR_RFADDR_MC5
, mchash
[5]);
3147 FILTER_EMIT(RFCR_RFADDR_MC6
, mchash
[6]);
3148 FILTER_EMIT(RFCR_RFADDR_MC7
, mchash
[7]);
3149 if (SIP_SIS900_REV(sc
, SIS_REV_635
) ||
3150 SIP_SIS900_REV(sc
, SIS_REV_960
) ||
3151 SIP_SIS900_REV(sc
, SIS_REV_900B
)) {
3152 FILTER_EMIT(RFCR_RFADDR_MC8
, mchash
[8]);
3153 FILTER_EMIT(RFCR_RFADDR_MC9
, mchash
[9]);
3154 FILTER_EMIT(RFCR_RFADDR_MC10
, mchash
[10]);
3155 FILTER_EMIT(RFCR_RFADDR_MC11
, mchash
[11]);
3156 FILTER_EMIT(RFCR_RFADDR_MC12
, mchash
[12]);
3157 FILTER_EMIT(RFCR_RFADDR_MC13
, mchash
[13]);
3158 FILTER_EMIT(RFCR_RFADDR_MC14
, mchash
[14]);
3159 FILTER_EMIT(RFCR_RFADDR_MC15
, mchash
[15]);
3165 * Re-enable the receiver filter.
3167 bus_space_write_4(st
, sh
, SIP_RFCR
, sc
->sc_rfcr
);
3171 * sip_dp83815_set_filter:
3173 * Set up the receive filter.
3176 sipcom_dp83815_set_filter(struct sip_softc
*sc
)
3178 bus_space_tag_t st
= sc
->sc_st
;
3179 bus_space_handle_t sh
= sc
->sc_sh
;
3180 struct ethercom
*ec
= &sc
->sc_ethercom
;
3181 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
3182 struct ether_multi
*enm
;
3184 struct ether_multistep step
;
3185 u_int32_t crc
, hash
, slot
, bit
;
3186 #define MCHASH_NWORDS_83820 128
3187 #define MCHASH_NWORDS_83815 32
3188 #define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
3189 u_int16_t mchash
[MCHASH_NWORDS
];
3193 * Initialize the prototype RFCR.
3194 * Enable the receive filter, and accept on
3195 * Perfect (destination address) Match
3196 * If IFF_BROADCAST, also accept all broadcast packets.
3197 * If IFF_PROMISC, accept all unicast packets (and later, set
3198 * IFF_ALLMULTI and accept all multicast, too).
3200 sc
->sc_rfcr
= RFCR_RFEN
| RFCR_APM
;
3201 if (ifp
->if_flags
& IFF_BROADCAST
)
3202 sc
->sc_rfcr
|= RFCR_AAB
;
3203 if (ifp
->if_flags
& IFF_PROMISC
) {
3204 sc
->sc_rfcr
|= RFCR_AAP
;
3209 * Set up the DP83820/DP83815 multicast address filter by
3210 * passing all multicast addresses through a CRC generator,
3211 * and then using the high-order 11/9 bits as an index into
3212 * the 2048/512 bit multicast hash table. The high-order
3213 * 7/5 bits select the slot, while the low-order 4 bits
3214 * select the bit within the slot. Note that only the low
3215 * 16-bits of each filter word are used, and there are
3216 * 128/32 filter words.
3219 memset(mchash
, 0, sizeof(mchash
));
3221 ifp
->if_flags
&= ~IFF_ALLMULTI
;
3222 ETHER_FIRST_MULTI(step
, ec
, enm
);
3225 while (enm
!= NULL
) {
3226 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
, ETHER_ADDR_LEN
)) {
3228 * We must listen to a range of multicast addresses.
3229 * For now, just accept all multicasts, rather than
3230 * trying to set only those filter bits needed to match
3231 * the range. (At this time, the only use of address
3232 * ranges is for IP multicast routing, for which the
3233 * range is big enough to require all bits set.)
