1 /* $NetBSD: if_sk.c,v 1.61 2009/09/05 14:09:55 tsutsui Exp $ */
4 * Copyright (c) 2003 The NetBSD Foundation, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
29 /* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
32 * Copyright (c) 1997, 1998, 1999, 2000
33 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by Bill Paul.
46 * 4. Neither the name of the author nor the names of any co-contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
60 * THE POSSIBILITY OF SUCH DAMAGE.
62 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
66 * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
68 * Permission to use, copy, modify, and distribute this software for any
69 * purpose with or without fee is hereby granted, provided that the above
70 * copyright notice and this permission notice appear in all copies.
72 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
73 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
74 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
75 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
76 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
77 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
78 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
82 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
83 * the SK-984x series adapters, both single port and dual port.
85 * The XaQti XMAC II datasheet,
86 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
87 * The SysKonnect GEnesis manual, http://www.syskonnect.com
89 * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
90 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
91 * convenience to others until Vitesse corrects this problem:
93 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
95 * Written by Bill Paul <wpaul@ee.columbia.edu>
96 * Department of Electrical Engineering
97 * Columbia University, New York City
101 * The SysKonnect gigabit ethernet adapters consist of two main
102 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
103 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
104 * components and a PHY while the GEnesis controller provides a PCI
105 * interface with DMA support. Each card may have between 512K and
106 * 2MB of SRAM on board depending on the configuration.
108 * The SysKonnect GEnesis controller can have either one or two XMAC
109 * chips connected to it, allowing single or dual port NIC configurations.
110 * SysKonnect has the distinction of being the only vendor on the market
111 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
112 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
113 * XMAC registers. This driver takes advantage of these features to allow
114 * both XMACs to operate as independent interfaces.
117 #include <sys/cdefs.h>
118 __KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.61 2009/09/05 14:09:55 tsutsui Exp $");
120 #include "bpfilter.h"
123 #include <sys/param.h>
124 #include <sys/systm.h>
125 #include <sys/sockio.h>
126 #include <sys/mbuf.h>
127 #include <sys/malloc.h>
128 #include <sys/mutex.h>
129 #include <sys/kernel.h>
130 #include <sys/socket.h>
131 #include <sys/device.h>
132 #include <sys/queue.h>
133 #include <sys/callout.h>
134 #include <sys/sysctl.h>
135 #include <sys/endian.h>
138 #include <net/if_dl.h>
139 #include <net/if_types.h>
141 #include <net/if_media.h>
150 #include <dev/mii/mii.h>
151 #include <dev/mii/miivar.h>
152 #include <dev/mii/brgphyreg.h>
154 #include <dev/pci/pcireg.h>
155 #include <dev/pci/pcivar.h>
156 #include <dev/pci/pcidevs.h>
158 /* #define SK_USEIOSPACE */
160 #include <dev/pci/if_skreg.h>
161 #include <dev/pci/if_skvar.h>
163 int skc_probe(device_t
, cfdata_t
, void *);
164 void skc_attach(device_t
, device_t
, void *aux
);
165 int sk_probe(device_t
, cfdata_t
, void *);
166 void sk_attach(device_t
, device_t
, void *aux
);
167 int skcprint(void *, const char *);
169 void sk_intr_bcom(struct sk_if_softc
*);
170 void sk_intr_xmac(struct sk_if_softc
*);
171 void sk_intr_yukon(struct sk_if_softc
*);
172 void sk_rxeof(struct sk_if_softc
*);
173 void sk_txeof(struct sk_if_softc
*);
174 int sk_encap(struct sk_if_softc
*, struct mbuf
*, u_int32_t
*);
175 void sk_start(struct ifnet
*);
176 int sk_ioctl(struct ifnet
*, u_long
, void *);
177 int sk_init(struct ifnet
*);
178 void sk_init_xmac(struct sk_if_softc
*);
179 void sk_init_yukon(struct sk_if_softc
*);
180 void sk_stop(struct ifnet
*, int);
181 void sk_watchdog(struct ifnet
*);
182 void sk_shutdown(void *);
183 int sk_ifmedia_upd(struct ifnet
*);
184 void sk_reset(struct sk_softc
*);
185 int sk_newbuf(struct sk_if_softc
*, int, struct mbuf
*, bus_dmamap_t
);
186 int sk_alloc_jumbo_mem(struct sk_if_softc
*);
187 void sk_free_jumbo_mem(struct sk_if_softc
*);
188 void *sk_jalloc(struct sk_if_softc
*);
189 void sk_jfree(struct mbuf
*, void *, size_t, void *);
190 int sk_init_rx_ring(struct sk_if_softc
*);
191 int sk_init_tx_ring(struct sk_if_softc
*);
192 u_int8_t
sk_vpd_readbyte(struct sk_softc
*, int);
193 void sk_vpd_read_res(struct sk_softc
*,
194 struct vpd_res
*, int);
195 void sk_vpd_read(struct sk_softc
*);
197 void sk_update_int_mod(struct sk_softc
*);
199 int sk_xmac_miibus_readreg(device_t
, int, int);
200 void sk_xmac_miibus_writereg(device_t
, int, int, int);
201 void sk_xmac_miibus_statchg(device_t
);
203 int sk_marv_miibus_readreg(device_t
, int, int);
204 void sk_marv_miibus_writereg(device_t
, int, int, int);
205 void sk_marv_miibus_statchg(device_t
);
207 u_int32_t
sk_xmac_hash(void *);
208 u_int32_t
sk_yukon_hash(void *);
209 void sk_setfilt(struct sk_if_softc
*, void *, int);
210 void sk_setmulti(struct sk_if_softc
*);
211 void sk_tick(void *);
213 static bool skc_suspend(device_t dv PMF_FN_ARGS
);
214 static bool skc_resume(device_t dv PMF_FN_ARGS
);
215 static bool sk_resume(device_t dv PMF_FN_ARGS
);
217 /* #define SK_DEBUG 2 */
219 #define DPRINTF(x) if (skdebug) printf x
220 #define DPRINTFN(n,x) if (skdebug >= (n)) printf x
221 int skdebug
= SK_DEBUG
;
223 void sk_dump_txdesc(struct sk_tx_desc
*, int);
224 void sk_dump_mbuf(struct mbuf
*);
225 void sk_dump_bytes(const char *, int);
228 #define DPRINTFN(n,x)
231 static int sk_sysctl_handler(SYSCTLFN_PROTO
);
232 static int sk_root_num
;
234 /* supported device vendors */
235 /* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
236 static const struct sk_product
{
237 pci_vendor_id_t sk_vendor
;
238 pci_product_id_t sk_product
;
240 { PCI_VENDOR_3COM
, PCI_PRODUCT_3COM_3C940
, },
241 { PCI_VENDOR_DLINK
, PCI_PRODUCT_DLINK_DGE530T
, },
242 { PCI_VENDOR_DLINK
, PCI_PRODUCT_DLINK_DGE560T_2
, },
243 { PCI_VENDOR_LINKSYS
, PCI_PRODUCT_LINKSYS_EG1064
, },
244 { PCI_VENDOR_SCHNEIDERKOCH
, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE
, },
245 { PCI_VENDOR_SCHNEIDERKOCH
, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2
, },
246 { PCI_VENDOR_MARVELL
, PCI_PRODUCT_MARVELL_SKNET
, },
247 { PCI_VENDOR_MARVELL
, PCI_PRODUCT_MARVELL_BELKIN
, },
251 #define SK_LINKSYS_EG1032_SUBID 0x00151737
253 static inline u_int32_t
254 sk_win_read_4(struct sk_softc
*sc
, u_int32_t reg
)
257 CSR_WRITE_4(sc
, SK_RAP
, SK_WIN(reg
));
258 return CSR_READ_4(sc
, SK_WIN_BASE
+ SK_REG(reg
));
260 return CSR_READ_4(sc
, reg
);
264 static inline u_int16_t
265 sk_win_read_2(struct sk_softc
*sc
, u_int32_t reg
)
268 CSR_WRITE_4(sc
, SK_RAP
, SK_WIN(reg
));
269 return CSR_READ_2(sc
, SK_WIN_BASE
+ SK_REG(reg
));
271 return CSR_READ_2(sc
, reg
);
275 static inline u_int8_t
276 sk_win_read_1(struct sk_softc
*sc
, u_int32_t reg
)
279 CSR_WRITE_4(sc
, SK_RAP
, SK_WIN(reg
));
280 return CSR_READ_1(sc
, SK_WIN_BASE
+ SK_REG(reg
));
282 return CSR_READ_1(sc
, reg
);
287 sk_win_write_4(struct sk_softc
*sc
, u_int32_t reg
, u_int32_t x
)
290 CSR_WRITE_4(sc
, SK_RAP
, SK_WIN(reg
));
291 CSR_WRITE_4(sc
, SK_WIN_BASE
+ SK_REG(reg
), x
);
293 CSR_WRITE_4(sc
, reg
, x
);
298 sk_win_write_2(struct sk_softc
*sc
, u_int32_t reg
, u_int16_t x
)
301 CSR_WRITE_4(sc
, SK_RAP
, SK_WIN(reg
));
302 CSR_WRITE_2(sc
, SK_WIN_BASE
+ SK_REG(reg
), x
);
304 CSR_WRITE_2(sc
, reg
, x
);
309 sk_win_write_1(struct sk_softc
*sc
, u_int32_t reg
, u_int8_t x
)
312 CSR_WRITE_4(sc
, SK_RAP
, SK_WIN(reg
));
313 CSR_WRITE_1(sc
, SK_WIN_BASE
+ SK_REG(reg
), x
);
315 CSR_WRITE_1(sc
, reg
, x
);
320 * The VPD EEPROM contains Vital Product Data, as suggested in
321 * the PCI 2.1 specification. The VPD data is separared into areas
322 * denoted by resource IDs. The SysKonnect VPD contains an ID string
323 * resource (the name of the adapter), a read-only area resource
324 * containing various key/data fields and a read/write area which
325 * can be used to store asset management information or log messages.
326 * We read the ID string and read-only into buffers attached to
327 * the controller softc structure for later use. At the moment,
328 * we only use the ID string during sk_attach().
331 sk_vpd_readbyte(struct sk_softc
*sc
, int addr
)
335 sk_win_write_2(sc
, SK_PCI_REG(SK_PCI_VPD_ADDR
), addr
);
336 for (i
= 0; i
< SK_TIMEOUT
; i
++) {
338 if (sk_win_read_2(sc
,
339 SK_PCI_REG(SK_PCI_VPD_ADDR
)) & SK_VPD_FLAG
)
346 return sk_win_read_1(sc
, SK_PCI_REG(SK_PCI_VPD_DATA
));
350 sk_vpd_read_res(struct sk_softc
*sc
, struct vpd_res
*res
, int addr
)
355 ptr
= (u_int8_t
*)res
;
356 for (i
= 0; i
< sizeof(struct vpd_res
); i
++)
357 ptr
[i
] = sk_vpd_readbyte(sc
, i
+ addr
);
361 sk_vpd_read(struct sk_softc
*sc
)
366 if (sc
->sk_vpd_prodname
!= NULL
)
367 free(sc
->sk_vpd_prodname
, M_DEVBUF
);
368 if (sc
->sk_vpd_readonly
!= NULL
)
369 free(sc
->sk_vpd_readonly
, M_DEVBUF
);
370 sc
->sk_vpd_prodname
= NULL
;
371 sc
->sk_vpd_readonly
= NULL
;
373 sk_vpd_read_res(sc
, &res
, pos
);
375 if (res
.vr_id
!= VPD_RES_ID
) {
376 aprint_error_dev(sc
->sk_dev
,
377 "bad VPD resource id: expected %x got %x\n",
378 VPD_RES_ID
, res
.vr_id
);
383 sc
->sk_vpd_prodname
= malloc(res
.vr_len
+ 1, M_DEVBUF
, M_NOWAIT
);
384 if (sc
->sk_vpd_prodname
== NULL
)
385 panic("sk_vpd_read");
386 for (i
= 0; i
< res
.vr_len
; i
++)
387 sc
->sk_vpd_prodname
[i
] = sk_vpd_readbyte(sc
, i
+ pos
);
388 sc
->sk_vpd_prodname
[i
] = '\0';
391 sk_vpd_read_res(sc
, &res
, pos
);
393 if (res
.vr_id
!= VPD_RES_READ
) {
394 aprint_error_dev(sc
->sk_dev
,
395 "bad VPD resource id: expected %x got %x\n",
396 VPD_RES_READ
, res
.vr_id
);
401 sc
->sk_vpd_readonly
= malloc(res
.vr_len
, M_DEVBUF
, M_NOWAIT
);
402 if (sc
->sk_vpd_readonly
== NULL
)
403 panic("sk_vpd_read");
404 for (i
= 0; i
< res
.vr_len
; i
++)
405 sc
->sk_vpd_readonly
[i
] = sk_vpd_readbyte(sc
, i
+ pos
);
409 sk_xmac_miibus_readreg(device_t dev
, int phy
, int reg
)
411 struct sk_if_softc
*sc_if
= device_private(dev
);
414 DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
416 if (sc_if
->sk_phytype
== SK_PHYTYPE_XMAC
&& phy
!= 0)
419 SK_XM_WRITE_2(sc_if
, XM_PHY_ADDR
, reg
|(phy
<< 8));
420 SK_XM_READ_2(sc_if
, XM_PHY_DATA
);
421 if (sc_if
->sk_phytype
!= SK_PHYTYPE_XMAC
) {
422 for (i
= 0; i
< SK_TIMEOUT
; i
++) {
424 if (SK_XM_READ_2(sc_if
, XM_MMUCMD
) &
425 XM_MMUCMD_PHYDATARDY
)
429 if (i
== SK_TIMEOUT
) {
430 aprint_error_dev(sc_if
->sk_dev
,
431 "phy failed to come ready\n");
436 return SK_XM_READ_2(sc_if
, XM_PHY_DATA
);
440 sk_xmac_miibus_writereg(device_t dev
, int phy
, int reg
, int val
)
442 struct sk_if_softc
*sc_if
= device_private(dev
);
445 DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
447 SK_XM_WRITE_2(sc_if
, XM_PHY_ADDR
, reg
|(phy
<< 8));
448 for (i
= 0; i
< SK_TIMEOUT
; i
++) {
449 if (!(SK_XM_READ_2(sc_if
, XM_MMUCMD
) & XM_MMUCMD_PHYBUSY
))
453 if (i
== SK_TIMEOUT
) {
454 aprint_error_dev(sc_if
->sk_dev
, "phy failed to come ready\n");
458 SK_XM_WRITE_2(sc_if
, XM_PHY_DATA
, val
);
459 for (i
= 0; i
< SK_TIMEOUT
; i
++) {
461 if (!(SK_XM_READ_2(sc_if
, XM_MMUCMD
) & XM_MMUCMD_PHYBUSY
))
466 aprint_error_dev(sc_if
->sk_dev
, "phy write timed out\n");
470 sk_xmac_miibus_statchg(device_t dev
)
472 struct sk_if_softc
*sc_if
= device_private(dev
);
473 struct mii_data
*mii
= &sc_if
->sk_mii
;
475 DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
478 * If this is a GMII PHY, manually set the XMAC's
479 * duplex mode accordingly.
