Expand PMF_FN_* macros.
[netbsd-mini2440.git] / sys / dev / usb / if_zyd.c
blob365ce1b053c06c7a2e72cd06a8966ea9fd286f6c
1 /* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
2 /* $NetBSD: if_zyd.c,v 1.22 2009/09/23 19:07:19 plunky Exp $ */
4 /*-
5 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * ZyDAS ZD1211/ZD1211B USB WLAN driver.
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: if_zyd.c,v 1.22 2009/09/23 19:07:19 plunky Exp $");
27 #include "bpfilter.h"
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/proc.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
40 #include <sys/bus.h>
41 #include <machine/endian.h>
43 #if NBPFILTER > 0
44 #include <net/bpf.h>
45 #endif
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
58 #include <net80211/ieee80211_netbsd.h>
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_amrr.h>
61 #include <net80211/ieee80211_radiotap.h>
63 #include <dev/firmload.h>
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include <dev/usb/usbdi_util.h>
68 #include <dev/usb/usbdevs.h>
70 #include <dev/usb/if_zydreg.h>
72 #ifdef USB_DEBUG
73 #define ZYD_DEBUG
74 #endif
76 #ifdef ZYD_DEBUG
77 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0)
79 int zyddebug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
85 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
86 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
88 /* various supported device vendors/products */
89 #define ZYD_ZD1211_DEV(v, p) \
90 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
91 #define ZYD_ZD1211B_DEV(v, p) \
92 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
93 static const struct zyd_type {
94 struct usb_devno dev;
95 uint8_t rev;
96 #define ZYD_ZD1211 0
97 #define ZYD_ZD1211B 1
98 } zyd_devs[] = {
99 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
100 ZYD_ZD1211_DEV(ABOCOM, WL54),
101 ZYD_ZD1211_DEV(ASUSTEK, WL159G),
102 ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
103 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
104 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
105 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
106 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
107 ZYD_ZD1211_DEV(SAGEM, XG760A),
108 ZYD_ZD1211_DEV(SENAO, NUB8301),
109 ZYD_ZD1211_DEV(SITECOMEU, WL113),
110 ZYD_ZD1211_DEV(SWEEX, ZD1211),
111 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
112 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
113 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
114 ZYD_ZD1211_DEV(TWINMOS, G240),
115 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
116 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
117 ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
118 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
119 ZYD_ZD1211_DEV(ZCOM, ZD1211),
120 ZYD_ZD1211_DEV(ZYDAS, ZD1211),
121 ZYD_ZD1211_DEV(ZYXEL, AG225H),
122 ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
124 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
125 ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
126 ZYD_ZD1211B_DEV(ASUSTEK, A9T_WIFI),
127 ZYD_ZD1211B_DEV(BELKIN, F5D7050C),
128 ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
129 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
130 ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
131 ZYD_ZD1211B_DEV(MELCO, KG54L),
132 ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
133 ZYD_ZD1211B_DEV(SAGEM, XG76NA),
134 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
135 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
136 #if 0 /* Shall we needs? */
137 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
138 ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
139 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
140 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
141 #endif
142 ZYD_ZD1211B_DEV(USR, USR5423),
143 ZYD_ZD1211B_DEV(VTECH, ZD1211B),
144 ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
145 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
146 ZYD_ZD1211B_DEV(ZYXEL, M202),
147 ZYD_ZD1211B_DEV(ZYXEL, G220V2),
148 ZYD_ZD1211B_DEV(PLANEX2, GWUS54GXS),
150 #define zyd_lookup(v, p) \
151 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
153 int zyd_match(device_t, cfdata_t, void *);
154 void zyd_attach(device_t, device_t, void *);
155 int zyd_detach(device_t, int);
156 int zyd_activate(device_t, enum devact);
157 extern struct cfdriver zyd_cd;
159 CFATTACH_DECL_NEW(zyd, sizeof(struct zyd_softc), zyd_match,
160 zyd_attach, zyd_detach, zyd_activate);
162 Static int zyd_attachhook(void *);
163 Static int zyd_complete_attach(struct zyd_softc *);
164 Static int zyd_open_pipes(struct zyd_softc *);
165 Static void zyd_close_pipes(struct zyd_softc *);
166 Static int zyd_alloc_tx_list(struct zyd_softc *);
167 Static void zyd_free_tx_list(struct zyd_softc *);
168 Static int zyd_alloc_rx_list(struct zyd_softc *);
169 Static void zyd_free_rx_list(struct zyd_softc *);
170 Static struct ieee80211_node *zyd_node_alloc(struct ieee80211_node_table *);
171 Static int zyd_media_change(struct ifnet *);
172 Static void zyd_next_scan(void *);
173 Static void zyd_task(void *);
174 Static int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int);
175 Static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
176 void *, int, u_int);
177 Static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
178 Static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
179 Static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
180 Static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
181 Static int zyd_rfwrite(struct zyd_softc *, uint32_t);
182 Static void zyd_lock_phy(struct zyd_softc *);
183 Static void zyd_unlock_phy(struct zyd_softc *);
184 Static int zyd_rfmd_init(struct zyd_rf *);
185 Static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
186 Static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
187 Static int zyd_al2230_init(struct zyd_rf *);
188 Static int zyd_al2230_switch_radio(struct zyd_rf *, int);
189 Static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
190 Static int zyd_al2230_init_b(struct zyd_rf *);
191 Static int zyd_al7230B_init(struct zyd_rf *);
192 Static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
193 Static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
194 Static int zyd_al2210_init(struct zyd_rf *);
195 Static int zyd_al2210_switch_radio(struct zyd_rf *, int);
196 Static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
197 Static int zyd_gct_init(struct zyd_rf *);
198 Static int zyd_gct_switch_radio(struct zyd_rf *, int);
199 Static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
200 Static int zyd_maxim_init(struct zyd_rf *);
201 Static int zyd_maxim_switch_radio(struct zyd_rf *, int);
202 Static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
203 Static int zyd_maxim2_init(struct zyd_rf *);
204 Static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
205 Static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
206 Static int zyd_rf_attach(struct zyd_softc *, uint8_t);
207 Static const char *zyd_rf_name(uint8_t);
208 Static int zyd_hw_init(struct zyd_softc *);
209 Static int zyd_read_eeprom(struct zyd_softc *);
210 Static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
211 Static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
212 Static int zyd_switch_radio(struct zyd_softc *, int);
213 Static void zyd_set_led(struct zyd_softc *, int, int);
214 Static int zyd_set_rxfilter(struct zyd_softc *);
215 Static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
216 Static int zyd_set_beacon_interval(struct zyd_softc *, int);
217 Static uint8_t zyd_plcp_signal(int);
218 Static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
219 Static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
220 Static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
221 Static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
222 Static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
223 struct ieee80211_node *);
224 Static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
225 struct ieee80211_node *);
226 Static void zyd_start(struct ifnet *);
227 Static void zyd_watchdog(struct ifnet *);
228 Static int zyd_ioctl(struct ifnet *, u_long, void *);
229 Static int zyd_init(struct ifnet *);
230 Static void zyd_stop(struct ifnet *, int);
231 Static int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t);
232 Static void zyd_iter_func(void *, struct ieee80211_node *);
233 Static void zyd_amrr_timeout(void *);
234 Static void zyd_newassoc(struct ieee80211_node *, int);
236 static const struct ieee80211_rateset zyd_rateset_11b =
237 { 4, { 2, 4, 11, 22 } };
239 static const struct ieee80211_rateset zyd_rateset_11g =
240 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
243 zyd_match(device_t parent, cfdata_t match, void *aux)
245 struct usb_attach_arg *uaa = aux;
247 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
248 UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
251 Static int
252 zyd_attachhook(void *xsc)
254 struct zyd_softc *sc = xsc;
255 firmware_handle_t fwh;
256 const char *fwname;
257 u_char *fw;
258 size_t size;
259 int error;
261 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zyd-zd1211" : "zyd-zd1211b";
262 if ((error = firmware_open("zyd", fwname, &fwh)) != 0) {
263 aprint_error_dev(sc->sc_dev,
264 "failed to open firmware %s (error=%d)\n", fwname, error);
265 return error;
267 size = firmware_get_size(fwh);
268 fw = firmware_malloc(size);
269 if (fw == NULL) {
270 aprint_error_dev(sc->sc_dev,
271 "failed to allocate firmware memory\n");
272 firmware_close(fwh);
273 return ENOMEM;
275 error = firmware_read(fwh, 0, fw, size);
276 firmware_close(fwh);
277 if (error != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "failed to read firmware (error %d)\n", error);
280 firmware_free(fw, 0);
281 return error;
284 error = zyd_loadfirmware(sc, fw, size);
285 if (error != 0) {
286 aprint_error_dev(sc->sc_dev,
287 "could not load firmware (error=%d)\n", error);
288 firmware_free(fw, 0);
289 return ENXIO;
