Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / bsd / ntp / dist / ntpd / ntp_crypto.c
blob9b4246850901e3364111882b0ebed3cd402ecf48
1 /* $NetBSD: ntp_crypto.c,v 1.1.1.1 2009/12/13 16:55:33 kardel Exp $ */
3 /*
4 * ntp_crypto.c - NTP version 4 public key routines
5 */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
10 #ifdef OPENSSL
11 #include <stdio.h>
12 #include <sys/types.h>
13 #include <sys/param.h>
14 #include <unistd.h>
15 #include <fcntl.h>
17 #include "ntpd.h"
18 #include "ntp_stdlib.h"
19 #include "ntp_unixtime.h"
20 #include "ntp_string.h"
21 #include "ntp_random.h"
22 #include "ntp_assert.h"
24 #include "openssl/asn1_mac.h"
25 #include "openssl/bn.h"
26 #include "openssl/err.h"
27 #include "openssl/evp.h"
28 #include "openssl/pem.h"
29 #include "openssl/rand.h"
30 #include "openssl/x509v3.h"
32 #ifdef KERNEL_PLL
33 #include "ntp_syscall.h"
34 #endif /* KERNEL_PLL */
37 * Extension field message format
39 * These are always signed and saved before sending in network byte
40 * order. They must be converted to and from host byte order for
41 * processing.
43 * +-------+-------+
44 * | op | len | <- extension pointer
45 * +-------+-------+
46 * | associd |
47 * +---------------+
48 * | timestamp | <- value pointer
49 * +---------------+
50 * | filestamp |
51 * +---------------+
52 * | value len |
53 * +---------------+
54 * | |
55 * = value =
56 * | |
57 * +---------------+
58 * | signature len |
59 * +---------------+
60 * | |
61 * = signature =
62 * | |
63 * +---------------+
65 * The CRYPTO_RESP bit is set to 0 for requests, 1 for responses.
66 * Requests carry the association ID of the receiver; responses carry
67 * the association ID of the sender. Some messages include only the
68 * operation/length and association ID words and so have length 8
69 * octets. Ohers include the value structure and associated value and
70 * signature fields. These messages include the timestamp, filestamp,
71 * value and signature words and so have length at least 24 octets. The
72 * signature and/or value fields can be empty, in which case the
73 * respective length words are zero. An empty value with nonempty
74 * signature is syntactically valid, but semantically questionable.
76 * The filestamp represents the time when a cryptographic data file such
77 * as a public/private key pair is created. It follows every reference
78 * depending on that file and serves as a means to obsolete earlier data
79 * of the same type. The timestamp represents the time when the
80 * cryptographic data of the message were last signed. Creation of a
81 * cryptographic data file or signing a message can occur only when the
82 * creator or signor is synchronized to an authoritative source and
83 * proventicated to a trusted authority.
85 * Note there are several conditions required for server trust. First,
86 * the public key on the server certificate must be verified, which can
87 * involve a hike along the certificate trail to a trusted host. Next,
88 * the server trust must be confirmed by one of several identity
89 * schemes. Valid cryptographic values are signed with attached
90 * timestamp and filestamp. Individual packet trust is confirmed
91 * relative to these values by a message digest with keys generated by a
92 * reverse-order pseudorandom hash.
94 * State decomposition. These flags are lit in the order given. They are
95 * dim only when the association is demobilized.
97 * CRYPTO_FLAG_ENAB Lit upon acceptance of a CRYPTO_ASSOC message
98 * CRYPTO_FLAG_CERT Lit when a self-digned trusted certificate is
99 * accepted.
100 * CRYPTO_FLAG_VRFY Lit when identity is confirmed.
101 * CRYPTO_FLAG_PROV Lit when the first signature is verified.
102 * CRYPTO_FLAG_COOK Lit when a valid cookie is accepted.
103 * CRYPTO_FLAG_AUTO Lit when valid autokey values are accepted.
104 * CRYPTO_FLAG_SIGN Lit when the server signed certificate is
105 * accepted.
106 * CRYPTO_FLAG_LEAP Lit when the leapsecond values are accepted.
109 * Cryptodefines
111 #define TAI_1972 10 /* initial TAI offset (s) */
112 #define MAX_LEAP 100 /* max UTC leapseconds (s) */
113 #define VALUE_LEN (6 * 4) /* min response field length */
114 #define YEAR (60 * 60 * 24 * 365) /* seconds in year */
117 * Global cryptodata in host byte order
119 u_int32 crypto_flags = 0x0; /* status word */
120 int crypto_nid = KEY_TYPE_MD5; /* digest nid */
121 char *sys_hostname = NULL; /* host name */
122 char *sys_groupname = NULL; /* group name */
125 * Global cryptodata in network byte order
127 struct cert_info *cinfo = NULL; /* certificate info/value cache */
128 struct cert_info *cert_host = NULL; /* host certificate */
129 struct pkey_info *pkinfo = NULL; /* key info/value cache */
130 struct value hostval; /* host value */
131 struct value pubkey; /* public key */
132 struct value tai_leap; /* leapseconds values */
133 struct pkey_info *iffkey_info = NULL; /* IFF keys */
134 struct pkey_info *gqkey_info = NULL; /* GQ keys */
135 struct pkey_info *mvkey_info = NULL; /* MV keys */
138 * Private cryptodata in host byte order
140 static char *passwd = NULL; /* private key password */
141 static EVP_PKEY *host_pkey = NULL; /* host key */
142 static EVP_PKEY *sign_pkey = NULL; /* sign key */
143 static const EVP_MD *sign_digest = NULL; /* sign digest */
144 static u_int sign_siglen; /* sign key length */
145 static char *rand_file = NULL; /* random seed file */
148 * Cryptotypes
150 static int crypto_verify (struct exten *, struct value *,
151 struct peer *);
152 static int crypto_encrypt (struct exten *, struct value *,
153 keyid_t *);
154 static int crypto_alice (struct peer *, struct value *);
155 static int crypto_alice2 (struct peer *, struct value *);
156 static int crypto_alice3 (struct peer *, struct value *);
157 static int crypto_bob (struct exten *, struct value *);
158 static int crypto_bob2 (struct exten *, struct value *);
159 static int crypto_bob3 (struct exten *, struct value *);
160 static int crypto_iff (struct exten *, struct peer *);
161 static int crypto_gq (struct exten *, struct peer *);
162 static int crypto_mv (struct exten *, struct peer *);
163 static int crypto_send (struct exten *, struct value *, int);
164 static tstamp_t crypto_time (void);
165 static u_long asn2ntp (ASN1_TIME *);
166 static struct cert_info *cert_parse (u_char *, long, tstamp_t);
167 static int cert_sign (struct exten *, struct value *);
168 static struct cert_info *cert_install (struct exten *, struct peer *);
169 static int cert_hike (struct peer *, struct cert_info *);
170 static void cert_free (struct cert_info *);
171 static struct pkey_info *crypto_key (char *, char *, sockaddr_u *);
172 static void bighash (BIGNUM *, BIGNUM *);
173 static struct cert_info *crypto_cert (char *);
175 #ifdef SYS_WINNT
177 readlink(char * link, char * file, int len) {
178 return (-1);
180 #endif
183 * session_key - generate session key
185 * This routine generates a session key from the source address,
186 * destination address, key ID and private value. The value of the
187 * session key is the MD5 hash of these values, while the next key ID is
188 * the first four octets of the hash.
190 * Returns the next key ID or 0 if there is no destination address.
192 keyid_t
193 session_key(
194 sockaddr_u *srcadr, /* source address */
195 sockaddr_u *dstadr, /* destination address */
196 keyid_t keyno, /* key ID */
197 keyid_t private, /* private value */
198 u_long lifetime /* key lifetime */
201 EVP_MD_CTX ctx; /* message digest context */
202 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
203 keyid_t keyid; /* key identifer */
204 u_int32 header[10]; /* data in network byte order */
205 u_int hdlen, len;
207 if (!dstadr)
208 return 0;
211 * Generate the session key and key ID. If the lifetime is
212 * greater than zero, install the key and call it trusted.
214 hdlen = 0;
215 switch(AF(srcadr)) {
216 case AF_INET:
217 header[0] = NSRCADR(srcadr);
218 header[1] = NSRCADR(dstadr);
219 header[2] = htonl(keyno);
220 header[3] = htonl(private);
221 hdlen = 4 * sizeof(u_int32);
222 break;
224 case AF_INET6:
225 memcpy(&header[0], PSOCK_ADDR6(srcadr),
226 sizeof(struct in6_addr));
227 memcpy(&header[4], PSOCK_ADDR6(dstadr),
228 sizeof(struct in6_addr));
229 header[8] = htonl(keyno);
230 header[9] = htonl(private);
231 hdlen = 10 * sizeof(u_int32);
232 break;
234 EVP_DigestInit(&ctx, EVP_get_digestbynid(crypto_nid));
235 EVP_DigestUpdate(&ctx, (u_char *)header, hdlen);
236 EVP_DigestFinal(&ctx, dgst, &len);
237 memcpy(&keyid, dgst, 4);
238 keyid = ntohl(keyid);
239 if (lifetime != 0) {
240 MD5auth_setkey(keyno, crypto_nid, dgst, len);
241 authtrust(keyno, lifetime);
243 DPRINTF(2, ("session_key: %s > %s %08x %08x hash %08x life %lu\n",
244 stoa(srcadr), stoa(dstadr), keyno,
245 private, keyid, lifetime));
247 return (keyid);
252 * make_keylist - generate key list
254 * Returns
255 * XEVNT_OK success
256 * XEVNT_ERR protocol error
258 * This routine constructs a pseudo-random sequence by repeatedly
259 * hashing the session key starting from a given source address,
260 * destination address, private value and the next key ID of the
261 * preceeding session key. The last entry on the list is saved along
262 * with its sequence number and public signature.
265 make_keylist(
266 struct peer *peer, /* peer structure pointer */
267 struct interface *dstadr /* interface */
270 EVP_MD_CTX ctx; /* signature context */
271 tstamp_t tstamp; /* NTP timestamp */
272 struct autokey *ap; /* autokey pointer */
273 struct value *vp; /* value pointer */
274 keyid_t keyid = 0; /* next key ID */
275 keyid_t cookie; /* private value */
276 long lifetime;
277 u_int len, mpoll;
278 int i;
280 if (!dstadr)
281 return XEVNT_ERR;
284 * Allocate the key list if necessary.
286 tstamp = crypto_time();
287 if (peer->keylist == NULL)
288 peer->keylist = emalloc(sizeof(keyid_t) *
289 NTP_MAXSESSION);
292 * Generate an initial key ID which is unique and greater than
293 * NTP_MAXKEY.
295 while (1) {
296 keyid = ntp_random() & 0xffffffff;
297 if (keyid <= NTP_MAXKEY)
298 continue;
300 if (authhavekey(keyid))
301 continue;
302 break;
306 * Generate up to NTP_MAXSESSION session keys. Stop if the
307 * next one would not be unique or not a session key ID or if
308 * it would expire before the next poll. The private value
309 * included in the hash is zero if broadcast mode, the peer
310 * cookie if client mode or the host cookie if symmetric modes.
312 mpoll = 1 << min(peer->ppoll, peer->hpoll);
313 lifetime = min(1 << sys_automax, NTP_MAXSESSION * mpoll);
314 if (peer->hmode == MODE_BROADCAST)
315 cookie = 0;
316 else
317 cookie = peer->pcookie;
318 for (i = 0; i < NTP_MAXSESSION; i++) {
319 peer->keylist[i] = keyid;
320 peer->keynumber = i;
321 keyid = session_key(&dstadr->sin, &peer->srcadr, keyid,
322 cookie, lifetime + mpoll);
323 lifetime -= mpoll;
324 if (auth_havekey(keyid) || keyid <= NTP_MAXKEY ||
325 lifetime < 0 || tstamp == 0)
326 break;
330 * Save the last session key ID, sequence number and timestamp,
331 * then sign these values for later retrieval by the clients. Be
332 * careful not to use invalid key media. Use the public values
333 * timestamp as filestamp.