481 if (sc_if
->sk_phytype
!= SK_PHYTYPE_XMAC
) {
482 if ((mii
->mii_media_active
& IFM_GMASK
) == IFM_FDX
)
483 SK_XM_SETBIT_2(sc_if
, XM_MMUCMD
, XM_MMUCMD_GMIIFDX
);
485 SK_XM_CLRBIT_2(sc_if
, XM_MMUCMD
, XM_MMUCMD_GMIIFDX
);
490 sk_marv_miibus_readreg(device_t dev
, int phy
, int reg
)
492 struct sk_if_softc
*sc_if
= device_private(dev
);
497 (sc_if
->sk_phytype
!= SK_PHYTYPE_MARV_COPPER
&&
498 sc_if
->sk_phytype
!= SK_PHYTYPE_MARV_FIBER
)) {
499 DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
504 SK_YU_WRITE_2(sc_if
, YUKON_SMICR
, YU_SMICR_PHYAD(phy
) |
505 YU_SMICR_REGAD(reg
) | YU_SMICR_OP_READ
);
507 for (i
= 0; i
< SK_TIMEOUT
; i
++) {
509 val
= SK_YU_READ_2(sc_if
, YUKON_SMICR
);
510 if (val
& YU_SMICR_READ_VALID
)
514 if (i
== SK_TIMEOUT
) {
515 aprint_error_dev(sc_if
->sk_dev
, "phy failed to come ready\n");
519 DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i
,
522 val
= SK_YU_READ_2(sc_if
, YUKON_SMIDR
);
524 DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
531 sk_marv_miibus_writereg(device_t dev
, int phy
, int reg
, int val
)
533 struct sk_if_softc
*sc_if
= device_private(dev
);
536 DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
539 SK_YU_WRITE_2(sc_if
, YUKON_SMIDR
, val
);
540 SK_YU_WRITE_2(sc_if
, YUKON_SMICR
, YU_SMICR_PHYAD(phy
) |
541 YU_SMICR_REGAD(reg
) | YU_SMICR_OP_WRITE
);
543 for (i
= 0; i
< SK_TIMEOUT
; i
++) {
545 if (!(SK_YU_READ_2(sc_if
, YUKON_SMICR
) & YU_SMICR_BUSY
))
550 printf("%s: phy write timed out\n",
551 device_xname(sc_if
->sk_dev
));
555 sk_marv_miibus_statchg(device_t dev
)
557 DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
558 SK_YU_READ_2(((struct sk_if_softc
*)device_private(dev
)),
562 #define SK_HASH_BITS 6
565 sk_xmac_hash(void *addr
)
569 crc
= ether_crc32_le(addr
,ETHER_ADDR_LEN
);
570 crc
= ~crc
& ((1<< SK_HASH_BITS
) - 1);
571 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr
),crc
));
576 sk_yukon_hash(void *addr
)
580 crc
= ether_crc32_be(addr
,ETHER_ADDR_LEN
);
581 crc
&= ((1 << SK_HASH_BITS
) - 1);
582 DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr
),crc
));
587 sk_setfilt(struct sk_if_softc
*sc_if
, void *addrv
, int slot
)
590 int base
= XM_RXFILT_ENTRY(slot
);
592 SK_XM_WRITE_2(sc_if
, base
, *(u_int16_t
*)(&addr
[0]));
593 SK_XM_WRITE_2(sc_if
, base
+ 2, *(u_int16_t
*)(&addr
[2]));
594 SK_XM_WRITE_2(sc_if
, base
+ 4, *(u_int16_t
*)(&addr
[4]));
598 sk_setmulti(struct sk_if_softc
*sc_if
)
600 struct sk_softc
*sc
= sc_if
->sk_softc
;
601 struct ifnet
*ifp
= &sc_if
->sk_ethercom
.ec_if
;
602 u_int32_t hashes
[2] = { 0, 0 };
604 struct ethercom
*ec
= &sc_if
->sk_ethercom
;
605 struct ether_multi
*enm
;
606 struct ether_multistep step
;
607 u_int8_t dummy
[] = { 0, 0, 0, 0, 0 ,0 };
609 /* First, zot all the existing filters. */
610 switch (sc
->sk_type
) {
612 for (i
= 1; i
< XM_RXFILT_MAX
; i
++)
613 sk_setfilt(sc_if
, (void *)&dummy
, i
);
615 SK_XM_WRITE_4(sc_if
, XM_MAR0
, 0);
616 SK_XM_WRITE_4(sc_if
, XM_MAR2
, 0);
621 SK_YU_WRITE_2(sc_if
, YUKON_MCAH1
, 0);
622 SK_YU_WRITE_2(sc_if
, YUKON_MCAH2
, 0);
623 SK_YU_WRITE_2(sc_if
, YUKON_MCAH3
, 0);
624 SK_YU_WRITE_2(sc_if
, YUKON_MCAH4
, 0);
628 /* Now program new ones. */
630 if (ifp
->if_flags
& IFF_ALLMULTI
|| ifp
->if_flags
& IFF_PROMISC
) {
631 hashes
[0] = 0xFFFFFFFF;
632 hashes
[1] = 0xFFFFFFFF;
635 /* First find the tail of the list. */
636 ETHER_FIRST_MULTI(step
, ec
, enm
);
637 while (enm
!= NULL
) {
638 if (memcmp(enm
->enm_addrlo
, enm
->enm_addrhi
,
640 ifp
->if_flags
|= IFF_ALLMULTI
;
643 DPRINTFN(2,("multicast address %s\n",
644 ether_sprintf(enm
->enm_addrlo
)));
646 * Program the first XM_RXFILT_MAX multicast groups
647 * into the perfect filter. For all others,
648 * use the hash table.
650 if (sc
->sk_type
== SK_GENESIS
&& i
< XM_RXFILT_MAX
) {
651 sk_setfilt(sc_if
, enm
->enm_addrlo
, i
);
655 switch (sc
->sk_type
) {
657 h
= sk_xmac_hash(enm
->enm_addrlo
);
662 h
= sk_yukon_hash(enm
->enm_addrlo
);
666 hashes
[0] |= (1 << h
);
668 hashes
[1] |= (1 << (h
- 32));
671 ETHER_NEXT_MULTI(step
, enm
);
675 switch (sc
->sk_type
) {
677 SK_XM_SETBIT_4(sc_if
, XM_MODE
, XM_MODE_RX_USE_HASH
|
678 XM_MODE_RX_USE_PERFECT
);
679 SK_XM_WRITE_4(sc_if
, XM_MAR0
, hashes
[0]);
680 SK_XM_WRITE_4(sc_if
, XM_MAR2
, hashes
[1]);
685 SK_YU_WRITE_2(sc_if
, YUKON_MCAH1
, hashes
[0] & 0xffff);
686 SK_YU_WRITE_2(sc_if
, YUKON_MCAH2
, (hashes
[0] >> 16) & 0xffff);
687 SK_YU_WRITE_2(sc_if
, YUKON_MCAH3
, hashes
[1] & 0xffff);
688 SK_YU_WRITE_2(sc_if
, YUKON_MCAH4
, (hashes
[1] >> 16) & 0xffff);
694 sk_init_rx_ring(struct sk_if_softc
*sc_if
)
696 struct sk_chain_data
*cd
= &sc_if
->sk_cdata
;
697 struct sk_ring_data
*rd
= sc_if
->sk_rdata
;
700 memset((char *)rd
->sk_rx_ring
, 0,
701 sizeof(struct sk_rx_desc
) * SK_RX_RING_CNT
);
703 for (i
= 0; i
< SK_RX_RING_CNT
; i
++) {
704 cd
->sk_rx_chain
[i
].sk_desc
= &rd
->sk_rx_ring
[i
];
705 if (i
== (SK_RX_RING_CNT
- 1)) {
706 cd
->sk_rx_chain
[i
].sk_next
= &cd
->sk_rx_chain
[0];
707 rd
->sk_rx_ring
[i
].sk_next
=
708 htole32(SK_RX_RING_ADDR(sc_if
, 0));
710 cd
->sk_rx_chain
[i
].sk_next
= &cd
->sk_rx_chain
[i
+ 1];
711 rd
->sk_rx_ring
[i
].sk_next
=
712 htole32(SK_RX_RING_ADDR(sc_if
,i
+1));
716 for (i
= 0; i
< SK_RX_RING_CNT
; i
++) {
717 if (sk_newbuf(sc_if
, i
, NULL
,
718 sc_if
->sk_cdata
.sk_rx_jumbo_map
) == ENOBUFS
) {
719 aprint_error_dev(sc_if
->sk_dev
,
720 "failed alloc of %dth mbuf\n", i
);
724 sc_if
->sk_cdata
.sk_rx_prod
= 0;
725 sc_if
->sk_cdata
.sk_rx_cons
= 0;
731 sk_init_tx_ring(struct sk_if_softc
*sc_if
)
733 struct sk_chain_data
*cd
= &sc_if
->sk_cdata
;
734 struct sk_ring_data
*rd
= sc_if
->sk_rdata
;
737 memset(sc_if
->sk_rdata
->sk_tx_ring
, 0,
738 sizeof(struct sk_tx_desc
) * SK_TX_RING_CNT
);
740 for (i
= 0; i
< SK_TX_RING_CNT
; i
++) {
741 cd
->sk_tx_chain
[i
].sk_desc
= &rd
->sk_tx_ring
[i
];
742 if (i
== (SK_TX_RING_CNT
- 1)) {
743 cd
->sk_tx_chain
[i
].sk_next
= &cd
->sk_tx_chain
[0];
744 rd
->sk_tx_ring
[i
].sk_next
=
745 htole32(SK_TX_RING_ADDR(sc_if
, 0));
747 cd
->sk_tx_chain
[i
].sk_next
= &cd
->sk_tx_chain
[i
+ 1];
748 rd
->sk_tx_ring
[i
].sk_next
=
749 htole32(SK_TX_RING_ADDR(sc_if
,i
+1));
753 sc_if
->sk_cdata
.sk_tx_prod
= 0;
754 sc_if
->sk_cdata
.sk_tx_cons
= 0;
755 sc_if
->sk_cdata
.sk_tx_cnt
= 0;
757 SK_CDTXSYNC(sc_if
, 0, SK_TX_RING_CNT
,
758 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
764 sk_newbuf(struct sk_if_softc
*sc_if
, int i
, struct mbuf
*m
,
767 struct mbuf
*m_new
= NULL
;
769 struct sk_rx_desc
*r
;
774 MGETHDR(m_new
, M_DONTWAIT
, MT_DATA
);
776 aprint_error_dev(sc_if
->sk_dev
,
777 "no memory for rx list -- packet dropped!\n");
781 /* Allocate the jumbo buffer */
782 buf
= sk_jalloc(sc_if
);
785 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
786 "dropped!\n", sc_if
->sk_ethercom
.ec_if
.if_xname
));
790 /* Attach the buffer to the mbuf */
791 m_new
->m_len
= m_new
->m_pkthdr
.len
= SK_JLEN
;
792 MEXTADD(m_new
, buf
, SK_JLEN
, 0, sk_jfree
, sc_if
);
796 * We're re-using a previously allocated mbuf;
797 * be sure to re-init pointers and lengths to
801 m_new
->m_len
= m_new
->m_pkthdr
.len
= SK_JLEN
;
802 m_new
->m_data
= m_new
->m_ext
.ext_buf
;
804 m_adj(m_new
, ETHER_ALIGN
);
806 c
= &sc_if
->sk_cdata
.sk_rx_chain
[i
];
809 r
->sk_data_lo
= htole32(dmamap
->dm_segs
[0].ds_addr
+
810 (((vaddr_t
)m_new
->m_data
811 - (vaddr_t
)sc_if
->sk_cdata
.sk_jumbo_buf
)));
812 r
->sk_ctl
= htole32(SK_JLEN
| SK_RXSTAT
);
814 SK_CDRXSYNC(sc_if
, i
, BUS_DMASYNC_PREWRITE
|BUS_DMASYNC_PREREAD
);
820 * Memory management for jumbo frames.
824 sk_alloc_jumbo_mem(struct sk_if_softc
*sc_if
)
826 struct sk_softc
*sc
= sc_if
->sk_softc
;
828 bus_dma_segment_t seg
;
829 int i
, rseg
, state
, error
;
830 struct sk_jpool_entry
*entry
;
834 /* Grab a big chunk o' storage. */
835 if (bus_dmamem_alloc(sc
->sc_dmatag
, SK_JMEM
, PAGE_SIZE
, 0,
836 &seg
, 1, &rseg
, BUS_DMA_NOWAIT
)) {
837 aprint_error_dev(sc
->sk_dev
, "can't alloc rx buffers\n");
842 if (bus_dmamem_map(sc
->sc_dmatag
, &seg
, rseg
, SK_JMEM
, (void **)&kva
,
844 aprint_error_dev(sc
->sk_dev
,
845 "can't map dma buffers (%d bytes)\n",
852 if (bus_dmamap_create(sc
->sc_dmatag
, SK_JMEM
, 1, SK_JMEM
, 0,
853 BUS_DMA_NOWAIT
, &sc_if
->sk_cdata
.sk_rx_jumbo_map
)) {
854 aprint_error_dev(sc
->sk_dev
, "can't create dma map\n");
860 if (bus_dmamap_load(sc
->sc_dmatag
, sc_if
->sk_cdata
.sk_rx_jumbo_map
,
861 kva
, SK_JMEM
, NULL
, BUS_DMA_NOWAIT
)) {
862 aprint_error_dev(sc
->sk_dev
, "can't load dma map\n");
868 sc_if
->sk_cdata
.sk_jumbo_buf
= (void *)kva
;
869 DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if
->sk_cdata
.sk_jumbo_buf
));
871 LIST_INIT(&sc_if
->sk_jfree_listhead
);
872 LIST_INIT(&sc_if
->sk_jinuse_listhead
);
873 mutex_init(&sc_if
->sk_jpool_mtx
, MUTEX_DEFAULT
, IPL_NET
);
876 * Now divide it up into 9K pieces and save the addresses
879 ptr
= sc_if
->sk_cdata
.sk_jumbo_buf
;
880 for (i
= 0; i
< SK_JSLOTS
; i
++) {
881 sc_if
->sk_cdata
.sk_jslots
[i
] = ptr
;
883 entry
= malloc(sizeof(struct sk_jpool_entry
),
886 aprint_error_dev(sc
->sk_dev
,
887 "no memory for jumbo buffer queue!\n");
893 LIST_INSERT_HEAD(&sc_if
->sk_jfree_listhead
,
894 entry
, jpool_entries
);
896 LIST_INSERT_HEAD(&sc_if
->sk_jinuse_listhead
,
897 entry
, jpool_entries
);
903 bus_dmamap_unload(sc
->sc_dmatag
,
904 sc_if
->sk_cdata
.sk_rx_jumbo_map
);
906 bus_dmamap_destroy(sc
->sc_dmatag
,
907 sc_if
->sk_cdata
.sk_rx_jumbo_map
);
909 bus_dmamem_unmap(sc
->sc_dmatag
, kva
, SK_JMEM
);
911 bus_dmamem_free(sc
->sc_dmatag
, &seg
, rseg
);
922 * Allocate a jumbo buffer.
