Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / raidframe / rf_engine.c
blob842ae0ee33b3fded4fad71648d19749a3ef416b4
1 /* $NetBSD: rf_engine.c,v 1.39 2006/11/16 01:33:23 christos Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
6 * Author: William V. Courtright II, Mark Holland, Rachad Youssef
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 * Carnegie Mellon requests users of this software to return to
20 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
29 /****************************************************************************
30 * *
31 * engine.c -- code for DAG execution engine *
32 * *
33 * Modified to work as follows (holland): *
34 * A user-thread calls into DispatchDAG, which fires off the nodes that *
35 * are direct successors to the header node. DispatchDAG then returns, *
36 * and the rest of the I/O continues asynchronously. As each node *
37 * completes, the node execution function calls FinishNode(). FinishNode *
38 * scans the list of successors to the node and increments the antecedent *
39 * counts. Each node that becomes enabled is placed on a central node *
40 * queue. A dedicated dag-execution thread grabs nodes off of this *
41 * queue and fires them. *
42 * *
43 * NULL nodes are never fired. *
44 * *
45 * Terminator nodes are never fired, but rather cause the callback *
46 * associated with the DAG to be invoked. *
47 * *
48 * If a node fails, the dag either rolls forward to the completion or *
49 * rolls back, undoing previously-completed nodes and fails atomically. *
50 * The direction of recovery is determined by the location of the failed *
51 * node in the graph. If the failure occurred before the commit node in *
52 * the graph, backward recovery is used. Otherwise, forward recovery is *
53 * used. *
54 * *
55 ****************************************************************************/
57 #include <sys/cdefs.h>
58 __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.39 2006/11/16 01:33:23 christos Exp $");
60 #include <sys/errno.h>
62 #include "rf_threadstuff.h"
63 #include "rf_dag.h"
64 #include "rf_engine.h"
65 #include "rf_etimer.h"
66 #include "rf_general.h"
67 #include "rf_dagutils.h"
68 #include "rf_shutdown.h"
69 #include "rf_raid.h"
70 #include "rf_kintf.h"
71 #include "rf_paritymap.h"
73 static void rf_ShutdownEngine(void *);
74 static void DAGExecutionThread(RF_ThreadArg_t arg);
75 static void rf_RaidIOThread(RF_ThreadArg_t arg);
77 /* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */
79 #define DO_LOCK(_r_) \
80 do { \
81 ks = splbio(); \
82 RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
83 } while (0)
85 #define DO_UNLOCK(_r_) \
86 do { \
87 RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
88 splx(ks); \
89 } while (0)
91 #define DO_WAIT(_r_) \
92 RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
94 #define DO_SIGNAL(_r_) \
95 RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */
97 static void
98 rf_ShutdownEngine(void *arg)
100 RF_Raid_t *raidPtr;
101 int ks;
103 raidPtr = (RF_Raid_t *) arg;
105 /* Tell the rf_RaidIOThread to shutdown */
106 simple_lock(&(raidPtr->iodone_lock));
108 raidPtr->shutdown_raidio = 1;
109 wakeup(&(raidPtr->iodone));
111 /* ...and wait for it to tell us it has finished */
112 while (raidPtr->shutdown_raidio)
113 ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
114 &(raidPtr->iodone_lock));
116 simple_unlock(&(raidPtr->iodone_lock));
118 /* Now shut down the DAG execution engine. */
119 DO_LOCK(raidPtr);
120 raidPtr->shutdown_engine = 1;
121 DO_SIGNAL(raidPtr);
122 DO_UNLOCK(raidPtr);
127 rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
128 RF_Config_t *cfgPtr)
131 rf_mutex_init(&raidPtr->node_queue_mutex);
132 raidPtr->node_queue = NULL;
133 raidPtr->dags_in_flight = 0;
135 /* we create the execution thread only once per system boot. no need
136 * to check return code b/c the kernel panics if it can't create the
137 * thread. */
138 #if RF_DEBUG_ENGINE
139 if (rf_engineDebug) {
140 printf("raid%d: Creating engine thread\n", raidPtr->raidid);
142 #endif
143 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
144 DAGExecutionThread, raidPtr,
145 "raid%d", raidPtr->raidid)) {