335 vp = &peer->sndval;
336 if (vp->ptr == NULL)
337 vp->ptr = emalloc(sizeof(struct autokey));
338 ap = (struct autokey *)vp->ptr;
339 ap->seq = htonl(peer->keynumber);
340 ap->key = htonl(keyid);
341 vp->tstamp = htonl(tstamp);
342 vp->fstamp = hostval.tstamp;
343 vp->vallen = htonl(sizeof(struct autokey));
344 vp->siglen = 0;
345 if (tstamp != 0) {
346 if (vp->sig == NULL)
347 vp->sig = emalloc(sign_siglen);
348 EVP_SignInit(&ctx, sign_digest);
349 EVP_SignUpdate(&ctx, (u_char *)vp, 12);
350 EVP_SignUpdate(&ctx, vp->ptr, sizeof(struct autokey));
351 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey)) {
352 vp->siglen = htonl(sign_siglen);
353 peer->flags |= FLAG_ASSOC;
356 #ifdef DEBUG
357 if (debug)
358 printf("make_keys: %d %08x %08x ts %u fs %u poll %d\n",
359 peer->keynumber, keyid, cookie, ntohl(vp->tstamp),
360 ntohl(vp->fstamp), peer->hpoll);
361 #endif
362 return (XEVNT_OK);
367 * crypto_recv - parse extension fields
369 * This routine is called when the packet has been matched to an
370 * association and passed sanity, format and MAC checks. We believe the
371 * extension field values only if the field has proper format and
372 * length, the timestamp and filestamp are valid and the signature has
373 * valid length and is verified. There are a few cases where some values
374 * are believed even if the signature fails, but only if the proventic
375 * bit is not set.
377 * Returns
378 * XEVNT_OK success
379 * XEVNT_ERR protocol error
380 * XEVNT_LEN bad field format or length
383 crypto_recv(
384 struct peer *peer, /* peer structure pointer */
385 struct recvbuf *rbufp /* packet buffer pointer */
388 const EVP_MD *dp; /* message digest algorithm */
389 u_int32 *pkt; /* receive packet pointer */
390 struct autokey *ap, *bp; /* autokey pointer */
391 struct exten *ep, *fp; /* extension pointers */
392 struct cert_info *xinfo; /* certificate info pointer */
393 int has_mac; /* length of MAC field */
394 int authlen; /* offset of MAC field */
395 associd_t associd; /* association ID */
396 tstamp_t tstamp = 0; /* timestamp */
397 tstamp_t fstamp = 0; /* filestamp */
398 u_int len; /* extension field length */
399 u_int code; /* extension field opcode */
400 u_int vallen = 0; /* value length */
401 X509 *cert; /* X509 certificate */
402 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
403 keyid_t cookie; /* crumbles */
404 int hismode; /* packet mode */
405 int rval = XEVNT_OK;
406 const u_char *ptr;
407 u_int32 temp32;
410 * Initialize. Note that the packet has already been checked for
411 * valid format and extension field lengths. First extract the
412 * field length, command code and association ID in host byte
413 * order. These are used with all commands and modes. Then check
414 * the version number, which must be 2, and length, which must
415 * be at least 8 for requests and VALUE_LEN (24) for responses.
416 * Packets that fail either test sink without a trace. The
417 * association ID is saved only if nonzero.
419 authlen = LEN_PKT_NOMAC;
420 hismode = (int)PKT_MODE((&rbufp->recv_pkt)->li_vn_mode);
421 while ((has_mac = rbufp->recv_length - authlen) > MAX_MAC_LEN) {
422 pkt = (u_int32 *)&rbufp->recv_pkt + authlen / 4;
423 ep = (struct exten *)pkt;
424 code = ntohl(ep->opcode) & 0xffff0000;
425 len = ntohl(ep->opcode) & 0x0000ffff;
426 associd = (associd_t)ntohl(pkt[1]);
427 rval = XEVNT_OK;
428 #ifdef DEBUG
429 if (debug)
430 printf(
431 "crypto_recv: flags 0x%x ext offset %d len %u code 0x%x associd %d\n",
432 peer->crypto, authlen, len, code >> 16,
433 associd);
434 #endif
437 * Check version number and field length. If bad,
438 * quietly ignore the packet.
440 if (((code >> 24) & 0x3f) != CRYPTO_VN || len < 8) {
441 sys_badlength++;
442 code |= CRYPTO_ERROR;
445 if (len >= VALUE_LEN) {
446 tstamp = ntohl(ep->tstamp);
447 fstamp = ntohl(ep->fstamp);
448 vallen = ntohl(ep->vallen);
450 switch (code) {
453 * Install status word, host name, signature scheme and
454 * association ID. In OpenSSL the signature algorithm is
455 * bound to the digest algorithm, so the NID completely
456 * defines the signature scheme. Note the request and
457 * response are identical, but neither is validated by
458 * signature. The request is processed here only in
459 * symmetric modes. The server name field might be
460 * useful to implement access controls in future.
462 case CRYPTO_ASSOC:
465 * If our state machine is running when this
466 * message arrives, the other fellow might have
467 * restarted. However, this could be an
468 * intruder, so just clamp the poll interval and
469 * find out for ourselves. Otherwise, pass the
470 * extension field to the transmit side.
472 if (peer->crypto & CRYPTO_FLAG_CERT) {
473 rval = XEVNT_ERR;
474 break;
476 if (peer->cmmd) {
477 if (peer->assoc != associd) {
478 rval = XEVNT_ERR;
479 break;
482 fp = emalloc(len);
483 memcpy(fp, ep, len);
484 fp->associd = htonl(peer->associd);
485 peer->cmmd = fp;
486 /* fall through */
488 case CRYPTO_ASSOC | CRYPTO_RESP:
491 * Discard the message if it has already been
492 * stored or the message has been amputated.
494 if (peer->crypto) {
495 if (peer->assoc != associd)
496 rval = XEVNT_ERR;
497 break;
499 if (vallen == 0 || vallen > MAXHOSTNAME ||
500 len < VALUE_LEN + vallen) {
501 rval = XEVNT_LEN;
502 break;
504 #ifdef DEBUG
505 if (debug)
506 printf(
507 "crypto_recv: ident host 0x%x %d server 0x%x %d\n",
508 crypto_flags, peer->associd, fstamp,
509 peer->assoc);
510 #endif
511 temp32 = crypto_flags & CRYPTO_FLAG_MASK;
514 * If the client scheme is PC, the server scheme
515 * must be PC. The public key and identity are
516 * presumed valid, so we skip the certificate
517 * and identity exchanges and move immediately
518 * to the cookie exchange which confirms the
519 * server signature.
521 if (crypto_flags & CRYPTO_FLAG_PRIV) {
522 if (!(fstamp & CRYPTO_FLAG_PRIV)) {
523 rval = XEVNT_KEY;
524 break;
526 fstamp |= CRYPTO_FLAG_CERT |
527 CRYPTO_FLAG_VRFY | CRYPTO_FLAG_SIGN;
530 * It is an error if either peer supports
531 * identity, but the other does not.
533 } else if (hismode == MODE_ACTIVE || hismode ==
534 MODE_PASSIVE) {
535 if ((temp32 && !(fstamp &
536 CRYPTO_FLAG_MASK)) ||
537 (!temp32 && (fstamp &
538 CRYPTO_FLAG_MASK))) {
539 rval = XEVNT_KEY;
540 break;
545 * Discard the message if the signature digest
546 * NID is not supported.
548 temp32 = (fstamp >> 16) & 0xffff;
549 dp =
550 (const EVP_MD *)EVP_get_digestbynid(temp32);
551 if (dp == NULL) {
552 rval = XEVNT_MD;
553 break;
557 * Save status word, host name and message
558 * digest/signature type. If this is from a
559 * broadcast and the association ID has changed,
560 * request the autokey values.
562 peer->assoc = associd;
563 if (hismode == MODE_SERVER)
564 fstamp |= CRYPTO_FLAG_AUTO;
565 if (!(fstamp & CRYPTO_FLAG_TAI))
566 fstamp |= CRYPTO_FLAG_LEAP;
567 RAND_bytes((u_char *)&peer->hcookie, 4);
568 peer->crypto = fstamp;
569 peer->digest = dp;
570 if (peer->subject != NULL)
571 free(peer->subject);
572 peer->subject = emalloc(vallen + 1);
573 memcpy(peer->subject, ep->pkt, vallen);
574 peer->subject[vallen] = '\0';
575 if (peer->issuer != NULL)
576 free(peer->issuer);
577 peer->issuer = emalloc(vallen + 1);
578 strcpy(peer->issuer, peer->subject);
579 snprintf(statstr, NTP_MAXSTRLEN,
580 "assoc %d %d host %s %s", peer->associd,
581 peer->assoc, peer->subject,
582 OBJ_nid2ln(temp32));
583 record_crypto_stats(&peer->srcadr, statstr);
584 #ifdef DEBUG
585 if (debug)
586 printf("crypto_recv: %s\n", statstr);
587 #endif
588 break;
591 * Decode X509 certificate in ASN.1 format and extract
592 * the data containing, among other things, subject
593 * name and public key. In the default identification
594 * scheme, the certificate trail is followed to a self
595 * signed trusted certificate.
597 case CRYPTO_CERT | CRYPTO_RESP:
600 * Discard the message if empty or invalid.
602 if (len < VALUE_LEN)
603 break;
605 if ((rval = crypto_verify(ep, NULL, peer)) !=
606 XEVNT_OK)
607 break;
610 * Scan the certificate list to delete old
611 * versions and link the newest version first on
612 * the list. Then, verify the signature. If the
613 * certificate is bad or missing, just ignore
614 * it.
616 if ((xinfo = cert_install(ep, peer)) == NULL) {
617 rval = XEVNT_CRT;
618 break;
620 if ((rval = cert_hike(peer, xinfo)) != XEVNT_OK)
621 break;
624 * We plug in the public key and lifetime from
625 * the first certificate received. However, note
626 * that this certificate might not be signed by
627 * the server, so we can't check the
628 * signature/digest NID.
630 if (peer->pkey == NULL) {
631 ptr = (u_char *)xinfo->cert.ptr;
632 cert = d2i_X509(NULL, &ptr,
633 ntohl(xinfo->cert.vallen));
634 peer->pkey = X509_get_pubkey(cert);
635 X509_free(cert);
637 peer->flash &= ~TEST8;
638 temp32 = xinfo->nid;
639 snprintf(statstr, NTP_MAXSTRLEN,
640 "cert %s %s 0x%x %s (%u) fs %u",
641 xinfo->subject, xinfo->issuer, xinfo->flags,
642 OBJ_nid2ln(temp32), temp32,
643 ntohl(ep->fstamp));
644 record_crypto_stats(&peer->srcadr, statstr);
645 #ifdef DEBUG
646 if (debug)
647 printf("crypto_recv: %s\n", statstr);
648 #endif
649 break;
652 * Schnorr (IFF) identity scheme. This scheme is
653 * designed for use with shared secret server group keys
654 * and where the certificate may be generated by a third
655 * party. The client sends a challenge to the server,
656 * which performs a calculation and returns the result.
657 * A positive result is possible only if both client and
658 * server contain the same secret group key.
660 case CRYPTO_IFF | CRYPTO_RESP:
663 * Discard the message if invalid.
665 if ((rval = crypto_verify(ep, NULL, peer)) !=
666 XEVNT_OK)
667 break;
670 * If the challenge matches the response, the
671 * server public key, signature and identity are
672 * all verified at the same time. The server is
673 * declared trusted, so we skip further
674 * certificate exchanges and move immediately to
675 * the cookie exchange.