925 sk_jalloc(struct sk_if_softc
*sc_if
)
927 struct sk_jpool_entry
*entry
;
929 mutex_enter(&sc_if
->sk_jpool_mtx
);
930 entry
= LIST_FIRST(&sc_if
->sk_jfree_listhead
);
933 mutex_exit(&sc_if
->sk_jpool_mtx
);
937 LIST_REMOVE(entry
, jpool_entries
);
938 LIST_INSERT_HEAD(&sc_if
->sk_jinuse_listhead
, entry
, jpool_entries
);
939 mutex_exit(&sc_if
->sk_jpool_mtx
);
940 return sc_if
->sk_cdata
.sk_jslots
[entry
->slot
];
944 * Release a jumbo buffer.
947 sk_jfree(struct mbuf
*m
, void *buf
, size_t size
, void *arg
)
949 struct sk_jpool_entry
*entry
;
950 struct sk_if_softc
*sc
;
953 /* Extract the softc struct pointer. */
954 sc
= (struct sk_if_softc
*)arg
;
957 panic("sk_jfree: can't find softc pointer!");
959 /* calculate the slot this buffer belongs to */
962 - (vaddr_t
)sc
->sk_cdata
.sk_jumbo_buf
) / SK_JLEN
;
964 if ((i
< 0) || (i
>= SK_JSLOTS
))
965 panic("sk_jfree: asked to free buffer that we don't manage!");
967 mutex_enter(&sc
->sk_jpool_mtx
);
968 entry
= LIST_FIRST(&sc
->sk_jinuse_listhead
);
970 panic("sk_jfree: buffer not in use!");
972 LIST_REMOVE(entry
, jpool_entries
);
973 LIST_INSERT_HEAD(&sc
->sk_jfree_listhead
, entry
, jpool_entries
);
974 mutex_exit(&sc
->sk_jpool_mtx
);
976 if (__predict_true(m
!= NULL
))
977 pool_cache_put(mb_cache
, m
);
984 sk_ifmedia_upd(struct ifnet
*ifp
)
986 struct sk_if_softc
*sc_if
= ifp
->if_softc
;
990 if ((rc
= mii_mediachg(&sc_if
->sk_mii
)) == ENXIO
)
996 sk_ioctl(struct ifnet
*ifp
, u_long command
, void *data
)
998 struct sk_if_softc
*sc_if
= ifp
->if_softc
;
999 struct sk_softc
*sc
= sc_if
->sk_softc
;
1002 /* DPRINTFN(2, ("sk_ioctl\n")); */
1009 DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
1010 if ((error
= ifioctl_common(ifp
, command
, data
)) != 0)
1012 if (ifp
->if_flags
& IFF_UP
) {
1013 if (ifp
->if_flags
& IFF_RUNNING
&&
1014 ifp
->if_flags
& IFF_PROMISC
&&
1015 !(sc_if
->sk_if_flags
& IFF_PROMISC
)) {
1016 switch (sc
->sk_type
) {
1018 SK_XM_SETBIT_4(sc_if
, XM_MODE
,
1019 XM_MODE_RX_PROMISC
);
1024 SK_YU_CLRBIT_2(sc_if
, YUKON_RCR
,
1025 YU_RCR_UFLEN
| YU_RCR_MUFLEN
);
1029 } else if (ifp
->if_flags
& IFF_RUNNING
&&
1030 !(ifp
->if_flags
& IFF_PROMISC
) &&
1031 sc_if
->sk_if_flags
& IFF_PROMISC
) {
1032 switch (sc
->sk_type
) {
1034 SK_XM_CLRBIT_4(sc_if
, XM_MODE
,
1035 XM_MODE_RX_PROMISC
);
1040 SK_YU_SETBIT_2(sc_if
, YUKON_RCR
,
1041 YU_RCR_UFLEN
| YU_RCR_MUFLEN
);
1047 (void) sk_init(ifp
);
1049 if (ifp
->if_flags
& IFF_RUNNING
)
1052 sc_if
->sk_if_flags
= ifp
->if_flags
;
1057 DPRINTFN(2, ("sk_ioctl ETHER\n"));
1058 if ((error
= ether_ioctl(ifp
, command
, data
)) != ENETRESET
)
1063 if (command
!= SIOCADDMULTI
&& command
!= SIOCDELMULTI
)
1065 else if (ifp
->if_flags
& IFF_RUNNING
) {
1067 DPRINTFN(2, ("sk_ioctl setmulti called\n"));
1077 sk_update_int_mod(struct sk_softc
*sc
)
1079 u_int32_t imtimer_ticks
;
1082 * Configure interrupt moderation. The moderation timer
1083 * defers interrupts specified in the interrupt moderation
1084 * timer mask based on the timeout specified in the interrupt
1085 * moderation timer init register. Each bit in the timer
1086 * register represents one tick, so to specify a timeout in
1087 * microseconds, we have to multiply by the correct number of
1088 * ticks-per-microsecond.
1090 switch (sc
->sk_type
) {
1092 imtimer_ticks
= SK_IMTIMER_TICKS_GENESIS
;
1095 imtimer_ticks
= SK_IMTIMER_TICKS_YUKON_EC
;
1098 imtimer_ticks
= SK_IMTIMER_TICKS_YUKON
;
1100 aprint_verbose_dev(sc
->sk_dev
, "interrupt moderation is %d us\n",
1102 sk_win_write_4(sc
, SK_IMTIMERINIT
, SK_IM_USECS(sc
->sk_int_mod
));
1103 sk_win_write_4(sc
, SK_IMMR
, SK_ISR_TX1_S_EOF
|SK_ISR_TX2_S_EOF
|
1104 SK_ISR_RX1_EOF
|SK_ISR_RX2_EOF
);
1105 sk_win_write_1(sc
, SK_IMTIMERCTL
, SK_IMCTL_START
);
1106 sc
->sk_int_mod_pending
= 0;
1110 * Lookup: Check the PCI vendor and device, and return a pointer to
1111 * The structure if the IDs match against our list.
1114 static const struct sk_product
*
1115 sk_lookup(const struct pci_attach_args
*pa
)
1117 const struct sk_product
*psk
;
1119 for ( psk
= &sk_products
[0]; psk
->sk_vendor
!= 0; psk
++ ) {
1120 if (PCI_VENDOR(pa
->pa_id
) == psk
->sk_vendor
&&
1121 PCI_PRODUCT(pa
->pa_id
) == psk
->sk_product
)
1128 * Probe for a SysKonnect GEnesis chip.
1132 skc_probe(device_t parent
, cfdata_t match
, void *aux
)
1134 struct pci_attach_args
*pa
= (struct pci_attach_args
*)aux
;
1135 const struct sk_product
*psk
;
1138 subid
= pci_conf_read(pa
->pa_pc
, pa
->pa_tag
, PCI_SUBSYS_ID_REG
);
1140 /* special-case Linksys EG1032, since rev 3 uses re(4) */
1141 if (PCI_VENDOR(pa
->pa_id
) == PCI_VENDOR_LINKSYS
&&
1142 PCI_PRODUCT(pa
->pa_id
) == PCI_PRODUCT_LINKSYS_EG1032
&&
1143 subid
== SK_LINKSYS_EG1032_SUBID
)
1146 if ((psk
= sk_lookup(pa
))) {
1153 * Force the GEnesis into reset, then bring it out of reset.
1155 void sk_reset(struct sk_softc
*sc
)
1157 DPRINTFN(2, ("sk_reset\n"));
1159 CSR_WRITE_2(sc
, SK_CSR
, SK_CSR_SW_RESET
);
1160 CSR_WRITE_2(sc
, SK_CSR
, SK_CSR_MASTER_RESET
);
1161 if (SK_YUKON_FAMILY(sc
->sk_type
))
1162 CSR_WRITE_2(sc
, SK_LINK_CTRL
, SK_LINK_RESET_SET
);
1165 CSR_WRITE_2(sc
, SK_CSR
, SK_CSR_SW_UNRESET
);
1167 CSR_WRITE_2(sc
, SK_CSR
, SK_CSR_MASTER_UNRESET
);
1168 if (SK_YUKON_FAMILY(sc
->sk_type
))
1169 CSR_WRITE_2(sc
, SK_LINK_CTRL
, SK_LINK_RESET_CLEAR
);
1171 DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc
, SK_CSR
)));
1172 DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
1173 CSR_READ_2(sc
, SK_LINK_CTRL
)));
1175 if (sc
->sk_type
== SK_GENESIS
) {
1176 /* Configure packet arbiter */
1177 sk_win_write_2(sc
, SK_PKTARB_CTL
, SK_PKTARBCTL_UNRESET
);
1178 sk_win_write_2(sc
, SK_RXPA1_TINIT
, SK_PKTARB_TIMEOUT
);
1179 sk_win_write_2(sc
, SK_TXPA1_TINIT
, SK_PKTARB_TIMEOUT
);
1180 sk_win_write_2(sc
, SK_RXPA2_TINIT
, SK_PKTARB_TIMEOUT
);
1181 sk_win_write_2(sc
, SK_TXPA2_TINIT
, SK_PKTARB_TIMEOUT
);
1184 /* Enable RAM interface */
1185 sk_win_write_4(sc
, SK_RAMCTL
, SK_RAMCTL_UNRESET
);
1187 sk_update_int_mod(sc
);
1191 sk_probe(device_t parent
, cfdata_t match
, void *aux
)
1193 struct skc_attach_args
*sa
= aux
;
1195 if (sa
->skc_port
!= SK_PORT_A
&& sa
->skc_port
!= SK_PORT_B
)
1202 * Each XMAC chip is attached as a separate logical IP interface.
1203 * Single port cards will have only one logical interface of course.
1206 sk_attach(device_t parent
, device_t self
, void *aux
)
1208 struct sk_if_softc
*sc_if
= device_private(self
);
1209 struct sk_softc
*sc
= device_private(parent
);
1210 struct skc_attach_args
*sa
= aux
;
1211 struct sk_txmap_entry
*entry
;
1213 bus_dma_segment_t seg
;
1214 bus_dmamap_t dmamap
;
1221 sc_if
->sk_dev
= self
;
1222 sc_if
->sk_port
= sa
->skc_port
;
1223 sc_if
->sk_softc
= sc
;
1224 sc
->sk_if
[sa
->skc_port
] = sc_if
;
1226 if (sa
->skc_port
== SK_PORT_A
)
1227 sc_if
->sk_tx_bmu
= SK_BMU_TXS_CSR0
;
1228 if (sa
->skc_port
== SK_PORT_B
)
1229 sc_if
->sk_tx_bmu
= SK_BMU_TXS_CSR1
;
1231 DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if
->sk_port
));
1234 * Get station address for this interface. Note that
1235 * dual port cards actually come with three station
1236 * addresses: one for each port, plus an extra. The
1237 * extra one is used by the SysKonnect driver software
1238 * as a 'virtual' station address for when both ports
1239 * are operating in failover mode. Currently we don't
1240 * use this extra address.
1242 for (i
= 0; i
< ETHER_ADDR_LEN
; i
++)
1243 sc_if
->sk_enaddr
[i
] =
1244 sk_win_read_1(sc
, SK_MAC0_0
+ (sa
->skc_port
* 8) + i
);
1247 aprint_normal(": Ethernet address %s\n",
1248 ether_sprintf(sc_if
->sk_enaddr
));
1251 * Set up RAM buffer addresses. The NIC will have a certain
1252 * amount of SRAM on it, somewhere between 512K and 2MB. We
1253 * need to divide this up a) between the transmitter and
1254 * receiver and b) between the two XMACs, if this is a
1255 * dual port NIC. Our algorithm is to divide up the memory
1256 * evenly so that everyone gets a fair share.