3238 crc
= ether_crc32_be(enm
->enm_addrlo
, ETHER_ADDR_LEN
);
3240 if (sc
->sc_gigabit
) {
3241 /* Just want the 11 most significant bits. */
3244 /* Just want the 9 most significant bits. */
3251 /* Set the corresponding bit in the hash table. */
3252 mchash
[slot
] |= 1 << bit
;
3254 ETHER_NEXT_MULTI(step
, enm
);
3256 sc
->sc_rfcr
|= RFCR_MHEN
;
3260 ifp
->if_flags
|= IFF_ALLMULTI
;
3261 sc
->sc_rfcr
|= RFCR_AAM
;
3264 #define FILTER_EMIT(addr, data) \
3265 bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
3267 bus_space_write_4(st, sh, SIP_RFDR, (data)); \
3271 * Disable receive filter, and program the node address.
3273 cp
= CLLADDR(ifp
->if_sadl
);
3274 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0
, (cp
[1] << 8) | cp
[0]);
3275 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2
, (cp
[3] << 8) | cp
[2]);
3276 FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4
, (cp
[5] << 8) | cp
[4]);
3278 if ((ifp
->if_flags
& IFF_ALLMULTI
) == 0) {
3280 sc
->sc_gigabit
? MCHASH_NWORDS_83820
: MCHASH_NWORDS_83815
;
3282 * Program the multicast hash table.
3284 for (i
= 0; i
< nwords
; i
++) {
3285 FILTER_EMIT(sc
->sc_parm
->p_filtmem
+ (i
* 2), mchash
[i
]);
3289 #undef MCHASH_NWORDS
3290 #undef MCHASH_NWORDS_83815
3291 #undef MCHASH_NWORDS_83820
3294 * Re-enable the receiver filter.
3296 bus_space_write_4(st
, sh
, SIP_RFCR
, sc
->sc_rfcr
);
3300 * sip_dp83820_mii_readreg: [mii interface function]
3302 * Read a PHY register on the MII of the DP83820.
3305 sipcom_dp83820_mii_readreg(device_t self
, int phy
, int reg
)
3307 struct sip_softc
*sc
= device_private(self
);
3309 if (sc
->sc_cfg
& CFG_TBI_EN
) {
3317 case MII_BMCR
: tbireg
= SIP_TBICR
; break;
3318 case MII_BMSR
: tbireg
= SIP_TBISR
; break;
3319 case MII_ANAR
: tbireg
= SIP_TANAR
; break;
3320 case MII_ANLPAR
: tbireg
= SIP_TANLPAR
; break;
3321 case MII_ANER
: tbireg
= SIP_TANER
; break;
3324 * Don't even bother reading the TESR register.
3325 * The manual documents that the device has
3326 * 1000baseX full/half capability, but the
3327 * register itself seems read back 0 on some
3328 * boards. Just hard-code the result.
3330 return (EXTSR_1000XFDX
|EXTSR_1000XHDX
);
3336 rv
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, tbireg
) & 0xffff;
3337 if (tbireg
== SIP_TBISR
) {
3338 /* LINK and ACOMP are switched! */
3342 if (val
& TBISR_MR_LINK_STATUS
)
3344 if (val
& TBISR_MR_AN_COMPLETE
)
3348 * The manual claims this register reads back 0
3349 * on hard and soft reset. But we want to let
3350 * the gentbi driver know that we support auto-
3351 * negotiation, so hard-code this bit in the
3354 rv
|= BMSR_ANEG
| BMSR_EXTSTAT
;
3360 return mii_bitbang_readreg(self
, &sipcom_mii_bitbang_ops
, phy
, reg
);
3364 * sip_dp83820_mii_writereg: [mii interface function]
3366 * Write a PHY register on the MII of the DP83820.