146 printf("raid%d: Unable to create engine thread\n",
147 raidPtr->raidid);
148 return (ENOMEM);
150 if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
151 rf_RaidIOThread, raidPtr,
152 "raidio%d", raidPtr->raidid)) {
153 printf("raid%d: Unable to create raidio thread\n",
154 raidPtr->raidid);
155 return (ENOMEM);
157 #if RF_DEBUG_ENGINE
158 if (rf_engineDebug) {
159 printf("raid%d: Created engine thread\n", raidPtr->raidid);
161 #endif
163 /* engine thread is now running and waiting for work */
164 #if RF_DEBUG_ENGINE
165 if (rf_engineDebug) {
166 printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
168 #endif
169 rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
171 return (0);
174 static int
175 BranchDone(RF_DagNode_t *node)
177 int i;
179 /* return true if forward execution is completed for a node and it's
180 * succedents */
181 switch (node->status) {
182 case rf_wait:
183 /* should never be called in this state */
184 RF_PANIC();
185 break;
186 case rf_fired:
187 /* node is currently executing, so we're not done */
188 return (RF_FALSE);
189 case rf_good:
190 /* for each succedent recursively check branch */
191 for (i = 0; i < node->numSuccedents; i++)
192 if (!BranchDone(node->succedents[i]))
193 return RF_FALSE;
194 return RF_TRUE; /* node and all succedent branches aren't in
195 * fired state */
196 case rf_bad:
197 /* succedents can't fire */
198 return (RF_TRUE);
199 case rf_recover:
200 /* should never be called in this state */
201 RF_PANIC();
202 break;
203 case rf_undone:
204 case rf_panic:
205 /* XXX need to fix this case */
206 /* for now, assume that we're done */
207 return (RF_TRUE);
208 default:
209 /* illegal node status */
210 RF_PANIC();
211 break;
215 static int
216 NodeReady(RF_DagNode_t *node)
218 int ready;
220 switch (node->dagHdr->status) {
221 case rf_enable:
222 case rf_rollForward:
223 if ((node->status == rf_wait) &&
224 (node->numAntecedents == node->numAntDone))
225 ready = RF_TRUE;
226 else
227 ready = RF_FALSE;
228 break;
229 case rf_rollBackward:
230 RF_ASSERT(node->numSuccDone <= node->numSuccedents);
231 RF_ASSERT(node->numSuccFired <= node->numSuccedents);
232 RF_ASSERT(node->numSuccFired <= node->numSuccDone);
233 if ((node->status == rf_good) &&
234 (node->numSuccDone == node->numSuccedents))
235 ready = RF_TRUE;
236 else
237 ready = RF_FALSE;
238 break;
239 default:
240 printf("Execution engine found illegal DAG status in NodeReady\n");
241 RF_PANIC();
242 break;
245 return (ready);
250 /* user context and dag-exec-thread context: Fire a node. The node's
251 * status field determines which function, do or undo, to be fired.
252 * This routine assumes that the node's status field has alread been
253 * set to "fired" or "recover" to indicate the direction of execution.
255 static void
256 FireNode(RF_DagNode_t *node)
258 switch (node->status) {
259 case rf_fired:
260 /* fire the do function of a node */
261 #if RF_DEBUG_ENGINE
262 if (rf_engineDebug) {
263 printf("raid%d: Firing node 0x%lx (%s)\n",
264 node->dagHdr->raidPtr->raidid,
265 (unsigned long) node, node->name);
267 #endif
268 if (node->flags & RF_DAGNODE_FLAG_YIELD) {
269 #if defined(__NetBSD__) && defined(_KERNEL)
270 /* thread_block(); */
271 /* printf("Need to block the thread here...\n"); */
272 /* XXX thread_block is actually mentioned in
273 * /usr/include/vm/vm_extern.h */
274 #else
275 thread_block();
276 #endif
278 (*(node->doFunc)) (node);
279 break;
280 case rf_recover:
281 /* fire the undo function of a node */
282 #if RF_DEBUG_ENGINE
283 if (rf_engineDebug) {
284 printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
285 node->dagHdr->raidPtr->raidid,
286 (unsigned long) node, node->name);
288 #endif
289 if (node->flags & RF_DAGNODE_FLAG_YIELD)
290 #if defined(__NetBSD__) && defined(_KERNEL)
291 /* thread_block(); */
292 /* printf("Need to block the thread here...\n"); */
293 /* XXX thread_block is actually mentioned in
294 * /usr/include/vm/vm_extern.h */
295 #else
296 thread_block();
297 #endif
298 (*(node->undoFunc)) (node);
299 break;
300 default:
301 RF_PANIC();
302 break;
308 /* user context:
309 * Attempt to fire each node in a linear array.