1258 if (sk_win_read_1(sc
, SK_CONFIG
) & SK_CONFIG_SINGLEMAC
) {
1259 u_int32_t chunk
, val
;
1261 chunk
= sc
->sk_ramsize
/ 2;
1262 val
= sc
->sk_rboff
/ sizeof(u_int64_t
);
1263 sc_if
->sk_rx_ramstart
= val
;
1264 val
+= (chunk
/ sizeof(u_int64_t
));
1265 sc_if
->sk_rx_ramend
= val
- 1;
1266 sc_if
->sk_tx_ramstart
= val
;
1267 val
+= (chunk
/ sizeof(u_int64_t
));
1268 sc_if
->sk_tx_ramend
= val
- 1;
1270 u_int32_t chunk
, val
;
1272 chunk
= sc
->sk_ramsize
/ 4;
1273 val
= (sc
->sk_rboff
+ (chunk
* 2 * sc_if
->sk_port
)) /
1275 sc_if
->sk_rx_ramstart
= val
;
1276 val
+= (chunk
/ sizeof(u_int64_t
));
1277 sc_if
->sk_rx_ramend
= val
- 1;
1278 sc_if
->sk_tx_ramstart
= val
;
1279 val
+= (chunk
/ sizeof(u_int64_t
));
1280 sc_if
->sk_tx_ramend
= val
- 1;
1283 DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1284 " tx_ramstart=%#x tx_ramend=%#x\n",
1285 sc_if
->sk_rx_ramstart
, sc_if
->sk_rx_ramend
,
1286 sc_if
->sk_tx_ramstart
, sc_if
->sk_tx_ramend
));
1288 /* Read and save PHY type and set PHY address */
1289 sc_if
->sk_phytype
= sk_win_read_1(sc
, SK_EPROM1
) & 0xF;
1290 switch (sc_if
->sk_phytype
) {
1291 case SK_PHYTYPE_XMAC
:
1292 sc_if
->sk_phyaddr
= SK_PHYADDR_XMAC
;
1294 case SK_PHYTYPE_BCOM
:
1295 sc_if
->sk_phyaddr
= SK_PHYADDR_BCOM
;
1297 case SK_PHYTYPE_MARV_COPPER
:
1298 sc_if
->sk_phyaddr
= SK_PHYADDR_MARV
;
1301 aprint_error_dev(sc
->sk_dev
, "unsupported PHY type: %d\n",
1306 /* Allocate the descriptor queues. */
1307 if (bus_dmamem_alloc(sc
->sc_dmatag
, sizeof(struct sk_ring_data
),
1308 PAGE_SIZE
, 0, &seg
, 1, &rseg
, BUS_DMA_NOWAIT
)) {
1309 aprint_error_dev(sc
->sk_dev
, "can't alloc rx buffers\n");
1312 if (bus_dmamem_map(sc
->sc_dmatag
, &seg
, rseg
,
1313 sizeof(struct sk_ring_data
), &kva
, BUS_DMA_NOWAIT
)) {
1314 aprint_error_dev(sc_if
->sk_dev
,
1315 "can't map dma buffers (%lu bytes)\n",
1316 (u_long
) sizeof(struct sk_ring_data
));
1317 bus_dmamem_free(sc
->sc_dmatag
, &seg
, rseg
);
1320 if (bus_dmamap_create(sc
->sc_dmatag
, sizeof(struct sk_ring_data
), 1,
1321 sizeof(struct sk_ring_data
), 0, BUS_DMA_NOWAIT
,
1322 &sc_if
->sk_ring_map
)) {
1323 aprint_error_dev(sc_if
->sk_dev
, "can't create dma map\n");
1324 bus_dmamem_unmap(sc
->sc_dmatag
, kva
,
1325 sizeof(struct sk_ring_data
));
1326 bus_dmamem_free(sc
->sc_dmatag
, &seg
, rseg
);
1329 if (bus_dmamap_load(sc
->sc_dmatag
, sc_if
->sk_ring_map
, kva
,
1330 sizeof(struct sk_ring_data
), NULL
, BUS_DMA_NOWAIT
)) {
1331 aprint_error_dev(sc_if
->sk_dev
, "can't load dma map\n");
1332 bus_dmamap_destroy(sc
->sc_dmatag
, sc_if
->sk_ring_map
);
1333 bus_dmamem_unmap(sc
->sc_dmatag
, kva
,
1334 sizeof(struct sk_ring_data
));
1335 bus_dmamem_free(sc
->sc_dmatag
, &seg
, rseg
);
1339 for (i
= 0; i
< SK_RX_RING_CNT
; i
++)
1340 sc_if
->sk_cdata
.sk_rx_chain
[i
].sk_mbuf
= NULL
;
1342 SIMPLEQ_INIT(&sc_if
->sk_txmap_head
);
1343 for (i
= 0; i
< SK_TX_RING_CNT
; i
++) {
1344 sc_if
->sk_cdata
.sk_tx_chain
[i
].sk_mbuf
= NULL
;
1346 if (bus_dmamap_create(sc
->sc_dmatag
, SK_JLEN
, SK_NTXSEG
,
1347 SK_JLEN
, 0, BUS_DMA_NOWAIT
, &dmamap
)) {
1348 aprint_error_dev(sc_if
->sk_dev
,
1349 "Can't create TX dmamap\n");
1350 bus_dmamap_unload(sc
->sc_dmatag
, sc_if
->sk_ring_map
);
1351 bus_dmamap_destroy(sc
->sc_dmatag
, sc_if
->sk_ring_map
);
1352 bus_dmamem_unmap(sc
->sc_dmatag
, kva
,
1353 sizeof(struct sk_ring_data
));
1354 bus_dmamem_free(sc
->sc_dmatag
, &seg
, rseg
);
1358 entry
= malloc(sizeof(*entry
), M_DEVBUF
, M_NOWAIT
);
1360 aprint_error_dev(sc_if
->sk_dev
,
1361 "Can't alloc txmap entry\n");
1362 bus_dmamap_destroy(sc
->sc_dmatag
, dmamap
);
1363 bus_dmamap_unload(sc
->sc_dmatag
, sc_if
->sk_ring_map
);
1364 bus_dmamap_destroy(sc
->sc_dmatag
, sc_if
->sk_ring_map
);
1365 bus_dmamem_unmap(sc
->sc_dmatag
, kva
,
1366 sizeof(struct sk_ring_data
));
1367 bus_dmamem_free(sc
->sc_dmatag
, &seg
, rseg
);
1370 entry
->dmamap
= dmamap
;
1371 SIMPLEQ_INSERT_HEAD(&sc_if
->sk_txmap_head
, entry
, link
);
1374 sc_if
->sk_rdata
= (struct sk_ring_data
*)kva
;
1375 memset(sc_if
->sk_rdata
, 0, sizeof(struct sk_ring_data
));
1377 ifp
= &sc_if
->sk_ethercom
.ec_if
;
1378 /* Try to allocate memory for jumbo buffers. */
1379 if (sk_alloc_jumbo_mem(sc_if
)) {
1380 aprint_error("%s: jumbo buffer allocation failed\n", ifp
->if_xname
);
1383 sc_if
->sk_ethercom
.ec_capabilities
= ETHERCAP_VLAN_MTU
1384 | ETHERCAP_JUMBO_MTU
;
1386 ifp
->if_softc
= sc_if
;
1387 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
1388 ifp
->if_ioctl
= sk_ioctl
;
1389 ifp
->if_start
= sk_start
;
1390 ifp
->if_stop
= sk_stop
;
1391 ifp
->if_init
= sk_init
;
1392 ifp
->if_watchdog
= sk_watchdog
;
1393 ifp
->if_capabilities
= 0;
1394 IFQ_SET_MAXLEN(&ifp
->if_snd
, SK_TX_RING_CNT
- 1);
1395 IFQ_SET_READY(&ifp
->if_snd
);
1396 strlcpy(ifp
->if_xname
, device_xname(sc_if
->sk_dev
), IFNAMSIZ
);
1401 switch (sc
->sk_type
) {
1403 sk_init_xmac(sc_if
);
1408 sk_init_yukon(sc_if
);
1411 aprint_error_dev(sc
->sk_dev
, "unknown device type %d\n",
1416 DPRINTFN(2, ("sk_attach: 1\n"));
1418 sc_if
->sk_mii
.mii_ifp
= ifp
;
1419 switch (sc
->sk_type
) {
1421 sc_if
->sk_mii
.mii_readreg
= sk_xmac_miibus_readreg
;
1422 sc_if
->sk_mii
.mii_writereg
= sk_xmac_miibus_writereg
;
1423 sc_if
->sk_mii
.mii_statchg
= sk_xmac_miibus_statchg
;
1428 sc_if
->sk_mii
.mii_readreg
= sk_marv_miibus_readreg
;
1429 sc_if
->sk_mii
.mii_writereg
= sk_marv_miibus_writereg
;
1430 sc_if
->sk_mii
.mii_statchg
= sk_marv_miibus_statchg
;
1431 mii_flags
= MIIF_DOPAUSE
;
1435 sc_if
->sk_ethercom
.ec_mii
= &sc_if
->sk_mii
;
1436 ifmedia_init(&sc_if
->sk_mii
.mii_media
, 0,
1437 sk_ifmedia_upd
, ether_mediastatus
);
1438 mii_attach(self
, &sc_if
->sk_mii
, 0xffffffff, MII_PHY_ANY
,
1439 MII_OFFSET_ANY
, mii_flags
);
1440 if (LIST_EMPTY(&sc_if
->sk_mii
.mii_phys
)) {
1441 aprint_error_dev(sc_if
->sk_dev
, "no PHY found!\n");
1442 ifmedia_add(&sc_if
->sk_mii
.mii_media
, IFM_ETHER
|IFM_MANUAL
,
1444 ifmedia_set(&sc_if
->sk_mii
.mii_media
, IFM_ETHER
|IFM_MANUAL
);
1446 ifmedia_set(&sc_if
->sk_mii
.mii_media
, IFM_ETHER
|IFM_AUTO
);
1448 callout_init(&sc_if
->sk_tick_ch
, 0);
1449 callout_reset(&sc_if
->sk_tick_ch
,hz
,sk_tick
,sc_if
);
1451 DPRINTFN(2, ("sk_attach: 1\n"));
1454 * Call MI attach routines.
1458 ether_ifattach(ifp
, sc_if
->sk_enaddr
);
1461 rnd_attach_source(&sc
->rnd_source
, device_xname(sc
->sk_dev
),
1465 if (pmf_device_register(self
, NULL
, sk_resume
))
1466 pmf_class_network_register(self
, ifp
);
1468 aprint_error_dev(self
, "couldn't establish power handler\n");
1470 DPRINTFN(2, ("sk_attach: end\n"));
1475 sc
->sk_if
[sa
->skc_port
] = NULL
;
1479 skcprint(void *aux
, const char *pnp
)
1481 struct skc_attach_args
*sa
= aux
;
1484 aprint_normal("sk port %c at %s",
1485 (sa
->skc_port
== SK_PORT_A
) ? 'A' : 'B', pnp
);
1487 aprint_normal(" port %c",
1488 (sa
->skc_port
== SK_PORT_A
) ? 'A' : 'B');
1493 * Attach the interface. Allocate softc structures, do ifmedia
1494 * setup and ethernet/BPF attach.
1497 skc_attach(device_t parent
, device_t self
, void *aux
)
1499 struct sk_softc
*sc
= device_private(self
);
1500 struct pci_attach_args
*pa
= aux
;
1501 struct skc_attach_args skca
;
1502 pci_chipset_tag_t pc
= pa
->pa_pc
;
1503 #ifndef SK_USEIOSPACE
1506 pci_intr_handle_t ih
;
1507 const char *intrstr
= NULL
;
1513 const struct sysctlnode
*node
;
1518 DPRINTFN(2, ("begin skc_attach\n"));
1521 * Handle power management nonsense.
1523 command
= pci_conf_read(pc
, pa
->pa_tag
, SK_PCI_CAPID
) & 0x000000FF;
1525 if (command
== 0x01) {
1526 command
= pci_conf_read(pc
, pa
->pa_tag
, SK_PCI_PWRMGMTCTRL
);
1527 if (command
& SK_PSTATE_MASK
) {
1528 u_int32_t xiobase
, membase
, irq
;
1530 /* Save important PCI config data. */
1531 xiobase
= pci_conf_read(pc
, pa
->pa_tag
, SK_PCI_LOIO
);
1532 membase
= pci_conf_read(pc
, pa
->pa_tag
, SK_PCI_LOMEM
);
1533 irq
= pci_conf_read(pc
, pa
->pa_tag
, SK_PCI_INTLINE
);
1535 /* Reset the power state. */
1536 aprint_normal_dev(sc
->sk_dev
,
1537 "chip is in D%d power mode -- setting to D0\n",
1538 command
& SK_PSTATE_MASK
);
1539 command
&= 0xFFFFFFFC;
1540 pci_conf_write(pc
, pa
->pa_tag
,
1541 SK_PCI_PWRMGMTCTRL
, command
);
1543 /* Restore PCI config data. */
1544 pci_conf_write(pc
, pa
->pa_tag
, SK_PCI_LOIO
, xiobase
);
1545 pci_conf_write(pc
, pa
->pa_tag
, SK_PCI_LOMEM
, membase
);
1546 pci_conf_write(pc
, pa
->pa_tag
, SK_PCI_INTLINE
, irq
);
1551 * Map control/status registers.
1553 command
= pci_conf_read(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
);
1554 command
|= PCI_COMMAND_IO_ENABLE
|
1555 PCI_COMMAND_MEM_ENABLE
|
1556 PCI_COMMAND_MASTER_ENABLE
;
1557 pci_conf_write(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
, command
);
1558 command
= pci_conf_read(pc
, pa
->pa_tag
, PCI_COMMAND_STATUS_REG
);
1560 #ifdef SK_USEIOSPACE
1561 if (!(command
& PCI_COMMAND_IO_ENABLE
)) {
1562 aprint_error(": failed to enable I/O ports!\n");
1566 * Map control/status registers.