3369 sipcom_dp83820_mii_writereg(device_t self
, int phy
, int reg
, int val
)
3371 struct sip_softc
*sc
= device_private(self
);
3373 if (sc
->sc_cfg
& CFG_TBI_EN
) {
3380 case MII_BMCR
: tbireg
= SIP_TBICR
; break;
3381 case MII_ANAR
: tbireg
= SIP_TANAR
; break;
3382 case MII_ANLPAR
: tbireg
= SIP_TANLPAR
; break;
3387 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, tbireg
, val
);
3391 mii_bitbang_writereg(self
, &sipcom_mii_bitbang_ops
, phy
, reg
, val
);
3395 * sip_dp83820_mii_statchg: [mii interface function]
3397 * Callback from MII layer when media changes.
3400 sipcom_dp83820_mii_statchg(device_t self
)
3402 struct sip_softc
*sc
= device_private(self
);
3403 struct mii_data
*mii
= &sc
->sc_mii
;
3407 * Get flow control negotiation result.
3409 if (IFM_SUBTYPE(mii
->mii_media
.ifm_cur
->ifm_media
) == IFM_AUTO
&&
3410 (mii
->mii_media_active
& IFM_ETH_FMASK
) != sc
->sc_flowflags
) {
3411 sc
->sc_flowflags
= mii
->mii_media_active
& IFM_ETH_FMASK
;
3412 mii
->mii_media_active
&= ~IFM_ETH_FMASK
;
3416 * Update TXCFG for full-duplex operation.
3418 if ((mii
->mii_media_active
& IFM_FDX
) != 0)
3419 sc
->sc_txcfg
|= (TXCFG_CSI
| TXCFG_HBI
);
3421 sc
->sc_txcfg
&= ~(TXCFG_CSI
| TXCFG_HBI
);
3424 * Update RXCFG for full-duplex or loopback.
3426 if ((mii
->mii_media_active
& IFM_FDX
) != 0 ||
3427 IFM_SUBTYPE(mii
->mii_media_active
) == IFM_LOOP
)
3428 sc
->sc_rxcfg
|= RXCFG_ATX
;
3430 sc
->sc_rxcfg
&= ~RXCFG_ATX
;
3433 * Update CFG for MII/GMII.
3435 if (sc
->sc_ethercom
.ec_if
.if_baudrate
== IF_Mbps(1000))
3436 cfg
= sc
->sc_cfg
| CFG_MODE_1000
;
3441 * 802.3x flow control.
3444 if (sc
->sc_flowflags
& IFM_FLOW
) {
3445 if (sc
->sc_flowflags
& IFM_ETH_TXPAUSE
)
3446 pcr
|= sc
->sc_rx_flow_thresh
;
3447 if (sc
->sc_flowflags
& IFM_ETH_RXPAUSE
)
3448 pcr
|= PCR_PSEN
| PCR_PS_MCAST
;
3451 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_CFG
, cfg
);
3452 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, sc
->sc_regs
.r_txcfg
,
3454 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, sc
->sc_regs
.r_rxcfg
,
3456 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_NS_PCR
, pcr
);
3460 * sip_mii_bitbang_read: [mii bit-bang interface function]
3462 * Read the MII serial port for the MII bit-bang module.
3465 sipcom_mii_bitbang_read(device_t self
)
3467 struct sip_softc
*sc
= device_private(self
);
3469 return (bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_EROMAR
));
3473 * sip_mii_bitbang_write: [mii big-bang interface function]
3475 * Write the MII serial port for the MII bit-bang module.
3478 sipcom_mii_bitbang_write(device_t self
, u_int32_t val
)
3480 struct sip_softc
*sc
= device_private(self
);
3482 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_EROMAR
, val
);
3486 * sip_sis900_mii_readreg: [mii interface function]
3488 * Read a PHY register on the MII.