677 if ((rval = crypto_iff(ep, peer)) != XEVNT_OK)
678 break;
680 peer->crypto |= CRYPTO_FLAG_VRFY;
681 peer->flash &= ~TEST8;
682 snprintf(statstr, NTP_MAXSTRLEN, "iff %s fs %u",
683 peer->issuer, ntohl(ep->fstamp));
684 record_crypto_stats(&peer->srcadr, statstr);
685 #ifdef DEBUG
686 if (debug)
687 printf("crypto_recv: %s\n", statstr);
688 #endif
689 break;
692 * Guillou-Quisquater (GQ) identity scheme. This scheme
693 * is designed for use with public certificates carrying
694 * the GQ public key in an extension field. The client
695 * sends a challenge to the server, which performs a
696 * calculation and returns the result. A positive result
697 * is possible only if both client and server contain
698 * the same group key and the server has the matching GQ
699 * private key.
701 case CRYPTO_GQ | CRYPTO_RESP:
704 * Discard the message if invalid
706 if ((rval = crypto_verify(ep, NULL, peer)) !=
707 XEVNT_OK)
708 break;
711 * If the challenge matches the response, the
712 * server public key, signature and identity are
713 * all verified at the same time. The server is
714 * declared trusted, so we skip further
715 * certificate exchanges and move immediately to
716 * the cookie exchange.
718 if ((rval = crypto_gq(ep, peer)) != XEVNT_OK)
719 break;
721 peer->crypto |= CRYPTO_FLAG_VRFY;
722 peer->flash &= ~TEST8;
723 snprintf(statstr, NTP_MAXSTRLEN, "gq %s fs %u",
724 peer->issuer, ntohl(ep->fstamp));
725 record_crypto_stats(&peer->srcadr, statstr);
726 #ifdef DEBUG
727 if (debug)
728 printf("crypto_recv: %s\n", statstr);
729 #endif
730 break;
733 * Mu-Varadharajan (MV) identity scheme. This scheme is
734 * designed for use with three levels of trust, trusted
735 * host, server and client. The trusted host key is
736 * opaque to servers and clients; the server keys are
737 * opaque to clients and each client key is different.
738 * Client keys can be revoked without requiring new key
739 * generations.
741 case CRYPTO_MV | CRYPTO_RESP:
744 * Discard the message if invalid.
746 if ((rval = crypto_verify(ep, NULL, peer)) !=
747 XEVNT_OK)
748 break;
751 * If the challenge matches the response, the
752 * server public key, signature and identity are
753 * all verified at the same time. The server is
754 * declared trusted, so we skip further
755 * certificate exchanges and move immediately to
756 * the cookie exchange.
758 if ((rval = crypto_mv(ep, peer)) != XEVNT_OK)
759 break;
761 peer->crypto |= CRYPTO_FLAG_VRFY;
762 peer->flash &= ~TEST8;
763 snprintf(statstr, NTP_MAXSTRLEN, "mv %s fs %u",
764 peer->issuer, ntohl(ep->fstamp));
765 record_crypto_stats(&peer->srcadr, statstr);
766 #ifdef DEBUG
767 if (debug)
768 printf("crypto_recv: %s\n", statstr);
769 #endif
770 break;
774 * Cookie response in client and symmetric modes. If the
775 * cookie bit is set, the working cookie is the EXOR of
776 * the current and new values.
778 case CRYPTO_COOK | CRYPTO_RESP:
781 * Discard the message if invalid or signature
782 * not verified with respect to the cookie
783 * values.
785 if ((rval = crypto_verify(ep, &peer->cookval,
786 peer)) != XEVNT_OK)
787 break;
790 * Decrypt the cookie, hunting all the time for
791 * errors.
793 if (vallen == (u_int)EVP_PKEY_size(host_pkey)) {
794 if (RSA_private_decrypt(vallen,
795 (u_char *)ep->pkt,
796 (u_char *)&temp32,
797 host_pkey->pkey.rsa,
798 RSA_PKCS1_OAEP_PADDING) <= 0) {
799 rval = XEVNT_CKY;
800 break;
801 } else {
802 cookie = ntohl(temp32);
804 } else {
805 rval = XEVNT_CKY;
806 break;
810 * Install cookie values and light the cookie
811 * bit. If this is not broadcast client mode, we
812 * are done here.
814 key_expire(peer);
815 if (hismode == MODE_ACTIVE || hismode ==
816 MODE_PASSIVE)
817 peer->pcookie = peer->hcookie ^ cookie;
818 else
819 peer->pcookie = cookie;
820 peer->crypto |= CRYPTO_FLAG_COOK;
821 peer->flash &= ~TEST8;
822 snprintf(statstr, NTP_MAXSTRLEN,
823 "cook %x ts %u fs %u", peer->pcookie,
824 ntohl(ep->tstamp), ntohl(ep->fstamp));
825 record_crypto_stats(&peer->srcadr, statstr);
826 #ifdef DEBUG
827 if (debug)
828 printf("crypto_recv: %s\n", statstr);
829 #endif
830 break;
833 * Install autokey values in broadcast client and
834 * symmetric modes. We have to do this every time the
835 * sever/peer cookie changes or a new keylist is
836 * rolled. Ordinarily, this is automatic as this message
837 * is piggybacked on the first NTP packet sent upon
838 * either of these events. Note that a broadcast client
839 * or symmetric peer can receive this response without a
840 * matching request.
842 case CRYPTO_AUTO | CRYPTO_RESP:
845 * Discard the message if invalid or signature
846 * not verified with respect to the receive
847 * autokey values.
849 if ((rval = crypto_verify(ep, &peer->recval,
850 peer)) != XEVNT_OK)
851 break;
854 * Discard the message if a broadcast client and
855 * the association ID does not match. This might
856 * happen if a broacast server restarts the
857 * protocol. A protocol restart will occur at
858 * the next ASSOC message.
860 if (peer->cast_flags & MDF_BCLNT &&
861 peer->assoc != associd)
862 break;
865 * Install autokey values and light the
866 * autokey bit. This is not hard.
868 if (ep->tstamp == 0)
869 break;
871 if (peer->recval.ptr == NULL)
872 peer->recval.ptr =
873 emalloc(sizeof(struct autokey));
874 bp = (struct autokey *)peer->recval.ptr;
875 peer->recval.tstamp = ep->tstamp;
876 peer->recval.fstamp = ep->fstamp;
877 ap = (struct autokey *)ep->pkt;
878 bp->seq = ntohl(ap->seq);
879 bp->key = ntohl(ap->key);
880 peer->pkeyid = bp->key;
881 peer->crypto |= CRYPTO_FLAG_AUTO;
882 peer->flash &= ~TEST8;
883 snprintf(statstr, NTP_MAXSTRLEN,
884 "auto seq %d key %x ts %u fs %u", bp->seq,
885 bp->key, ntohl(ep->tstamp),
886 ntohl(ep->fstamp));
887 record_crypto_stats(&peer->srcadr, statstr);
888 #ifdef DEBUG
889 if (debug)
890 printf("crypto_recv: %s\n", statstr);
891 #endif
892 break;
895 * X509 certificate sign response. Validate the
896 * certificate signed by the server and install. Later
897 * this can be provided to clients of this server in
898 * lieu of the self signed certificate in order to
899 * validate the public key.
901 case CRYPTO_SIGN | CRYPTO_RESP:
904 * Discard the message if invalid.
906 if ((rval = crypto_verify(ep, NULL, peer)) !=
907 XEVNT_OK)
908 break;
911 * Scan the certificate list to delete old
912 * versions and link the newest version first on
913 * the list.
915 if ((xinfo = cert_install(ep, peer)) == NULL) {
916 rval = XEVNT_CRT;
917 break;
919 peer->crypto |= CRYPTO_FLAG_SIGN;
920 peer->flash &= ~TEST8;
921 temp32 = xinfo->nid;
922 snprintf(statstr, NTP_MAXSTRLEN,
923 "sign %s %s 0x%x %s (%u) fs %u",
924 xinfo->subject, xinfo->issuer, xinfo->flags,
925 OBJ_nid2ln(temp32), temp32,
926 ntohl(ep->fstamp));
927 record_crypto_stats(&peer->srcadr, statstr);
928 #ifdef DEBUG
929 if (debug)
930 printf("crypto_recv: %s\n", statstr);
931 #endif
932 break;
935 * Install leapseconds values. While the leapsecond
936 * values epoch, TAI offset and values expiration epoch
937 * are retained, only the current TAI offset is provided
938 * via the kernel to other applications.
940 case CRYPTO_LEAP | CRYPTO_RESP:
943 * Discard the message if invalid. We can't
944 * compare the value timestamps here, as they
945 * can be updated by different servers.
947 if ((rval = crypto_verify(ep, NULL, peer)) !=
948 XEVNT_OK)
949 break;
952 * If the packet leap values are more recent
953 * than the stored ones, install the new leap
954 * values and recompute the signatures.
956 if (ntohl(ep->pkt[2]) > leap_expire) {
957 char tbuf[80], str1 [20], str2[20];
959 tai_leap.tstamp = ep->tstamp;
960 tai_leap.fstamp = ep->fstamp;
961 tai_leap.vallen = ep->vallen;
962 leap_tai = ntohl(ep->pkt[0]);
963 leap_sec = ntohl(ep->pkt[1]);
964 leap_expire = ntohl(ep->pkt[2]);
965 crypto_update();
966 strcpy(str1, fstostr(leap_sec));
967 strcpy(str2, fstostr(leap_expire));
968 snprintf(tbuf, sizeof(tbuf),
969 "%d leap %s expire %s", leap_tai, str1,
970 str2);
971 report_event(EVNT_TAI, peer, tbuf);
973 peer->crypto |= CRYPTO_FLAG_LEAP;
974 peer->flash &= ~TEST8;
975 snprintf(statstr, NTP_MAXSTRLEN,
976 "leap TAI offset %d at %u expire %u fs %u",
977 ntohl(ep->pkt[0]), ntohl(ep->pkt[1]),
978 ntohl(ep->pkt[2]), ntohl(ep->fstamp));
979 record_crypto_stats(&peer->srcadr, statstr);
980 #ifdef DEBUG
981 if (debug)
982 printf("crypto_recv: %s\n", statstr);
983 #endif
984 break;
987 * We come here in symmetric modes for miscellaneous
988 * commands that have value fields but are processed on
989 * the transmit side. All we need do here is check for
990 * valid field length. Note that ASSOC is handled
991 * separately.
993 case CRYPTO_CERT:
994 case CRYPTO_IFF:
995 case CRYPTO_GQ:
996 case CRYPTO_MV:
997 case CRYPTO_COOK:
998 case CRYPTO_SIGN:
999 if (len < VALUE_LEN) {
1000 rval = XEVNT_LEN;
1001 break;
1003 /* fall through */
1006 * We come here in symmetric modes for requests
1007 * requiring a response (above plus AUTO and LEAP) and
1008 * for responses. If a request, save the extension field
1009 * for later; invalid requests will be caught on the
1010 * transmit side. If an error or invalid response,
1011 * declare a protocol error.
1013 default:
1014 if (code & (CRYPTO_RESP | CRYPTO_ERROR)) {
1015 rval = XEVNT_ERR;
1016 } else if (peer->cmmd == NULL) {
1017 fp = emalloc(len);
1018 memcpy(fp, ep, len);
1019 peer->cmmd = fp;
1024 * The first error found terminates the extension field
1025 * scan and we return the laundry to the caller.
1027 if (rval != XEVNT_OK) {
1028 snprintf(statstr, NTP_MAXSTRLEN,
1029 "%04x %d %02x %s", htonl(ep->opcode),
1030 associd, rval, eventstr(rval));
1031 record_crypto_stats(&peer->srcadr, statstr);
1032 #ifdef DEBUG
1033 if (debug)
1034 printf("crypto_recv: %s\n", statstr);
1035 #endif
1036 return (rval);
1038 authlen += (len + 3) / 4 * 4;
1040 return (rval);
1045 * crypto_xmit - construct extension fields
1047 * This routine is called both when an association is configured and
1048 * when one is not. The only case where this matters is to retrieve the
1049 * autokey information, in which case the caller has to provide the
1050 * association ID to match the association.
1052 * Side effect: update the packet offset.