292 firmware_free(fw, 0);
293 sc->sc_flags |= ZD1211_FWLOADED;
295 /* complete the attach process */
296 if ((error = zyd_complete_attach(sc)) == 0)
297 sc->attached = 1;
298 return error;
301 void
302 zyd_attach(device_t parent, device_t self, void *aux)
304 struct zyd_softc *sc = device_private(self);
305 struct usb_attach_arg *uaa = aux;
306 char *devinfop;
307 usb_device_descriptor_t* ddesc;
308 struct ifnet *ifp = &sc->sc_if;
310 sc->sc_dev = self;
311 sc->sc_udev = uaa->device;
312 sc->sc_flags = 0;
314 aprint_naive("\n");
315 aprint_normal("\n");
317 devinfop = usbd_devinfo_alloc(uaa->device, 0);
318 aprint_normal_dev(self, "%s\n", devinfop);
319 usbd_devinfo_free(devinfop);
321 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev;
323 ddesc = usbd_get_device_descriptor(sc->sc_udev);
324 if (UGETW(ddesc->bcdDevice) < 0x4330) {
325 aprint_error_dev(self, "device version mismatch: 0x%x "
326 "(only >= 43.30 supported)\n", UGETW(ddesc->bcdDevice));
327 return;
330 ifp->if_softc = sc;
331 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 ifp->if_init = zyd_init;
333 ifp->if_ioctl = zyd_ioctl;
334 ifp->if_start = zyd_start;
335 ifp->if_watchdog = zyd_watchdog;
336 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
337 IFQ_SET_READY(&ifp->if_snd);
338 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
340 if_attach(ifp);
341 /* XXXX: alloc temporarily until the layer2 can be configured. */
342 if_alloc_sadl(ifp);
344 SIMPLEQ_INIT(&sc->sc_rqh);
346 return;
349 Static int
350 zyd_complete_attach(struct zyd_softc *sc)
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 usbd_status error;
355 int i;
357 usb_init_task(&sc->sc_task, zyd_task, sc);
358 callout_init(&(sc->sc_scan_ch), 0);
360 sc->amrr.amrr_min_success_threshold = 1;
361 sc->amrr.amrr_max_success_threshold = 10;
362 callout_init(&sc->sc_amrr_ch, 0);
364 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
365 if (error != 0) {
366 aprint_error_dev(sc->sc_dev, "setting config no failed\n");
367 goto fail;
370 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX,
371 &sc->sc_iface);
372 if (error != 0) {
373 aprint_error_dev(sc->sc_dev,
374 "getting interface handle failed\n");
375 goto fail;
378 if ((error = zyd_open_pipes(sc)) != 0) {
379 aprint_error_dev(sc->sc_dev, "could not open pipes\n");
380 goto fail;
383 if ((error = zyd_read_eeprom(sc)) != 0) {
384 aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
385 goto fail;
388 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) {
389 aprint_error_dev(sc->sc_dev, "could not attach RF\n");
390 goto fail;
393 if ((error = zyd_hw_init(sc)) != 0) {
394 aprint_error_dev(sc->sc_dev,
395 "hardware initialization failed\n");
396 goto fail;
399 aprint_normal_dev(sc->sc_dev,
400 "HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n",
401 (sc->mac_rev == ZYD_ZD1211) ? "": "B",
402 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev),
403 sc->pa_rev, ether_sprintf(ic->ic_myaddr));
405 ic->ic_ifp = ifp;
406 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
407 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
408 ic->ic_state = IEEE80211_S_INIT;
410 /* set device capabilities */
411 ic->ic_caps =
412 IEEE80211_C_MONITOR | /* monitor mode supported */
413 IEEE80211_C_TXPMGT | /* tx power management */
414 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
415 IEEE80211_C_WEP; /* s/w WEP */
417 /* set supported .11b and .11g rates */
418 ic->ic_sup_rates[IEEE80211_MODE_11B] = zyd_rateset_11b;
419 ic->ic_sup_rates[IEEE80211_MODE_11G] = zyd_rateset_11g;
421 /* set supported .11b and .11g channels (1 through 14) */
422 for (i = 1; i <= 14; i++) {
423 ic->ic_channels[i].ic_freq =
424 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
425 ic->ic_channels[i].ic_flags =
426 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
427 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
430 if_free_sadl(ifp);
431 ieee80211_ifattach(ic);
432 ic->ic_node_alloc = zyd_node_alloc;
433 ic->ic_newassoc = zyd_newassoc;
435 /* override state transition machine */
436 sc->sc_newstate = ic->ic_newstate;
437 ic->ic_newstate = zyd_newstate;
438 ieee80211_media_init(ic, zyd_media_change, ieee80211_media_status);
440 #if NBPFILTER > 0
441 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
442 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
443 &sc->sc_drvbpf);
445 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
446 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
447 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
449 sc->sc_txtap_len = sizeof sc->sc_txtapu;
450 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
451 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
452 #endif
454 ieee80211_announce(ic);
456 usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
458 fail: return error;
462 zyd_detach(device_t self, int flags)
464 struct zyd_softc *sc = device_private(self);
465 struct ieee80211com *ic = &sc->sc_ic;
466 struct ifnet *ifp = &sc->sc_if;
467 int s;
469 if (!sc->attached) {
470 if_free_sadl(ifp);
471 if_detach(ifp);
472 return 0;
475 s = splusb();
477 zyd_stop(ifp, 1);
478 usb_rem_task(sc->sc_udev, &sc->sc_task);
479 callout_stop(&sc->sc_scan_ch);
480 callout_stop(&sc->sc_amrr_ch);
482 zyd_close_pipes(sc);
484 sc->attached = 0;
486 #if NBPFILTER > 0
487 bpfdetach(ifp);
488 #endif
489 ieee80211_ifdetach(ic);
490 if_detach(ifp);
492 splx(s);
494 usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
495 USBDEV(sc->sc_dev));
497 return 0;
500 Static int
501 zyd_open_pipes(struct zyd_softc *sc)
503 usb_endpoint_descriptor_t *edesc;
504 int isize;
505 usbd_status error;
507 /* interrupt in */
508 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
509 if (edesc == NULL)
510 return EINVAL;
512 isize = UGETW(edesc->wMaxPacketSize);
513 if (isize == 0) /* should not happen */
514 return EINVAL;
516 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
517 if (sc->ibuf == NULL)
518 return ENOMEM;
520 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
521 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr,
522 USBD_DEFAULT_INTERVAL);
523 if (error != 0) {
524 printf("%s: open rx intr pipe failed: %s\n",
525 device_xname(sc->sc_dev), usbd_errstr(error));
526 goto fail;
529 /* interrupt out (not necessarily an interrupt pipe) */
530 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
531 &sc->zyd_ep[ZYD_ENDPT_IOUT]);
532 if (error != 0) {
533 printf("%s: open tx intr pipe failed: %s\n",
534 device_xname(sc->sc_dev), usbd_errstr(error));
535 goto fail;
538 /* bulk in */
539 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
540 &sc->zyd_ep[ZYD_ENDPT_BIN]);
541 if (error != 0) {
542 printf("%s: open rx pipe failed: %s\n",
543 device_xname(sc->sc_dev), usbd_errstr(error));
544 goto fail;
547 /* bulk out */
548 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
549 &sc->zyd_ep[ZYD_ENDPT_BOUT]);
550 if (error != 0) {
551 printf("%s: open tx pipe failed: %s\n",
552 device_xname(sc->sc_dev), usbd_errstr(error));
553 goto fail;
556 return 0;
558 fail: zyd_close_pipes(sc);
559 return error;
562 Static void
563 zyd_close_pipes(struct zyd_softc *sc)
565 int i;
567 for (i = 0; i < ZYD_ENDPT_CNT; i++) {
568 if (sc->zyd_ep[i] != NULL) {
569 usbd_abort_pipe(sc->zyd_ep[i]);
570 usbd_close_pipe(sc->zyd_ep[i]);
571 sc->zyd_ep[i] = NULL;
574 if (sc->ibuf != NULL) {
575 free(sc->ibuf, M_USBDEV);
576 sc->ibuf = NULL;
580 Static int
581 zyd_alloc_tx_list(struct zyd_softc *sc)
583 int i, error;
585 sc->tx_queued = 0;
587 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
588 struct zyd_tx_data *data = &sc->tx_data[i];
590 data->sc = sc; /* backpointer for callbacks */
592 data->xfer = usbd_alloc_xfer(sc->sc_udev);
593 if (data->xfer == NULL) {
594 printf("%s: could not allocate tx xfer\n",
595 device_xname(sc->sc_dev));
596 error = ENOMEM;
597 goto fail;
599 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
600 if (data->buf == NULL) {
601 printf("%s: could not allocate tx buffer\n",
602 device_xname(sc->sc_dev));
603 error = ENOMEM;
604 goto fail;
607 /* clear Tx descriptor */
608 memset(data->buf, 0, sizeof (struct zyd_tx_desc));
610 return 0;
612 fail: zyd_free_tx_list(sc);
613 return error;
616 Static void
617 zyd_free_tx_list(struct zyd_softc *sc)
619 int i;
621 for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
622 struct zyd_tx_data *data = &sc->tx_data[i];
624 if (data->xfer != NULL) {
625 usbd_free_xfer(data->xfer);
626 data->xfer = NULL;
628 if (data->ni != NULL) {
629 ieee80211_free_node(data->ni);
630 data->ni = NULL;
635 Static int
636 zyd_alloc_rx_list(struct zyd_softc *sc)
638 int i, error;
640 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
641 struct zyd_rx_data *data = &sc->rx_data[i];
643 data->sc = sc; /* backpointer for callbacks */
645 data->xfer = usbd_alloc_xfer(sc->sc_udev);
646 if (data->xfer == NULL) {
647 printf("%s: could not allocate rx xfer\n",
648 device_xname(sc->sc_dev));
649 error = ENOMEM;
650 goto fail;
652 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
653 if (data->buf == NULL) {
654 printf("%s: could not allocate rx buffer\n",
655 device_xname(sc->sc_dev));
656 error = ENOMEM;
657 goto fail;
660 return 0;
662 fail: zyd_free_rx_list(sc);
663 return error;
666 Static void
667 zyd_free_rx_list(struct zyd_softc *sc)
669 int i;
671 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
672 struct zyd_rx_data *data = &sc->rx_data[i];
674 if (data->xfer != NULL) {
675 usbd_free_xfer(data->xfer);
676 data->xfer = NULL;
681 /* ARGUSED */
682 Static struct ieee80211_node *
683 zyd_node_alloc(struct ieee80211_node_table *nt __unused)
685 struct zyd_node *zn;
687 zn = malloc(sizeof (struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
689 return &zn->ni;
692 Static int
693 zyd_media_change(struct ifnet *ifp)
695 int error;
697 error = ieee80211_media_change(ifp);
698 if (error != ENETRESET)
699 return error;
701 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
702 zyd_init(ifp);
704 return 0;
708 * This function is called periodically (every 200ms) during scanning to
709 * switch from one channel to another.