3491 sipcom_sis900_mii_readreg(device_t self
, int phy
, int reg
)
3493 struct sip_softc
*sc
= device_private(self
);
3497 * The PHY of recent SiS chipsets is accessed through bitbang
3500 if (sc
->sc_model
->sip_product
== PCI_PRODUCT_SIS_900
)
3501 return mii_bitbang_readreg(self
, &sipcom_mii_bitbang_ops
,
3504 #ifndef SIS900_MII_RESTRICT
3506 * The SiS 900 has only an internal PHY on the MII. Only allow
3509 if (sc
->sc_model
->sip_product
== PCI_PRODUCT_SIS_900
&& phy
!= 0)
3513 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_ENPHY
,
3514 (phy
<< ENPHY_PHYADDR_SHIFT
) | (reg
<< ENPHY_REGADDR_SHIFT
) |
3515 ENPHY_RWCMD
| ENPHY_ACCESS
);
3517 enphy
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_ENPHY
);
3518 } while (enphy
& ENPHY_ACCESS
);
3519 return ((enphy
& ENPHY_PHYDATA
) >> ENPHY_DATA_SHIFT
);
3523 * sip_sis900_mii_writereg: [mii interface function]
3525 * Write a PHY register on the MII.
3528 sipcom_sis900_mii_writereg(device_t self
, int phy
, int reg
, int val
)
3530 struct sip_softc
*sc
= device_private(self
);
3533 if (sc
->sc_model
->sip_product
== PCI_PRODUCT_SIS_900
) {
3534 mii_bitbang_writereg(self
, &sipcom_mii_bitbang_ops
,
3539 #ifndef SIS900_MII_RESTRICT
3541 * The SiS 900 has only an internal PHY on the MII. Only allow
3544 if (sc
->sc_model
->sip_product
== PCI_PRODUCT_SIS_900
&& phy
!= 0)
3548 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_ENPHY
,
3549 (val
<< ENPHY_DATA_SHIFT
) | (phy
<< ENPHY_PHYADDR_SHIFT
) |
3550 (reg
<< ENPHY_REGADDR_SHIFT
) | ENPHY_ACCESS
);
3552 enphy
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_ENPHY
);
3553 } while (enphy
& ENPHY_ACCESS
);
3557 * sip_sis900_mii_statchg: [mii interface function]
3559 * Callback from MII layer when media changes.
3562 sipcom_sis900_mii_statchg(device_t self
)
3564 struct sip_softc
*sc
= device_private(self
);
3565 struct mii_data
*mii
= &sc
->sc_mii
;
3569 * Get flow control negotiation result.
3571 if (IFM_SUBTYPE(mii
->mii_media
.ifm_cur
->ifm_media
) == IFM_AUTO
&&
3572 (mii
->mii_media_active
& IFM_ETH_FMASK
) != sc
->sc_flowflags
) {
3573 sc
->sc_flowflags
= mii
->mii_media_active
& IFM_ETH_FMASK
;
3574 mii
->mii_media_active
&= ~IFM_ETH_FMASK
;
3578 * Update TXCFG for full-duplex operation.
3580 if ((mii
->mii_media_active
& IFM_FDX
) != 0)
3581 sc
->sc_txcfg
|= (TXCFG_CSI
| TXCFG_HBI
);
3583 sc
->sc_txcfg
&= ~(TXCFG_CSI
| TXCFG_HBI
);
3586 * Update RXCFG for full-duplex or loopback.
3588 if ((mii
->mii_media_active
& IFM_FDX
) != 0 ||
3589 IFM_SUBTYPE(mii
->mii_media_active
) == IFM_LOOP
)
3590 sc
->sc_rxcfg
|= RXCFG_ATX
;
3592 sc
->sc_rxcfg
&= ~RXCFG_ATX
;
3595 * Update IMR for use of 802.3x flow control.
3597 if (sc
->sc_flowflags
& IFM_FLOW
) {
3598 sc
->sc_imr
|= (ISR_PAUSE_END
|ISR_PAUSE_ST
);
3599 flowctl
= FLOWCTL_FLOWEN
;
3601 sc
->sc_imr
&= ~(ISR_PAUSE_END
|ISR_PAUSE_ST
);
3605 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, sc
->sc_regs
.r_txcfg
,
3607 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, sc
->sc_regs
.r_rxcfg
,
3609 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_IMR
, sc
->sc_imr
);
3610 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_FLOWCTL
, flowctl
);
3614 * sip_dp83815_mii_readreg: [mii interface function]
3616 * Read a PHY register on the MII.