1054 * Errors
1055 * XEVNT_OK success
1056 * XEVNT_CRT bad or missing certificate
1057 * XEVNT_ERR protocol error
1058 * XEVNT_LEN bad field format or length
1059 * XEVNT_PER host certificate expired
1062 crypto_xmit(
1063 struct peer *peer, /* peer structure pointer */
1064 struct pkt *xpkt, /* transmit packet pointer */
1065 struct recvbuf *rbufp, /* receive buffer pointer */
1066 int start, /* offset to extension field */
1067 struct exten *ep, /* extension pointer */
1068 keyid_t cookie /* session cookie */
1071 struct exten *fp; /* extension pointers */
1072 struct cert_info *cp, *xp, *yp; /* cert info/value pointer */
1073 sockaddr_u *srcadr_sin; /* source address */
1074 u_int32 *pkt; /* packet pointer */
1075 u_int opcode; /* extension field opcode */
1076 char certname[MAXHOSTNAME + 1]; /* subject name buffer */
1077 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1078 tstamp_t tstamp;
1079 u_int vallen;
1080 struct value vtemp;
1081 associd_t associd;
1082 int rval;
1083 int len;
1084 keyid_t tcookie;
1087 * Generate the requested extension field request code, length
1088 * and association ID. If this is a response and the host is not
1089 * synchronized, light the error bit and go home.
1091 pkt = (u_int32 *)xpkt + start / 4;
1092 fp = (struct exten *)pkt;
1093 opcode = ntohl(ep->opcode);
1094 if (peer != NULL) {
1095 srcadr_sin = &peer->srcadr;
1096 if (!(opcode & CRYPTO_RESP))
1097 peer->opcode = ep->opcode;
1098 } else {
1099 srcadr_sin = &rbufp->recv_srcadr;
1101 associd = (associd_t) ntohl(ep->associd);
1102 len = 8;
1103 fp->opcode = htonl((opcode & 0xffff0000) | len);
1104 fp->associd = ep->associd;
1105 rval = XEVNT_OK;
1106 tstamp = crypto_time();
1107 switch (opcode & 0xffff0000) {
1110 * Send association request and response with status word and
1111 * host name. Note, this message is not signed and the filestamp
1112 * contains only the status word.
1114 case CRYPTO_ASSOC:
1115 case CRYPTO_ASSOC | CRYPTO_RESP:
1116 len = crypto_send(fp, &hostval, start);
1117 fp->fstamp = htonl(crypto_flags);
1118 break;
1121 * Send certificate request. Use the values from the extension
1122 * field.
1124 case CRYPTO_CERT:
1125 memset(&vtemp, 0, sizeof(vtemp));
1126 vtemp.tstamp = ep->tstamp;
1127 vtemp.fstamp = ep->fstamp;
1128 vtemp.vallen = ep->vallen;
1129 vtemp.ptr = (u_char *)ep->pkt;
1130 len = crypto_send(fp, &vtemp, start);
1131 break;
1134 * Send sign request. Use the host certificate, which is self-
1135 * signed and may or may not be trusted.
1137 case CRYPTO_SIGN:
1138 if (tstamp < cert_host->first || tstamp >
1139 cert_host->last)
1140 rval = XEVNT_PER;
1141 else
1142 len = crypto_send(fp, &cert_host->cert, start);
1143 break;
1146 * Send certificate response. Use the name in the extension
1147 * field to find the certificate in the cache. If the request
1148 * contains no subject name, assume the name of this host. This
1149 * is for backwards compatibility. Private certificates are
1150 * never sent.
1152 * There may be several certificates matching the request. First
1153 * choice is a self-signed trusted certificate; second choice is
1154 * any certificate signed by another host. There is no third
1155 * choice.
1157 case CRYPTO_CERT | CRYPTO_RESP:
1158 vallen = ntohl(ep->vallen);
1159 if (vallen == 0 || vallen > MAXHOSTNAME) {
1160 rval = XEVNT_LEN;
1161 break;
1163 } else {
1164 memcpy(certname, ep->pkt, vallen);
1165 certname[vallen] = '\0';
1169 * Find all public valid certificates with matching
1170 * subject. If a self-signed, trusted certificate is
1171 * found, use that certificate. If not, use the last non
1172 * self-signed certificate.
1174 xp = yp = NULL;
1175 for (cp = cinfo; cp != NULL; cp = cp->link) {
1176 if (cp->flags & (CERT_PRIV | CERT_ERROR))
1177 continue;
1179 if (strcmp(certname, cp->subject) != 0)
1180 continue;
1182 if (strcmp(certname, cp->issuer) != 0)
1183 yp = cp;
1184 else if (cp ->flags & CERT_TRUST)
1185 xp = cp;
1186 continue;
1190 * Be careful who you trust. If the certificate is not
1191 * found, return an empty response. Note that we dont
1192 * enforce lifetimes here.
1194 * The timestamp and filestamp are taken from the
1195 * certificate value structure. For all certificates the
1196 * timestamp is the latest signature update time. For
1197 * host and imported certificates the filestamp is the
1198 * creation epoch. For signed certificates the filestamp
1199 * is the creation epoch of the trusted certificate at
1200 * the root of the certificate trail. In principle, this
1201 * allows strong checking for signature masquerade.
1203 if (xp == NULL)
1204 xp = yp;
1205 if (xp == NULL)
1206 break;
1208 if (tstamp == 0)
1209 break;
1211 len = crypto_send(fp, &xp->cert, start);
1212 break;
1215 * Send challenge in Schnorr (IFF) identity scheme.
1217 case CRYPTO_IFF:
1218 if (peer == NULL)
1219 break; /* hack attack */
1221 if ((rval = crypto_alice(peer, &vtemp)) == XEVNT_OK) {
1222 len = crypto_send(fp, &vtemp, start);
1223 value_free(&vtemp);
1225 break;
1228 * Send response in Schnorr (IFF) identity scheme.
1230 case CRYPTO_IFF | CRYPTO_RESP:
1231 if ((rval = crypto_bob(ep, &vtemp)) == XEVNT_OK) {
1232 len = crypto_send(fp, &vtemp, start);
1233 value_free(&vtemp);
1235 break;
1238 * Send challenge in Guillou-Quisquater (GQ) identity scheme.
1240 case CRYPTO_GQ:
1241 if (peer == NULL)
1242 break; /* hack attack */
1244 if ((rval = crypto_alice2(peer, &vtemp)) == XEVNT_OK) {
1245 len = crypto_send(fp, &vtemp, start);
1246 value_free(&vtemp);
1248 break;
1251 * Send response in Guillou-Quisquater (GQ) identity scheme.
1253 case CRYPTO_GQ | CRYPTO_RESP:
1254 if ((rval = crypto_bob2(ep, &vtemp)) == XEVNT_OK) {
1255 len = crypto_send(fp, &vtemp, start);
1256 value_free(&vtemp);
1258 break;
1261 * Send challenge in MV identity scheme.
1263 case CRYPTO_MV:
1264 if (peer == NULL)
1265 break; /* hack attack */
1267 if ((rval = crypto_alice3(peer, &vtemp)) == XEVNT_OK) {
1268 len = crypto_send(fp, &vtemp, start);
1269 value_free(&vtemp);
1271 break;
1274 * Send response in MV identity scheme.
1276 case CRYPTO_MV | CRYPTO_RESP:
1277 if ((rval = crypto_bob3(ep, &vtemp)) == XEVNT_OK) {
1278 len = crypto_send(fp, &vtemp, start);
1279 value_free(&vtemp);
1281 break;
1284 * Send certificate sign response. The integrity of the request
1285 * certificate has already been verified on the receive side.
1286 * Sign the response using the local server key. Use the
1287 * filestamp from the request and use the timestamp as the
1288 * current time. Light the error bit if the certificate is
1289 * invalid or contains an unverified signature.
1291 case CRYPTO_SIGN | CRYPTO_RESP:
1292 if ((rval = cert_sign(ep, &vtemp)) == XEVNT_OK) {
1293 len = crypto_send(fp, &vtemp, start);
1294 value_free(&vtemp);
1296 break;
1299 * Send public key and signature. Use the values from the public
1300 * key.
1302 case CRYPTO_COOK:
1303 len = crypto_send(fp, &pubkey, start);
1304 break;
1307 * Encrypt and send cookie and signature. Light the error bit if
1308 * anything goes wrong.
1310 case CRYPTO_COOK | CRYPTO_RESP:
1311 if ((opcode & 0xffff) < VALUE_LEN) {
1312 rval = XEVNT_LEN;
1313 break;
1315 if (peer == NULL)
1316 tcookie = cookie;
1317 else
1318 tcookie = peer->hcookie;
1319 if ((rval = crypto_encrypt(ep, &vtemp, &tcookie)) ==
1320 XEVNT_OK) {
1321 len = crypto_send(fp, &vtemp, start);
1322 value_free(&vtemp);
1324 break;
1327 * Find peer and send autokey data and signature in broadcast
1328 * server and symmetric modes. Use the values in the autokey
1329 * structure. If no association is found, either the server has
1330 * restarted with new associations or some perp has replayed an
1331 * old message, in which case light the error bit.
1333 case CRYPTO_AUTO | CRYPTO_RESP:
1334 if (peer == NULL) {
1335 if ((peer = findpeerbyassoc(associd)) == NULL) {
1336 rval = XEVNT_ERR;
1337 break;
1340 peer->flags &= ~FLAG_ASSOC;
1341 len = crypto_send(fp, &peer->sndval, start);
1342 break;
1345 * Send leapseconds values and signature. Use the values from
1346 * the tai structure. If no table has been loaded, just send an
1347 * empty request.
1349 case CRYPTO_LEAP | CRYPTO_RESP:
1350 len = crypto_send(fp, &tai_leap, start);
1351 break;
1354 * Default - Send a valid command for unknown requests; send
1355 * an error response for unknown resonses.
1357 default:
1358 if (opcode & CRYPTO_RESP)
1359 rval = XEVNT_ERR;
1363 * In case of error, flame the log. If a request, toss the
1364 * puppy; if a response, return so the sender can flame, too.
1366 if (rval != XEVNT_OK) {
1367 u_int32 uint32;
1369 uint32 = CRYPTO_ERROR;
1370 opcode |= uint32;
1371 fp->opcode |= htonl(uint32);
1372 snprintf(statstr, NTP_MAXSTRLEN,
1373 "%04x %d %02x %s", opcode, associd, rval,
1374 eventstr(rval));
1375 record_crypto_stats(srcadr_sin, statstr);
1376 #ifdef DEBUG
1377 if (debug)
1378 printf("crypto_xmit: %s\n", statstr);
1379 #endif
1380 if (!(opcode & CRYPTO_RESP))
1381 return (0);
1383 #ifdef DEBUG
1384 if (debug)
1385 printf(
1386 "crypto_xmit: flags 0x%x offset %d len %d code 0x%x associd %d\n",
1387 crypto_flags, start, len, opcode >> 16, associd);
1388 #endif
1389 return (len);
1394 * crypto_verify - verify the extension field value and signature
1396 * Returns
1397 * XEVNT_OK success
1398 * XEVNT_ERR protocol error
1399 * XEVNT_FSP bad filestamp
1400 * XEVNT_LEN bad field format or length
1401 * XEVNT_PUB bad or missing public key
1402 * XEVNT_SGL bad signature length
1403 * XEVNT_SIG signature not verified
1404 * XEVNT_TSP bad timestamp
1406 static int
1407 crypto_verify(
1408 struct exten *ep, /* extension pointer */
1409 struct value *vp, /* value pointer */
1410 struct peer *peer /* peer structure pointer */
1413 EVP_PKEY *pkey; /* server public key */
1414 EVP_MD_CTX ctx; /* signature context */
1415 tstamp_t tstamp, tstamp1 = 0; /* timestamp */
1416 tstamp_t fstamp, fstamp1 = 0; /* filestamp */
1417 u_int vallen; /* value length */
1418 u_int siglen; /* signature length */
1419 u_int opcode, len;
1420 int i;
1423 * We are extremely parannoyed. We require valid opcode, length,
1424 * association ID, timestamp, filestamp, public key, digest,
1425 * signature length and signature, where relevant. Note that
1426 * preliminary length checks are done in the main loop.