711 Static void
712 zyd_next_scan(void *arg)
714 struct zyd_softc *sc = arg;
715 struct ieee80211com *ic = &sc->sc_ic;
717 if (ic->ic_state == IEEE80211_S_SCAN)
718 ieee80211_next_scan(ic);
721 Static void
722 zyd_task(void *arg)
724 struct zyd_softc *sc = arg;
725 struct ieee80211com *ic = &sc->sc_ic;
726 enum ieee80211_state ostate;
728 ostate = ic->ic_state;
730 switch (sc->sc_state) {
731 case IEEE80211_S_INIT:
732 if (ostate == IEEE80211_S_RUN) {
733 /* turn link LED off */
734 zyd_set_led(sc, ZYD_LED1, 0);
736 /* stop data LED from blinking */
737 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0);
739 break;
741 case IEEE80211_S_SCAN:
742 zyd_set_chan(sc, ic->ic_curchan);
743 callout_reset(&sc->sc_scan_ch, hz / 5, zyd_next_scan, sc);
744 break;
746 case IEEE80211_S_AUTH:
747 case IEEE80211_S_ASSOC:
748 zyd_set_chan(sc, ic->ic_curchan);
749 break;
751 case IEEE80211_S_RUN:
753 struct ieee80211_node *ni = ic->ic_bss;
755 zyd_set_chan(sc, ic->ic_curchan);
757 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
758 /* turn link LED on */
759 zyd_set_led(sc, ZYD_LED1, 1);
761 /* make data LED blink upon Tx */
762 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1);
764 zyd_set_bssid(sc, ni->ni_bssid);
767 if (ic->ic_opmode == IEEE80211_M_STA) {
768 /* fake a join to init the tx rate */
769 zyd_newassoc(ni, 1);
772 /* start automatic rate control timer */
773 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
774 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
776 break;
780 sc->sc_newstate(ic, sc->sc_state, -1);
783 Static int
784 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
786 struct zyd_softc *sc = ic->ic_ifp->if_softc;
788 if (!sc->attached)
789 return ENXIO;
791 usb_rem_task(sc->sc_udev, &sc->sc_task);
792 callout_stop(&sc->sc_scan_ch);
793 callout_stop(&sc->sc_amrr_ch);
795 /* do it in a process context */
796 sc->sc_state = nstate;
797 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
799 return 0;
802 Static int
803 zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
804 void *odata, int olen, u_int flags)
806 usbd_xfer_handle xfer;
807 struct zyd_cmd cmd;
808 struct rq rq;
809 uint16_t xferflags;
810 usbd_status error;
811 int s = 0;
813 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
814 return ENOMEM;
816 cmd.code = htole16(code);
817 bcopy(idata, cmd.data, ilen);
819 xferflags = USBD_FORCE_SHORT_XFER;
820 if (!(flags & ZYD_CMD_FLAG_READ))
821 xferflags |= USBD_SYNCHRONOUS;
822 else {
823 s = splusb();
824 rq.idata = idata;
825 rq.odata = odata;
826 rq.len = olen / sizeof (struct zyd_pair);
827 SIMPLEQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
830 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, &cmd,
831 sizeof (uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
832 error = usbd_transfer(xfer);
833 if (error != USBD_IN_PROGRESS && error != 0) {
834 if (flags & ZYD_CMD_FLAG_READ)
835 splx(s);
836 printf("%s: could not send command (error=%s)\n",
837 device_xname(sc->sc_dev), usbd_errstr(error));
838 (void)usbd_free_xfer(xfer);
839 return EIO;
841 if (!(flags & ZYD_CMD_FLAG_READ)) {
842 (void)usbd_free_xfer(xfer);
843 return 0; /* write: don't wait for reply */
845 /* wait at most one second for command reply */
846 error = tsleep(odata, PCATCH, "zydcmd", hz);
847 if (error == EWOULDBLOCK)
848 printf("%s: zyd_read sleep timeout\n", device_xname(sc->sc_dev));
849 SIMPLEQ_REMOVE(&sc->sc_rqh, &rq, rq, rq);
850 splx(s);
852 (void)usbd_free_xfer(xfer);
853 return error;
856 Static int
857 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
859 struct zyd_pair tmp;
860 int error;
862 reg = htole16(reg);
863 error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof reg, &tmp, sizeof tmp,
864 ZYD_CMD_FLAG_READ);
865 if (error == 0)
866 *val = le16toh(tmp.val);
867 return error;
870 Static int
871 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
873 struct zyd_pair tmp[2];
874 uint16_t regs[2];
875 int error;
877 regs[0] = htole16(ZYD_REG32_HI(reg));
878 regs[1] = htole16(ZYD_REG32_LO(reg));
879 error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof regs, tmp, sizeof tmp,
880 ZYD_CMD_FLAG_READ);
881 if (error == 0)
882 *val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
883 return error;
886 Static int
887 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
889 struct zyd_pair pair;
891 pair.reg = htole16(reg);
892 pair.val = htole16(val);
894 return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof pair, NULL, 0, 0);
897 Static int
898 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
900 struct zyd_pair pair[2];
902 pair[0].reg = htole16(ZYD_REG32_HI(reg));
903 pair[0].val = htole16(val >> 16);
904 pair[1].reg = htole16(ZYD_REG32_LO(reg));
905 pair[1].val = htole16(val & 0xffff);
907 return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof pair, NULL, 0, 0);
910 Static int
911 zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
913 struct zyd_rf *rf = &sc->sc_rf;
914 struct zyd_rfwrite req;
915 uint16_t cr203;
916 int i;
918 (void)zyd_read16(sc, ZYD_CR203, &cr203);
919 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
921 req.code = htole16(2);
922 req.width = htole16(rf->width);
923 for (i = 0; i < rf->width; i++) {
924 req.bit[i] = htole16(cr203);
925 if (val & (1 << (rf->width - 1 - i)))
926 req.bit[i] |= htole16(ZYD_RF_DATA);
928 return zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
931 Static void
932 zyd_lock_phy(struct zyd_softc *sc)
934 uint32_t tmp;
936 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
937 tmp &= ~ZYD_UNLOCK_PHY_REGS;
938 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
941 Static void
942 zyd_unlock_phy(struct zyd_softc *sc)
944 uint32_t tmp;
946 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp);
947 tmp |= ZYD_UNLOCK_PHY_REGS;
948 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp);
952 * RFMD RF methods.
954 Static int
955 zyd_rfmd_init(struct zyd_rf *rf)
957 #define N(a) (sizeof (a) / sizeof ((a)[0]))
958 struct zyd_softc *sc = rf->rf_sc;
959 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
960 static const uint32_t rfini[] = ZYD_RFMD_RF;
961 int i, error;
963 /* init RF-dependent PHY registers */
964 for (i = 0; i < N(phyini); i++) {
965 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
966 if (error != 0)
967 return error;
970 /* init RFMD radio */
971 for (i = 0; i < N(rfini); i++) {
972 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
973 return error;
975 return 0;
976 #undef N
979 Static int
980 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
982 struct zyd_softc *sc = rf->rf_sc;
984 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15);
985 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81);
987 return 0;
990 Static int
991 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
993 struct zyd_softc *sc = rf->rf_sc;
994 static const struct {
995 uint32_t r1, r2;
996 } rfprog[] = ZYD_RFMD_CHANTABLE;
998 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
999 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1001 return 0;
1005 * AL2230 RF methods.
