4 * Copyright (C) 2005-2007, 2009 Internet Systems Consortium, Inc. ("ISC")
6 * Permission to use, copy, modify, and/or distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
11 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
12 * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
13 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
14 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
15 * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16 * PERFORMANCE OF THIS SOFTWARE.
19 /* Id: sha2.c,v 1.13.332.2 2009/01/18 23:47:41 tbox Exp */
21 /* $FreeBSD: src/sys/crypto/sha2/sha2.c,v 1.2.2.2 2002/03/05 08:36:47 ume Exp $ */
22 /* $KAME: sha2.c,v 1.8 2001/11/08 01:07:52 itojun Exp $ */
29 * Written by Aaron D. Gifford <me@aarongifford.com>
31 * Copyright 2000 Aaron D. Gifford. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the copyright holder nor the names of contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 #include <isc/assertions.h>
64 #include <isc/string.h>
68 * UNROLLED TRANSFORM LOOP NOTE:
69 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
70 * loop version for the hash transform rounds (defined using macros
71 * later in this file). Either define on the command line, for example:
73 * cc -DISC_SHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
77 * \#define ISC_SHA2_UNROLL_TRANSFORM
81 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
85 * Please make sure that your system defines BYTE_ORDER. If your
86 * architecture is little-endian, make sure it also defines
87 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
90 * If your system does not define the above, then you can do so by
93 * \#define LITTLE_ENDIAN 1234
94 * \#define BIG_ENDIAN 4321
96 * And for little-endian machines, add:
98 * \#define BYTE_ORDER LITTLE_ENDIAN
100 * Or for big-endian machines:
102 * \#define BYTE_ORDER BIG_ENDIAN
104 * The FreeBSD machine this was written on defines BYTE_ORDER
105 * appropriately by including <sys/types.h> (which in turn includes
106 * <machine/endian.h> where the appropriate definitions are actually
109 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
112 #define BIG_ENDIAN 4321
114 #ifndef LITTLE_ENDIAN
115 #define LITTLE_ENDIAN 1234
117 #ifdef WORDS_BIGENDIAN
118 #define BYTE_ORDER BIG_ENDIAN
120 #define BYTE_ORDER LITTLE_ENDIAN
123 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
127 /*** SHA-256/384/512 Various Length Definitions ***********************/
128 /* NOTE: Most of these are in sha2.h */
129 #define ISC_SHA256_SHORT_BLOCK_LENGTH (ISC_SHA256_BLOCK_LENGTH - 8)
130 #define ISC_SHA384_SHORT_BLOCK_LENGTH (ISC_SHA384_BLOCK_LENGTH - 16)
131 #define ISC_SHA512_SHORT_BLOCK_LENGTH (ISC_SHA512_BLOCK_LENGTH - 16)
134 /*** ENDIAN REVERSAL MACROS *******************************************/
135 #if BYTE_ORDER == LITTLE_ENDIAN
136 #define REVERSE32(w,x) { \
137 isc_uint32_t tmp = (w); \
138 tmp = (tmp >> 16) | (tmp << 16); \
139 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
142 #define REVERSE64(w,x) { \
143 isc_uint64_t tmp = (w); \
144 tmp = (tmp >> 32) | (tmp << 32); \
145 tmp = ((tmp & 0xff00ff00ff00ff00UL) >> 8) | \
146 ((tmp & 0x00ff00ff00ff00ffUL) << 8); \
147 (x) = ((tmp & 0xffff0000ffff0000UL) >> 16) | \
148 ((tmp & 0x0000ffff0000ffffUL) << 16); \
151 #define REVERSE64(w,x) { \
152 isc_uint64_t tmp = (w); \
153 tmp = (tmp >> 32) | (tmp << 32); \
154 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
155 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
156 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
157 ((tmp & 0x0000ffff0000ffffULL) << 16); \
160 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
163 * Macro for incrementally adding the unsigned 64-bit integer n to the
164 * unsigned 128-bit integer (represented using a two-element array of
167 #define ADDINC128(w,n) { \
168 (w)[0] += (isc_uint64_t)(n); \
169 if ((w)[0] < (n)) { \
174 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
176 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
178 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
179 * S is a ROTATION) because the SHA-256/384/512 description document
180 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
181 * same "backwards" definition.