310 * The entire list is fired atomically.
312 static void
313 FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
315 RF_DagStatus_t dstat;
316 RF_DagNode_t *node;
317 int i, j;
319 /* first, mark all nodes which are ready to be fired */
320 for (i = 0; i < numNodes; i++) {
321 node = nodeList[i];
322 dstat = node->dagHdr->status;
323 RF_ASSERT((node->status == rf_wait) ||
324 (node->status == rf_good));
325 if (NodeReady(node)) {
326 if ((dstat == rf_enable) ||
327 (dstat == rf_rollForward)) {
328 RF_ASSERT(node->status == rf_wait);
329 if (node->commitNode)
330 node->dagHdr->numCommits++;
331 node->status = rf_fired;
332 for (j = 0; j < node->numAntecedents; j++)
333 node->antecedents[j]->numSuccFired++;
334 } else {
335 RF_ASSERT(dstat == rf_rollBackward);
336 RF_ASSERT(node->status == rf_good);
337 /* only one commit node per graph */
338 RF_ASSERT(node->commitNode == RF_FALSE);
339 node->status = rf_recover;
343 /* now, fire the nodes */
344 for (i = 0; i < numNodes; i++) {
345 if ((nodeList[i]->status == rf_fired) ||
346 (nodeList[i]->status == rf_recover))
347 FireNode(nodeList[i]);
352 /* user context:
353 * Attempt to fire each node in a linked list.
354 * The entire list is fired atomically.
356 static void
357 FireNodeList(RF_DagNode_t *nodeList)
359 RF_DagNode_t *node, *next;
360 RF_DagStatus_t dstat;
361 int j;
363 if (nodeList) {
364 /* first, mark all nodes which are ready to be fired */
365 for (node = nodeList; node; node = next) {
366 next = node->next;
367 dstat = node->dagHdr->status;
368 RF_ASSERT((node->status == rf_wait) ||
369 (node->status == rf_good));
370 if (NodeReady(node)) {
371 if ((dstat == rf_enable) ||
372 (dstat == rf_rollForward)) {
373 RF_ASSERT(node->status == rf_wait);
374 if (node->commitNode)
375 node->dagHdr->numCommits++;
376 node->status = rf_fired;
377 for (j = 0; j < node->numAntecedents; j++)
378 node->antecedents[j]->numSuccFired++;
379 } else {
380 RF_ASSERT(dstat == rf_rollBackward);
381 RF_ASSERT(node->status == rf_good);
382 /* only one commit node per graph */
383 RF_ASSERT(node->commitNode == RF_FALSE);
384 node->status = rf_recover;
388 /* now, fire the nodes */
389 for (node = nodeList; node; node = next) {
390 next = node->next;
391 if ((node->status == rf_fired) ||
392 (node->status == rf_recover))
393 FireNode(node);
397 /* interrupt context:
398 * for each succedent
399 * propagate required results from node to succedent
400 * increment succedent's numAntDone
401 * place newly-enable nodes on node queue for firing
403 * To save context switches, we don't place NIL nodes on the node queue,
404 * but rather just process them as if they had fired. Note that NIL nodes
405 * that are the direct successors of the header will actually get fired by
406 * DispatchDAG, which is fine because no context switches are involved.
408 * Important: when running at user level, this can be called by any
409 * disk thread, and so the increment and check of the antecedent count
410 * must be locked. I used the node queue mutex and locked down the
411 * entire function, but this is certainly overkill.