1007 Static int
1008 zyd_al2230_init(struct zyd_rf *rf)
1010 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1011 struct zyd_softc *sc = rf->rf_sc;
1012 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
1013 static const uint32_t rfini[] = ZYD_AL2230_RF;
1014 int i, error;
1016 /* init RF-dependent PHY registers */
1017 for (i = 0; i < N(phyini); i++) {
1018 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1019 if (error != 0)
1020 return error;
1023 /* init AL2230 radio */
1024 for (i = 0; i < N(rfini); i++) {
1025 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1026 return error;
1028 return 0;
1029 #undef N
1032 Static int
1033 zyd_al2230_init_b(struct zyd_rf *rf)
1035 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1036 struct zyd_softc *sc = rf->rf_sc;
1037 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
1038 static const uint32_t rfini[] = ZYD_AL2230_RF_B;
1039 int i, error;
1041 /* init RF-dependent PHY registers */
1042 for (i = 0; i < N(phyini); i++) {
1043 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1044 if (error != 0)
1045 return error;
1048 /* init AL2230 radio */
1049 for (i = 0; i < N(rfini); i++) {
1050 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1051 return error;
1053 return 0;
1054 #undef N
1057 Static int
1058 zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
1060 struct zyd_softc *sc = rf->rf_sc;
1061 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f;
1063 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1064 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f);
1066 return 0;
1069 Static int
1070 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
1072 struct zyd_softc *sc = rf->rf_sc;
1073 static const struct {
1074 uint32_t r1, r2, r3;
1075 } rfprog[] = ZYD_AL2230_CHANTABLE;
1077 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1078 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1079 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3);
1081 (void)zyd_write16(sc, ZYD_CR138, 0x28);
1082 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1084 return 0;
1088 * AL7230B RF methods.
1090 Static int
1091 zyd_al7230B_init(struct zyd_rf *rf)
1093 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1094 struct zyd_softc *sc = rf->rf_sc;
1095 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
1096 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
1097 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
1098 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
1099 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
1100 int i, error;
1102 /* for AL7230B, PHY and RF need to be initialized in "phases" */
1104 /* init RF-dependent PHY registers, part one */
1105 for (i = 0; i < N(phyini_1); i++) {
1106 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val);
1107 if (error != 0)
1108 return error;
1110 /* init AL7230B radio, part one */
1111 for (i = 0; i < N(rfini_1); i++) {
1112 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
1113 return error;
1115 /* init RF-dependent PHY registers, part two */
1116 for (i = 0; i < N(phyini_2); i++) {
1117 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val);
1118 if (error != 0)
1119 return error;
1121 /* init AL7230B radio, part two */
1122 for (i = 0; i < N(rfini_2); i++) {
1123 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
1124 return error;
1126 /* init RF-dependent PHY registers, part three */
1127 for (i = 0; i < N(phyini_3); i++) {
1128 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val);
1129 if (error != 0)
1130 return error;
1133 return 0;
1134 #undef N
1137 Static int
1138 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
1140 struct zyd_softc *sc = rf->rf_sc;
1142 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04);
1143 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f);
1145 return 0;
1148 Static int
1149 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
1151 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1152 struct zyd_softc *sc = rf->rf_sc;
1153 static const struct {
1154 uint32_t r1, r2;
1155 } rfprog[] = ZYD_AL7230B_CHANTABLE;
1156 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
1157 int i, error;
1159 (void)zyd_write16(sc, ZYD_CR240, 0x57);
1160 (void)zyd_write16(sc, ZYD_CR251, 0x2f);
1162 for (i = 0; i < N(rfsc); i++) {
1163 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
1164 return error;
1167 (void)zyd_write16(sc, ZYD_CR128, 0x14);
1168 (void)zyd_write16(sc, ZYD_CR129, 0x12);
1169 (void)zyd_write16(sc, ZYD_CR130, 0x10);
1170 (void)zyd_write16(sc, ZYD_CR38, 0x38);
1171 (void)zyd_write16(sc, ZYD_CR136, 0xdf);
1173 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1174 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1175 (void)zyd_rfwrite(sc, 0x3c9000);
1177 (void)zyd_write16(sc, ZYD_CR251, 0x3f);
1178 (void)zyd_write16(sc, ZYD_CR203, 0x06);
1179 (void)zyd_write16(sc, ZYD_CR240, 0x08);
1181 return 0;
1182 #undef N
1186 * AL2210 RF methods.
1188 Static int
1189 zyd_al2210_init(struct zyd_rf *rf)
1191 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1192 struct zyd_softc *sc = rf->rf_sc;
1193 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
1194 static const uint32_t rfini[] = ZYD_AL2210_RF;
1195 uint32_t tmp;
1196 int i, error;
1198 (void)zyd_write32(sc, ZYD_CR18, 2);
1200 /* init RF-dependent PHY registers */
1201 for (i = 0; i < N(phyini); i++) {
1202 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1203 if (error != 0)
1204 return error;
1206 /* init AL2210 radio */
1207 for (i = 0; i < N(rfini); i++) {
1208 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1209 return error;
1211 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1212 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1213 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1214 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1215 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1216 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1217 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1218 (void)zyd_write32(sc, ZYD_CR18, 3);
1220 return 0;
1221 #undef N
1224 Static int
1225 zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
1227 /* vendor driver does nothing for this RF chip */
1229 return 0;
1232 Static int
1233 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
1235 struct zyd_softc *sc = rf->rf_sc;
1236 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
1237 uint32_t tmp;
1239 (void)zyd_write32(sc, ZYD_CR18, 2);
1240 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1241 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp);
1242 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1);
1243 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1);
1244 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05);
1246 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00);
1247 (void)zyd_write16(sc, ZYD_CR47, 0x1e);
1249 /* actually set the channel */
1250 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1252 (void)zyd_write32(sc, ZYD_CR18, 3);
1254 return 0;
1258 * GCT RF methods.
1260 Static int
1261 zyd_gct_init(struct zyd_rf *rf)
1263 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1264 struct zyd_softc *sc = rf->rf_sc;
1265 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
1266 static const uint32_t rfini[] = ZYD_GCT_RF;
1267 int i, error;
1269 /* init RF-dependent PHY registers */
1270 for (i = 0; i < N(phyini); i++) {
1271 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1272 if (error != 0)
1273 return error;
1275 /* init cgt radio */
1276 for (i = 0; i < N(rfini); i++) {
1277 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1278 return error;
1280 return 0;
1281 #undef N
1284 Static int
1285 zyd_gct_switch_radio(struct zyd_rf *rf, int on)
1287 /* vendor driver does nothing for this RF chip */
1289 return 0;
1292 Static int
1293 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
1295 struct zyd_softc *sc = rf->rf_sc;
1296 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
1298 (void)zyd_rfwrite(sc, 0x1c0000);
1299 (void)zyd_rfwrite(sc, rfprog[chan - 1]);
1300 (void)zyd_rfwrite(sc, 0x1c0008);
1302 return 0;
1306 * Maxim RF methods.
1308 Static int
1309 zyd_maxim_init(struct zyd_rf *rf)
1311 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1312 struct zyd_softc *sc = rf->rf_sc;
1313 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1314 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1315 uint16_t tmp;
1316 int i, error;
1318 /* init RF-dependent PHY registers */
1319 for (i = 0; i < N(phyini); i++) {
1320 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1321 if (error != 0)
1322 return error;
1324 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1325 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1327 /* init maxim radio */
1328 for (i = 0; i < N(rfini); i++) {
1329 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1330 return error;
1332 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1333 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1335 return 0;
1336 #undef N
1339 Static int
1340 zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
1342 /* vendor driver does nothing for this RF chip */
1344 return 0;
1347 Static int
1348 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
1350 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1351 struct zyd_softc *sc = rf->rf_sc;
1352 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
1353 static const uint32_t rfini[] = ZYD_MAXIM_RF;
1354 static const struct {
1355 uint32_t r1, r2;
1356 } rfprog[] = ZYD_MAXIM_CHANTABLE;
1357 uint16_t tmp;
1358 int i, error;
1361 * Do the same as we do when initializing it, except for the channel
1362 * values coming from the two channel tables.
1365 /* init RF-dependent PHY registers */
1366 for (i = 0; i < N(phyini); i++) {
1367 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1368 if (error != 0)
1369 return error;
1371 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1372 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1374 /* first two values taken from the chantables */
1375 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1376 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1378 /* init maxim radio - skipping the two first values */
1379 for (i = 2; i < N(rfini); i++) {
1380 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1381 return error;
1383 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1384 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1386 return 0;
1387 #undef N
1391 * Maxim2 RF methods.
1393 Static int
1394 zyd_maxim2_init(struct zyd_rf *rf)
1396 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1397 struct zyd_softc *sc = rf->rf_sc;
1398 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1399 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1400 uint16_t tmp;
1401 int i, error;
1403 /* init RF-dependent PHY registers */
1404 for (i = 0; i < N(phyini); i++) {
1405 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1406 if (error != 0)
1407 return error;
1409 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1410 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1412 /* init maxim2 radio */
1413 for (i = 0; i < N(rfini); i++) {
1414 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1415 return error;
1417 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1418 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1420 return 0;
1421 #undef N
1424 Static int
1425 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
1427 /* vendor driver does nothing for this RF chip */
1429 return 0;
1432 Static int
1433 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
1435 #define N(a) (sizeof (a) / sizeof ((a)[0]))
1436 struct zyd_softc *sc = rf->rf_sc;
1437 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
1438 static const uint32_t rfini[] = ZYD_MAXIM2_RF;
1439 static const struct {
1440 uint32_t r1, r2;
1441 } rfprog[] = ZYD_MAXIM2_CHANTABLE;
1442 uint16_t tmp;
1443 int i, error;
1446 * Do the same as we do when initializing it, except for the channel
1447 * values coming from the two channel tables.