1428 len = ntohl(ep->opcode) & 0x0000ffff;
1429 opcode = ntohl(ep->opcode) & 0xffff0000;
1432 * Check for valid value header, association ID and extension
1433 * field length. Remember, it is not an error to receive an
1434 * unsolicited response; however, the response ID must match
1435 * the association ID.
1437 if (opcode & CRYPTO_ERROR)
1438 return (XEVNT_ERR);
1440 if (len < VALUE_LEN)
1441 return (XEVNT_LEN);
1443 if (opcode == (CRYPTO_AUTO | CRYPTO_RESP) && (peer->pmode ==
1444 MODE_BROADCAST || (peer->cast_flags & MDF_BCLNT))) {
1445 if (ntohl(ep->associd) != peer->assoc)
1446 return (XEVNT_ERR);
1447 } else {
1448 if (ntohl(ep->associd) != peer->associd)
1449 return (XEVNT_ERR);
1453 * We have a valid value header. Check for valid value and
1454 * signature field lengths. The extension field length must be
1455 * long enough to contain the value header, value and signature.
1456 * Note both the value and signature field lengths are rounded
1457 * up to the next word (4 octets).
1459 vallen = ntohl(ep->vallen);
1460 if (vallen == 0)
1461 return (XEVNT_LEN);
1463 i = (vallen + 3) / 4;
1464 siglen = ntohl(ep->pkt[i++]);
1465 if (len < VALUE_LEN + ((vallen + 3) / 4) * 4 + ((siglen + 3) /
1466 4) * 4)
1467 return (XEVNT_LEN);
1470 * Check for valid timestamp and filestamp. If the timestamp is
1471 * zero, the sender is not synchronized and signatures are
1472 * not possible. If nonzero the timestamp must not precede the
1473 * filestamp. The timestamp and filestamp must not precede the
1474 * corresponding values in the value structure, if present.
1476 tstamp = ntohl(ep->tstamp);
1477 fstamp = ntohl(ep->fstamp);
1478 if (tstamp == 0)
1479 return (XEVNT_TSP);
1481 if (tstamp < fstamp)
1482 return (XEVNT_TSP);
1484 if (vp != NULL) {
1485 tstamp1 = ntohl(vp->tstamp);
1486 fstamp1 = ntohl(vp->fstamp);
1487 if (tstamp1 != 0 && fstamp1 != 0) {
1488 if (tstamp < tstamp1)
1489 return (XEVNT_TSP);
1491 if ((tstamp < fstamp1 || fstamp < fstamp1))
1492 return (XEVNT_FSP);
1497 * At the time the certificate message is validated, the public
1498 * key in the message is not available. Thus, don't try to
1499 * verify the signature.
1501 if (opcode == (CRYPTO_CERT | CRYPTO_RESP))
1502 return (XEVNT_OK);
1505 * Check for valid signature length, public key and digest
1506 * algorithm.
1508 if (crypto_flags & peer->crypto & CRYPTO_FLAG_PRIV)
1509 pkey = sign_pkey;
1510 else
1511 pkey = peer->pkey;
1512 if (siglen == 0 || pkey == NULL || peer->digest == NULL)
1513 return (XEVNT_ERR);
1515 if (siglen != (u_int)EVP_PKEY_size(pkey))
1516 return (XEVNT_SGL);
1519 * Darn, I thought we would never get here. Verify the
1520 * signature. If the identity exchange is verified, light the
1521 * proventic bit. What a relief.
1523 EVP_VerifyInit(&ctx, peer->digest);
1524 EVP_VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);
1525 if (EVP_VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen,
1526 pkey) <= 0)
1527 return (XEVNT_SIG);
1529 if (peer->crypto & CRYPTO_FLAG_VRFY)
1530 peer->crypto |= CRYPTO_FLAG_PROV;
1531 return (XEVNT_OK);
1536 * crypto_encrypt - construct encrypted cookie and signature from
1537 * extension field and cookie
1539 * Returns
1540 * XEVNT_OK success
1541 * XEVNT_CKY bad or missing cookie
1542 * XEVNT_PUB bad or missing public key
1544 static int
1545 crypto_encrypt(
1546 struct exten *ep, /* extension pointer */
1547 struct value *vp, /* value pointer */
1548 keyid_t *cookie /* server cookie */
1551 EVP_PKEY *pkey; /* public key */
1552 EVP_MD_CTX ctx; /* signature context */
1553 tstamp_t tstamp; /* NTP timestamp */
1554 u_int32 temp32;
1555 u_int len;
1556 const u_char *ptr;
1557 u_char *sptr;
1560 * Extract the public key from the request.
1562 len = ntohl(ep->vallen);
1563 ptr = (u_char *)ep->pkt;
1564 pkey = d2i_PublicKey(EVP_PKEY_RSA, NULL, &ptr, len);
1565 if (pkey == NULL) {
1566 msyslog(LOG_ERR, "crypto_encrypt: %s",
1567 ERR_error_string(ERR_get_error(), NULL));
1568 return (XEVNT_PUB);
1572 * Encrypt the cookie, encode in ASN.1 and sign.
1574 memset(vp, 0, sizeof(struct value));
1575 tstamp = crypto_time();
1576 vp->tstamp = htonl(tstamp);
1577 vp->fstamp = hostval.tstamp;
1578 len = EVP_PKEY_size(pkey);
1579 vp->vallen = htonl(len);
1580 vp->ptr = emalloc(len);
1581 sptr = vp->ptr;
1582 temp32 = htonl(*cookie);
1583 if (RSA_public_encrypt(4, (const u_char *)&temp32, sptr,
1584 pkey->pkey.rsa, RSA_PKCS1_OAEP_PADDING) <= 0) {
1585 msyslog(LOG_ERR, "crypto_encrypt: %s",
1586 ERR_error_string(ERR_get_error(), NULL));
1587 free(vp->ptr);
1588 EVP_PKEY_free(pkey);
1589 return (XEVNT_CKY);
1591 EVP_PKEY_free(pkey);
1592 if (tstamp == 0)
1593 return (XEVNT_OK);
1595 vp->sig = emalloc(sign_siglen);
1596 EVP_SignInit(&ctx, sign_digest);
1597 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
1598 EVP_SignUpdate(&ctx, vp->ptr, len);
1599 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
1600 vp->siglen = htonl(sign_siglen);
1601 return (XEVNT_OK);
1606 * crypto_ident - construct extension field for identity scheme
1608 * This routine determines which identity scheme is in use and
1609 * constructs an extension field for that scheme.
1611 * Returns
1612 * CRYTPO_IFF IFF scheme
1613 * CRYPTO_GQ GQ scheme
1614 * CRYPTO_MV MV scheme
1615 * CRYPTO_NULL no available scheme
1617 u_int
1618 crypto_ident(
1619 struct peer *peer /* peer structure pointer */
1622 char filename[MAXFILENAME];
1625 * We come here after the group trusted host has been found; its
1626 * name defines the group name. Search the key cache for all
1627 * keys matching the same group name in order IFF, GQ and MV.
1628 * Use the first one available.
1630 if (peer->crypto & CRYPTO_FLAG_IFF) {
1631 snprintf(filename, MAXFILENAME, "ntpkey_iffpar_%s",
1632 peer->issuer);
1633 peer->ident_pkey = crypto_key(filename, NULL,
1634 &peer->srcadr);
1635 if (peer->ident_pkey != NULL)
1636 return (CRYPTO_IFF);
1638 if (peer->crypto & CRYPTO_FLAG_GQ) {
1639 snprintf(filename, MAXFILENAME, "ntpkey_gqpar_%s",
1640 peer->issuer);
1641 peer->ident_pkey = crypto_key(filename, NULL,
1642 &peer->srcadr);
1643 if (peer->ident_pkey != NULL)
1644 return (CRYPTO_GQ);
1646 if (peer->crypto & CRYPTO_FLAG_MV) {
1647 snprintf(filename, MAXFILENAME, "ntpkey_mvpar_%s",
1648 peer->issuer);
1649 peer->ident_pkey = crypto_key(filename, NULL,
1650 &peer->srcadr);
1651 if (peer->ident_pkey != NULL)
1652 return (CRYPTO_MV);
1654 msyslog(LOG_NOTICE,
1655 "crypto_ident: no identity parameters found for group %s",
1656 peer->issuer);
1657 return (CRYPTO_NULL);
1662 * crypto_args - construct extension field from arguments
1664 * This routine creates an extension field with current timestamps and
1665 * specified opcode, association ID and optional string. Note that the
1666 * extension field is created here, but freed after the crypto_xmit()
1667 * call in the protocol module.
1669 * Returns extension field pointer (no errors)
1671 struct exten *
1672 crypto_args(
1673 struct peer *peer, /* peer structure pointer */
1674 u_int opcode, /* operation code */
1675 associd_t associd, /* association ID */
1676 char *str /* argument string */
1679 tstamp_t tstamp; /* NTP timestamp */
1680 struct exten *ep; /* extension field pointer */
1681 u_int len; /* extension field length */
1683 tstamp = crypto_time();
1684 len = sizeof(struct exten);
1685 if (str != NULL)
1686 len += strlen(str);
1687 ep = emalloc(len);
1688 memset(ep, 0, len);
1689 if (opcode == 0)
1690 return (ep);
1692 ep->opcode = htonl(opcode + len);
1693 ep->associd = htonl(associd);
1694 ep->tstamp = htonl(tstamp);
1695 ep->fstamp = hostval.tstamp;
1696 ep->vallen = 0;
1697 if (str != NULL) {
1698 ep->vallen = htonl(strlen(str));
1699 memcpy((char *)ep->pkt, str, strlen(str));
1701 return (ep);
1706 * crypto_send - construct extension field from value components
1708 * The value and signature fields are zero-padded to a word boundary.
1709 * Note: it is not polite to send a nonempty signature with zero
1710 * timestamp or a nonzero timestamp with an empty signature, but those
1711 * rules are not enforced here.
1714 crypto_send(
1715 struct exten *ep, /* extension field pointer */
1716 struct value *vp, /* value pointer */
1717 int start /* buffer offset */
1720 u_int len, vallen, siglen, opcode;
1721 int i, j;
1724 * Calculate extension field length and check for buffer
1725 * overflow. Leave room for the MAC.
1727 len = 16;
1728 vallen = ntohl(vp->vallen);
1729 len += ((vallen + 3) / 4 + 1) * 4;
1730 siglen = ntohl(vp->siglen);
1731 len += ((siglen + 3) / 4 + 1) * 4;
1732 if (start + len > sizeof(struct pkt) - MAX_MAC_LEN)
1733 return (0);
1736 * Copy timestamps.
1738 ep->tstamp = vp->tstamp;
1739 ep->fstamp = vp->fstamp;
1740 ep->vallen = vp->vallen;
1743 * Copy value. If the data field is empty or zero length,
1744 * encode an empty value with length zero.
1746 i = 0;
1747 if (vallen > 0 && vp->ptr != NULL) {
1748 j = vallen / 4;
1749 if (j * 4 < vallen)
1750 ep->pkt[i + j++] = 0;
1751 memcpy(&ep->pkt[i], vp->ptr, vallen);
1752 i += j;
1756 * Copy signature. If the signature field is empty or zero
1757 * length, encode an empty signature with length zero.
1759 ep->pkt[i++] = vp->siglen;
1760 if (siglen > 0 && vp->sig != NULL) {
1761 j = vallen / 4;
1762 if (j * 4 < siglen)
1763 ep->pkt[i + j++] = 0;
1764 memcpy(&ep->pkt[i], vp->sig, siglen);
1765 i += j;
1767 opcode = ntohl(ep->opcode);
1768 ep->opcode = htonl((opcode & 0xffff0000) | len);
1769 return (len);
1774 * crypto_update - compute new public value and sign extension fields
1776 * This routine runs periodically, like once a day, and when something
1777 * changes. It updates the timestamps on three value structures and one
1778 * value structure list, then signs all the structures:
1780 * hostval host name (not signed)
1781 * pubkey public key
1782 * cinfo certificate info/value list
1783 * tai_leap leap values
1785 * Filestamps are proventic data, so this routine runs only when the
1786 * host is synchronized to a proventicated source. Thus, the timestamp
1787 * is proventic and can be used to deflect clogging attacks.