183 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
184 #define R(b,x) ((x) >> (b))
185 /* 32-bit Rotate-right (used in SHA-256): */
186 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
187 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
188 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
190 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
191 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
192 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
194 /* Four of six logical functions used in SHA-256: */
195 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
196 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
197 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
198 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
200 /* Four of six logical functions used in SHA-384 and SHA-512: */
201 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
202 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
203 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
204 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
206 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
207 /* NOTE: These should not be accessed directly from outside this
208 * library -- they are intended for private internal visibility/use
211 void isc_sha512_last(isc_sha512_t
*);
212 void isc_sha256_transform(isc_sha256_t
*, const isc_uint32_t
*);
213 void isc_sha512_transform(isc_sha512_t
*, const isc_uint64_t
*);
216 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
217 /* Hash constant words K for SHA-224 and SHA-256: */
218 static const isc_uint32_t K256
[64] = {
219 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
220 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
221 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
222 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
223 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
224 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
225 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
226 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
227 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
228 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
229 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
230 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
231 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
232 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
233 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
234 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
237 /* Initial hash value H for SHA-224: */
238 static const isc_uint32_t sha224_initial_hash_value
[8] = {
249 /* Initial hash value H for SHA-256: */
250 static const isc_uint32_t sha256_initial_hash_value
[8] = {
262 /* Hash constant words K for SHA-384 and SHA-512: */
263 static const isc_uint64_t K512
[80] = {
264 0x428a2f98d728ae22UL
, 0x7137449123ef65cdUL
,
265 0xb5c0fbcfec4d3b2fUL
, 0xe9b5dba58189dbbcUL
,
266 0x3956c25bf348b538UL
, 0x59f111f1b605d019UL
,
267 0x923f82a4af194f9bUL
, 0xab1c5ed5da6d8118UL
,
268 0xd807aa98a3030242UL
, 0x12835b0145706fbeUL
,
269 0x243185be4ee4b28cUL
, 0x550c7dc3d5ffb4e2UL
,
270 0x72be5d74f27b896fUL
, 0x80deb1fe3b1696b1UL
,
271 0x9bdc06a725c71235UL
, 0xc19bf174cf692694UL
,
272 0xe49b69c19ef14ad2UL
, 0xefbe4786384f25e3UL
,
273 0x0fc19dc68b8cd5b5UL
, 0x240ca1cc77ac9c65UL
,
274 0x2de92c6f592b0275UL
, 0x4a7484aa6ea6e483UL
,
275 0x5cb0a9dcbd41fbd4UL
, 0x76f988da831153b5UL
,
276 0x983e5152ee66dfabUL
, 0xa831c66d2db43210UL
,
277 0xb00327c898fb213fUL
, 0xbf597fc7beef0ee4UL
,
278 0xc6e00bf33da88fc2UL
, 0xd5a79147930aa725UL
,
279 0x06ca6351e003826fUL
, 0x142929670a0e6e70UL
,
280 0x27b70a8546d22ffcUL
, 0x2e1b21385c26c926UL
,
281 0x4d2c6dfc5ac42aedUL
, 0x53380d139d95b3dfUL
,
282 0x650a73548baf63deUL
, 0x766a0abb3c77b2a8UL
,
283 0x81c2c92e47edaee6UL
, 0x92722c851482353bUL
,
284 0xa2bfe8a14cf10364UL
, 0xa81a664bbc423001UL
,
285 0xc24b8b70d0f89791UL
, 0xc76c51a30654be30UL
,
286 0xd192e819d6ef5218UL
, 0xd69906245565a910UL
,
287 0xf40e35855771202aUL
, 0x106aa07032bbd1b8UL
,
288 0x19a4c116b8d2d0c8UL
, 0x1e376c085141ab53UL
,
289 0x2748774cdf8eeb99UL
, 0x34b0bcb5e19b48a8UL
,
290 0x391c0cb3c5c95a63UL
, 0x4ed8aa4ae3418acbUL
,
291 0x5b9cca4f7763e373UL
, 0x682e6ff3d6b2b8a3UL
,
292 0x748f82ee5defb2fcUL
, 0x78a5636f43172f60UL
,
293 0x84c87814a1f0ab72UL
, 0x8cc702081a6439ecUL
,
294 0x90befffa23631e28UL
, 0xa4506cebde82bde9UL
,
295 0xbef9a3f7b2c67915UL