3619 sipcom_dp83815_mii_readreg(device_t self
, int phy
, int reg
)
3621 struct sip_softc
*sc
= device_private(self
);
3625 * The DP83815 only has an internal PHY. Only allow
3632 * Apparently, after a reset, the DP83815 can take a while
3633 * to respond. During this recovery period, the BMSR returns
3634 * a value of 0. Catch this -- it's not supposed to happen
3635 * (the BMSR has some hardcoded-to-1 bits), and wait for the
3636 * PHY to come back to life.
3638 * This works out because the BMSR is the first register
3639 * read during the PHY probe process.
3642 val
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_NS_PHY(reg
));
3643 } while (reg
== MII_BMSR
&& val
== 0);
3645 return (val
& 0xffff);
3649 * sip_dp83815_mii_writereg: [mii interface function]
3651 * Write a PHY register to the MII.
3654 sipcom_dp83815_mii_writereg(device_t self
, int phy
, int reg
, int val
)
3656 struct sip_softc
*sc
= device_private(self
);
3659 * The DP83815 only has an internal PHY. Only allow
3665 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_NS_PHY(reg
), val
);
3669 * sip_dp83815_mii_statchg: [mii interface function]
3671 * Callback from MII layer when media changes.
3674 sipcom_dp83815_mii_statchg(device_t self
)
3676 struct sip_softc
*sc
= device_private(self
);
3679 * Update TXCFG for full-duplex operation.
3681 if ((sc
->sc_mii
.mii_media_active
& IFM_FDX
) != 0)
3682 sc
->sc_txcfg
|= (TXCFG_CSI
| TXCFG_HBI
);
3684 sc
->sc_txcfg
&= ~(TXCFG_CSI
| TXCFG_HBI
);
3687 * Update RXCFG for full-duplex or loopback.
3689 if ((sc
->sc_mii
.mii_media_active
& IFM_FDX
) != 0 ||
3690 IFM_SUBTYPE(sc
->sc_mii
.mii_media_active
) == IFM_LOOP
)
3691 sc
->sc_rxcfg
|= RXCFG_ATX
;
3693 sc
->sc_rxcfg
&= ~RXCFG_ATX
;
3696 * XXX 802.3x flow control.
3699 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, sc
->sc_regs
.r_txcfg
,
3701 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, sc
->sc_regs
.r_rxcfg
,
3705 * Some DP83815s experience problems when used with short
3706 * (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
3707 * sequence adjusts the DSP's signal attenuation to fix the
3710 if (IFM_SUBTYPE(sc
->sc_mii
.mii_media_active
) == IFM_100_TX
) {
3713 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, 0x00cc, 0x0001);
3715 reg
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, 0x00f4);
3717 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, 0x00f4, reg
| 0x1000);
3719 reg
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, 0x00fc);
3721 if ((reg
& 0x0080) == 0 || (reg
>= 0x00d8)) {
3722 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, 0x00fc,
3724 reg
= bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, 0x00f4);
3725 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, 0x00f4,
3729 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, 0x00cc, 0);
3734 sipcom_dp83820_read_macaddr(struct sip_softc
*sc
,
3735 const struct pci_attach_args
*pa
, u_int8_t
*enaddr
)
3737 u_int16_t eeprom_data
[SIP_DP83820_EEPROM_LENGTH
/ 2];
3738 u_int8_t cksum
, *e
, match
;
3742 * EEPROM data format for the DP83820 can be found in
3743 * the DP83820 manual, section 4.2.4.