1789 * Returns void (no errors)
1791 void
1792 crypto_update(void)
1794 EVP_MD_CTX ctx; /* message digest context */
1795 struct cert_info *cp; /* certificate info/value */
1796 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
1797 u_int32 *ptr;
1798 u_int len;
1800 hostval.tstamp = htonl(crypto_time());
1801 if (hostval.tstamp == 0)
1802 return;
1806 * Sign public key and timestamps. The filestamp is derived from
1807 * the host key file extension from wherever the file was
1808 * generated.
1810 if (pubkey.vallen != 0) {
1811 pubkey.tstamp = hostval.tstamp;
1812 pubkey.siglen = 0;
1813 if (pubkey.sig == NULL)
1814 pubkey.sig = emalloc(sign_siglen);
1815 EVP_SignInit(&ctx, sign_digest);
1816 EVP_SignUpdate(&ctx, (u_char *)&pubkey, 12);
1817 EVP_SignUpdate(&ctx, pubkey.ptr, ntohl(pubkey.vallen));
1818 if (EVP_SignFinal(&ctx, pubkey.sig, &len, sign_pkey))
1819 pubkey.siglen = htonl(sign_siglen);
1823 * Sign certificates and timestamps. The filestamp is derived
1824 * from the certificate file extension from wherever the file
1825 * was generated. Note we do not throw expired certificates
1826 * away; they may have signed younger ones.
1828 for (cp = cinfo; cp != NULL; cp = cp->link) {
1829 cp->cert.tstamp = hostval.tstamp;
1830 cp->cert.siglen = 0;
1831 if (cp->cert.sig == NULL)
1832 cp->cert.sig = emalloc(sign_siglen);
1833 EVP_SignInit(&ctx, sign_digest);
1834 EVP_SignUpdate(&ctx, (u_char *)&cp->cert, 12);
1835 EVP_SignUpdate(&ctx, cp->cert.ptr,
1836 ntohl(cp->cert.vallen));
1837 if (EVP_SignFinal(&ctx, cp->cert.sig, &len, sign_pkey))
1838 cp->cert.siglen = htonl(sign_siglen);
1842 * Sign leapseconds values and timestamps. Note it is not an
1843 * error to return null values.
1845 tai_leap.tstamp = hostval.tstamp;
1846 tai_leap.fstamp = hostval.fstamp;
1847 len = 3 * sizeof(u_int32);
1848 if (tai_leap.ptr == NULL)
1849 tai_leap.ptr = emalloc(len);
1850 tai_leap.vallen = htonl(len);
1851 ptr = (u_int32 *)tai_leap.ptr;
1852 ptr[0] = htonl(leap_tai);
1853 ptr[1] = htonl(leap_sec);
1854 ptr[2] = htonl(leap_expire);
1855 if (tai_leap.sig == NULL)
1856 tai_leap.sig = emalloc(sign_siglen);
1857 EVP_SignInit(&ctx, sign_digest);
1858 EVP_SignUpdate(&ctx, (u_char *)&tai_leap, 12);
1859 EVP_SignUpdate(&ctx, tai_leap.ptr, len);
1860 if (EVP_SignFinal(&ctx, tai_leap.sig, &len, sign_pkey))
1861 tai_leap.siglen = htonl(sign_siglen);
1862 if (leap_sec > 0)
1863 crypto_flags |= CRYPTO_FLAG_TAI;
1864 snprintf(statstr, NTP_MAXSTRLEN, "signature update ts %u",
1865 ntohl(hostval.tstamp));
1866 record_crypto_stats(NULL, statstr);
1867 #ifdef DEBUG
1868 if (debug)
1869 printf("crypto_update: %s\n", statstr);
1870 #endif
1875 * value_free - free value structure components.
1877 * Returns void (no errors)
1879 void
1880 value_free(
1881 struct value *vp /* value structure */
1884 if (vp->ptr != NULL)
1885 free(vp->ptr);
1886 if (vp->sig != NULL)
1887 free(vp->sig);
1888 memset(vp, 0, sizeof(struct value));
1893 * crypto_time - returns current NTP time.
1895 * Returns NTP seconds if in synch, 0 otherwise
1897 tstamp_t
1898 crypto_time()
1900 l_fp tstamp; /* NTP time */
1902 L_CLR(&tstamp);
1903 if (sys_leap != LEAP_NOTINSYNC)
1904 get_systime(&tstamp);
1905 return (tstamp.l_ui);
1910 * asn2ntp - convert ASN1_TIME time structure to NTP time.
1912 * Returns NTP seconds (no errors)
1914 u_long
1915 asn2ntp (
1916 ASN1_TIME *asn1time /* pointer to ASN1_TIME structure */
1919 char *v; /* pointer to ASN1_TIME string */
1920 struct tm tm; /* used to convert to NTP time */
1923 * Extract time string YYMMDDHHMMSSZ from ASN1 time structure.
1924 * Note that the YY, MM, DD fields start with one, the HH, MM,
1925 * SS fiels start with zero and the Z character is ignored.
1926 * Also note that years less than 50 map to years greater than
1927 * 100. Dontcha love ASN.1? Better than MIL-188.
1929 v = (char *)asn1time->data;
1930 tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
1931 if (tm.tm_year < 50)
1932 tm.tm_year += 100;
1933 tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
1934 tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
1935 tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
1936 tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
1937 tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
1938 tm.tm_wday = 0;
1939 tm.tm_yday = 0;
1940 tm.tm_isdst = 0;
1941 return ((u_long)timegm(&tm) + JAN_1970);
1946 * bigdig() - compute a BIGNUM MD5 hash of a BIGNUM number.
1948 * Returns void (no errors)
1950 static void
1951 bighash(
1952 BIGNUM *bn, /* BIGNUM * from */
1953 BIGNUM *bk /* BIGNUM * to */
1956 EVP_MD_CTX ctx; /* message digest context */
1957 u_char dgst[EVP_MAX_MD_SIZE]; /* message digest */
1958 u_char *ptr; /* a BIGNUM as binary string */
1959 u_int len;
1961 len = BN_num_bytes(bn);
1962 ptr = emalloc(len);
1963 BN_bn2bin(bn, ptr);
1964 EVP_DigestInit(&ctx, EVP_md5());
1965 EVP_DigestUpdate(&ctx, ptr, len);
1966 EVP_DigestFinal(&ctx, dgst, &len);
1967 BN_bin2bn(dgst, len, bk);
1968 free(ptr);
1973 ***********************************************************************
1975 * The following routines implement the Schnorr (IFF) identity scheme *
1977 ***********************************************************************
1979 * The Schnorr (IFF) identity scheme is intended for use when
1980 * certificates are generated by some other trusted certificate
1981 * authority and the certificate cannot be used to convey public
1982 * parameters. There are two kinds of files: encrypted server files that
1983 * contain private and public values and nonencrypted client files that
1984 * contain only public values. New generations of server files must be
1985 * securely transmitted to all servers of the group; client files can be
1986 * distributed by any means. The scheme is self contained and
1987 * independent of new generations of host keys, sign keys and
1988 * certificates.
1990 * The IFF values hide in a DSA cuckoo structure which uses the same
1991 * parameters. The values are used by an identity scheme based on DSA
1992 * cryptography and described in Stimson p. 285. The p is a 512-bit
1993 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
1994 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
1995 * private random group key b (0 < b < q) and public key v = g^b, then
1996 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
1997 * Alice challenges Bob to confirm identity using the protocol described
1998 * below.
2000 * How it works
2002 * The scheme goes like this. Both Alice and Bob have the public primes
2003 * p, q and generator g. The TA gives private key b to Bob and public
2004 * key v to Alice.
2006 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
2007 * the IFF request message. Bob rolls new random k (0 < k < q), then
2008 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
2009 * to Alice in the response message. Besides making the response
2010 * shorter, the hash makes it effectivey impossible for an intruder to
2011 * solve for b by observing a number of these messages.
2013 * Alice receives the response and computes g^y v^r mod p. After a bit
2014 * of algebra, this simplifies to g^k. If the hash of this result
2015 * matches hash(x), Alice knows that Bob has the group key b. The signed
2016 * response binds this knowledge to Bob's private key and the public key
2017 * previously received in his certificate.
2019 * crypto_alice - construct Alice's challenge in IFF scheme
2021 * Returns
2022 * XEVNT_OK success
2023 * XEVNT_ID bad or missing group key
2024 * XEVNT_PUB bad or missing public key
2026 static int
2027 crypto_alice(
2028 struct peer *peer, /* peer pointer */
2029 struct value *vp /* value pointer */
2032 DSA *dsa; /* IFF parameters */
2033 BN_CTX *bctx; /* BIGNUM context */
2034 EVP_MD_CTX ctx; /* signature context */
2035 tstamp_t tstamp;
2036 u_int len;
2039 * The identity parameters must have correct format and content.
2041 if (peer->ident_pkey == NULL)
2042 return (XEVNT_ID);
2044 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2045 msyslog(LOG_NOTICE, "crypto_alice: defective key");
2046 return (XEVNT_PUB);
2050 * Roll new random r (0 < r < q).
2052 if (peer->iffval != NULL)
2053 BN_free(peer->iffval);
2054 peer->iffval = BN_new();
2055 len = BN_num_bytes(dsa->q);
2056 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod q*/
2057 bctx = BN_CTX_new();
2058 BN_mod(peer->iffval, peer->iffval, dsa->q, bctx);
2059 BN_CTX_free(bctx);
2062 * Sign and send to Bob. The filestamp is from the local file.
2064 memset(vp, 0, sizeof(struct value));
2065 tstamp = crypto_time();
2066 vp->tstamp = htonl(tstamp);
2067 vp->fstamp = htonl(peer->ident_pkey->fstamp);
2068 vp->vallen = htonl(len);
2069 vp->ptr = emalloc(len);
2070 BN_bn2bin(peer->iffval, vp->ptr);
2071 if (tstamp == 0)
2072 return (XEVNT_OK);
2074 vp->sig = emalloc(sign_siglen);
2075 EVP_SignInit(&ctx, sign_digest);
2076 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2077 EVP_SignUpdate(&ctx, vp->ptr, len);
2078 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2079 vp->siglen = htonl(sign_siglen);
2080 return (XEVNT_OK);
2085 * crypto_bob - construct Bob's response to Alice's challenge
2087 * Returns
2088 * XEVNT_OK success
2089 * XEVNT_ERR protocol error
2090 * XEVNT_ID bad or missing group key
2092 static int
2093 crypto_bob(
2094 struct exten *ep, /* extension pointer */
2095 struct value *vp /* value pointer */
2098 DSA *dsa; /* IFF parameters */
2099 DSA_SIG *sdsa; /* DSA signature context fake */
2100 BN_CTX *bctx; /* BIGNUM context */
2101 EVP_MD_CTX ctx; /* signature context */
2102 tstamp_t tstamp; /* NTP timestamp */
2103 BIGNUM *bn, *bk, *r;
2104 u_char *ptr;
2105 u_int len;
2108 * If the IFF parameters are not valid, something awful
2109 * happened or we are being tormented.
2111 if (iffkey_info == NULL) {
2112 msyslog(LOG_NOTICE, "crypto_bob: scheme unavailable");
2113 return (XEVNT_ID);
2115 dsa = iffkey_info->pkey->pkey.dsa;
2118 * Extract r from the challenge.
2120 len = ntohl(ep->vallen);
2121 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2122 msyslog(LOG_ERR, "crypto_bob: %s",
2123 ERR_error_string(ERR_get_error(), NULL));
2124 return (XEVNT_ERR);
2128 * Bob rolls random k (0 < k < q), computes y = k + b r mod q
2129 * and x = g^k mod p, then sends (y, hash(x)) to Alice.