413 static void
414 PropagateResults(RF_DagNode_t *node, int context)
416 RF_DagNode_t *s, *a;
417 RF_Raid_t *raidPtr;
418 int i, ks;
419 RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be
420 * finished */
421 RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata
422 * antecedents */
423 RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */
424 RF_DagNode_t *q = NULL, *qh = NULL, *next;
425 int j, skipNode;
427 raidPtr = node->dagHdr->raidPtr;
429 DO_LOCK(raidPtr);
431 /* debug - validate fire counts */
432 for (i = 0; i < node->numAntecedents; i++) {
433 a = *(node->antecedents + i);
434 RF_ASSERT(a->numSuccFired >= a->numSuccDone);
435 RF_ASSERT(a->numSuccFired <= a->numSuccedents);
436 a->numSuccDone++;
439 switch (node->dagHdr->status) {
440 case rf_enable:
441 case rf_rollForward:
442 for (i = 0; i < node->numSuccedents; i++) {
443 s = *(node->succedents + i);
444 RF_ASSERT(s->status == rf_wait);
445 (s->numAntDone)++;
446 if (s->numAntDone == s->numAntecedents) {
447 /* look for NIL nodes */
448 if (s->doFunc == rf_NullNodeFunc) {
449 /* don't fire NIL nodes, just process
450 * them */
451 s->next = finishlist;
452 finishlist = s;
453 } else {
454 /* look to see if the node is to be
455 * skipped */
456 skipNode = RF_FALSE;
457 for (j = 0; j < s->numAntecedents; j++)
458 if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
459 skipNode = RF_TRUE;
460 if (skipNode) {
461 /* this node has one or more
462 * failed true data
463 * dependencies, so skip it */
464 s->next = skiplist;
465 skiplist = s;
466 } else
467 /* add s to list of nodes (q)
468 * to execute */
469 if (context != RF_INTR_CONTEXT) {
470 /* we only have to
471 * enqueue if we're at
472 * intr context */
473 /* put node on
474 a list to
475 be fired
476 after we
477 unlock */
478 s->next = firelist;
479 firelist = s;
480 } else {
481 /* enqueue the
482 node for
483 the dag
484 exec thread
485 to fire */
486 RF_ASSERT(NodeReady(s));
487 if (q) {
488 q->next = s;
489 q = s;
490 } else {
491 qh = q = s;
492 qh->next = NULL;
499 if (q) {
500 /* xfer our local list of nodes to the node queue */
501 q->next = raidPtr->node_queue;
502 raidPtr->node_queue = qh;
503 DO_SIGNAL(raidPtr);
505 DO_UNLOCK(raidPtr);
507 for (; skiplist; skiplist = next) {
508 next = skiplist->next;
509 skiplist->status = rf_skipped;
510 for (i = 0; i < skiplist->numAntecedents; i++) {
511 skiplist->antecedents[i]->numSuccFired++;
513 if (skiplist->commitNode) {
514 skiplist->dagHdr->numCommits++;
516 rf_FinishNode(skiplist, context);
518 for (; finishlist; finishlist = next) {
519 /* NIL nodes: no need to fire them */
520 next = finishlist->next;
521 finishlist->status = rf_good;
522 for (i = 0; i < finishlist->numAntecedents; i++) {
523 finishlist->antecedents[i]->numSuccFired++;
525 if (finishlist->commitNode)
526 finishlist->dagHdr->numCommits++;
528 * Okay, here we're calling rf_FinishNode() on
529 * nodes that have the null function as their
530 * work proc. Such a node could be the
531 * terminal node in a DAG. If so, it will
532 * cause the DAG to complete, which will in
533 * turn free memory used by the DAG, which
534 * includes the node in question. Thus, we
535 * must avoid referencing the node at all
536 * after calling rf_FinishNode() on it. */
537 rf_FinishNode(finishlist, context); /* recursive call */
539 /* fire all nodes in firelist */
540 FireNodeList(firelist);
541 break;
543 case rf_rollBackward:
544 for (i = 0; i < node->numAntecedents; i++) {
545 a = *(node->antecedents + i);
546 RF_ASSERT(a->status == rf_good);
547 RF_ASSERT(a->numSuccDone <= a->numSuccedents);
548 RF_ASSERT(a->numSuccDone <= a->numSuccFired);
550 if (a->numSuccDone == a->numSuccFired) {
551 if (a->undoFunc == rf_NullNodeFunc) {
552 /* don't fire NIL nodes, just process
553 * them */
554 a->next = finishlist;
555 finishlist = a;
556 } else {
557 if (context != RF_INTR_CONTEXT) {
558 /* we only have to enqueue if
559 * we're at intr context */
560 /* put node on a list to be
561 fired after we unlock */
562 a->next = firelist;
564 firelist = a;
565 } else {
566 /* enqueue the node for the
567 dag exec thread to fire */
568 RF_ASSERT(NodeReady(a));
569 if (q) {
570 q->next = a;
571 q = a;
572 } else {
573 qh = q = a;
574 qh->next = NULL;
580 if (q) {
581 /* xfer our local list of nodes to the node queue */
582 q->next = raidPtr->node_queue;