1450 /* init RF-dependent PHY registers */
1451 for (i = 0; i < N(phyini); i++) {
1452 error = zyd_write16(sc, phyini[i].reg, phyini[i].val);
1453 if (error != 0)
1454 return error;
1456 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1457 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4));
1459 /* first two values taken from the chantables */
1460 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1);
1461 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2);
1463 /* init maxim2 radio - skipping the two first values */
1464 for (i = 2; i < N(rfini); i++) {
1465 if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
1466 return error;
1468 (void)zyd_read16(sc, ZYD_CR203, &tmp);
1469 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4));
1471 return 0;
1472 #undef N
1475 Static int
1476 zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
1478 struct zyd_rf *rf = &sc->sc_rf;
1480 rf->rf_sc = sc;
1482 switch (type) {
1483 case ZYD_RF_RFMD:
1484 rf->init = zyd_rfmd_init;
1485 rf->switch_radio = zyd_rfmd_switch_radio;
1486 rf->set_channel = zyd_rfmd_set_channel;
1487 rf->width = 24; /* 24-bit RF values */
1488 break;
1489 case ZYD_RF_AL2230:
1490 if (sc->mac_rev == ZYD_ZD1211B)
1491 rf->init = zyd_al2230_init_b;
1492 else
1493 rf->init = zyd_al2230_init;
1494 rf->switch_radio = zyd_al2230_switch_radio;
1495 rf->set_channel = zyd_al2230_set_channel;
1496 rf->width = 24; /* 24-bit RF values */
1497 break;
1498 case ZYD_RF_AL7230B:
1499 rf->init = zyd_al7230B_init;
1500 rf->switch_radio = zyd_al7230B_switch_radio;
1501 rf->set_channel = zyd_al7230B_set_channel;
1502 rf->width = 24; /* 24-bit RF values */
1503 break;
1504 case ZYD_RF_AL2210:
1505 rf->init = zyd_al2210_init;
1506 rf->switch_radio = zyd_al2210_switch_radio;
1507 rf->set_channel = zyd_al2210_set_channel;
1508 rf->width = 24; /* 24-bit RF values */
1509 break;
1510 case ZYD_RF_GCT:
1511 rf->init = zyd_gct_init;
1512 rf->switch_radio = zyd_gct_switch_radio;
1513 rf->set_channel = zyd_gct_set_channel;
1514 rf->width = 21; /* 21-bit RF values */
1515 break;
1516 case ZYD_RF_MAXIM_NEW:
1517 rf->init = zyd_maxim_init;
1518 rf->switch_radio = zyd_maxim_switch_radio;
1519 rf->set_channel = zyd_maxim_set_channel;
1520 rf->width = 18; /* 18-bit RF values */
1521 break;
1522 case ZYD_RF_MAXIM_NEW2:
1523 rf->init = zyd_maxim2_init;
1524 rf->switch_radio = zyd_maxim2_switch_radio;
1525 rf->set_channel = zyd_maxim2_set_channel;
1526 rf->width = 18; /* 18-bit RF values */
1527 break;
1528 default:
1529 printf("%s: sorry, radio \"%s\" is not supported yet\n",
1530 device_xname(sc->sc_dev), zyd_rf_name(type));
1531 return EINVAL;
1533 return 0;
1536 Static const char *
1537 zyd_rf_name(uint8_t type)
1539 static const char * const zyd_rfs[] = {
1540 "unknown", "unknown", "UW2451", "UCHIP", "AL2230",
1541 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
1542 "PV2000", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
1543 "PHILIPS"
1546 return zyd_rfs[(type > 15) ? 0 : type];
1549 Static int
1550 zyd_hw_init(struct zyd_softc *sc)
1552 struct zyd_rf *rf = &sc->sc_rf;
1553 const struct zyd_phy_pair *phyp;
1554 int error;
1556 /* specify that the plug and play is finished */
1557 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1);
1559 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase);
1560 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase));
1562 /* retrieve firmware revision number */
1563 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev);
1565 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0);
1566 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
1568 /* disable interrupts */
1569 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
1571 /* PHY init */
1572 zyd_lock_phy(sc);
1573 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
1574 for (; phyp->reg != 0; phyp++) {
1575 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0)
1576 goto fail;
1578 zyd_unlock_phy(sc);
1580 /* HMAC init */
1581 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020);
1582 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
1584 if (sc->mac_rev == ZYD_ZD1211) {
1585 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002);
1586 } else {
1587 zyd_write32(sc, ZYD_MAC_RETRY, 0x02020202);
1588 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
1589 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
1590 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
1591 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
1592 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
1593 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
1594 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824);
1597 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000);
1598 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000);
1599 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000);
1600 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000);
1601 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4);
1602 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
1603 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401);
1604 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
1605 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080);
1606 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
1607 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
1608 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032);
1609 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
1610 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000);
1611 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
1612 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
1613 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
1615 /* RF chip init */
1616 zyd_lock_phy(sc);
1617 error = (*rf->init)(rf);
1618 zyd_unlock_phy(sc);
1619 if (error != 0) {
1620 printf("%s: radio initialization failed\n",
1621 device_xname(sc->sc_dev));
1622 goto fail;
1625 /* init beacon interval to 100ms */
1626 if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
1627 goto fail;
1629 fail: return error;
1632 Static int
1633 zyd_read_eeprom(struct zyd_softc *sc)
1635 struct ieee80211com *ic = &sc->sc_ic;
1636 uint32_t tmp;
1637 uint16_t val;
1638 int i;
1640 /* read MAC address */
1641 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp);
1642 ic->ic_myaddr[0] = tmp & 0xff;
1643 ic->ic_myaddr[1] = tmp >> 8;
1644 ic->ic_myaddr[2] = tmp >> 16;
1645 ic->ic_myaddr[3] = tmp >> 24;
1646 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp);
1647 ic->ic_myaddr[4] = tmp & 0xff;
1648 ic->ic_myaddr[5] = tmp >> 8;
1650 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp);
1651 sc->rf_rev = tmp & 0x0f;
1652 sc->pa_rev = (tmp >> 16) & 0x0f;
1654 /* read regulatory domain (currently unused) */
1655 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp);
1656 sc->regdomain = tmp >> 16;
1657 DPRINTF(("regulatory domain %x\n", sc->regdomain));
1659 /* read Tx power calibration tables */
1660 for (i = 0; i < 7; i++) {
1661 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val);
1662 sc->pwr_cal[i * 2] = val >> 8;
1663 sc->pwr_cal[i * 2 + 1] = val & 0xff;
1665 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val);
1666 sc->pwr_int[i * 2] = val >> 8;
1667 sc->pwr_int[i * 2 + 1] = val & 0xff;
1669 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val);
1670 sc->ofdm36_cal[i * 2] = val >> 8;
1671 sc->ofdm36_cal[i * 2 + 1] = val & 0xff;
1673 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val);
1674 sc->ofdm48_cal[i * 2] = val >> 8;
1675 sc->ofdm48_cal[i * 2 + 1] = val & 0xff;
1677 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val);
1678 sc->ofdm54_cal[i * 2] = val >> 8;
1679 sc->ofdm54_cal[i * 2 + 1] = val & 0xff;
1681 return 0;
1684 Static int
1685 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
1687 uint32_t tmp;
1689 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1690 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp);
1692 tmp = addr[5] << 8 | addr[4];
1693 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp);
1695 return 0;
1698 Static int
1699 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
1701 uint32_t tmp;
1703 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
1704 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp);
1706 tmp = addr[5] << 8 | addr[4];
1707 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp);
1709 return 0;
1712 Static int
1713 zyd_switch_radio(struct zyd_softc *sc, int on)
1715 struct zyd_rf *rf = &sc->sc_rf;
1716 int error;
1718 zyd_lock_phy(sc);
1719 error = (*rf->switch_radio)(rf, on);
1720 zyd_unlock_phy(sc);
1722 return error;
1725 Static void