1568 if (pci_mapreg_map(pa
, SK_PCI_LOIO
, PCI_MAPREG_TYPE_IO
, 0,
1569 &sc
->sk_btag
, &sc
->sk_bhandle
,
1570 &iobase
, &iosize
)) {
1571 aprint_error(": can't find i/o space\n");
1575 if (!(command
& PCI_COMMAND_MEM_ENABLE
)) {
1576 aprint_error(": failed to enable memory mapping!\n");
1579 memtype
= pci_mapreg_type(pc
, pa
->pa_tag
, SK_PCI_LOMEM
);
1581 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_32BIT
:
1582 case PCI_MAPREG_TYPE_MEM
| PCI_MAPREG_MEM_TYPE_64BIT
:
1583 if (pci_mapreg_map(pa
, SK_PCI_LOMEM
,
1584 memtype
, 0, &sc
->sk_btag
, &sc
->sk_bhandle
,
1585 &iobase
, &iosize
) == 0)
1588 aprint_error_dev(sc
->sk_dev
, "can't find mem space\n");
1592 DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase
,
1595 sc
->sc_dmatag
= pa
->pa_dmat
;
1597 sc
->sk_type
= sk_win_read_1(sc
, SK_CHIPVER
);
1598 sc
->sk_rev
= (sk_win_read_1(sc
, SK_CONFIG
) >> 4);
1600 /* bail out here if chip is not recognized */
1601 if ( sc
->sk_type
!= SK_GENESIS
&& ! SK_YUKON_FAMILY(sc
->sk_type
)) {
1602 aprint_error_dev(sc
->sk_dev
, "unknown chip type\n");
1605 if (SK_IS_YUKON2(sc
)) {
1606 aprint_error_dev(sc
->sk_dev
,
1607 "Does not support Yukon2--try msk(4).\n");
1610 DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
1612 /* Allocate interrupt */
1613 if (pci_intr_map(pa
, &ih
)) {
1614 aprint_error(": couldn't map interrupt\n");
1618 intrstr
= pci_intr_string(pc
, ih
);
1619 sc
->sk_intrhand
= pci_intr_establish(pc
, ih
, IPL_NET
, sk_intr
, sc
);
1620 if (sc
->sk_intrhand
== NULL
) {
1621 aprint_error(": couldn't establish interrupt");
1622 if (intrstr
!= NULL
)
1623 aprint_error(" at %s", intrstr
);
1627 aprint_normal(": %s\n", intrstr
);
1629 /* Reset the adapter. */
1632 /* Read and save vital product data from EEPROM. */
1635 if (sc
->sk_type
== SK_GENESIS
) {
1636 u_int8_t val
= sk_win_read_1(sc
, SK_EPROM0
);
1637 /* Read and save RAM size and RAMbuffer offset */
1639 case SK_RAMSIZE_512K_64
:
1640 sc
->sk_ramsize
= 0x80000;
1641 sc
->sk_rboff
= SK_RBOFF_0
;
1643 case SK_RAMSIZE_1024K_64
:
1644 sc
->sk_ramsize
= 0x100000;
1645 sc
->sk_rboff
= SK_RBOFF_80000
;
1647 case SK_RAMSIZE_1024K_128
:
1648 sc
->sk_ramsize
= 0x100000;
1649 sc
->sk_rboff
= SK_RBOFF_0
;
1651 case SK_RAMSIZE_2048K_128
:
1652 sc
->sk_ramsize
= 0x200000;
1653 sc
->sk_rboff
= SK_RBOFF_0
;
1656 aprint_error_dev(sc
->sk_dev
, "unknown ram size: %d\n",
1662 DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
1663 sc
->sk_ramsize
, sc
->sk_ramsize
/ 1024,
1666 u_int8_t val
= sk_win_read_1(sc
, SK_EPROM0
);
1667 sc
->sk_ramsize
= ( val
== 0 ) ? 0x20000 : (( val
* 4 )*1024);
1668 sc
->sk_rboff
= SK_RBOFF_0
;
1670 DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
1671 sc
->sk_ramsize
/ 1024, sc
->sk_ramsize
,
1675 /* Read and save physical media type */
1676 switch (sk_win_read_1(sc
, SK_PMDTYPE
)) {
1677 case SK_PMD_1000BASESX
:
1678 sc
->sk_pmd
= IFM_1000_SX
;
1680 case SK_PMD_1000BASELX
:
1681 sc
->sk_pmd
= IFM_1000_LX
;
1683 case SK_PMD_1000BASECX
:
1684 sc
->sk_pmd
= IFM_1000_CX
;
1686 case SK_PMD_1000BASETX
:
1687 case SK_PMD_1000BASETX_ALT
:
1688 sc
->sk_pmd
= IFM_1000_T
;
1691 aprint_error_dev(sc
->sk_dev
, "unknown media type: 0x%x\n",
1692 sk_win_read_1(sc
, SK_PMDTYPE
));
1696 /* determine whether to name it with vpd or just make it up */
1697 /* Marvell Yukon VPD's can freqently be bogus */
1699 switch (pa
->pa_id
) {
1700 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH
,
1701 PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE
):
1702 case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2
:
1703 case PCI_PRODUCT_3COM_3C940
:
1704 case PCI_PRODUCT_DLINK_DGE530T
:
1705 case PCI_PRODUCT_DLINK_DGE560T
:
1706 case PCI_PRODUCT_DLINK_DGE560T_2
:
1707 case PCI_PRODUCT_LINKSYS_EG1032
:
1708 case PCI_PRODUCT_LINKSYS_EG1064
:
1709 case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH
,
1710 PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2
):
1711 case PCI_ID_CODE(PCI_VENDOR_3COM
,PCI_PRODUCT_3COM_3C940
):
1712 case PCI_ID_CODE(PCI_VENDOR_DLINK
,PCI_PRODUCT_DLINK_DGE530T
):
1713 case PCI_ID_CODE(PCI_VENDOR_DLINK
,PCI_PRODUCT_DLINK_DGE560T
):
1714 case PCI_ID_CODE(PCI_VENDOR_DLINK
,PCI_PRODUCT_DLINK_DGE560T_2
):
1715 case PCI_ID_CODE(PCI_VENDOR_LINKSYS
,PCI_PRODUCT_LINKSYS_EG1032
):
1716 case PCI_ID_CODE(PCI_VENDOR_LINKSYS
,PCI_PRODUCT_LINKSYS_EG1064
):
1717 sc
->sk_name
= sc
->sk_vpd_prodname
;
1719 case PCI_ID_CODE(PCI_VENDOR_MARVELL
,PCI_PRODUCT_MARVELL_SKNET
):
1720 /* whoops yukon vpd prodname bears no resemblance to reality */
1721 switch (sc
->sk_type
) {
1723 sc
->sk_name
= sc
->sk_vpd_prodname
;
1726 sc
->sk_name
= "Marvell Yukon Gigabit Ethernet";
1729 sc
->sk_name
= "Marvell Yukon Lite Gigabit Ethernet";
1732 sc
->sk_name
= "Marvell Yukon LP Gigabit Ethernet";
1735 sc
->sk_name
= "Marvell Yukon (Unknown) Gigabit Ethernet";
1738 /* Yukon Lite Rev A0 needs special test, from sk98lin driver */
1740 if ( sc
->sk_type
== SK_YUKON
) {
1744 flashaddr
= sk_win_read_4(sc
,SK_EP_ADDR
);
1746 /* test Flash-Address Register */
1747 sk_win_write_1(sc
,SK_EP_ADDR
+3, 0xff);
1748 testbyte
= sk_win_read_1(sc
, SK_EP_ADDR
+3);
1750 if (testbyte
!= 0) {
1751 /* this is yukon lite Rev. A0 */
1752 sc
->sk_type
= SK_YUKON_LITE
;
1753 sc
->sk_rev
= SK_YUKON_LITE_REV_A0
;
1754 /* restore Flash-Address Register */
1755 sk_win_write_4(sc
,SK_EP_ADDR
,flashaddr
);
1759 case PCI_ID_CODE(PCI_VENDOR_MARVELL
,PCI_PRODUCT_MARVELL_BELKIN
):
1760 sc
->sk_name
= sc
->sk_vpd_prodname
;
1763 sc
->sk_name
= "Unknown Marvell";
1767 if ( sc
->sk_type
== SK_YUKON_LITE
) {
1768 switch (sc
->sk_rev
) {
1769 case SK_YUKON_LITE_REV_A0
:
1772 case SK_YUKON_LITE_REV_A1
:
1775 case SK_YUKON_LITE_REV_A3
:
1785 /* Announce the product name. */
1786 aprint_normal_dev(sc
->sk_dev
, "%s rev. %s(0x%x)\n",
1787 sc
->sk_name
, revstr
, sc
->sk_rev
);
1789 skca
.skc_port
= SK_PORT_A
;
1790 (void)config_found(sc
->sk_dev
, &skca
, skcprint
);
1792 if (!(sk_win_read_1(sc
, SK_CONFIG
) & SK_CONFIG_SINGLEMAC
)) {
1793 skca
.skc_port
= SK_PORT_B
;
1794 (void)config_found(sc
->sk_dev
, &skca
, skcprint
);
1797 /* Turn on the 'driver is loaded' LED. */
1798 CSR_WRITE_2(sc
, SK_LED
, SK_LED_GREEN_ON
);
1800 /* skc sysctl setup */
1802 sc
->sk_int_mod
= SK_IM_DEFAULT
;
1803 sc
->sk_int_mod_pending
= 0;
1805 if ((rc
= sysctl_createv(&sc
->sk_clog
, 0, NULL
, &node
,
1806 0, CTLTYPE_NODE
, device_xname(sc
->sk_dev
),
1807 SYSCTL_DESCR("skc per-controller controls"),
1808 NULL
, 0, NULL
, 0, CTL_HW
, sk_root_num
, CTL_CREATE
,
1810 aprint_normal_dev(sc
->sk_dev
, "couldn't create sysctl node\n");
1814 sk_nodenum
= node
->sysctl_num
;
1816 /* interrupt moderation time in usecs */
1817 if ((rc
= sysctl_createv(&sc
->sk_clog
, 0, NULL
, &node
,
1819 CTLTYPE_INT
, "int_mod",
1820 SYSCTL_DESCR("sk interrupt moderation timer"),
1821 sk_sysctl_handler
, 0, sc
,
1822 0, CTL_HW
, sk_root_num
, sk_nodenum
, CTL_CREATE
,
1824 aprint_normal_dev(sc
->sk_dev
, "couldn't create int_mod sysctl node\n");
1828 if (!pmf_device_register(self
, skc_suspend
, skc_resume
))
1829 aprint_error_dev(self
, "couldn't establish power handler\n");
1834 pci_intr_disestablish(pc
, sc
->sk_intrhand
);
1836 bus_space_unmap(sc
->sk_btag
, sc
->sk_bhandle
, iosize
);
1840 sk_encap(struct sk_if_softc
*sc_if
, struct mbuf
*m_head
, u_int32_t
*txidx
)
1842 struct sk_softc
*sc
= sc_if
->sk_softc
;
1843 struct sk_tx_desc
*f
= NULL
;
1844 u_int32_t frag
, cur
, cnt
= 0, sk_ctl
;
1846 struct sk_txmap_entry
*entry
;
1849 DPRINTFN(3, ("sk_encap\n"));
1851 entry
= SIMPLEQ_FIRST(&sc_if
->sk_txmap_head
);
1852 if (entry
== NULL
) {
1853 DPRINTFN(3, ("sk_encap: no txmap available\n"));
1856 txmap
= entry
->dmamap
;
1858 cur
= frag
= *txidx
;
1862 sk_dump_mbuf(m_head
);
1866 * Start packing the mbufs in this chain into
1867 * the fragment pointers. Stop when we run out
1868 * of fragments or hit the end of the mbuf chain.
1870 if (bus_dmamap_load_mbuf(sc
->sc_dmatag
, txmap
, m_head
,
1872 DPRINTFN(1, ("sk_encap: dmamap failed\n"));
1876 DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap
->dm_nsegs
));
1878 /* Sync the DMA map. */
1879 bus_dmamap_sync(sc
->sc_dmatag
, txmap
, 0, txmap
->dm_mapsize
,
1880 BUS_DMASYNC_PREWRITE
);
1882 for (i
= 0; i
< txmap
->dm_nsegs
; i
++) {
1883 if ((SK_TX_RING_CNT
- (sc_if
->sk_cdata
.sk_tx_cnt
+ cnt
)) < 2) {
1884 DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
1887 f
= &sc_if
->sk_rdata
->sk_tx_ring
[frag
];
1888 f
->sk_data_lo
= htole32(txmap
->dm_segs
[i
].ds_addr
);
1889 sk_ctl
= txmap
->dm_segs
[i
].ds_len
| SK_OPCODE_DEFAULT
;
1891 sk_ctl
|= SK_TXCTL_FIRSTFRAG
;
1893 sk_ctl
|= SK_TXCTL_OWN
;
1894 f
->sk_ctl
= htole32(sk_ctl
);
1896 SK_INC(frag
, SK_TX_RING_CNT
);
1900 sc_if
->sk_cdata
.sk_tx_chain
[cur
].sk_mbuf
= m_head
;
1901 SIMPLEQ_REMOVE_HEAD(&sc_if
->sk_txmap_head
, link
);
1903 sc_if
->sk_cdata
.sk_tx_map
[cur
] = entry
;
1904 sc_if
->sk_rdata
->sk_tx_ring
[cur
].sk_ctl
|=
1905 htole32(SK_TXCTL_LASTFRAG
|SK_TXCTL_EOF_INTR
);
1907 /* Sync descriptors before handing to chip */
1908 SK_CDTXSYNC(sc_if
, *txidx
, txmap
->dm_nsegs
,
1909 BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1911 sc_if
->sk_rdata
->sk_tx_ring
[*txidx
].sk_ctl
|=
1912 htole32(SK_TXCTL_OWN
);
1914 /* Sync first descriptor to hand it off */
1915 SK_CDTXSYNC(sc_if
, *txidx
, 1, BUS_DMASYNC_PREREAD
|BUS_DMASYNC_PREWRITE
);
1917 sc_if
->sk_cdata
.sk_tx_cnt
+= cnt
;
1921 struct sk_tx_desc
*desc
;
1923 for (idx
= *txidx
; idx
!= frag
; SK_INC(idx
, SK_TX_RING_CNT
)) {
1924 desc
= &sc_if
->sk_rdata
->sk_tx_ring
[idx
];
1925 sk_dump_txdesc(desc
, idx
);
1932 DPRINTFN(3, ("sk_encap: completed successfully\n"));
1938 sk_start(struct ifnet
*ifp
)
1940 struct sk_if_softc
*sc_if
= ifp
->if_softc
;
1941 struct sk_softc
*sc
= sc_if
->sk_softc
;
1942 struct mbuf
*m_head
= NULL
;
1943 u_int32_t idx
= sc_if
->sk_cdata
.sk_tx_prod
;
1946 DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx
,
1947 sc_if
->sk_cdata
.sk_tx_chain
[idx
].sk_mbuf
));
1949 while (sc_if
->sk_cdata
.sk_tx_chain
[idx
].sk_mbuf
== NULL
) {
1950 IFQ_POLL(&ifp
->if_snd
, m_head
);
1955 * Pack the data into the transmit ring. If we
1956 * don't have room, set the OACTIVE flag and wait
1957 * for the NIC to drain the ring.
1959 if (sk_encap(sc_if
, m_head
, &idx
)) {
1960 ifp
->if_flags
|= IFF_OACTIVE
;
1964 /* now we are committed to transmit the packet */
1965 IFQ_DEQUEUE(&ifp
->if_snd
, m_head
);
1969 * If there's a BPF listener, bounce a copy of this frame
1974 bpf_mtap(ifp
->if_bpf
, m_head
);
1981 if (idx
!= sc_if
->sk_cdata
.sk_tx_prod
) {
1982 sc_if
->sk_cdata
.sk_tx_prod
= idx
;
1983 CSR_WRITE_4(sc
, sc_if
->sk_tx_bmu
, SK_TXBMU_TX_START
);
1985 /* Set a timeout in case the chip goes out to lunch. */
1992 sk_watchdog(struct ifnet
*ifp
)
1994 struct sk_if_softc
*sc_if
= ifp
->if_softc
;
1997 * Reclaim first as there is a possibility of losing Tx completion
2001 if (sc_if
->sk_cdata
.sk_tx_cnt
!= 0) {
2002 aprint_error_dev(sc_if
->sk_dev
, "watchdog timeout\n");
2011 sk_shutdown(void *v
)
2013 struct sk_if_softc
*sc_if
= (struct sk_if_softc
*)v
;
2014 struct sk_softc
*sc
= sc_if
->sk_softc
;
2015 struct ifnet
*ifp
= &sc_if
->sk_ethercom
.ec_if
;
2017 DPRINTFN(2, ("sk_shutdown\n"));
2020 /* Turn off the 'driver is loaded' LED. */
2021 CSR_WRITE_2(sc
, SK_LED
, SK_LED_GREEN_OFF
);
2024 * Reset the GEnesis controller. Doing this should also
2025 * assert the resets on the attached XMAC(s).
2031 sk_rxeof(struct sk_if_softc
*sc_if
)
2033 struct ifnet
*ifp
= &sc_if
->sk_ethercom
.ec_if
;
2035 struct sk_chain
*cur_rx
;
2036 struct sk_rx_desc
*cur_desc
;
2037 int i
, cur
, total_len
= 0;
2038 u_int32_t rxstat
, sk_ctl
;
2039 bus_dmamap_t dmamap
;
2041 i
= sc_if
->sk_cdata
.sk_rx_prod
;
2043 DPRINTFN(3, ("sk_rxeof %d\n", i
));
2048 /* Sync the descriptor */
2049 SK_CDRXSYNC(sc_if
, cur
,
2050 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
2052 sk_ctl
= le32toh(sc_if
->sk_rdata
->sk_rx_ring
[cur
].sk_ctl
);
2053 if (sk_ctl
& SK_RXCTL_OWN
) {
2054 /* Invalidate the descriptor -- it's not ready yet */
2055 SK_CDRXSYNC(sc_if
, cur
, BUS_DMASYNC_PREREAD
);
2056 sc_if
->sk_cdata
.sk_rx_prod
= i
;
2060 cur_rx
= &sc_if
->sk_cdata
.sk_rx_chain
[cur
];
2061 cur_desc
= &sc_if
->sk_rdata
->sk_rx_ring
[cur
];
2062 dmamap
= sc_if
->sk_cdata
.sk_rx_jumbo_map
;
2064 bus_dmamap_sync(sc_if
->sk_softc
->sc_dmatag
, dmamap
, 0,
2065 dmamap
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
2067 rxstat
= le32toh(cur_desc
->sk_xmac_rxstat
);
2068 m
= cur_rx
->sk_mbuf
;
2069 cur_rx
->sk_mbuf
= NULL
;
2070 total_len
= SK_RXBYTES(le32toh(cur_desc
->sk_ctl
));
2072 sc_if
->sk_cdata
.sk_rx_map
[cur
] = 0;
2074 SK_INC(i
, SK_RX_RING_CNT
);
2076 if (rxstat
& XM_RXSTAT_ERRFRAME
) {
2078 sk_newbuf(sc_if
, cur
, m
, dmamap
);
2083 * Try to allocate a new jumbo buffer. If that
2084 * fails, copy the packet to mbufs and put the
2085 * jumbo buffer back in the ring so it can be
2086 * re-used. If allocating mbufs fails, then we
2087 * have to drop the packet.