3746 sipcom_read_eeprom(sc
, 0, __arraycount(eeprom_data
), eeprom_data
);
3748 match
= eeprom_data
[SIP_DP83820_EEPROM_CHECKSUM
/ 2] >> 8;
3749 match
= ~(match
- 1);
3752 e
= (u_int8_t
*) eeprom_data
;
3753 for (i
= 0; i
< SIP_DP83820_EEPROM_CHECKSUM
; i
++)
3757 printf("%s: Checksum (%x) mismatch (%x)",
3758 device_xname(sc
->sc_dev
), cksum
, match
);
3760 enaddr
[0] = eeprom_data
[SIP_DP83820_EEPROM_PMATCH2
/ 2] & 0xff;
3761 enaddr
[1] = eeprom_data
[SIP_DP83820_EEPROM_PMATCH2
/ 2] >> 8;
3762 enaddr
[2] = eeprom_data
[SIP_DP83820_EEPROM_PMATCH1
/ 2] & 0xff;
3763 enaddr
[3] = eeprom_data
[SIP_DP83820_EEPROM_PMATCH1
/ 2] >> 8;
3764 enaddr
[4] = eeprom_data
[SIP_DP83820_EEPROM_PMATCH0
/ 2] & 0xff;
3765 enaddr
[5] = eeprom_data
[SIP_DP83820_EEPROM_PMATCH0
/ 2] >> 8;
3769 sipcom_sis900_eeprom_delay(struct sip_softc
*sc
)
3774 * FreeBSD goes from (300/33)+1 [10] to 0. There must be
3775 * a reason, but I don't know it.
3777 for (i
= 0; i
< 10; i
++)
3778 bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_CR
);
3782 sipcom_sis900_read_macaddr(struct sip_softc
*sc
,
3783 const struct pci_attach_args
*pa
, u_int8_t
*enaddr
)
3785 u_int16_t myea
[ETHER_ADDR_LEN
/ 2];
3787 switch (sc
->sc_rev
) {
3790 case SIS_REV_630EA1
:
3794 * The MAC address for the on-board Ethernet of
3795 * the SiS 630 chipset is in the NVRAM. Kick
3796 * the chip into re-loading it from NVRAM, and
3797 * read the MAC address out of the filter registers.
3799 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_CR
, CR_RLD
);
3801 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_RFCR
,
3803 myea
[0] = bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_RFDR
) &
3806 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_RFCR
,
3808 myea
[1] = bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_RFDR
) &
3811 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_RFCR
,
3813 myea
[2] = bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_RFDR
) &
3819 #define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3820 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
3822 #define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
3823 bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
3827 /* Allow to read EEPROM from LAN. It is shared
3828 * between a 1394 controller and the NIC and each
3829 * time we access it, we need to set SIS_EECMD_REQ.
3831 SIS_SET_EROMAR(sc
, EROMAR_REQ
);
3833 for (waittime
= 0; waittime
< 1000; waittime
++) { /* 1 ms max */
3834 /* Force EEPROM to idle state. */
3837 * XXX-cube This is ugly. I'll look for docs about it.
3839 SIS_SET_EROMAR(sc
, EROMAR_EECS
);
3840 sipcom_sis900_eeprom_delay(sc
);
3841 for (i
= 0; i
<= 25; i
++) { /* Yes, 26 times. */
3842 SIS_SET_EROMAR(sc
, EROMAR_EESK
);
3843 sipcom_sis900_eeprom_delay(sc
);
3844 SIS_CLR_EROMAR(sc
, EROMAR_EESK
);
3845 sipcom_sis900_eeprom_delay(sc
);
3847 SIS_CLR_EROMAR(sc
, EROMAR_EECS
);
3848 sipcom_sis900_eeprom_delay(sc
);
3849 bus_space_write_4(sc
->sc_st
, sc
->sc_sh
, SIP_EROMAR
, 0);
3851 if (bus_space_read_4(sc
->sc_st
, sc
->sc_sh
, SIP_EROMAR
) & EROMAR_GNT
) {
3852 sipcom_read_eeprom(sc
, SIP_EEPROM_ETHERNET_ID0
>> 1,
3853 sizeof(myea
) / sizeof(myea
[0]), myea
);
3860 * Set SIS_EECTL_CLK to high, so a other master
3861 * can operate on the i2c bus.