583 raidPtr->node_queue = qh;
584 DO_SIGNAL(raidPtr);
586 DO_UNLOCK(raidPtr);
587 for (; finishlist; finishlist = next) {
588 /* NIL nodes: no need to fire them */
589 next = finishlist->next;
590 finishlist->status = rf_good;
592 * Okay, here we're calling rf_FinishNode() on
593 * nodes that have the null function as their
594 * work proc. Such a node could be the first
595 * node in a DAG. If so, it will cause the DAG
596 * to complete, which will in turn free memory
597 * used by the DAG, which includes the node in
598 * question. Thus, we must avoid referencing
599 * the node at all after calling
600 * rf_FinishNode() on it. */
601 rf_FinishNode(finishlist, context); /* recursive call */
603 /* fire all nodes in firelist */
604 FireNodeList(firelist);
606 break;
607 default:
608 printf("Engine found illegal DAG status in PropagateResults()\n");
609 RF_PANIC();
610 break;
617 * Process a fired node which has completed
619 static void
620 ProcessNode(RF_DagNode_t *node, int context)
622 RF_Raid_t *raidPtr;
624 raidPtr = node->dagHdr->raidPtr;
626 switch (node->status) {
627 case rf_good:
628 /* normal case, don't need to do anything */
629 break;
630 case rf_bad:
631 if ((node->dagHdr->numCommits > 0) ||
632 (node->dagHdr->numCommitNodes == 0)) {
633 /* crossed commit barrier */
634 node->dagHdr->status = rf_rollForward;
635 #if RF_DEBUG_ENGINE
636 if (rf_engineDebug) {
637 printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
639 #endif
640 } else {
641 /* never reached commit barrier */
642 node->dagHdr->status = rf_rollBackward;
643 #if RF_DEBUG_ENGINE
644 if (rf_engineDebug) {
645 printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
647 #endif
649 break;
650 case rf_undone:
651 /* normal rollBackward case, don't need to do anything */
652 break;
653 case rf_panic:
654 /* an undo node failed!!! */
655 printf("UNDO of a node failed!!!/n");
656 break;
657 default:
658 printf("node finished execution with an illegal status!!!\n");
659 RF_PANIC();
660 break;
663 /* enqueue node's succedents (antecedents if rollBackward) for
664 * execution */
665 PropagateResults(node, context);
670 /* user context or dag-exec-thread context:
671 * This is the first step in post-processing a newly-completed node.
672 * This routine is called by each node execution function to mark the node
673 * as complete and fire off any successors that have been enabled.
676 rf_FinishNode(RF_DagNode_t *node, int context)
678 int retcode = RF_FALSE;
679 node->dagHdr->numNodesCompleted++;
680 ProcessNode(node, context);
682 return (retcode);
686 /* user context: submit dag for execution, return non-zero if we have
687 * to wait for completion. if and only if we return non-zero, we'll
688 * cause cbFunc to get invoked with cbArg when the DAG has completed.
690 * for now we always return 1. If the DAG does not cause any I/O,
691 * then the callback may get invoked before DispatchDAG returns.
692 * There's code in state 5 of ContinueRaidAccess to handle this.
694 * All we do here is fire the direct successors of the header node.
695 * The DAG execution thread does the rest of the dag processing. */
697 rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
698 void *cbArg)
700 RF_Raid_t *raidPtr;
702 raidPtr = dag->raidPtr;
703 #if RF_ACC_TRACE > 0
704 if (dag->tracerec) {
705 RF_ETIMER_START(dag->tracerec->timer);
707 #endif
708 #if DEBUG
709 #if RF_DEBUG_VALIDATE_DAG
710 if (rf_engineDebug || rf_validateDAGDebug) {
711 if (rf_ValidateDAG(dag))
712 RF_PANIC();
714 #endif
715 #endif
716 #if RF_DEBUG_ENGINE
717 if (rf_engineDebug) {
718 printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
720 #endif
721 raidPtr->dags_in_flight++; /* debug only: blow off proper
722 * locking */
723 dag->cbFunc = cbFunc;
724 dag->cbArg = cbArg;
725 dag->numNodesCompleted = 0;
726 dag->status = rf_enable;
727 FireNodeArray(dag->numSuccedents, dag->succedents);
728 return (1);
730 /* dedicated kernel thread: the thread that handles all DAG node
731 * firing. To minimize locking and unlocking, we grab a copy of the
732 * entire node queue and then set the node queue to NULL before doing
733 * any firing of nodes. This way we only have to release the lock
734 * once. Of course, it's probably rare that there's more than one
735 * node in the queue at any one time, but it sometimes happens.