2089 if (sk_newbuf(sc_if
, cur
, NULL
, dmamap
) == ENOBUFS
) {
2091 m0
= m_devget(mtod(m
, char *) - ETHER_ALIGN
,
2092 total_len
+ ETHER_ALIGN
, 0, ifp
, NULL
);
2093 sk_newbuf(sc_if
, cur
, m
, dmamap
);
2095 aprint_error_dev(sc_if
->sk_dev
, "no receive "
2096 "buffers available -- packet dropped!\n");
2100 m_adj(m0
, ETHER_ALIGN
);
2103 m
->m_pkthdr
.rcvif
= ifp
;
2104 m
->m_pkthdr
.len
= m
->m_len
= total_len
;
2111 bpf_mtap(ifp
->if_bpf
, m
);
2114 (*ifp
->if_input
)(ifp
, m
);
2119 sk_txeof(struct sk_if_softc
*sc_if
)
2121 struct sk_softc
*sc
= sc_if
->sk_softc
;
2122 struct sk_tx_desc
*cur_tx
;
2123 struct ifnet
*ifp
= &sc_if
->sk_ethercom
.ec_if
;
2124 u_int32_t idx
, sk_ctl
;
2125 struct sk_txmap_entry
*entry
;
2127 DPRINTFN(3, ("sk_txeof\n"));
2130 * Go through our tx ring and free mbufs for those
2131 * frames that have been sent.
2133 idx
= sc_if
->sk_cdata
.sk_tx_cons
;
2134 while (idx
!= sc_if
->sk_cdata
.sk_tx_prod
) {
2135 SK_CDTXSYNC(sc_if
, idx
, 1,
2136 BUS_DMASYNC_POSTREAD
|BUS_DMASYNC_POSTWRITE
);
2138 cur_tx
= &sc_if
->sk_rdata
->sk_tx_ring
[idx
];
2139 sk_ctl
= le32toh(cur_tx
->sk_ctl
);
2142 sk_dump_txdesc(cur_tx
, idx
);
2144 if (sk_ctl
& SK_TXCTL_OWN
) {
2145 SK_CDTXSYNC(sc_if
, idx
, 1, BUS_DMASYNC_PREREAD
);
2148 if (sk_ctl
& SK_TXCTL_LASTFRAG
)
2150 if (sc_if
->sk_cdata
.sk_tx_chain
[idx
].sk_mbuf
!= NULL
) {
2151 entry
= sc_if
->sk_cdata
.sk_tx_map
[idx
];
2153 m_freem(sc_if
->sk_cdata
.sk_tx_chain
[idx
].sk_mbuf
);
2154 sc_if
->sk_cdata
.sk_tx_chain
[idx
].sk_mbuf
= NULL
;
2156 bus_dmamap_sync(sc
->sc_dmatag
, entry
->dmamap
, 0,
2157 entry
->dmamap
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
2159 bus_dmamap_unload(sc
->sc_dmatag
, entry
->dmamap
);
2160 SIMPLEQ_INSERT_TAIL(&sc_if
->sk_txmap_head
, entry
,
2162 sc_if
->sk_cdata
.sk_tx_map
[idx
] = NULL
;
2164 sc_if
->sk_cdata
.sk_tx_cnt
--;
2165 SK_INC(idx
, SK_TX_RING_CNT
);
2167 if (sc_if
->sk_cdata
.sk_tx_cnt
== 0)
2169 else /* nudge chip to keep tx ring moving */
2170 CSR_WRITE_4(sc
, sc_if
->sk_tx_bmu
, SK_TXBMU_TX_START
);
2172 if (sc_if
->sk_cdata
.sk_tx_cnt
< SK_TX_RING_CNT
- 2)
2173 ifp
->if_flags
&= ~IFF_OACTIVE
;
2175 sc_if
->sk_cdata
.sk_tx_cons
= idx
;
2179 sk_tick(void *xsc_if
)
2181 struct sk_if_softc
*sc_if
= xsc_if
;
2182 struct mii_data
*mii
= &sc_if
->sk_mii
;
2183 struct ifnet
*ifp
= &sc_if
->sk_ethercom
.ec_if
;
2186 DPRINTFN(3, ("sk_tick\n"));
2188 if (!(ifp
->if_flags
& IFF_UP
))
2191 if (sc_if
->sk_phytype
== SK_PHYTYPE_BCOM
) {
2192 sk_intr_bcom(sc_if
);
2197 * According to SysKonnect, the correct way to verify that
2198 * the link has come back up is to poll bit 0 of the GPIO
2199 * register three times. This pin has the signal from the
2200 * link sync pin connected to it; if we read the same link
2201 * state 3 times in a row, we know the link is up.
2203 for (i
= 0; i
< 3; i
++) {
2204 if (SK_XM_READ_2(sc_if
, XM_GPIO
) & XM_GPIO_GP0_SET
)
2209 callout_reset(&sc_if
->sk_tick_ch
, hz
, sk_tick
, sc_if
);
2213 /* Turn the GP0 interrupt back on. */
2214 SK_XM_CLRBIT_2(sc_if
, XM_IMR
, XM_IMR_GP0_SET
);
2215 SK_XM_READ_2(sc_if
, XM_ISR
);
2218 callout_stop(&sc_if
->sk_tick_ch
);
2222 sk_intr_bcom(struct sk_if_softc
*sc_if
)
2224 struct mii_data
*mii
= &sc_if
->sk_mii
;
2225 struct ifnet
*ifp
= &sc_if
->sk_ethercom
.ec_if
;
2229 DPRINTFN(3, ("sk_intr_bcom\n"));
2231 SK_XM_CLRBIT_2(sc_if
, XM_MMUCMD
, XM_MMUCMD_TX_ENB
|XM_MMUCMD_RX_ENB
);
2234 * Read the PHY interrupt register to make sure
2235 * we clear any pending interrupts.
2237 status
= sk_xmac_miibus_readreg(sc_if
->sk_dev
,
2238 SK_PHYADDR_BCOM
, BRGPHY_MII_ISR
);
2240 if (!(ifp
->if_flags
& IFF_RUNNING
)) {
2241 sk_init_xmac(sc_if
);
2245 if (status
& (BRGPHY_ISR_LNK_CHG
|BRGPHY_ISR_AN_PR
)) {
2247 lstat
= sk_xmac_miibus_readreg(sc_if
->sk_dev
,
2248 SK_PHYADDR_BCOM
, BRGPHY_MII_AUXSTS
);
2250 if (!(lstat
& BRGPHY_AUXSTS_LINK
) && sc_if
->sk_link
) {
2251 (void)mii_mediachg(mii
);
2252 /* Turn off the link LED. */
2253 SK_IF_WRITE_1(sc_if
, 0,
2254 SK_LINKLED1_CTL
, SK_LINKLED_OFF
);
2256 } else if (status
& BRGPHY_ISR_LNK_CHG
) {
2257 sk_xmac_miibus_writereg(sc_if
->sk_dev
,
2258 SK_PHYADDR_BCOM
, BRGPHY_MII_IMR
, 0xFF00);
2261 /* Turn on the link LED. */
2262 SK_IF_WRITE_1(sc_if
, 0, SK_LINKLED1_CTL
,
2263 SK_LINKLED_ON
|SK_LINKLED_LINKSYNC_OFF
|
2264 SK_LINKLED_BLINK_OFF
);
2268 callout_reset(&sc_if
->sk_tick_ch
, hz
, sk_tick
,sc_if
);
2272 SK_XM_SETBIT_2(sc_if
, XM_MMUCMD
, XM_MMUCMD_TX_ENB
|XM_MMUCMD_RX_ENB
);
2276 sk_intr_xmac(struct sk_if_softc
*sc_if
)
2278 u_int16_t status
= SK_XM_READ_2(sc_if
, XM_ISR
);
2280 DPRINTFN(3, ("sk_intr_xmac\n"));
2282 if (sc_if
->sk_phytype
== SK_PHYTYPE_XMAC
) {
2283 if (status
& XM_ISR_GP0_SET
) {
2284 SK_XM_SETBIT_2(sc_if
, XM_IMR
, XM_IMR_GP0_SET
);
2285 callout_reset(&sc_if
->sk_tick_ch
, hz
, sk_tick
, sc_if
);
2288 if (status
& XM_ISR_AUTONEG_DONE
) {
2289 callout_reset(&sc_if
->sk_tick_ch
, hz
, sk_tick
, sc_if
);
2293 if (status
& XM_IMR_TX_UNDERRUN
)
2294 SK_XM_SETBIT_4(sc_if
, XM_MODE
, XM_MODE_FLUSH_TXFIFO
);
2296 if (status
& XM_IMR_RX_OVERRUN
)
2297 SK_XM_SETBIT_4(sc_if
, XM_MODE
, XM_MODE_FLUSH_RXFIFO
);
2301 sk_intr_yukon(struct sk_if_softc
*sc_if
)
2305 status
= SK_IF_READ_2(sc_if
, 0, SK_GMAC_ISR
);
2307 DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status
));
2313 struct sk_softc
*sc
= xsc
;
2314 struct sk_if_softc
*sc_if0
= sc
->sk_if
[SK_PORT_A
];
2315 struct sk_if_softc
*sc_if1
= sc
->sk_if
[SK_PORT_B
];
2316 struct ifnet
*ifp0
= NULL
, *ifp1
= NULL
;
2321 ifp0
= &sc_if0
->sk_ethercom
.ec_if
;
2323 ifp1
= &sc_if1
->sk_ethercom
.ec_if
;
2326 status
= CSR_READ_4(sc
, SK_ISSR
);
2327 DPRINTFN(3, ("sk_intr: status=%#x\n", status
));
2329 if (!(status
& sc
->sk_intrmask
))
2334 /* Handle receive interrupts first. */
2335 if (sc_if0
&& (status
& SK_ISR_RX1_EOF
)) {
2337 CSR_WRITE_4(sc
, SK_BMU_RX_CSR0
,
2338 SK_RXBMU_CLR_IRQ_EOF
|SK_RXBMU_RX_START
);
2340 if (sc_if1
&& (status
& SK_ISR_RX2_EOF
)) {
2342 CSR_WRITE_4(sc
, SK_BMU_RX_CSR1
,
2343 SK_RXBMU_CLR_IRQ_EOF
|SK_RXBMU_RX_START
);
2346 /* Then transmit interrupts. */
2347 if (sc_if0
&& (status
& SK_ISR_TX1_S_EOF
)) {
2349 CSR_WRITE_4(sc
, SK_BMU_TXS_CSR0
,
2350 SK_TXBMU_CLR_IRQ_EOF
);
2352 if (sc_if1
&& (status
& SK_ISR_TX2_S_EOF
)) {
2354 CSR_WRITE_4(sc
, SK_BMU_TXS_CSR1
,
2355 SK_TXBMU_CLR_IRQ_EOF
);
2358 /* Then MAC interrupts. */
2359 if (sc_if0
&& (status
& SK_ISR_MAC1
) &&
2360 (ifp0
->if_flags
& IFF_RUNNING
)) {
2361 if (sc
->sk_type
== SK_GENESIS
)
2362 sk_intr_xmac(sc_if0
);
2364 sk_intr_yukon(sc_if0
);
2367 if (sc_if1
&& (status
& SK_ISR_MAC2
) &&
2368 (ifp1
->if_flags
& IFF_RUNNING
)) {
2369 if (sc
->sk_type
== SK_GENESIS
)
2370 sk_intr_xmac(sc_if1
);
2372 sk_intr_yukon(sc_if1
);
2376 if (status
& SK_ISR_EXTERNAL_REG
) {
2377 if (sc_if0
!= NULL
&&
2378 sc_if0
->sk_phytype
== SK_PHYTYPE_BCOM
)
2379 sk_intr_bcom(sc_if0
);
2381 if (sc_if1
!= NULL
&&
2382 sc_if1
->sk_phytype
== SK_PHYTYPE_BCOM
)
2383 sk_intr_bcom(sc_if1
);
2387 CSR_WRITE_4(sc
, SK_IMR
, sc
->sk_intrmask
);
2389 if (ifp0
!= NULL
&& !IFQ_IS_EMPTY(&ifp0
->if_snd
))
2391 if (ifp1
!= NULL
&& !IFQ_IS_EMPTY(&ifp1
->if_snd
))
2395 if (RND_ENABLED(&sc
->rnd_source
))
2396 rnd_add_uint32(&sc
->rnd_source
, status
);
2399 if (sc
->sk_int_mod_pending
)
2400 sk_update_int_mod(sc
);
2406 sk_init_xmac(struct sk_if_softc
*sc_if
)
2408 struct sk_softc
*sc
= sc_if
->sk_softc
;
2409 struct ifnet
*ifp
= &sc_if
->sk_ethercom
.ec_if
;
2410 static const struct sk_bcom_hack bhack
[] = {
2411 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2412 { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2413 { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2416 DPRINTFN(1, ("sk_init_xmac\n"));
2418 /* Unreset the XMAC. */
2419 SK_IF_WRITE_2(sc_if
, 0, SK_TXF1_MACCTL
, SK_TXMACCTL_XMAC_UNRESET
);
2422 /* Reset the XMAC's internal state. */
2423 SK_XM_SETBIT_2(sc_if
, XM_GPIO
, XM_GPIO_RESETMAC
);
2425 /* Save the XMAC II revision */
2426 sc_if
->sk_xmac_rev
= XM_XMAC_REV(SK_XM_READ_4(sc_if
, XM_DEVID
));
2429 * Perform additional initialization for external PHYs,
2430 * namely for the 1000baseTX cards that use the XMAC's
2433 if (sc_if
->sk_phytype
== SK_PHYTYPE_BCOM
) {
2437 /* Take PHY out of reset. */
2438 val
= sk_win_read_4(sc
, SK_GPIO
);
2439 if (sc_if
->sk_port
== SK_PORT_A
)
2440 val
|= SK_GPIO_DIR0
|SK_GPIO_DAT0
;
2442 val
|= SK_GPIO_DIR2
|SK_GPIO_DAT2
;
2443 sk_win_write_4(sc
, SK_GPIO
, val
);
2445 /* Enable GMII mode on the XMAC. */
2446 SK_XM_SETBIT_2(sc_if
, XM_HWCFG
, XM_HWCFG_GMIIMODE
);
2448 sk_xmac_miibus_writereg(sc_if
->sk_dev
,
2449 SK_PHYADDR_BCOM
, MII_BMCR
, BMCR_RESET
);
2451 sk_xmac_miibus_writereg(sc_if
->sk_dev
,
2452 SK_PHYADDR_BCOM
, BRGPHY_MII_IMR
, 0xFFF0);
2455 * Early versions of the BCM5400 apparently have
2456 * a bug that requires them to have their reserved
2457 * registers initialized to some magic values. I don't
2458 * know what the numbers do, I'm just the messenger.