, 0xc67178f2e372532bUL
,
296 0xca273eceea26619cUL
, 0xd186b8c721c0c207UL
,
297 0xeada7dd6cde0eb1eUL
, 0xf57d4f7fee6ed178UL
,
298 0x06f067aa72176fbaUL
, 0x0a637dc5a2c898a6UL
,
299 0x113f9804bef90daeUL
, 0x1b710b35131c471bUL
,
300 0x28db77f523047d84UL
, 0x32caab7b40c72493UL
,
301 0x3c9ebe0a15c9bebcUL
, 0x431d67c49c100d4cUL
,
302 0x4cc5d4becb3e42b6UL
, 0x597f299cfc657e2aUL
,
303 0x5fcb6fab3ad6faecUL
, 0x6c44198c4a475817UL
306 /* Initial hash value H for SHA-384: */
307 static const isc_uint64_t sha384_initial_hash_value
[8] = {
308 0xcbbb9d5dc1059ed8UL
,
309 0x629a292a367cd507UL
,
310 0x9159015a3070dd17UL
,
311 0x152fecd8f70e5939UL
,
312 0x67332667ffc00b31UL
,
313 0x8eb44a8768581511UL
,
314 0xdb0c2e0d64f98fa7UL
,
318 /* Initial hash value H for SHA-512: */
319 static const isc_uint64_t sha512_initial_hash_value
[8] = {
321 0xbb67ae8584caa73bUL
,
322 0x3c6ef372fe94f82bUL
,
323 0xa54ff53a5f1d36f1UL
,
324 0x510e527fade682d1UL
,
325 0x9b05688c2b3e6c1fUL
,
326 0x1f83d9abfb41bd6bUL
,
330 /* Hash constant words K for SHA-384 and SHA-512: */
331 static const isc_uint64_t K512
[80] = {
332 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
333 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
334 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
335 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
336 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
337 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
338 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
339 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
340 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
341 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
342 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
343 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
344 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
345 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
346 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
347 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
348 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
349 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
350 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
351 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
352 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
353 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
354 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
355 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
356 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
357 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
358 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
359 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
360 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
361 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
362 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
363 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
364 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
365 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
366 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
367 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
368 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
369 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
370 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
371 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
374 /* Initial hash value H for SHA-384: */
375 static const isc_uint64_t sha384_initial_hash_value
[8] = {
376 0xcbbb9d5dc1059ed8ULL
,
377 0x629a292a367cd507ULL
,
378 0x9159015a3070dd17ULL
,
379 0x152fecd8f70e5939ULL
,
380 0x67332667ffc00b31ULL
,
381 0x8eb44a8768581511ULL
,
382 0xdb0c2e0d64f98fa7ULL
,
383 0x47b5481dbefa4fa4ULL
386 /* Initial hash value H for SHA-512: */
387 static const isc_uint64_t sha512_initial_hash_value
[8] = {
388 0x6a09e667f3bcc908ULL
,
389 0xbb67ae8584caa73bULL
,
390 0x3c6ef372fe94f82bULL
,
391 0xa54ff53a5f1d36f1ULL
,
392 0x510e527fade682d1ULL
,
393 0x9b05688c2b3e6c1fULL
,
394 0x1f83d9abfb41bd6bULL
,
395 0x5be0cd19137e2179ULL
400 * Constant used by SHA256/384/512_End() functions for converting the
401 * digest to a readable hexadecimal character string:
403 static const char *sha2_hex_digits
= "0123456789abcdef";
407 /*** SHA-224: *********************************************************/
409 isc_sha224_init(isc_sha224_t
*context
) {
410 if (context
== (isc_sha256_t
*)0) {