738 static void
739 DAGExecutionThread(RF_ThreadArg_t arg)
741 RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
742 RF_Raid_t *raidPtr;
743 int ks;
744 int s;
746 raidPtr = (RF_Raid_t *) arg;
748 #if RF_DEBUG_ENGINE
749 if (rf_engineDebug) {
750 printf("raid%d: Engine thread is running\n", raidPtr->raidid);
752 #endif
753 s = splbio();
755 DO_LOCK(raidPtr);
756 while (!raidPtr->shutdown_engine) {
758 while (raidPtr->node_queue != NULL) {
759 local_nq = raidPtr->node_queue;
760 fire_nq = NULL;
761 term_nq = NULL;
762 raidPtr->node_queue = NULL;
763 DO_UNLOCK(raidPtr);
765 /* first, strip out the terminal nodes */
766 while (local_nq) {
767 nd = local_nq;
768 local_nq = local_nq->next;
769 switch (nd->dagHdr->status) {
770 case rf_enable:
771 case rf_rollForward:
772 if (nd->numSuccedents == 0) {
773 /* end of the dag, add to
774 * callback list */
775 nd->next = term_nq;
776 term_nq = nd;
777 } else {
778 /* not the end, add to the
779 * fire queue */
780 nd->next = fire_nq;
781 fire_nq = nd;
783 break;
784 case rf_rollBackward:
785 if (nd->numAntecedents == 0) {
786 /* end of the dag, add to the
787 * callback list */
788 nd->next = term_nq;
789 term_nq = nd;
790 } else {
791 /* not the end, add to the
792 * fire queue */
793 nd->next = fire_nq;
794 fire_nq = nd;
796 break;
797 default:
798 RF_PANIC();
799 break;
803 /* execute callback of dags which have reached the
804 * terminal node */
805 while (term_nq) {
806 nd = term_nq;
807 term_nq = term_nq->next;
808 nd->next = NULL;
809 (nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
810 raidPtr->dags_in_flight--; /* debug only */
813 /* fire remaining nodes */
814 FireNodeList(fire_nq);
816 DO_LOCK(raidPtr);
818 while (!raidPtr->shutdown_engine &&
819 raidPtr->node_queue == NULL) {
820 DO_WAIT(raidPtr);
823 DO_UNLOCK(raidPtr);
825 splx(s);
826 kthread_exit(0);
830 * rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
831 * puts the I/O on a buf_queue, and then signals raidPtr->iodone. If
832 * necessary, this function calls raidstart() to initiate the I/O.
833 * When I/O to a component completes, KernelWakeupFunc() puts the
834 * completed request onto raidPtr->iodone TAILQ. This function looks
835 * after requests on that queue by calling rf_DiskIOComplete() for the
836 * request, and by calling any required CompleteFunc for the request.
839 static void
840 rf_RaidIOThread(RF_ThreadArg_t arg)
842 RF_Raid_t *raidPtr;
843 RF_DiskQueueData_t *req;
844 int s;
846 raidPtr = (RF_Raid_t *) arg;
848 s = splbio();
849 simple_lock(&(raidPtr->iodone_lock));
851 while (!raidPtr->shutdown_raidio) {
852 /* if there is nothing to do, then snooze. */
853 if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
854 rf_buf_queue_check(raidPtr->raidid)) {
855 ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
856 &(raidPtr->iodone_lock));
859 /* Check for deferred parity-map-related work. */
860 if (raidPtr->parity_map != NULL) {
861 simple_unlock(&(raidPtr->iodone_lock));
862 rf_paritymap_checkwork(raidPtr->parity_map);
863 simple_lock(&(raidPtr->iodone_lock));
866 /* See what I/Os, if any, have arrived */
867 while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
868 TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
869 simple_unlock(&(raidPtr->iodone_lock));
870 rf_DiskIOComplete(req->queue, req, req->error);
871 (req->CompleteFunc) (req->argument, req->error);
872 simple_lock(&(raidPtr->iodone_lock));
875 /* process any pending outgoing IO */
876 simple_unlock(&(raidPtr->iodone_lock));
877 raidstart(raidPtr);
878 simple_lock(&(raidPtr->iodone_lock));
882 /* Let rf_ShutdownEngine know that we're done... */
883 raidPtr->shutdown_raidio = 0;
884 wakeup(&(raidPtr->shutdown_raidio));
886 simple_unlock(&(raidPtr->iodone_lock));
887 splx(s);
889 kthread_exit(0);