2460 if (sk_xmac_miibus_readreg(sc_if
->sk_dev
,
2461 SK_PHYADDR_BCOM
, 0x03) == 0x6041) {
2462 while (bhack
[i
].reg
) {
2463 sk_xmac_miibus_writereg(sc_if
->sk_dev
,
2464 SK_PHYADDR_BCOM
, bhack
[i
].reg
,
2471 /* Set station address */
2472 SK_XM_WRITE_2(sc_if
, XM_PAR0
,
2473 *(u_int16_t
*)(&sc_if
->sk_enaddr
[0]));
2474 SK_XM_WRITE_2(sc_if
, XM_PAR1
,
2475 *(u_int16_t
*)(&sc_if
->sk_enaddr
[2]));
2476 SK_XM_WRITE_2(sc_if
, XM_PAR2
,
2477 *(u_int16_t
*)(&sc_if
->sk_enaddr
[4]));
2478 SK_XM_SETBIT_4(sc_if
, XM_MODE
, XM_MODE_RX_USE_STATION
);
2480 if (ifp
->if_flags
& IFF_PROMISC
)
2481 SK_XM_SETBIT_4(sc_if
, XM_MODE
, XM_MODE_RX_PROMISC
);
2483 SK_XM_CLRBIT_4(sc_if
, XM_MODE
, XM_MODE_RX_PROMISC
);
2485 if (ifp
->if_flags
& IFF_BROADCAST
)
2486 SK_XM_CLRBIT_4(sc_if
, XM_MODE
, XM_MODE_RX_NOBROAD
);
2488 SK_XM_SETBIT_4(sc_if
, XM_MODE
, XM_MODE_RX_NOBROAD
);
2490 /* We don't need the FCS appended to the packet. */
2491 SK_XM_SETBIT_2(sc_if
, XM_RXCMD
, XM_RXCMD_STRIPFCS
);
2493 /* We want short frames padded to 60 bytes. */
2494 SK_XM_SETBIT_2(sc_if
, XM_TXCMD
, XM_TXCMD_AUTOPAD
);
2497 * Enable the reception of all error frames. This is is
2498 * a necessary evil due to the design of the XMAC. The
2499 * XMAC's receive FIFO is only 8K in size, however jumbo
2500 * frames can be up to 9000 bytes in length. When bad
2501 * frame filtering is enabled, the XMAC's RX FIFO operates
2502 * in 'store and forward' mode. For this to work, the
2503 * entire frame has to fit into the FIFO, but that means
2504 * that jumbo frames larger than 8192 bytes will be
2505 * truncated. Disabling all bad frame filtering causes
2506 * the RX FIFO to operate in streaming mode, in which
2507 * case the XMAC will start transfering frames out of the
2508 * RX FIFO as soon as the FIFO threshold is reached.
2510 SK_XM_SETBIT_4(sc_if
, XM_MODE
, XM_MODE_RX_BADFRAMES
|
2511 XM_MODE_RX_GIANTS
|XM_MODE_RX_RUNTS
|XM_MODE_RX_CRCERRS
|
2512 XM_MODE_RX_INRANGELEN
);
2514 if (ifp
->if_mtu
> (ETHERMTU
+ ETHER_HDR_LEN
+ ETHER_CRC_LEN
))
2515 SK_XM_SETBIT_2(sc_if
, XM_RXCMD
, XM_RXCMD_BIGPKTOK
);
2517 SK_XM_CLRBIT_2(sc_if
, XM_RXCMD
, XM_RXCMD_BIGPKTOK
);
2520 * Bump up the transmit threshold. This helps hold off transmit
2521 * underruns when we're blasting traffic from both ports at once.
2523 SK_XM_WRITE_2(sc_if
, XM_TX_REQTHRESH
, SK_XM_TX_FIFOTHRESH
);
2525 /* Set multicast filter */
2528 /* Clear and enable interrupts */
2529 SK_XM_READ_2(sc_if
, XM_ISR
);
2530 if (sc_if
->sk_phytype
== SK_PHYTYPE_XMAC
)
2531 SK_XM_WRITE_2(sc_if
, XM_IMR
, XM_INTRS
);
2533 SK_XM_WRITE_2(sc_if
, XM_IMR
, 0xFFFF);
2535 /* Configure MAC arbiter */
2536 switch (sc_if
->sk_xmac_rev
) {
2537 case XM_XMAC_REV_B2
:
2538 sk_win_write_1(sc
, SK_RCINIT_RX1
, SK_RCINIT_XMAC_B2
);
2539 sk_win_write_1(sc
, SK_RCINIT_TX1
, SK_RCINIT_XMAC_B2
);
2540 sk_win_write_1(sc
, SK_RCINIT_RX2
, SK_RCINIT_XMAC_B2
);
2541 sk_win_write_1(sc
, SK_RCINIT_TX2
, SK_RCINIT_XMAC_B2
);
2542 sk_win_write_1(sc
, SK_MINIT_RX1
, SK_MINIT_XMAC_B2
);
2543 sk_win_write_1(sc
, SK_MINIT_TX1
, SK_MINIT_XMAC_B2
);
2544 sk_win_write_1(sc
, SK_MINIT_RX2
, SK_MINIT_XMAC_B2
);
2545 sk_win_write_1(sc
, SK_MINIT_TX2
, SK_MINIT_XMAC_B2
);
2546 sk_win_write_1(sc
, SK_RECOVERY_CTL
, SK_RECOVERY_XMAC_B2
);
2548 case XM_XMAC_REV_C1
:
2549 sk_win_write_1(sc
, SK_RCINIT_RX1
, SK_RCINIT_XMAC_C1
);
2550 sk_win_write_1(sc
, SK_RCINIT_TX1
, SK_RCINIT_XMAC_C1
);
2551 sk_win_write_1(sc
, SK_RCINIT_RX2
, SK_RCINIT_XMAC_C1
);
2552 sk_win_write_1(sc
, SK_RCINIT_TX2
, SK_RCINIT_XMAC_C1
);
2553 sk_win_write_1(sc
, SK_MINIT_RX1
, SK_MINIT_XMAC_C1
);
2554 sk_win_write_1(sc
, SK_MINIT_TX1
, SK_MINIT_XMAC_C1
);
2555 sk_win_write_1(sc
, SK_MINIT_RX2
, SK_MINIT_XMAC_C1
);
2556 sk_win_write_1(sc
, SK_MINIT_TX2
, SK_MINIT_XMAC_C1
);
2557 sk_win_write_1(sc
, SK_RECOVERY_CTL
, SK_RECOVERY_XMAC_B2
);
2562 sk_win_write_2(sc
, SK_MACARB_CTL
,
2563 SK_MACARBCTL_UNRESET
|SK_MACARBCTL_FASTOE_OFF
);
2568 void sk_init_yukon(struct sk_if_softc
*sc_if
)
2570 u_int32_t
/*mac, */phy
;
2572 struct sk_softc
*sc
;
2575 DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
2576 CSR_READ_4(sc_if
->sk_softc
, SK_CSR
)));
2578 sc
= sc_if
->sk_softc
;
2579 if (sc
->sk_type
== SK_YUKON_LITE
&&
2580 sc
->sk_rev
>= SK_YUKON_LITE_REV_A3
) {
2581 /* Take PHY out of reset. */
2582 sk_win_write_4(sc
, SK_GPIO
,
2583 (sk_win_read_4(sc
, SK_GPIO
) | SK_GPIO_DIR9
) & ~SK_GPIO_DAT9
);
2587 /* GMAC and GPHY Reset */
2588 SK_IF_WRITE_4(sc_if
, 0, SK_GPHY_CTRL
, SK_GPHY_RESET_SET
);
2590 DPRINTFN(6, ("sk_init_yukon: 1\n"));
2592 SK_IF_WRITE_4(sc_if
, 0, SK_GMAC_CTRL
, SK_GMAC_RESET_SET
);
2594 SK_IF_WRITE_4(sc_if
, 0, SK_GMAC_CTRL
, SK_GMAC_RESET_CLEAR
);
2595 SK_IF_WRITE_4(sc_if
, 0, SK_GMAC_CTRL
, SK_GMAC_RESET_SET
);
2599 DPRINTFN(6, ("sk_init_yukon: 2\n"));
2601 phy
= SK_GPHY_INT_POL_HI
| SK_GPHY_DIS_FC
| SK_GPHY_DIS_SLEEP
|
2602 SK_GPHY_ENA_XC
| SK_GPHY_ANEG_ALL
| SK_GPHY_ENA_PAUSE
;
2604 switch (sc_if
->sk_softc
->sk_pmd
) {
2607 phy
|= SK_GPHY_FIBER
;
2612 phy
|= SK_GPHY_COPPER
;
2616 DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy
));
2618 SK_IF_WRITE_4(sc_if
, 0, SK_GPHY_CTRL
, phy
| SK_GPHY_RESET_SET
);
2620 SK_IF_WRITE_4(sc_if
, 0, SK_GPHY_CTRL
, phy
| SK_GPHY_RESET_CLEAR
);
2621 SK_IF_WRITE_4(sc_if
, 0, SK_GMAC_CTRL
, SK_GMAC_LOOP_OFF
|
2622 SK_GMAC_PAUSE_ON
| SK_GMAC_RESET_CLEAR
);
2624 DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
2625 SK_IF_READ_4(sc_if
, 0, SK_GMAC_CTRL
)));
2627 DPRINTFN(6, ("sk_init_yukon: 3\n"));
2629 /* unused read of the interrupt source register */
2630 DPRINTFN(6, ("sk_init_yukon: 4\n"));
2631 SK_IF_READ_2(sc_if
, 0, SK_GMAC_ISR
);
2633 DPRINTFN(6, ("sk_init_yukon: 4a\n"));
2634 reg
= SK_YU_READ_2(sc_if
, YUKON_PAR
);
2635 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg
));
2637 /* MIB Counter Clear Mode set */
2638 reg
|= YU_PAR_MIB_CLR
;
2639 DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg
));
2640 DPRINTFN(6, ("sk_init_yukon: 4b\n"));
2641 SK_YU_WRITE_2(sc_if
, YUKON_PAR
, reg
);
2643 /* MIB Counter Clear Mode clear */
2644 DPRINTFN(6, ("sk_init_yukon: 5\n"));
2645 reg
&= ~YU_PAR_MIB_CLR
;
2646 SK_YU_WRITE_2(sc_if
, YUKON_PAR
, reg
);
2648 /* receive control reg */
2649 DPRINTFN(6, ("sk_init_yukon: 7\n"));
2650 SK_YU_WRITE_2(sc_if
, YUKON_RCR
, YU_RCR_UFLEN
| YU_RCR_MUFLEN
|
2653 /* transmit parameter register */
2654 DPRINTFN(6, ("sk_init_yukon: 8\n"));
2655 SK_YU_WRITE_2(sc_if
, YUKON_TPR
, YU_TPR_JAM_LEN(0x3) |
2656 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2658 /* serial mode register */
2659 DPRINTFN(6, ("sk_init_yukon: 9\n"));
2660 SK_YU_WRITE_2(sc_if
, YUKON_SMR
, YU_SMR_DATA_BLIND(0x1c) |
2661 YU_SMR_MFL_VLAN
| YU_SMR_MFL_JUMBO
|
2662 YU_SMR_IPG_DATA(0x1e));
2664 DPRINTFN(6, ("sk_init_yukon: 10\n"));
2665 /* Setup Yukon's address */
2666 for (i
= 0; i
< 3; i
++) {
2667 /* Write Source Address 1 (unicast filter) */
2668 SK_YU_WRITE_2(sc_if
, YUKON_SAL1
+ i
* 4,
2669 sc_if
->sk_enaddr
[i
* 2] |
2670 sc_if
->sk_enaddr
[i
* 2 + 1] << 8);
2673 for (i
= 0; i
< 3; i
++) {
2674 reg
= sk_win_read_2(sc_if
->sk_softc
,
2675 SK_MAC1_0
+ i
* 2 + sc_if
->sk_port
* 8);
2676 SK_YU_WRITE_2(sc_if
, YUKON_SAL2
+ i
* 4, reg
);
2679 /* Set multicast filter */
2680 DPRINTFN(6, ("sk_init_yukon: 11\n"));
2683 /* enable interrupt mask for counter overflows */
2684 DPRINTFN(6, ("sk_init_yukon: 12\n"));
2685 SK_YU_WRITE_2(sc_if
, YUKON_TIMR
, 0);
2686 SK_YU_WRITE_2(sc_if
, YUKON_RIMR
, 0);
2687 SK_YU_WRITE_2(sc_if
, YUKON_TRIMR
, 0);
2689 /* Configure RX MAC FIFO */
2690 SK_IF_WRITE_1(sc_if
, 0, SK_RXMF1_CTRL_TEST
, SK_RFCTL_RESET_CLEAR
);
2691 SK_IF_WRITE_4(sc_if
, 0, SK_RXMF1_CTRL_TEST
, SK_RFCTL_OPERATION_ON
);
2693 /* Configure TX MAC FIFO */
2694 SK_IF_WRITE_1(sc_if
, 0, SK_TXMF1_CTRL_TEST
, SK_TFCTL_RESET_CLEAR
);
2695 SK_IF_WRITE_4(sc_if
, 0, SK_TXMF1_CTRL_TEST
, SK_TFCTL_OPERATION_ON
);
2697 DPRINTFN(6, ("sk_init_yukon: end\n"));
2701 * Note that to properly initialize any part of the GEnesis chip,
2702 * you first have to take it out of reset mode.