413 memcpy(context
->state
, sha224_initial_hash_value
,
414 ISC_SHA256_DIGESTLENGTH
);
415 memset(context
->buffer
, 0, ISC_SHA256_BLOCK_LENGTH
);
416 context
->bitcount
= 0;
420 isc_sha224_update(isc_sha224_t
*context
, const isc_uint8_t
* data
, size_t len
) {
421 isc_sha256_update((isc_sha256_t
*)context
, data
, len
);
425 isc_sha224_final(isc_uint8_t digest
[], isc_sha224_t
*context
) {
426 isc_uint8_t sha256_digest
[ISC_SHA256_DIGESTLENGTH
];
427 isc_sha256_final(sha256_digest
, (isc_sha256_t
*)context
);
428 memcpy(digest
, sha256_digest
, ISC_SHA224_DIGESTLENGTH
);
429 memset(sha256_digest
, 0, ISC_SHA256_DIGESTLENGTH
);
433 isc_sha224_end(isc_sha224_t
*context
, char buffer
[]) {
434 isc_uint8_t digest
[ISC_SHA224_DIGESTLENGTH
], *d
= digest
;
438 REQUIRE(context
!= (isc_sha224_t
*)0);
440 if (buffer
!= (char*)0) {
441 isc_sha224_final(digest
, context
);
443 for (i
= 0; i
< ISC_SHA224_DIGESTLENGTH
; i
++) {
444 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
445 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
450 memset(context
, 0, sizeof(context
));
452 memset(digest
, 0, ISC_SHA224_DIGESTLENGTH
);
457 isc_sha224_data(const isc_uint8_t
*data
, size_t len
,
458 char digest
[ISC_SHA224_DIGESTSTRINGLENGTH
])
460 isc_sha224_t context
;
462 isc_sha224_init(&context
);
463 isc_sha224_update(&context
, data
, len
);
464 return (isc_sha224_end(&context
, digest
));
467 /*** SHA-256: *********************************************************/
469 isc_sha256_init(isc_sha256_t
*context
) {
470 if (context
== (isc_sha256_t
*)0) {
473 memcpy(context
->state
, sha256_initial_hash_value
,
474 ISC_SHA256_DIGESTLENGTH
);
475 memset(context
->buffer
, 0, ISC_SHA256_BLOCK_LENGTH
);
476 context
->bitcount
= 0;
479 #ifdef ISC_SHA2_UNROLL_TRANSFORM
481 /* Unrolled SHA-256 round macros: */
483 #if BYTE_ORDER == LITTLE_ENDIAN
485 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
486 REVERSE32(*data++, W256[j]); \
487 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
490 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
494 #else /* BYTE_ORDER == LITTLE_ENDIAN */
496 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
497 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
498 K256[j] + (W256[j] = *data++); \
500 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
503 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
505 #define ROUND256(a,b,c,d,e,f,g,h) \
506 s0 = W256[(j+1)&0x0f]; \
507 s0 = sigma0_256(s0); \
508 s1 = W256[(j+14)&0x0f]; \
509 s1 = sigma1_256(s1); \
510 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
511 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
513 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
516 void isc_sha256_transform(isc_sha256_t
*context
, const isc_uint32_t
* data
) {
517 isc_uint32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
518 isc_uint32_t T1
, *W256
;
521 W256
= (isc_uint32_t
*)context
->buffer
;
523 /* Initialize registers with the prev. intermediate value */
524 a
= context
->state
[0];
525 b
= context
->state
[1];
526 c
= context
->state
[2];
527 d
= context
->state
[3];
528 e
= context
->state
[4];
529 f
= context
->state
[5];
530 g
= context
->state
[6];
531 h
= context
->state
[7];
535 /* Rounds 0 to 15 (unrolled): */
536 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
537 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
538 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
539 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
540 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
541 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
542 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
543 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
546 /* Now for the remaining rounds to 64: */
548 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
549 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
550 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
551 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
552 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
553 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
554 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
555 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
558 /* Compute the current intermediate hash value */
559 context
->state
[0] += a
;
560 context
->state
[1] += b
;
561 context
->state
[2] += c
;
562 context
->state
[3] += d
;