2131 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2132 sdsa = DSA_SIG_new();
2133 BN_rand(bk, len * 8, -1, 1); /* k */
2134 BN_mod_mul(bn, dsa->priv_key, r, dsa->q, bctx); /* b r mod q */
2135 BN_add(bn, bn, bk);
2136 BN_mod(bn, bn, dsa->q, bctx); /* k + b r mod q */
2137 sdsa->r = BN_dup(bn);
2138 BN_mod_exp(bk, dsa->g, bk, dsa->p, bctx); /* g^k mod p */
2139 bighash(bk, bk);
2140 sdsa->s = BN_dup(bk);
2141 BN_CTX_free(bctx);
2142 BN_free(r); BN_free(bn); BN_free(bk);
2143 #ifdef DEBUG
2144 if (debug > 1)
2145 DSA_print_fp(stdout, dsa, 0);
2146 #endif
2149 * Encode the values in ASN.1 and sign. The filestamp is from
2150 * the local file.
2152 len = i2d_DSA_SIG(sdsa, NULL);
2153 if (len == 0) {
2154 msyslog(LOG_ERR, "crypto_bob: %s",
2155 ERR_error_string(ERR_get_error(), NULL));
2156 DSA_SIG_free(sdsa);
2157 return (XEVNT_ERR);
2159 memset(vp, 0, sizeof(struct value));
2160 tstamp = crypto_time();
2161 vp->tstamp = htonl(tstamp);
2162 vp->fstamp = htonl(iffkey_info->fstamp);
2163 vp->vallen = htonl(len);
2164 ptr = emalloc(len);
2165 vp->ptr = ptr;
2166 i2d_DSA_SIG(sdsa, &ptr);
2167 DSA_SIG_free(sdsa);
2168 if (tstamp == 0)
2169 return (XEVNT_OK);
2171 vp->sig = emalloc(sign_siglen);
2172 EVP_SignInit(&ctx, sign_digest);
2173 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2174 EVP_SignUpdate(&ctx, vp->ptr, len);
2175 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2176 vp->siglen = htonl(sign_siglen);
2177 return (XEVNT_OK);
2182 * crypto_iff - verify Bob's response to Alice's challenge
2184 * Returns
2185 * XEVNT_OK success
2186 * XEVNT_FSP bad filestamp
2187 * XEVNT_ID bad or missing group key
2188 * XEVNT_PUB bad or missing public key
2191 crypto_iff(
2192 struct exten *ep, /* extension pointer */
2193 struct peer *peer /* peer structure pointer */
2196 DSA *dsa; /* IFF parameters */
2197 BN_CTX *bctx; /* BIGNUM context */
2198 DSA_SIG *sdsa; /* DSA parameters */
2199 BIGNUM *bn, *bk;
2200 u_int len;
2201 const u_char *ptr;
2202 int temp;
2205 * If the IFF parameters are not valid or no challenge was sent,
2206 * something awful happened or we are being tormented.
2208 if (peer->ident_pkey == NULL) {
2209 msyslog(LOG_NOTICE, "crypto_iff: scheme unavailable");
2210 return (XEVNT_ID);
2212 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2213 msyslog(LOG_NOTICE, "crypto_iff: invalid filestamp %u",
2214 ntohl(ep->fstamp));
2215 return (XEVNT_FSP);
2217 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2218 msyslog(LOG_NOTICE, "crypto_iff: defective key");
2219 return (XEVNT_PUB);
2221 if (peer->iffval == NULL) {
2222 msyslog(LOG_NOTICE, "crypto_iff: missing challenge");
2223 return (XEVNT_ID);
2227 * Extract the k + b r and g^k values from the response.
2229 bctx = BN_CTX_new(); bk = BN_new(); bn = BN_new();
2230 len = ntohl(ep->vallen);
2231 ptr = (u_char *)ep->pkt;
2232 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2233 BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2234 msyslog(LOG_ERR, "crypto_iff: %s",
2235 ERR_error_string(ERR_get_error(), NULL));
2236 return (XEVNT_ERR);
2240 * Compute g^(k + b r) g^(q - b)r mod p.
2242 BN_mod_exp(bn, dsa->pub_key, peer->iffval, dsa->p, bctx);
2243 BN_mod_exp(bk, dsa->g, sdsa->r, dsa->p, bctx);
2244 BN_mod_mul(bn, bn, bk, dsa->p, bctx);
2247 * Verify the hash of the result matches hash(x).
2249 bighash(bn, bn);
2250 temp = BN_cmp(bn, sdsa->s);
2251 BN_free(bn); BN_free(bk); BN_CTX_free(bctx);
2252 BN_free(peer->iffval);
2253 peer->iffval = NULL;
2254 DSA_SIG_free(sdsa);
2255 if (temp == 0)
2256 return (XEVNT_OK);
2258 msyslog(LOG_NOTICE, "crypto_iff: identity not verified");
2259 return (XEVNT_ID);
2264 ***********************************************************************
2266 * The following routines implement the Guillou-Quisquater (GQ) *
2267 * identity scheme *
2269 ***********************************************************************
2271 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
2272 * the certificate can be used to convey public parameters. The scheme
2273 * uses a X509v3 certificate extension field do convey the public key of
2274 * a private key known only to servers. There are two kinds of files:
2275 * encrypted server files that contain private and public values and
2276 * nonencrypted client files that contain only public values. New
2277 * generations of server files must be securely transmitted to all
2278 * servers of the group; client files can be distributed by any means.
2279 * The scheme is self contained and independent of new generations of
2280 * host keys and sign keys. The scheme is self contained and independent
2281 * of new generations of host keys and sign keys.
2283 * The GQ parameters hide in a RSA cuckoo structure which uses the same
2284 * parameters. The values are used by an identity scheme based on RSA
2285 * cryptography and described in Stimson p. 300 (with errors). The 512-
2286 * bit public modulus is n = p q, where p and q are secret large primes.
2287 * The TA rolls private random group key b as RSA exponent. These values
2288 * are known to all group members.
2290 * When rolling new certificates, a server recomputes the private and
2291 * public keys. The private key u is a random roll, while the public key
2292 * is the inverse obscured by the group key v = (u^-1)^b. These values
2293 * replace the private and public keys normally generated by the RSA
2294 * scheme. Alice challenges Bob to confirm identity using the protocol
2295 * described below.
2297 * How it works
2299 * The scheme goes like this. Both Alice and Bob have the same modulus n
2300 * and some random b as the group key. These values are computed and
2301 * distributed in advance via secret means, although only the group key
2302 * b is truly secret. Each has a private random private key u and public
2303 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
2304 * can regenerate the key pair from time to time without affecting
2305 * operations. The public key is conveyed on the certificate in an
2306 * extension field; the private key is never revealed.
2308 * Alice rolls new random challenge r and sends to Bob in the GQ
2309 * request message. Bob rolls new random k, then computes y = k u^r mod
2310 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
2311 * message. Besides making the response shorter, the hash makes it
2312 * effectivey impossible for an intruder to solve for b by observing
2313 * a number of these messages.
2315 * Alice receives the response and computes y^b v^r mod n. After a bit
2316 * of algebra, this simplifies to k^b. If the hash of this result
2317 * matches hash(x), Alice knows that Bob has the group key b. The signed
2318 * response binds this knowledge to Bob's private key and the public key
2319 * previously received in his certificate.
2321 * crypto_alice2 - construct Alice's challenge in GQ scheme
2323 * Returns
2324 * XEVNT_OK success
2325 * XEVNT_ID bad or missing group key
2326 * XEVNT_PUB bad or missing public key
2328 static int
2329 crypto_alice2(
2330 struct peer *peer, /* peer pointer */
2331 struct value *vp /* value pointer */
2334 RSA *rsa; /* GQ parameters */
2335 BN_CTX *bctx; /* BIGNUM context */
2336 EVP_MD_CTX ctx; /* signature context */
2337 tstamp_t tstamp;
2338 u_int len;
2341 * The identity parameters must have correct format and content.
2343 if (peer->ident_pkey == NULL)
2344 return (XEVNT_ID);
2346 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
2347 msyslog(LOG_NOTICE, "crypto_alice2: defective key");
2348 return (XEVNT_PUB);
2352 * Roll new random r (0 < r < n).
2354 if (peer->iffval != NULL)
2355 BN_free(peer->iffval);
2356 peer->iffval = BN_new();
2357 len = BN_num_bytes(rsa->n);
2358 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod n */
2359 bctx = BN_CTX_new();
2360 BN_mod(peer->iffval, peer->iffval, rsa->n, bctx);
2361 BN_CTX_free(bctx);
2364 * Sign and send to Bob. The filestamp is from the local file.
2366 memset(vp, 0, sizeof(struct value));
2367 tstamp = crypto_time();
2368 vp->tstamp = htonl(tstamp);
2369 vp->fstamp = htonl(peer->ident_pkey->fstamp);
2370 vp->vallen = htonl(len);
2371 vp->ptr = emalloc(len);
2372 BN_bn2bin(peer->iffval, vp->ptr);
2373 if (tstamp == 0)
2374 return (XEVNT_OK);
2376 vp->sig = emalloc(sign_siglen);
2377 EVP_SignInit(&ctx, sign_digest);
2378 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2379 EVP_SignUpdate(&ctx, vp->ptr, len);
2380 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2381 vp->siglen = htonl(sign_siglen);
2382 return (XEVNT_OK);
2387 * crypto_bob2 - construct Bob's response to Alice's challenge
2389 * Returns
2390 * XEVNT_OK success
2391 * XEVNT_ERR protocol error
2392 * XEVNT_ID bad or missing group key
2394 static int
2395 crypto_bob2(
2396 struct exten *ep, /* extension pointer */
2397 struct value *vp /* value pointer */
2400 RSA *rsa; /* GQ parameters */
2401 DSA_SIG *sdsa; /* DSA parameters */
2402 BN_CTX *bctx; /* BIGNUM context */
2403 EVP_MD_CTX ctx; /* signature context */
2404 tstamp_t tstamp; /* NTP timestamp */
2405 BIGNUM *r, *k, *g, *y;
2406 u_char *ptr;
2407 u_int len;
2410 * If the GQ parameters are not valid, something awful
2411 * happened or we are being tormented.
2413 if (gqkey_info == NULL) {
2414 msyslog(LOG_NOTICE, "crypto_bob2: scheme unavailable");
2415 return (XEVNT_ID);
2417 rsa = gqkey_info->pkey->pkey.rsa;
2420 * Extract r from the challenge.
2422 len = ntohl(ep->vallen);
2423 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2424 msyslog(LOG_ERR, "crypto_bob2: %s",
2425 ERR_error_string(ERR_get_error(), NULL));
2426 return (XEVNT_ERR);
2430 * Bob rolls random k (0 < k < n), computes y = k u^r mod n and
2431 * x = k^b mod n, then sends (y, hash(x)) to Alice.
2433 bctx = BN_CTX_new(); k = BN_new(); g = BN_new(); y = BN_new();
2434 sdsa = DSA_SIG_new();
2435 BN_rand(k, len * 8, -1, 1); /* k */
2436 BN_mod(k, k, rsa->n, bctx);
2437 BN_mod_exp(y, rsa->p, r, rsa->n, bctx); /* u^r mod n */
2438 BN_mod_mul(y, k, y, rsa->n, bctx); /* k u^r mod n */
2439 sdsa->r = BN_dup(y);
2440 BN_mod_exp(g, k, rsa->e, rsa->n, bctx); /* k^b mod n */
2441 bighash(g, g);
2442 sdsa->s = BN_dup(g);
2443 BN_CTX_free(bctx);
2444 BN_free(r); BN_free(k); BN_free(g); BN_free(y);
2445 #ifdef DEBUG
2446 if (debug > 1)
2447 RSA_print_fp(stdout, rsa, 0);
2448 #endif
2451 * Encode the values in ASN.1 and sign. The filestamp is from
2452 * the local file.