2705 sk_init(struct ifnet
*ifp
)
2707 struct sk_if_softc
*sc_if
= ifp
->if_softc
;
2708 struct sk_softc
*sc
= sc_if
->sk_softc
;
2709 struct mii_data
*mii
= &sc_if
->sk_mii
;
2711 u_int32_t imr
, imtimer_ticks
;
2713 DPRINTFN(1, ("sk_init\n"));
2717 if (ifp
->if_flags
& IFF_RUNNING
) {
2722 /* Cancel pending I/O and free all RX/TX buffers. */
2725 if (sc
->sk_type
== SK_GENESIS
) {
2726 /* Configure LINK_SYNC LED */
2727 SK_IF_WRITE_1(sc_if
, 0, SK_LINKLED1_CTL
, SK_LINKLED_ON
);
2728 SK_IF_WRITE_1(sc_if
, 0, SK_LINKLED1_CTL
,
2729 SK_LINKLED_LINKSYNC_ON
);
2731 /* Configure RX LED */
2732 SK_IF_WRITE_1(sc_if
, 0, SK_RXLED1_CTL
,
2733 SK_RXLEDCTL_COUNTER_START
);
2735 /* Configure TX LED */
2736 SK_IF_WRITE_1(sc_if
, 0, SK_TXLED1_CTL
,
2737 SK_TXLEDCTL_COUNTER_START
);
2740 /* Configure I2C registers */
2742 /* Configure XMAC(s) */
2743 switch (sc
->sk_type
) {
2745 sk_init_xmac(sc_if
);
2750 sk_init_yukon(sc_if
);
2753 if ((rc
= mii_mediachg(mii
)) == ENXIO
)
2758 if (sc
->sk_type
== SK_GENESIS
) {
2759 /* Configure MAC FIFOs */
2760 SK_IF_WRITE_4(sc_if
, 0, SK_RXF1_CTL
, SK_FIFO_UNRESET
);
2761 SK_IF_WRITE_4(sc_if
, 0, SK_RXF1_END
, SK_FIFO_END
);
2762 SK_IF_WRITE_4(sc_if
, 0, SK_RXF1_CTL
, SK_FIFO_ON
);
2764 SK_IF_WRITE_4(sc_if
, 0, SK_TXF1_CTL
, SK_FIFO_UNRESET
);
2765 SK_IF_WRITE_4(sc_if
, 0, SK_TXF1_END
, SK_FIFO_END
);
2766 SK_IF_WRITE_4(sc_if
, 0, SK_TXF1_CTL
, SK_FIFO_ON
);
2769 /* Configure transmit arbiter(s) */
2770 SK_IF_WRITE_1(sc_if
, 0, SK_TXAR1_COUNTERCTL
,
2771 SK_TXARCTL_ON
|SK_TXARCTL_FSYNC_ON
);
2773 /* Configure RAMbuffers */
2774 SK_IF_WRITE_4(sc_if
, 0, SK_RXRB1_CTLTST
, SK_RBCTL_UNRESET
);
2775 SK_IF_WRITE_4(sc_if
, 0, SK_RXRB1_START
, sc_if
->sk_rx_ramstart
);
2776 SK_IF_WRITE_4(sc_if
, 0, SK_RXRB1_WR_PTR
, sc_if
->sk_rx_ramstart
);
2777 SK_IF_WRITE_4(sc_if
, 0, SK_RXRB1_RD_PTR
, sc_if
->sk_rx_ramstart
);
2778 SK_IF_WRITE_4(sc_if
, 0, SK_RXRB1_END
, sc_if
->sk_rx_ramend
);
2779 SK_IF_WRITE_4(sc_if
, 0, SK_RXRB1_CTLTST
, SK_RBCTL_ON
);
2781 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_CTLTST
, SK_RBCTL_UNRESET
);
2782 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_CTLTST
, SK_RBCTL_STORENFWD_ON
);
2783 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_START
, sc_if
->sk_tx_ramstart
);
2784 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_WR_PTR
, sc_if
->sk_tx_ramstart
);
2785 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_RD_PTR
, sc_if
->sk_tx_ramstart
);
2786 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_END
, sc_if
->sk_tx_ramend
);
2787 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_CTLTST
, SK_RBCTL_ON
);
2789 /* Configure BMUs */
2790 SK_IF_WRITE_4(sc_if
, 0, SK_RXQ1_BMU_CSR
, SK_RXBMU_ONLINE
);
2791 SK_IF_WRITE_4(sc_if
, 0, SK_RXQ1_CURADDR_LO
,
2792 SK_RX_RING_ADDR(sc_if
, 0));
2793 SK_IF_WRITE_4(sc_if
, 0, SK_RXQ1_CURADDR_HI
, 0);
2795 SK_IF_WRITE_4(sc_if
, 1, SK_TXQS1_BMU_CSR
, SK_TXBMU_ONLINE
);
2796 SK_IF_WRITE_4(sc_if
, 1, SK_TXQS1_CURADDR_LO
,
2797 SK_TX_RING_ADDR(sc_if
, 0));
2798 SK_IF_WRITE_4(sc_if
, 1, SK_TXQS1_CURADDR_HI
, 0);
2800 /* Init descriptors */
2801 if (sk_init_rx_ring(sc_if
) == ENOBUFS
) {
2802 aprint_error_dev(sc_if
->sk_dev
, "initialization failed: no "
2803 "memory for rx buffers\n");
2809 if (sk_init_tx_ring(sc_if
) == ENOBUFS
) {
2810 aprint_error_dev(sc_if
->sk_dev
, "initialization failed: no "
2811 "memory for tx buffers\n");
2817 /* Set interrupt moderation if changed via sysctl. */
2818 switch (sc
->sk_type
) {
2820 imtimer_ticks
= SK_IMTIMER_TICKS_GENESIS
;
2823 imtimer_ticks
= SK_IMTIMER_TICKS_YUKON_EC
;
2826 imtimer_ticks
= SK_IMTIMER_TICKS_YUKON
;
2828 imr
= sk_win_read_4(sc
, SK_IMTIMERINIT
);
2829 if (imr
!= SK_IM_USECS(sc
->sk_int_mod
)) {
2830 sk_win_write_4(sc
, SK_IMTIMERINIT
,
2831 SK_IM_USECS(sc
->sk_int_mod
));
2832 aprint_verbose_dev(sc
->sk_dev
,
2833 "interrupt moderation is %d us\n", sc
->sk_int_mod
);
2836 /* Configure interrupt handling */
2837 CSR_READ_4(sc
, SK_ISSR
);
2838 if (sc_if
->sk_port
== SK_PORT_A
)
2839 sc
->sk_intrmask
|= SK_INTRS1
;
2841 sc
->sk_intrmask
|= SK_INTRS2
;
2843 sc
->sk_intrmask
|= SK_ISR_EXTERNAL_REG
;
2845 CSR_WRITE_4(sc
, SK_IMR
, sc
->sk_intrmask
);
2848 SK_IF_WRITE_4(sc_if
, 0, SK_RXQ1_BMU_CSR
, SK_RXBMU_RX_START
);
2850 if (sc
->sk_type
== SK_GENESIS
) {
2851 /* Enable XMACs TX and RX state machines */
2852 SK_XM_CLRBIT_2(sc_if
, XM_MMUCMD
, XM_MMUCMD_IGNPAUSE
);
2853 SK_XM_SETBIT_2(sc_if
, XM_MMUCMD
,
2854 XM_MMUCMD_TX_ENB
|XM_MMUCMD_RX_ENB
);
2857 if (SK_YUKON_FAMILY(sc
->sk_type
)) {
2858 u_int16_t reg
= SK_YU_READ_2(sc_if
, YUKON_GPCR
);
2859 reg
|= YU_GPCR_TXEN
| YU_GPCR_RXEN
;
2861 /* XXX disable 100Mbps and full duplex mode? */
2862 reg
&= ~(YU_GPCR_SPEED
| YU_GPCR_DPLX_EN
);
2864 SK_YU_WRITE_2(sc_if
, YUKON_GPCR
, reg
);
2868 ifp
->if_flags
|= IFF_RUNNING
;
2869 ifp
->if_flags
&= ~IFF_OACTIVE
;
2877 sk_stop(struct ifnet
*ifp
, int disable
)
2879 struct sk_if_softc
*sc_if
= ifp
->if_softc
;
2880 struct sk_softc
*sc
= sc_if
->sk_softc
;
2883 DPRINTFN(1, ("sk_stop\n"));
2885 callout_stop(&sc_if
->sk_tick_ch
);
2887 if (sc_if
->sk_phytype
== SK_PHYTYPE_BCOM
) {
2890 /* Put PHY back into reset. */
2891 val
= sk_win_read_4(sc
, SK_GPIO
);
2892 if (sc_if
->sk_port
== SK_PORT_A
) {
2893 val
|= SK_GPIO_DIR0
;
2894 val
&= ~SK_GPIO_DAT0
;
2896 val
|= SK_GPIO_DIR2
;
2897 val
&= ~SK_GPIO_DAT2
;
2899 sk_win_write_4(sc
, SK_GPIO
, val
);
2902 /* Turn off various components of this interface. */
2903 SK_XM_SETBIT_2(sc_if
, XM_GPIO
, XM_GPIO_RESETMAC
);
2904 switch (sc
->sk_type
) {
2906 SK_IF_WRITE_2(sc_if
, 0, SK_TXF1_MACCTL
,
2907 SK_TXMACCTL_XMAC_RESET
);
2908 SK_IF_WRITE_4(sc_if
, 0, SK_RXF1_CTL
, SK_FIFO_RESET
);
2913 SK_IF_WRITE_1(sc_if
,0, SK_RXMF1_CTRL_TEST
, SK_RFCTL_RESET_SET
);
2914 SK_IF_WRITE_1(sc_if
,0, SK_TXMF1_CTRL_TEST
, SK_TFCTL_RESET_SET
);
2917 SK_IF_WRITE_4(sc_if
, 0, SK_RXQ1_BMU_CSR
, SK_RXBMU_OFFLINE
);
2918 SK_IF_WRITE_4(sc_if
, 0, SK_RXRB1_CTLTST
, SK_RBCTL_RESET
|SK_RBCTL_OFF
);
2919 SK_IF_WRITE_4(sc_if
, 1, SK_TXQS1_BMU_CSR
, SK_TXBMU_OFFLINE
);
2920 SK_IF_WRITE_4(sc_if
, 1, SK_TXRBS1_CTLTST
, SK_RBCTL_RESET
|SK_RBCTL_OFF
);
2921 SK_IF_WRITE_1(sc_if
, 0, SK_TXAR1_COUNTERCTL
, SK_TXARCTL_OFF
);
2922 SK_IF_WRITE_1(sc_if
, 0, SK_RXLED1_CTL
, SK_RXLEDCTL_COUNTER_STOP
);
2923 SK_IF_WRITE_1(sc_if
, 0, SK_TXLED1_CTL
, SK_RXLEDCTL_COUNTER_STOP
);
2924 SK_IF_WRITE_1(sc_if
, 0, SK_LINKLED1_CTL
, SK_LINKLED_OFF
);
2925 SK_IF_WRITE_1(sc_if
, 0, SK_LINKLED1_CTL
, SK_LINKLED_LINKSYNC_OFF
);
2927 /* Disable interrupts */
2928 if (sc_if
->sk_port
== SK_PORT_A
)
2929 sc
->sk_intrmask
&= ~SK_INTRS1
;
2931 sc
->sk_intrmask
&= ~SK_INTRS2
;
2932 CSR_WRITE_4(sc
, SK_IMR
, sc
->sk_intrmask
);
2934 SK_XM_READ_2(sc_if
, XM_ISR
);
2935 SK_XM_WRITE_2(sc_if
, XM_IMR
, 0xFFFF);
2937 /* Free RX and TX mbufs still in the queues. */
2938 for (i
= 0; i
< SK_RX_RING_CNT
; i
++) {
2939 if (sc_if
->sk_cdata
.sk_rx_chain
[i
].sk_mbuf
!= NULL
) {
2940 m_freem(sc_if
->sk_cdata
.sk_rx_chain
[i
].sk_mbuf
);
2941 sc_if
->sk_cdata
.sk_rx_chain
[i
].sk_mbuf
= NULL
;
2945 for (i
= 0; i
< SK_TX_RING_CNT
; i
++) {
2946 if (sc_if
->sk_cdata
.sk_tx_chain
[i
].sk_mbuf
!= NULL
) {
2947 m_freem(sc_if
->sk_cdata
.sk_tx_chain
[i
].sk_mbuf
);
2948 sc_if
->sk_cdata
.sk_tx_chain
[i
].sk_mbuf
= NULL
;
2952 ifp
->if_flags
&= ~(IFF_RUNNING
|IFF_OACTIVE
);
2955 /* Power Management Framework */
2958 skc_suspend(device_t dv PMF_FN_ARGS
)
2960 struct sk_softc
*sc
= device_private(dv
);
2962 DPRINTFN(2, ("skc_suspend\n"));
2964 /* Turn off the driver is loaded LED */
2965 CSR_WRITE_2(sc
, SK_LED
, SK_LED_GREEN_OFF
);
2971 skc_resume(device_t dv PMF_FN_ARGS
)
2973 struct sk_softc
*sc
= device_private(dv
);
2975 DPRINTFN(2, ("skc_resume\n"));
2978 CSR_WRITE_2(sc
, SK_LED
, SK_LED_GREEN_ON
);
2984 sk_resume(device_t dv PMF_FN_ARGS
)
2986 struct sk_if_softc
*sc_if
= device_private(dv
);
2988 sk_init_yukon(sc_if
);
2992 CFATTACH_DECL_NEW(skc
, sizeof(struct sk_softc
),
2993 skc_probe
, skc_attach
, NULL
, NULL
);
2995 CFATTACH_DECL_NEW(sk
, sizeof(struct sk_if_softc
),
2996 sk_probe
, sk_attach
, NULL
, NULL
);
3000 sk_dump_txdesc(struct sk_tx_desc
*desc
, int idx
)
3002 #define DESC_PRINT(X) \
3004 printf("txdesc[%d]." #X "=%#x\n", \
3007 DESC_PRINT(le32toh(desc
->sk_ctl
));
3008 DESC_PRINT(le32toh(desc
->sk_next
));
3009 DESC_PRINT(le32toh(desc
->sk_data_lo
));
3010 DESC_PRINT(le32toh(desc
->sk_data_hi
));
3011 DESC_PRINT(le32toh(desc
->sk_xmac_txstat
));
3012 DESC_PRINT(le16toh(desc
->sk_rsvd0
));
3013 DESC_PRINT(le16toh(desc
->sk_csum_startval
));
3014 DESC_PRINT(le16toh(desc
->sk_csum_startpos
));
3015 DESC_PRINT(le16toh(desc
->sk_csum_writepos
));
3016 DESC_PRINT(le16toh(desc
->sk_rsvd1
));
3021 sk_dump_bytes(const char *data
, int len
)
3025 for (i
= 0; i
< len
; i
+= 16) {
3030 for (j
= 0; j
< c
; j
++) {
3031 printf("%02x ", data
[i
+ j
] & 0xff);
3032 if ((j
& 0xf) == 7 && j
> 0)
3040 for (j
= 0; j
< c
; j
++) {
3041 int ch
= data
[i
+ j
] & 0xff;
3042 printf("%c", ' ' <= ch
&& ch
<= '~' ? ch
: ' ');
3053 sk_dump_mbuf(struct mbuf
*m
)
3055 int count
= m
->m_pkthdr
.len
;
3057 printf("m=%p, m->m_pkthdr.len=%d\n", m
, m
->m_pkthdr
.len
);
3059 while (count
> 0 && m
) {
3060 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
3061 m
, m
->m_data
, m
->m_len
);
3062 sk_dump_bytes(mtod(m
, char *), m
->m_len
);
3071 sk_sysctl_handler(SYSCTLFN_ARGS
)
3074 struct sysctlnode node
;
3075 struct sk_softc
*sc
;
3078 sc
= node
.sysctl_data
;
3080 node
.sysctl_data
= &t
;
3081 error
= sysctl_lookup(SYSCTLFN_CALL(&node
));
3082 if (error
|| newp
== NULL
)
3085 if (t
< SK_IM_MIN
|| t
> SK_IM_MAX
)
3088 /* update the softc with sysctl-changed value, and mark
3089 for hardware update */
3091 sc
->sk_int_mod_pending
= 1;
3096 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
3097 * set up in skc_attach()
3099 SYSCTL_SETUP(sysctl_sk
, "sysctl sk subtree setup")
3102 const struct sysctlnode
*node
;
3104 if ((rc
= sysctl_createv(clog
, 0, NULL
, NULL
,
3105 0, CTLTYPE_NODE
, "hw", NULL
,
3106 NULL
, 0, NULL
, 0, CTL_HW
, CTL_EOL
)) != 0) {
3110 if ((rc
= sysctl_createv(clog
, 0, NULL
, &node
,
3111 0, CTLTYPE_NODE
, "sk",
3112 SYSCTL_DESCR("sk interface controls"),
3113 NULL
, 0, NULL
, 0, CTL_HW
, CTL_CREATE
, CTL_EOL
)) != 0) {
3117 sk_root_num
= node
->sysctl_num
;
3121 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__
, rc
);