563 context
->state
[4] += e
;
564 context
->state
[5] += f
;
565 context
->state
[6] += g
;
566 context
->state
[7] += h
;
569 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
572 #else /* ISC_SHA2_UNROLL_TRANSFORM */
575 isc_sha256_transform(isc_sha256_t
*context
, const isc_uint32_t
* data
) {
576 isc_uint32_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
577 isc_uint32_t T1
, T2
, *W256
;
580 W256
= (isc_uint32_t
*)context
->buffer
;
582 /* Initialize registers with the prev. intermediate value */
583 a
= context
->state
[0];
584 b
= context
->state
[1];
585 c
= context
->state
[2];
586 d
= context
->state
[3];
587 e
= context
->state
[4];
588 f
= context
->state
[5];
589 g
= context
->state
[6];
590 h
= context
->state
[7];
594 #if BYTE_ORDER == LITTLE_ENDIAN
595 /* Copy data while converting to host byte order */
596 REVERSE32(*data
++,W256
[j
]);
597 /* Apply the SHA-256 compression function to update a..h */
598 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
599 #else /* BYTE_ORDER == LITTLE_ENDIAN */
600 /* Apply the SHA-256 compression function to update a..h with copy */
601 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + (W256
[j
] = *data
++);
602 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
603 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
617 /* Part of the message block expansion: */
618 s0
= W256
[(j
+1)&0x0f];
620 s1
= W256
[(j
+14)&0x0f];
623 /* Apply the SHA-256 compression function to update a..h */
624 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
625 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
626 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
639 /* Compute the current intermediate hash value */
640 context
->state
[0] += a
;
641 context
->state
[1] += b
;
642 context
->state
[2] += c
;
643 context
->state
[3] += d
;
644 context
->state
[4] += e
;
645 context
->state
[5] += f
;
646 context
->state
[6] += g
;
647 context
->state
[7] += h
;
650 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
653 #endif /* ISC_SHA2_UNROLL_TRANSFORM */
656 isc_sha256_update(isc_sha256_t
*context
, const isc_uint8_t
*data
, size_t len
) {
657 unsigned int freespace
, usedspace
;
660 /* Calling with no data is valid - we do nothing */
665 REQUIRE(context
!= (isc_sha256_t
*)0 && data
!= (isc_uint8_t
*)0);
667 usedspace
= (unsigned int)((context
->bitcount
>> 3) %
668 ISC_SHA256_BLOCK_LENGTH
);
670 /* Calculate how much free space is available in the buffer */
671 freespace
= ISC_SHA256_BLOCK_LENGTH
- usedspace
;
673 if (len
>= freespace
) {
674 /* Fill the buffer completely and process it */
675 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
676 context
->bitcount
+= freespace
<< 3;
679 isc_sha256_transform(context
,
680 (isc_uint32_t
*)context
->buffer
);
682 /* The buffer is not yet full */
683 memcpy(&context
->buffer
[usedspace
], data
, len
);
684 context
->bitcount
+= len
<< 3;
686 usedspace
= freespace
= 0;
690 while (len
>= ISC_SHA256_BLOCK_LENGTH
) {
691 /* Process as many complete blocks as we can */
692 memcpy(context
->buffer
, data
, ISC_SHA256_BLOCK_LENGTH
);
693 isc_sha256_transform(context
, (isc_uint32_t
*)context
->buffer
);
694 context
->bitcount
+= ISC_SHA256_BLOCK_LENGTH
<< 3;
695 len
-= ISC_SHA256_BLOCK_LENGTH
;
696 data
+= ISC_SHA256_BLOCK_LENGTH
;
699 /* There's left-overs, so save 'em */
700 memcpy(context
->buffer
, data
, len
);
701 context
->bitcount
+= len
<< 3;
704 usedspace
= freespace
= 0;
708 isc_sha256_final(isc_uint8_t digest
[], isc_sha256_t
*context
) {
709 isc_uint32_t
*d
= (isc_uint32_t
*)digest
;
710 unsigned int usedspace
;
713 REQUIRE(context
!= (isc_sha256_t
*)0);
715 /* If no digest buffer is passed, we don't bother doing this: */
716 if (digest
!= (isc_uint8_t
*)0) {
717 usedspace
= (unsigned int)((context
->bitcount
>> 3) %
718 ISC_SHA256_BLOCK_LENGTH
);
719 #if BYTE_ORDER == LITTLE_ENDIAN
720 /* Convert FROM host byte order */
721 REVERSE64(context
->bitcount
,context
->bitcount
);
724 /* Begin padding with a 1 bit: */
725 context
->buffer
[usedspace
++] = 0x80;
727 if (usedspace
<= ISC_SHA256_SHORT_BLOCK_LENGTH
) {
728 /* Set-up for the last transform: */
729 memset(&context
->buffer
[usedspace
], 0,
730 ISC_SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
732 if (usedspace
< ISC_SHA256_BLOCK_LENGTH
) {
733 memset(&context
->buffer
[usedspace
], 0,
734 ISC_SHA256_BLOCK_LENGTH
-
737 /* Do second-to-last transform: */