1726 zyd_set_led(struct zyd_softc *sc, int which, int on)
1728 uint32_t tmp;
1730 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
1731 tmp &= ~which;
1732 if (on)
1733 tmp |= which;
1734 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
1737 Static int
1738 zyd_set_rxfilter(struct zyd_softc *sc)
1740 uint32_t rxfilter;
1742 switch (sc->sc_ic.ic_opmode) {
1743 case IEEE80211_M_STA:
1744 rxfilter = ZYD_FILTER_BSS;
1745 break;
1746 case IEEE80211_M_IBSS:
1747 case IEEE80211_M_HOSTAP:
1748 rxfilter = ZYD_FILTER_HOSTAP;
1749 break;
1750 case IEEE80211_M_MONITOR:
1751 rxfilter = ZYD_FILTER_MONITOR;
1752 break;
1753 default:
1754 /* should not get there */
1755 return EINVAL;
1757 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
1760 Static void
1761 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
1763 struct ieee80211com *ic = &sc->sc_ic;
1764 struct zyd_rf *rf = &sc->sc_rf;
1765 u_int chan;
1767 chan = ieee80211_chan2ieee(ic, c);
1768 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1769 return;
1771 zyd_lock_phy(sc);
1773 (*rf->set_channel)(rf, chan);
1775 /* update Tx power */
1776 (void)zyd_write32(sc, ZYD_CR31, sc->pwr_int[chan - 1]);
1777 (void)zyd_write32(sc, ZYD_CR68, sc->pwr_cal[chan - 1]);
1779 if (sc->mac_rev == ZYD_ZD1211B) {
1780 (void)zyd_write32(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]);
1781 (void)zyd_write32(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]);
1782 (void)zyd_write32(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]);
1784 (void)zyd_write32(sc, ZYD_CR69, 0x28);
1785 (void)zyd_write32(sc, ZYD_CR69, 0x2a);
1788 zyd_unlock_phy(sc);
1791 Static int
1792 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
1794 /* XXX this is probably broken.. */
1795 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2);
1796 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1);
1797 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval);
1799 return 0;
1802 Static uint8_t
1803 zyd_plcp_signal(int rate)
1805 switch (rate) {
1806 /* CCK rates (returned values are device-dependent) */
1807 case 2: return 0x0;
1808 case 4: return 0x1;
1809 case 11: return 0x2;
1810 case 22: return 0x3;
1812 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1813 case 12: return 0xb;
1814 case 18: return 0xf;
1815 case 24: return 0xa;
1816 case 36: return 0xe;
1817 case 48: return 0x9;
1818 case 72: return 0xd;
1819 case 96: return 0x8;
1820 case 108: return 0xc;
1822 /* unsupported rates (should not get there) */
1823 default: return 0xff;
1827 Static void
1828 zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
1830 struct zyd_softc *sc = (struct zyd_softc *)priv;
1831 struct zyd_cmd *cmd;
1832 uint32_t datalen;
1834 if (status != USBD_NORMAL_COMPLETION) {
1835 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
1836 return;
1838 if (status == USBD_STALLED) {
1839 usbd_clear_endpoint_stall_async(
1840 sc->zyd_ep[ZYD_ENDPT_IIN]);
1842 return;
1845 cmd = (struct zyd_cmd *)sc->ibuf;
1847 if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
1848 struct zyd_notif_retry *retry =
1849 (struct zyd_notif_retry *)cmd->data;
1850 struct ieee80211com *ic = &sc->sc_ic;
1851 struct ifnet *ifp = &sc->sc_if;
1852 struct ieee80211_node *ni;
1854 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
1855 le16toh(retry->rate), ether_sprintf(retry->macaddr),
1856 le16toh(retry->count) & 0xff, le16toh(retry->count)));
1859 * Find the node to which the packet was sent and update its
1860 * retry statistics. In BSS mode, this node is the AP we're
1861 * associated to so no lookup is actually needed.
1863 if (ic->ic_opmode != IEEE80211_M_STA) {
1864 ni = ieee80211_find_node(&ic->ic_scan, retry->macaddr);
1865 if (ni == NULL)
1866 return; /* just ignore */
1867 } else
1868 ni = ic->ic_bss;
1870 ((struct zyd_node *)ni)->amn.amn_retrycnt++;
1872 if (le16toh(retry->count) & 0x100)
1873 ifp->if_oerrors++; /* too many retries */
1875 } else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
1876 struct rq *rqp;
1878 if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
1879 return; /* HMAC interrupt */
1881 usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
1882 datalen -= sizeof(cmd->code);
1883 datalen -= 2; /* XXX: padding? */
1885 SIMPLEQ_FOREACH(rqp, &sc->sc_rqh, rq) {
1886 int i;
1888 if (sizeof(struct zyd_pair) * rqp->len != datalen)
1889 continue;
1890 for (i = 0; i < rqp->len; i++) {
1891 if (*(((const uint16_t *)rqp->idata) + i) !=
1892 (((struct zyd_pair *)cmd->data) + i)->reg)
1893 break;
1895 if (i != rqp->len)
1896 continue;
1898 /* copy answer into caller-supplied buffer */
1899 bcopy(cmd->data, rqp->odata,
1900 sizeof(struct zyd_pair) * rqp->len);
1901 wakeup(rqp->odata); /* wakeup caller */
1903 return;
1905 return; /* unexpected IORD notification */
1906 } else {
1907 printf("%s: unknown notification %x\n", device_xname(sc->sc_dev),
1908 le16toh(cmd->code));
1912 Static void
1913 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
1915 struct ieee80211com *ic = &sc->sc_ic;
1916 struct ifnet *ifp = &sc->sc_if;
1917 struct ieee80211_node *ni;
1918 struct ieee80211_frame *wh;
1919 const struct zyd_plcphdr *plcp;
1920 const struct zyd_rx_stat *stat;
1921 struct mbuf *m;
1922 int rlen, s;
1924 if (len < ZYD_MIN_FRAGSZ) {
1925 printf("%s: frame too short (length=%d)\n",
1926 device_xname(sc->sc_dev), len);
1927 ifp->if_ierrors++;
1928 return;
1931 plcp = (const struct zyd_plcphdr *)buf;
1932 stat = (const struct zyd_rx_stat *)
1933 (buf + len - sizeof (struct zyd_rx_stat));
1935 if (stat->flags & ZYD_RX_ERROR) {
1936 DPRINTF(("%s: RX status indicated error (%x)\n",
1937 device_xname(sc->sc_dev), stat->flags));
1938 ifp->if_ierrors++;
1939 return;
1942 /* compute actual frame length */
1943 rlen = len - sizeof (struct zyd_plcphdr) -
1944 sizeof (struct zyd_rx_stat) - IEEE80211_CRC_LEN;
1946 /* allocate a mbuf to store the frame */
1947 MGETHDR(m, M_DONTWAIT, MT_DATA);
1948 if (m == NULL) {
1949 printf("%s: could not allocate rx mbuf\n",
1950 device_xname(sc->sc_dev));
1951 ifp->if_ierrors++;
1952 return;
1954 if (rlen > MHLEN) {
1955 MCLGET(m, M_DONTWAIT);
1956 if (!(m->m_flags & M_EXT)) {
1957 printf("%s: could not allocate rx mbuf cluster\n",
1958 device_xname(sc->sc_dev));
1959 m_freem(m);
1960 ifp->if_ierrors++;
1961 return;
1964 m->m_pkthdr.rcvif = ifp;
1965 m->m_pkthdr.len = m->m_len = rlen;
1966 bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
1968 s = splnet();
1970 #if NBPFILTER > 0
1971 if (sc->sc_drvbpf != NULL) {
1972 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
1973 static const uint8_t rates[] = {
1974 /* reverse function of zyd_plcp_signal() */
1975 2, 4, 11, 22, 0, 0, 0, 0,
1976 96, 48, 24, 12, 108, 72, 36, 18
1979 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
1980 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1981 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1982 tap->wr_rssi = stat->rssi;
1983 tap->wr_rate = rates[plcp->signal & 0xf];
1985 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1987 #endif
1989 wh = mtod(m, struct ieee80211_frame *);
1990 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1991 ieee80211_input(ic, m, ni, stat->rssi, 0);
1993 /* node is no longer needed */
1994 ieee80211_free_node(ni);
1996 splx(s);
1999 Static void
2000 zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2002 struct zyd_rx_data *data = priv;
2003 struct zyd_softc *sc = data->sc;
2004 struct ifnet *ifp = &sc->sc_if;
2005 const struct zyd_rx_desc *desc;
2006 int len;
2008 if (status != USBD_NORMAL_COMPLETION) {
2009 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2010 return;
2012 if (status == USBD_STALLED)
2013 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]);
2015 goto skip;
2017 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
2019 if (len < ZYD_MIN_RXBUFSZ) {
2020 printf("%s: xfer too short (length=%d)\n",
2021 device_xname(sc->sc_dev), len);
2022 ifp->if_ierrors++;
2023 goto skip;
2026 desc = (const struct zyd_rx_desc *)
2027 (data->buf + len - sizeof (struct zyd_rx_desc));
2029 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
2030 const uint8_t *p = data->buf, *end = p + len;
2031 int i;
2033 DPRINTFN(3, ("received multi-frame transfer\n"));
2035 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
2036 const uint16_t len16 = UGETW(desc->len[i]);
2038 if (len16 == 0 || p + len16 > end)
2039 break;
2041 zyd_rx_data(sc, p, len16);
2042 /* next frame is aligned on a 32-bit boundary */
2043 p += (len16 + 3) & ~3;
2045 } else {
2046 DPRINTFN(3, ("received single-frame transfer\n"));
2048 zyd_rx_data(sc, data->buf, len);
2051 skip: /* setup a new transfer */
2052 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL,