3863 SIS_SET_EROMAR(sc
, EROMAR_EESK
);
3865 /* Refuse EEPROM access by LAN */
3866 SIS_SET_EROMAR(sc
, EROMAR_DONE
);
3870 sipcom_read_eeprom(sc
, SIP_EEPROM_ETHERNET_ID0
>> 1,
3871 sizeof(myea
) / sizeof(myea
[0]), myea
);
3874 enaddr
[0] = myea
[0] & 0xff;
3875 enaddr
[1] = myea
[0] >> 8;
3876 enaddr
[2] = myea
[1] & 0xff;
3877 enaddr
[3] = myea
[1] >> 8;
3878 enaddr
[4] = myea
[2] & 0xff;
3879 enaddr
[5] = myea
[2] >> 8;
3882 /* Table and macro to bit-reverse an octet. */
3883 static const u_int8_t bbr4
[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
3884 #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
3887 sipcom_dp83815_read_macaddr(struct sip_softc
*sc
,
3888 const struct pci_attach_args
*pa
, u_int8_t
*enaddr
)
3890 u_int16_t eeprom_data
[SIP_DP83815_EEPROM_LENGTH
/ 2], *ea
;
3891 u_int8_t cksum
, *e
, match
;
3894 sipcom_read_eeprom(sc
, 0, sizeof(eeprom_data
) /
3895 sizeof(eeprom_data
[0]), eeprom_data
);
3897 match
= eeprom_data
[SIP_DP83815_EEPROM_CHECKSUM
/2] >> 8;
3898 match
= ~(match
- 1);
3901 e
= (u_int8_t
*) eeprom_data
;
3902 for (i
=0 ; i
<SIP_DP83815_EEPROM_CHECKSUM
; i
++) {
3905 if (cksum
!= match
) {
3906 printf("%s: Checksum (%x) mismatch (%x)",
3907 device_xname(sc
->sc_dev
), cksum
, match
);
3911 * Unrolled because it makes slightly more sense this way.
3912 * The DP83815 stores the MAC address in bit 0 of word 6
3913 * through bit 15 of word 8.
3915 ea
= &eeprom_data
[6];
3916 enaddr
[0] = ((*ea
& 0x1) << 7);
3918 enaddr
[0] |= ((*ea
& 0xFE00) >> 9);
3919 enaddr
[1] = ((*ea
& 0x1FE) >> 1);
3920 enaddr
[2] = ((*ea
& 0x1) << 7);
3922 enaddr
[2] |= ((*ea
& 0xFE00) >> 9);
3923 enaddr
[3] = ((*ea
& 0x1FE) >> 1);
3924 enaddr
[4] = ((*ea
& 0x1) << 7);
3926 enaddr
[4] |= ((*ea
& 0xFE00) >> 9);
3927 enaddr
[5] = ((*ea
& 0x1FE) >> 1);
3930 * In case that's not weird enough, we also need to reverse
3931 * the bits in each byte. This all actually makes more sense
3932 * if you think about the EEPROM storage as an array of bits
3933 * being shifted into bytes, but that's not how we're looking
3936 for (i
= 0; i
< 6 ;i
++)
3937 enaddr
[i
] = bbr(enaddr
[i
]);
3941 * sip_mediastatus: [ifmedia interface function]
3943 * Get the current interface media status.
3946 sipcom_mediastatus(struct ifnet
*ifp
, struct ifmediareq
*ifmr
)
3948 struct sip_softc
*sc
= ifp
->if_softc
;
3950 if (!device_is_active(sc
->sc_dev
)) {
3951 ifmr
->ifm_active
= IFM_ETHER
| IFM_NONE
;
3952 ifmr
->ifm_status
= 0;
3955 ether_mediastatus(ifp
, ifmr
);
3956 ifmr
->ifm_active
= (ifmr
->ifm_active
& ~IFM_ETH_FMASK
) |