738 isc_sha256_transform(context
,
739 (isc_uint32_t
*)context
->buffer
);
741 /* And set-up for the last transform: */
742 memset(context
->buffer
, 0,
743 ISC_SHA256_SHORT_BLOCK_LENGTH
);
746 /* Set-up for the last transform: */
747 memset(context
->buffer
, 0, ISC_SHA256_SHORT_BLOCK_LENGTH
);
749 /* Begin padding with a 1 bit: */
750 *context
->buffer
= 0x80;
752 /* Set the bit count: */
753 *(isc_uint64_t
*)&context
->buffer
[ISC_SHA256_SHORT_BLOCK_LENGTH
] = context
->bitcount
;
755 /* Final transform: */
756 isc_sha256_transform(context
, (isc_uint32_t
*)context
->buffer
);
758 #if BYTE_ORDER == LITTLE_ENDIAN
760 /* Convert TO host byte order */
762 for (j
= 0; j
< 8; j
++) {
763 REVERSE32(context
->state
[j
],context
->state
[j
]);
764 *d
++ = context
->state
[j
];
768 memcpy(d
, context
->state
, ISC_SHA256_DIGESTLENGTH
);
772 /* Clean up state data: */
773 memset(context
, 0, sizeof(context
));
778 isc_sha256_end(isc_sha256_t
*context
, char buffer
[]) {
779 isc_uint8_t digest
[ISC_SHA256_DIGESTLENGTH
], *d
= digest
;
783 REQUIRE(context
!= (isc_sha256_t
*)0);
785 if (buffer
!= (char*)0) {
786 isc_sha256_final(digest
, context
);
788 for (i
= 0; i
< ISC_SHA256_DIGESTLENGTH
; i
++) {
789 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
790 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
795 memset(context
, 0, sizeof(context
));
797 memset(digest
, 0, ISC_SHA256_DIGESTLENGTH
);
802 isc_sha256_data(const isc_uint8_t
* data
, size_t len
,
803 char digest
[ISC_SHA256_DIGESTSTRINGLENGTH
])
805 isc_sha256_t context
;
807 isc_sha256_init(&context
);
808 isc_sha256_update(&context
, data
, len
);
809 return (isc_sha256_end(&context
, digest
));
813 /*** SHA-512: *********************************************************/
815 isc_sha512_init(isc_sha512_t
*context
) {
816 if (context
== (isc_sha512_t
*)0) {
819 memcpy(context
->state
, sha512_initial_hash_value
,
820 ISC_SHA512_DIGESTLENGTH
);
821 memset(context
->buffer
, 0, ISC_SHA512_BLOCK_LENGTH
);
822 context
->bitcount
[0] = context
->bitcount
[1] = 0;
825 #ifdef ISC_SHA2_UNROLL_TRANSFORM
827 /* Unrolled SHA-512 round macros: */
828 #if BYTE_ORDER == LITTLE_ENDIAN
830 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
831 REVERSE64(*data++, W512[j]); \
832 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
835 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
839 #else /* BYTE_ORDER == LITTLE_ENDIAN */
841 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
842 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
843 K512[j] + (W512[j] = *data++); \
845 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
848 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
850 #define ROUND512(a,b,c,d,e,f,g,h) \
851 s0 = W512[(j+1)&0x0f]; \
852 s0 = sigma0_512(s0); \
853 s1 = W512[(j+14)&0x0f]; \
854 s1 = sigma1_512(s1); \
855 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
856 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
858 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
861 void isc_sha512_transform(isc_sha512_t
*context
, const isc_uint64_t
* data
) {
862 isc_uint64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
863 isc_uint64_t T1
, *W512
= (isc_uint64_t
*)context
->buffer
;
866 /* Initialize registers with the prev. intermediate value */
867 a
= context
->state
[0];
868 b
= context
->state
[1];
869 c
= context
->state
[2];
870 d
= context
->state
[3];
871 e
= context
->state
[4];
872 f
= context
->state
[5];
873 g
= context
->state
[6];
874 h
= context
->state
[7];
878 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
879 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
880 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
881 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
882 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
883 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
884 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
885 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
888 /* Now for the remaining rounds up to 79: */
890 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
891 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
892 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
893 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
894 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
895 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
896 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