2053 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2054 USBD_NO_TIMEOUT, zyd_rxeof);
2055 (void)usbd_transfer(xfer);
2058 Static int
2059 zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2061 struct ieee80211com *ic = &sc->sc_ic;
2062 struct ifnet *ifp = &sc->sc_if;
2063 struct zyd_tx_desc *desc;
2064 struct zyd_tx_data *data;
2065 struct ieee80211_frame *wh;
2066 struct ieee80211_key *k;
2067 int xferlen, totlen, rate;
2068 uint16_t pktlen;
2069 usbd_status error;
2071 data = &sc->tx_data[0];
2072 desc = (struct zyd_tx_desc *)data->buf;
2074 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
2076 wh = mtod(m0, struct ieee80211_frame *);
2078 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2079 k = ieee80211_crypto_encap(ic, ni, m0);
2080 if (k == NULL) {
2081 m_freem(m0);
2082 return ENOBUFS;
2086 data->ni = ni;
2088 wh = mtod(m0, struct ieee80211_frame *);
2090 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2091 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2093 /* fill Tx descriptor */
2094 desc->len = htole16(totlen);
2096 desc->flags = ZYD_TX_FLAG_BACKOFF;
2097 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2098 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2099 if (totlen > ic->ic_rtsthreshold) {
2100 desc->flags |= ZYD_TX_FLAG_RTS;
2101 } else if (ZYD_RATE_IS_OFDM(rate) &&
2102 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2103 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2104 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2105 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2106 desc->flags |= ZYD_TX_FLAG_RTS;
2108 } else
2109 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2111 if ((wh->i_fc[0] &
2112 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2113 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2114 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2116 desc->phy = zyd_plcp_signal(rate);
2117 if (ZYD_RATE_IS_OFDM(rate)) {
2118 desc->phy |= ZYD_TX_PHY_OFDM;
2119 if (ic->ic_curmode == IEEE80211_MODE_11A)
2120 desc->phy |= ZYD_TX_PHY_5GHZ;
2121 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2122 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2124 /* actual transmit length (XXX why +10?) */
2125 pktlen = sizeof (struct zyd_tx_desc) + 10;
2126 if (sc->mac_rev == ZYD_ZD1211)
2127 pktlen += totlen;
2128 desc->pktlen = htole16(pktlen);
2130 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2131 desc->plcp_service = 0;
2132 if (rate == 22) {
2133 const int remainder = (16 * totlen) % 22;
2134 if (remainder != 0 && remainder < 7)
2135 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2138 #if NBPFILTER > 0
2139 if (sc->sc_drvbpf != NULL) {
2140 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2142 tap->wt_flags = 0;
2143 tap->wt_rate = rate;
2144 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2145 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2147 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2149 #endif
2151 m_copydata(m0, 0, m0->m_pkthdr.len,
2152 data->buf + sizeof (struct zyd_tx_desc));
2154 DPRINTFN(10, ("%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
2155 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2157 m_freem(m0); /* mbuf no longer needed */
2159 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2160 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2161 ZYD_TX_TIMEOUT, zyd_txeof);
2162 error = usbd_transfer(data->xfer);
2163 if (error != USBD_IN_PROGRESS && error != 0) {
2164 ifp->if_oerrors++;
2165 return EIO;
2167 sc->tx_queued++;
2169 return 0;
2172 Static void
2173 zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
2175 struct zyd_tx_data *data = priv;
2176 struct zyd_softc *sc = data->sc;
2177 struct ifnet *ifp = &sc->sc_if;
2178 int s;
2180 if (status != USBD_NORMAL_COMPLETION) {
2181 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
2182 return;
2184 printf("%s: could not transmit buffer: %s\n",
2185 device_xname(sc->sc_dev), usbd_errstr(status));
2187 if (status == USBD_STALLED) {
2188 usbd_clear_endpoint_stall_async(
2189 sc->zyd_ep[ZYD_ENDPT_BOUT]);
2191 ifp->if_oerrors++;
2192 return;
2195 s = splnet();
2197 /* update rate control statistics */
2198 ((struct zyd_node *)data->ni)->amn.amn_txcnt++;
2200 ieee80211_free_node(data->ni);
2201 data->ni = NULL;
2203 sc->tx_queued--;
2204 ifp->if_opackets++;
2206 sc->tx_timer = 0;
2207 ifp->if_flags &= ~IFF_OACTIVE;
2208 zyd_start(ifp);
2210 splx(s);
2213 Static int
2214 zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
2216 struct ieee80211com *ic = &sc->sc_ic;
2217 struct ifnet *ifp = &sc->sc_if;
2218 struct zyd_tx_desc *desc;
2219 struct zyd_tx_data *data;
2220 struct ieee80211_frame *wh;
2221 struct ieee80211_key *k;
2222 int xferlen, totlen, rate;
2223 uint16_t pktlen;
2224 usbd_status error;
2226 wh = mtod(m0, struct ieee80211_frame *);
2228 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
2229 rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
2230 else
2231 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2232 rate &= IEEE80211_RATE_VAL;
2234 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2235 k = ieee80211_crypto_encap(ic, ni, m0);
2236 if (k == NULL) {
2237 m_freem(m0);
2238 return ENOBUFS;
2241 /* packet header may have moved, reset our local pointer */
2242 wh = mtod(m0, struct ieee80211_frame *);
2245 data = &sc->tx_data[0];
2246 desc = (struct zyd_tx_desc *)data->buf;
2248 data->ni = ni;
2250 xferlen = sizeof (struct zyd_tx_desc) + m0->m_pkthdr.len;
2251 totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
2253 /* fill Tx descriptor */
2254 desc->len = htole16(totlen);
2256 desc->flags = ZYD_TX_FLAG_BACKOFF;
2257 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2258 /* multicast frames are not sent at OFDM rates in 802.11b/g */
2259 if (totlen > ic->ic_rtsthreshold) {
2260 desc->flags |= ZYD_TX_FLAG_RTS;
2261 } else if (ZYD_RATE_IS_OFDM(rate) &&
2262 (ic->ic_flags & IEEE80211_F_USEPROT)) {
2263 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2264 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
2265 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2266 desc->flags |= ZYD_TX_FLAG_RTS;
2268 } else
2269 desc->flags |= ZYD_TX_FLAG_MULTICAST;
2271 if ((wh->i_fc[0] &
2272 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2273 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
2274 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
2276 desc->phy = zyd_plcp_signal(rate);
2277 if (ZYD_RATE_IS_OFDM(rate)) {
2278 desc->phy |= ZYD_TX_PHY_OFDM;
2279 if (ic->ic_curmode == IEEE80211_MODE_11A)
2280 desc->phy |= ZYD_TX_PHY_5GHZ;
2281 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
2282 desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
2284 /* actual transmit length (XXX why +10?) */
2285 pktlen = sizeof (struct zyd_tx_desc) + 10;
2286 if (sc->mac_rev == ZYD_ZD1211)
2287 pktlen += totlen;
2288 desc->pktlen = htole16(pktlen);
2290 desc->plcp_length = (16 * totlen + rate - 1) / rate;
2291 desc->plcp_service = 0;
2292 if (rate == 22) {
2293 const int remainder = (16 * totlen) % 22;
2294 if (remainder != 0 && remainder < 7)
2295 desc->plcp_service |= ZYD_PLCP_LENGEXT;
2298 #if NBPFILTER > 0
2299 if (sc->sc_drvbpf != NULL) {
2300 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
2302 tap->wt_flags = 0;
2303 tap->wt_rate = rate;
2304 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
2305 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
2307 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2309 #endif
2311 m_copydata(m0, 0, m0->m_pkthdr.len,
2312 data->buf + sizeof (struct zyd_tx_desc));
2314 DPRINTFN(10, ("%s: sending data frame len=%zu rate=%u xferlen=%u\n",
2315 device_xname(sc->sc_dev), (size_t)m0->m_pkthdr.len, rate, xferlen));
2317 m_freem(m0); /* mbuf no longer needed */
2319 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data,
2320 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
2321 ZYD_TX_TIMEOUT, zyd_txeof);
2322 error = usbd_transfer(data->xfer);
2323 if (error != USBD_IN_PROGRESS && error != 0) {
2324 ifp->if_oerrors++;
2325 return EIO;
2327 sc->tx_queued++;
2329 return 0;
2332 Static void
2333 zyd_start(struct ifnet *ifp)
2335 struct zyd_softc *sc = ifp->if_softc;
2336 struct ieee80211com *ic = &sc->sc_ic;
2337 struct ether_header *eh;
2338 struct ieee80211_node *ni;
2339 struct mbuf *m0;
2341 for (;;) {
2342 IF_POLL(&ic->ic_mgtq, m0);
2343 if (m0 != NULL) {
2344 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2345 ifp->if_flags |= IFF_OACTIVE;
2346 break;
2348 IF_DEQUEUE(&ic->ic_mgtq, m0);
2350 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2351 m0->m_pkthdr.rcvif = NULL;