897 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
900 /* Compute the current intermediate hash value */
901 context
->state
[0] += a
;
902 context
->state
[1] += b
;
903 context
->state
[2] += c
;
904 context
->state
[3] += d
;
905 context
->state
[4] += e
;
906 context
->state
[5] += f
;
907 context
->state
[6] += g
;
908 context
->state
[7] += h
;
911 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
914 #else /* ISC_SHA2_UNROLL_TRANSFORM */
917 isc_sha512_transform(isc_sha512_t
*context
, const isc_uint64_t
* data
) {
918 isc_uint64_t a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
919 isc_uint64_t T1
, T2
, *W512
= (isc_uint64_t
*)context
->buffer
;
922 /* Initialize registers with the prev. intermediate value */
923 a
= context
->state
[0];
924 b
= context
->state
[1];
925 c
= context
->state
[2];
926 d
= context
->state
[3];
927 e
= context
->state
[4];
928 f
= context
->state
[5];
929 g
= context
->state
[6];
930 h
= context
->state
[7];
934 #if BYTE_ORDER == LITTLE_ENDIAN
935 /* Convert TO host byte order */
936 REVERSE64(*data
++, W512
[j
]);
937 /* Apply the SHA-512 compression function to update a..h */
938 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
939 #else /* BYTE_ORDER == LITTLE_ENDIAN */
940 /* Apply the SHA-512 compression function to update a..h with copy */
941 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + (W512
[j
] = *data
++);
942 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
943 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
957 /* Part of the message block expansion: */
958 s0
= W512
[(j
+1)&0x0f];
960 s1
= W512
[(j
+14)&0x0f];
963 /* Apply the SHA-512 compression function to update a..h */
964 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
965 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
966 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
979 /* Compute the current intermediate hash value */
980 context
->state
[0] += a
;
981 context
->state
[1] += b
;
982 context
->state
[2] += c
;
983 context
->state
[3] += d
;
984 context
->state
[4] += e
;
985 context
->state
[5] += f
;
986 context
->state
[6] += g
;
987 context
->state
[7] += h
;
990 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
993 #endif /* ISC_SHA2_UNROLL_TRANSFORM */
995 void isc_sha512_update(isc_sha512_t
*context
, const isc_uint8_t
*data
, size_t len
) {
996 unsigned int freespace
, usedspace
;
999 /* Calling with no data is valid - we do nothing */
1004 REQUIRE(context
!= (isc_sha512_t
*)0 && data
!= (isc_uint8_t
*)0);
1006 usedspace
= (unsigned int)((context
->bitcount
[0] >> 3) %
1007 ISC_SHA512_BLOCK_LENGTH
);
1008 if (usedspace
> 0) {
1009 /* Calculate how much free space is available in the buffer */
1010 freespace
= ISC_SHA512_BLOCK_LENGTH
- usedspace
;
1012 if (len
>= freespace
) {
1013 /* Fill the buffer completely and process it */
1014 memcpy(&context
->buffer
[usedspace
], data
, freespace
);
1015 ADDINC128(context
->bitcount
, freespace
<< 3);
1018 isc_sha512_transform(context
,
1019 (isc_uint64_t
*)context
->buffer
);
1021 /* The buffer is not yet full */
1022 memcpy(&context
->buffer
[usedspace
], data
, len
);
1023 ADDINC128(context
->bitcount
, len
<< 3);
1025 usedspace
= freespace
= 0;
1029 while (len
>= ISC_SHA512_BLOCK_LENGTH
) {
1030 /* Process as many complete blocks as we can */
1031 memcpy(context
->buffer
, data
, ISC_SHA512_BLOCK_LENGTH
);
1032 isc_sha512_transform(context
, (isc_uint64_t
*)context
->buffer
);
1033 ADDINC128(context
->bitcount
, ISC_SHA512_BLOCK_LENGTH
<< 3);
1034 len
-= ISC_SHA512_BLOCK_LENGTH
;
1035 data
+= ISC_SHA512_BLOCK_LENGTH
;
1038 /* There's left-overs, so save 'em */
1039 memcpy(context
->buffer
, data
, len
);
1040 ADDINC128(context
->bitcount
, len
<< 3);
1043 usedspace
= freespace
= 0;
1046 void isc_sha512_last(isc_sha512_t
*context
) {
1047 unsigned int usedspace
;
1049 usedspace
= (unsigned int)((context
->bitcount
[0] >> 3) %
1050 ISC_SHA512_BLOCK_LENGTH
);
1051 #if BYTE_ORDER == LITTLE_ENDIAN
1052 /* Convert FROM host byte order */
1053 REVERSE64(context
->bitcount
[0],context
->bitcount
[0]);
1054 REVERSE64(context
->bitcount
[1],context
->bitcount
[1]);
1056 if (usedspace
> 0) {
1057 /* Begin padding with a 1 bit: */
1058 context
->buffer
[usedspace
++] = 0x80;
1060 if (usedspace
<= ISC_SHA512_SHORT_BLOCK_LENGTH
) {
1061 /* Set-up for the last transform: */
1062 memset(&context
->buffer
[usedspace
], 0,
1063 ISC_SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
1065 if (usedspace
< ISC_SHA512_BLOCK_LENGTH
) {
1066 memset(&context
->buffer
[usedspace
], 0,
1067 ISC_SHA512_BLOCK_LENGTH
- usedspace
);
1069 /* Do second-to-last transform: */
1070 isc_sha512_transform(context
,
1071 (isc_uint64_t
*)context
->buffer
);
1073 /* And set-up for the last transform: */
1074 memset(context
->buffer
, 0, ISC_SHA512_BLOCK_LENGTH
- 2);
1077 /* Prepare for final transform: */
1078 memset(context
->buffer
, 0, ISC_SHA512_SHORT_BLOCK_LENGTH
);
1080 /* Begin padding with a 1 bit: */
1081 *context
->buffer
= 0x80;
1083 /* Store the length of input data (in bits): */
1084 *(isc_uint64_t
*)&context
->buffer
[ISC_SHA512_SHORT_BLOCK_LENGTH
] = context
->bitcount
[1];
1085 *(isc_uint64_t
*)&context
->buffer
[ISC_SHA512_SHORT_BLOCK_LENGTH
+8] = context
->bitcount
[0];
1087 /* Final transform: */
1088 isc_sha512_transform(context
, (isc_uint64_t
*)context
->buffer
);
1091 void isc_sha512_final(isc_uint8_t digest
[], isc_sha512_t
*context
) {
1092 isc_uint64_t
*d
= (isc_uint64_t
*)digest
;
1095 REQUIRE(context
!= (isc_sha512_t
*)0);
1097 /* If no digest buffer is passed, we don't bother doing this: */
1098 if (digest
!= (isc_uint8_t
*)0) {
1099 isc_sha512_last(context
);
1101 /* Save the hash data for output: */
1102 #if BYTE_ORDER == LITTLE_ENDIAN
1104 /* Convert TO host byte order */
1106 for (j
= 0; j
< 8; j
++) {
1107 REVERSE64(context
->state
[j
],context
->state
[j
]);
1108 *d
++ = context
->state
[j
];
1112 memcpy(d
, context
->state
, ISC_SHA512_DIGESTLENGTH
);
1116 /* Zero out state data */
1117 memset(context
, 0, sizeof(context
));
1121 isc_sha512_end(isc_sha512_t
*context
, char buffer
[]) {
1122 isc_uint8_t digest
[ISC_SHA512_DIGESTLENGTH
], *d
= digest
;
1126 REQUIRE(context
!= (isc_sha512_t
*)0);
1128 if (buffer
!= (char*)0) {
1129 isc_sha512_final(digest
, context
);
1131 for (i
= 0; i
< ISC_SHA512_DIGESTLENGTH
; i
++) {
1132 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1133 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1138 memset(context
, 0, sizeof(context
));
1140 memset(digest
, 0, ISC_SHA512_DIGESTLENGTH
);
1145 isc_sha512_data(const isc_uint8_t
*data
, size_t len
,
1146 char digest
[ISC_SHA512_DIGESTSTRINGLENGTH
])
1148 isc_sha512_t context
;
1150 isc_sha512_init(&context
);
1151 isc_sha512_update(&context
, data
, len
);
1152 return (isc_sha512_end(&context
, digest
));
1156 /*** SHA-384: *********************************************************/
1158 isc_sha384_init(isc_sha384_t
*context
) {
1159 if (context
== (isc_sha384_t
*)0) {
1162 memcpy(context
->state
, sha384_initial_hash_value
,
1163 ISC_SHA512_DIGESTLENGTH
);
1164 memset(context
->buffer
, 0, ISC_SHA384_BLOCK_LENGTH
);
1165 context
->bitcount
[0] = context
->bitcount
[1] = 0;
1169 isc_sha384_update(isc_sha384_t
*context
, const isc_uint8_t
* data
, size_t len
) {
1170 isc_sha512_update((isc_sha512_t
*)context
, data
, len
);
1174 isc_sha384_final(isc_uint8_t digest
[], isc_sha384_t
*context
) {
1175 isc_uint64_t
*d
= (isc_uint64_t
*)digest
;
1178 REQUIRE(context
!= (isc_sha384_t
*)0);
1180 /* If no digest buffer is passed, we don't bother doing this: */
1181 if (digest
!= (isc_uint8_t
*)0) {
1182 isc_sha512_last((isc_sha512_t
*)context
);
1184 /* Save the hash data for output: */
1185 #if BYTE_ORDER == LITTLE_ENDIAN
1187 /* Convert TO host byte order */
1189 for (j
= 0; j
< 6; j
++) {
1190 REVERSE64(context
->state
[j
],context
->state
[j
]);
1191 *d
++ = context
->state
[j
];
1195 memcpy(d
, context
->state
, ISC_SHA384_DIGESTLENGTH
);
1199 /* Zero out state data */
1200 memset(context
, 0, sizeof(context
));
1204 isc_sha384_end(isc_sha384_t
*context
, char buffer
[]) {
1205 isc_uint8_t digest
[ISC_SHA384_DIGESTLENGTH
], *d
= digest
;
1209 REQUIRE(context
!= (isc_sha384_t
*)0);
1211 if (buffer
!= (char*)0) {
1212 isc_sha384_final(digest
, context
);
1214 for (i
= 0; i
< ISC_SHA384_DIGESTLENGTH
; i
++) {
1215 *buffer
++ = sha2_hex_digits
[(*d
& 0xf0) >> 4];
1216 *buffer
++ = sha2_hex_digits
[*d
& 0x0f];
1221 memset(context
, 0, sizeof(context
));
1223 memset(digest
, 0, ISC_SHA384_DIGESTLENGTH
);
1228 isc_sha384_data(const isc_uint8_t
*data
, size_t len
,
1229 char digest
[ISC_SHA384_DIGESTSTRINGLENGTH
])
1231 isc_sha384_t context
;
1233 isc_sha384_init(&context
);
1234 isc_sha384_update(&context
, data
, len
);
1235 return (isc_sha384_end(&context
, digest
));