2352 #if NBPFILTER > 0
2353 if (ic->ic_rawbpf != NULL)
2354 bpf_mtap(ic->ic_rawbpf, m0);
2355 #endif
2356 if (zyd_tx_mgt(sc, m0, ni) != 0)
2357 break;
2358 } else {
2359 if (ic->ic_state != IEEE80211_S_RUN)
2360 break;
2361 IFQ_POLL(&ifp->if_snd, m0);
2362 if (m0 == NULL)
2363 break;
2364 if (sc->tx_queued >= ZYD_TX_LIST_CNT) {
2365 ifp->if_flags |= IFF_OACTIVE;
2366 break;
2368 IFQ_DEQUEUE(&ifp->if_snd, m0);
2370 if (m0->m_len < sizeof(struct ether_header) &&
2371 !(m0 = m_pullup(m0, sizeof(struct ether_header))))
2372 continue;
2374 eh = mtod(m0, struct ether_header *);
2375 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2376 if (ni == NULL) {
2377 m_freem(m0);
2378 continue;
2380 #if NBPFILTER > 0
2381 if (ifp->if_bpf != NULL)
2382 bpf_mtap(ifp->if_bpf, m0);
2383 #endif
2384 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
2385 ieee80211_free_node(ni);
2386 ifp->if_oerrors++;
2387 continue;
2389 #if NBPFILTER > 0
2390 if (ic->ic_rawbpf != NULL)
2391 bpf_mtap(ic->ic_rawbpf, m0);
2392 #endif
2393 if (zyd_tx_data(sc, m0, ni) != 0) {
2394 ieee80211_free_node(ni);
2395 ifp->if_oerrors++;
2396 break;
2400 sc->tx_timer = 5;
2401 ifp->if_timer = 1;
2405 Static void
2406 zyd_watchdog(struct ifnet *ifp)
2408 struct zyd_softc *sc = ifp->if_softc;
2409 struct ieee80211com *ic = &sc->sc_ic;
2411 ifp->if_timer = 0;
2413 if (sc->tx_timer > 0) {
2414 if (--sc->tx_timer == 0) {
2415 printf("%s: device timeout\n", device_xname(sc->sc_dev));
2416 /* zyd_init(ifp); XXX needs a process context ? */
2417 ifp->if_oerrors++;
2418 return;
2420 ifp->if_timer = 1;
2423 ieee80211_watchdog(ic);
2426 Static int
2427 zyd_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2429 struct zyd_softc *sc = ifp->if_softc;
2430 struct ieee80211com *ic = &sc->sc_ic;
2431 int s, error = 0;
2433 s = splnet();
2435 switch (cmd) {
2436 case SIOCSIFFLAGS:
2437 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2438 break;
2439 /* XXX re-use ether_ioctl() */
2440 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
2441 case IFF_UP:
2442 zyd_init(ifp);
2443 break;
2444 case IFF_RUNNING:
2445 zyd_stop(ifp, 1);
2446 break;
2447 default:
2448 break;
2450 break;
2452 default:
2453 error = ieee80211_ioctl(ic, cmd, data);
2456 if (error == ENETRESET) {
2457 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) ==
2458 (IFF_RUNNING | IFF_UP))
2459 zyd_init(ifp);
2460 error = 0;
2463 splx(s);
2465 return error;
2468 Static int
2469 zyd_init(struct ifnet *ifp)
2471 struct zyd_softc *sc = ifp->if_softc;
2472 struct ieee80211com *ic = &sc->sc_ic;
2473 int i, error;
2475 if ((sc->sc_flags & ZD1211_FWLOADED) == 0)
2476 if ((error = zyd_attachhook(sc)) != 0)
2477 return error;
2479 zyd_stop(ifp, 0);
2481 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2482 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr)));
2483 error = zyd_set_macaddr(sc, ic->ic_myaddr);
2484 if (error != 0)
2485 return error;
2487 /* we'll do software WEP decryption for now */
2488 DPRINTF(("setting encryption type\n"));
2489 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
2490 if (error != 0)
2491 return error;
2493 /* promiscuous mode */
2494 (void)zyd_write32(sc, ZYD_MAC_SNIFFER,
2495 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0);
2497 (void)zyd_set_rxfilter(sc);
2499 /* switch radio transmitter ON */
2500 (void)zyd_switch_radio(sc, 1);
2502 /* set basic rates */
2503 if (ic->ic_curmode == IEEE80211_MODE_11B)
2504 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003);
2505 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2506 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500);
2507 else /* assumes 802.11b/g */
2508 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f);
2510 /* set mandatory rates */
2511 if (ic->ic_curmode == IEEE80211_MODE_11B)
2512 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f);
2513 else if (ic->ic_curmode == IEEE80211_MODE_11A)
2514 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500);
2515 else /* assumes 802.11b/g */
2516 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f);
2518 /* set default BSS channel */
2519 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2520 zyd_set_chan(sc, ic->ic_bss->ni_chan);
2522 /* enable interrupts */
2523 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
2526 * Allocate Tx and Rx xfer queues.
2528 if ((error = zyd_alloc_tx_list(sc)) != 0) {
2529 printf("%s: could not allocate Tx list\n",
2530 device_xname(sc->sc_dev));
2531 goto fail;
2533 if ((error = zyd_alloc_rx_list(sc)) != 0) {
2534 printf("%s: could not allocate Rx list\n",
2535 device_xname(sc->sc_dev));
2536 goto fail;
2540 * Start up the receive pipe.
2542 for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
2543 struct zyd_rx_data *data = &sc->rx_data[i];
2545 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data,
2546 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
2547 USBD_NO_TIMEOUT, zyd_rxeof);
2548 error = usbd_transfer(data->xfer);
2549 if (error != USBD_IN_PROGRESS && error != 0) {
2550 printf("%s: could not queue Rx transfer\n",
2551 device_xname(sc->sc_dev));
2552 goto fail;
2556 ifp->if_flags &= ~IFF_OACTIVE;
2557 ifp->if_flags |= IFF_RUNNING;
2559 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2560 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2561 else
2562 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2564 return 0;
2566 fail: zyd_stop(ifp, 1);
2567 return error;
2570 Static void
2571 zyd_stop(struct ifnet *ifp, int disable)
2573 struct zyd_softc *sc = ifp->if_softc;
2574 struct ieee80211com *ic = &sc->sc_ic;
2576 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2578 sc->tx_timer = 0;
2579 ifp->if_timer = 0;
2580 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2582 /* switch radio transmitter OFF */
2583 (void)zyd_switch_radio(sc, 0);
2585 /* disable Rx */
2586 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0);
2588 /* disable interrupts */
2589 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0);
2591 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]);
2592 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]);
2594 zyd_free_rx_list(sc);
2595 zyd_free_tx_list(sc);
2598 Static int
2599 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size)
2601 usb_device_request_t req;
2602 uint16_t addr;
2603 uint8_t stat;
2605 DPRINTF(("firmware size=%zu\n", size));
2607 req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2608 req.bRequest = ZYD_DOWNLOADREQ;
2609 USETW(req.wIndex, 0);
2611 addr = ZYD_FIRMWARE_START_ADDR;
2612 while (size > 0) {
2613 #if 0
2614 const int mlen = min(size, 4096);
2615 #else
2617 * XXXX: When the transfer size is 4096 bytes, it is not
2618 * likely to be able to transfer it.
2619 * The cause is port or machine or chip?
2621 const int mlen = min(size, 64);
2622 #endif
2624 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen,
2625 addr));
2627 USETW(req.wValue, addr);
2628 USETW(req.wLength, mlen);
2629 if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
2630 return EIO;
2632 addr += mlen / 2;
2633 fw += mlen;
2634 size -= mlen;
2637 /* check whether the upload succeeded */
2638 req.bmRequestType = UT_READ_VENDOR_DEVICE;
2639 req.bRequest = ZYD_DOWNLOADSTS;
2640 USETW(req.wValue, 0);
2641 USETW(req.wIndex, 0);
2642 USETW(req.wLength, sizeof stat);
2643 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
2644 return EIO;
2646 return (stat & 0x80) ? EIO : 0;
2649 Static void
2650 zyd_iter_func(void *arg, struct ieee80211_node *ni)
2652 struct zyd_softc *sc = arg;
2653 struct zyd_node *zn = (struct zyd_node *)ni;
2655 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn);
2658 Static void
2659 zyd_amrr_timeout(void *arg)
2661 struct zyd_softc *sc = arg;
2662 struct ieee80211com *ic = &sc->sc_ic;
2663 int s;
2665 s = splnet();
2666 if (ic->ic_opmode == IEEE80211_M_STA)
2667 zyd_iter_func(sc, ic->ic_bss);
2668 else
2669 ieee80211_iterate_nodes(&ic->ic_sta, zyd_iter_func, sc);
2670 splx(s);
2672 callout_reset(&sc->sc_amrr_ch, hz, zyd_amrr_timeout, sc);
2675 Static void
2676 zyd_newassoc(struct ieee80211_node *ni, int isnew)
2678 struct zyd_softc *sc = ni->ni_ic->ic_ifp->if_softc;
2679 int i;
2681 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn);
2683 /* set rate to some reasonable initial value */
2684 for (i = ni->ni_rates.rs_nrates - 1;
2685 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2686 i--);
2687 ni->ni_txrate = i;
2691 zyd_activate(device_ptr_t self, enum devact act)
2693 struct zyd_softc *sc = device_private(self);
2695 switch (act) {
2696 case DVACT_DEACTIVATE:
2697 if_deactivate(&sc->sc_if);
2698 return 0;
2699 default:
2700 return EOPNOTSUPP;