2454 len = i2d_DSA_SIG(sdsa, NULL);
2455 if (len <= 0) {
2456 msyslog(LOG_ERR, "crypto_bob2: %s",
2457 ERR_error_string(ERR_get_error(), NULL));
2458 DSA_SIG_free(sdsa);
2459 return (XEVNT_ERR);
2461 memset(vp, 0, sizeof(struct value));
2462 tstamp = crypto_time();
2463 vp->tstamp = htonl(tstamp);
2464 vp->fstamp = htonl(gqkey_info->fstamp);
2465 vp->vallen = htonl(len);
2466 ptr = emalloc(len);
2467 vp->ptr = ptr;
2468 i2d_DSA_SIG(sdsa, &ptr);
2469 DSA_SIG_free(sdsa);
2470 if (tstamp == 0)
2471 return (XEVNT_OK);
2473 vp->sig = emalloc(sign_siglen);
2474 EVP_SignInit(&ctx, sign_digest);
2475 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2476 EVP_SignUpdate(&ctx, vp->ptr, len);
2477 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2478 vp->siglen = htonl(sign_siglen);
2479 return (XEVNT_OK);
2484 * crypto_gq - verify Bob's response to Alice's challenge
2486 * Returns
2487 * XEVNT_OK success
2488 * XEVNT_ERR protocol error
2489 * XEVNT_FSP bad filestamp
2490 * XEVNT_ID bad or missing group keys
2491 * XEVNT_PUB bad or missing public key
2494 crypto_gq(
2495 struct exten *ep, /* extension pointer */
2496 struct peer *peer /* peer structure pointer */
2499 RSA *rsa; /* GQ parameters */
2500 BN_CTX *bctx; /* BIGNUM context */
2501 DSA_SIG *sdsa; /* RSA signature context fake */
2502 BIGNUM *y, *v;
2503 const u_char *ptr;
2504 long len;
2505 u_int temp;
2508 * If the GQ parameters are not valid or no challenge was sent,
2509 * something awful happened or we are being tormented. Note that
2510 * the filestamp on the local key file can be greater than on
2511 * the remote parameter file if the keys have been refreshed.
2513 if (peer->ident_pkey == NULL) {
2514 msyslog(LOG_NOTICE, "crypto_gq: scheme unavailable");
2515 return (XEVNT_ID);
2517 if (ntohl(ep->fstamp) < peer->ident_pkey->fstamp) {
2518 msyslog(LOG_NOTICE, "crypto_gq: invalid filestamp %u",
2519 ntohl(ep->fstamp));
2520 return (XEVNT_FSP);
2522 if ((rsa = peer->ident_pkey->pkey->pkey.rsa) == NULL) {
2523 msyslog(LOG_NOTICE, "crypto_gq: defective key");
2524 return (XEVNT_PUB);
2526 if (peer->iffval == NULL) {
2527 msyslog(LOG_NOTICE, "crypto_gq: missing challenge");
2528 return (XEVNT_ID);
2532 * Extract the y = k u^r and hash(x = k^b) values from the
2533 * response.
2535 bctx = BN_CTX_new(); y = BN_new(); v = BN_new();
2536 len = ntohl(ep->vallen);
2537 ptr = (u_char *)ep->pkt;
2538 if ((sdsa = d2i_DSA_SIG(NULL, &ptr, len)) == NULL) {
2539 BN_CTX_free(bctx); BN_free(y); BN_free(v);
2540 msyslog(LOG_ERR, "crypto_gq: %s",
2541 ERR_error_string(ERR_get_error(), NULL));
2542 return (XEVNT_ERR);
2546 * Compute v^r y^b mod n.
2548 if (peer->grpkey == NULL) {
2549 msyslog(LOG_NOTICE, "crypto_gq: missing group key");
2550 return (XEVNT_ID);
2552 BN_mod_exp(v, peer->grpkey, peer->iffval, rsa->n, bctx);
2553 /* v^r mod n */
2554 BN_mod_exp(y, sdsa->r, rsa->e, rsa->n, bctx); /* y^b mod n */
2555 BN_mod_mul(y, v, y, rsa->n, bctx); /* v^r y^b mod n */
2558 * Verify the hash of the result matches hash(x).
2560 bighash(y, y);
2561 temp = BN_cmp(y, sdsa->s);
2562 BN_CTX_free(bctx); BN_free(y); BN_free(v);
2563 BN_free(peer->iffval);
2564 peer->iffval = NULL;
2565 DSA_SIG_free(sdsa);
2566 if (temp == 0)
2567 return (XEVNT_OK);
2569 msyslog(LOG_NOTICE, "crypto_gq: identity not verified");
2570 return (XEVNT_ID);
2575 ***********************************************************************
2577 * The following routines implement the Mu-Varadharajan (MV) identity *
2578 * scheme *
2580 ***********************************************************************
2582 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
2583 * servers broadcast messages to clients, but clients never send
2584 * messages to servers. There is one encryption key for the server and a
2585 * separate decryption key for each client. It operated something like a
2586 * pay-per-view satellite broadcasting system where the session key is
2587 * encrypted by the broadcaster and the decryption keys are held in a
2588 * tamperproof set-top box.
2590 * The MV parameters and private encryption key hide in a DSA cuckoo
2591 * structure which uses the same parameters, but generated in a
2592 * different way. The values are used in an encryption scheme similar to
2593 * El Gamal cryptography and a polynomial formed from the expansion of
2594 * product terms (x - x[j]), as described in Mu, Y., and V.
2595 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
2596 * 223-231. The paper has significant errors and serious omissions.
2598 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
2599 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
2600 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
2601 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
2602 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
2603 * project into Zp* as exponents of g. Sometimes we have to compute an
2604 * inverse b^-1 of random b in Zq, but for that purpose we require
2605 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
2606 * relatively small, like 30. These are the parameters of the scheme and
2607 * they are expensive to compute.
2609 * We set up an instance of the scheme as follows. A set of random
2610 * values x[j] mod q (j = 1...n), are generated as the zeros of a
2611 * polynomial of order n. The product terms (x - x[j]) are expanded to
2612 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
2613 * used as exponents of the generator g mod p to generate the private
2614 * encryption key A. The pair (gbar, ghat) of public server keys and the
2615 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
2616 * to construct the decryption keys. The devil is in the details.
2618 * This routine generates a private server encryption file including the
2619 * private encryption key E and partial decryption keys gbar and ghat.
2620 * It then generates public client decryption files including the public
2621 * keys xbar[j] and xhat[j] for each client j. The partial decryption
2622 * files are used to compute the inverse of E. These values are suitably
2623 * blinded so secrets are not revealed.
2625 * The distinguishing characteristic of this scheme is the capability to
2626 * revoke keys. Included in the calculation of E, gbar and ghat is the
2627 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
2628 * subsequently removed from the product and E, gbar and ghat
2629 * recomputed, the jth client will no longer be able to compute E^-1 and
2630 * thus unable to decrypt the messageblock.
2632 * How it works
2634 * The scheme goes like this. Bob has the server values (p, E, q, gbar,
2635 * ghat) and Alice has the client values (p, xbar, xhat).
2637 * Alice rolls new random nonce r mod p and sends to Bob in the MV
2638 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
2639 * mod p and sends (y, gbar^k, ghat^k) to Alice.
2641 * Alice receives the response and computes the inverse (E^k)^-1 from
2642 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
2643 * decrypts y and verifies it matches the original r. The signed
2644 * response binds this knowledge to Bob's private key and the public key
2645 * previously received in his certificate.
2647 * crypto_alice3 - construct Alice's challenge in MV scheme
2649 * Returns
2650 * XEVNT_OK success
2651 * XEVNT_ID bad or missing group key
2652 * XEVNT_PUB bad or missing public key
2654 static int
2655 crypto_alice3(
2656 struct peer *peer, /* peer pointer */
2657 struct value *vp /* value pointer */
2660 DSA *dsa; /* MV parameters */
2661 BN_CTX *bctx; /* BIGNUM context */
2662 EVP_MD_CTX ctx; /* signature context */
2663 tstamp_t tstamp;
2664 u_int len;
2667 * The identity parameters must have correct format and content.
2669 if (peer->ident_pkey == NULL)
2670 return (XEVNT_ID);
2672 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2673 msyslog(LOG_NOTICE, "crypto_alice3: defective key");
2674 return (XEVNT_PUB);
2678 * Roll new random r (0 < r < q).
2680 if (peer->iffval != NULL)
2681 BN_free(peer->iffval);
2682 peer->iffval = BN_new();
2683 len = BN_num_bytes(dsa->p);
2684 BN_rand(peer->iffval, len * 8, -1, 1); /* r mod p */
2685 bctx = BN_CTX_new();
2686 BN_mod(peer->iffval, peer->iffval, dsa->p, bctx);
2687 BN_CTX_free(bctx);
2690 * Sign and send to Bob. The filestamp is from the local file.
2692 memset(vp, 0, sizeof(struct value));
2693 tstamp = crypto_time();
2694 vp->tstamp = htonl(tstamp);
2695 vp->fstamp = htonl(peer->ident_pkey->fstamp);
2696 vp->vallen = htonl(len);
2697 vp->ptr = emalloc(len);
2698 BN_bn2bin(peer->iffval, vp->ptr);
2699 if (tstamp == 0)
2700 return (XEVNT_OK);
2702 vp->sig = emalloc(sign_siglen);
2703 EVP_SignInit(&ctx, sign_digest);
2704 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2705 EVP_SignUpdate(&ctx, vp->ptr, len);
2706 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2707 vp->siglen = htonl(sign_siglen);
2708 return (XEVNT_OK);
2713 * crypto_bob3 - construct Bob's response to Alice's challenge
2715 * Returns
2716 * XEVNT_OK success
2717 * XEVNT_ERR protocol error
2719 static int
2720 crypto_bob3(
2721 struct exten *ep, /* extension pointer */
2722 struct value *vp /* value pointer */
2725 DSA *dsa; /* MV parameters */
2726 DSA *sdsa; /* DSA signature context fake */
2727 BN_CTX *bctx; /* BIGNUM context */
2728 EVP_MD_CTX ctx; /* signature context */
2729 tstamp_t tstamp; /* NTP timestamp */
2730 BIGNUM *r, *k, *u;
2731 u_char *ptr;
2732 u_int len;
2735 * If the MV parameters are not valid, something awful
2736 * happened or we are being tormented.
2738 if (mvkey_info == NULL) {
2739 msyslog(LOG_NOTICE, "crypto_bob3: scheme unavailable");
2740 return (XEVNT_ID);
2742 dsa = mvkey_info->pkey->pkey.dsa;
2745 * Extract r from the challenge.
2747 len = ntohl(ep->vallen);
2748 if ((r = BN_bin2bn((u_char *)ep->pkt, len, NULL)) == NULL) {
2749 msyslog(LOG_ERR, "crypto_bob3: %s",
2750 ERR_error_string(ERR_get_error(), NULL));
2751 return (XEVNT_ERR);
2755 * Bob rolls random k (0 < k < q), making sure it is not a
2756 * factor of q. He then computes y = r A^k and sends (y, gbar^k,
2757 * and ghat^k) to Alice.
2759 bctx = BN_CTX_new(); k = BN_new(); u = BN_new();
2760 sdsa = DSA_new();
2761 sdsa->p = BN_new(); sdsa->q = BN_new(); sdsa->g = BN_new();
2762 while (1) {
2763 BN_rand(k, BN_num_bits(dsa->q), 0, 0);
2764 BN_mod(k, k, dsa->q, bctx);
2765 BN_gcd(u, k, dsa->q, bctx);
2766 if (BN_is_one(u))
2767 break;
2769 BN_mod_exp(u, dsa->g, k, dsa->p, bctx); /* A^k r */
2770 BN_mod_mul(sdsa->p, u, r, dsa->p, bctx);
2771 BN_mod_exp(sdsa->q, dsa->priv_key, k, dsa->p, bctx); /* gbar */
2772 BN_mod_exp(sdsa->g, dsa->pub_key, k, dsa->p, bctx); /* ghat */
2773 BN_CTX_free(bctx); BN_free(k); BN_free(r); BN_free(u);
2774 #ifdef DEBUG
2775 if (debug > 1)
2776 DSA_print_fp(stdout, sdsa, 0);
2777 #endif
2780 * Encode the values in ASN.1 and sign. The filestamp is from
2781 * the local file.
2783 memset(vp, 0, sizeof(struct value));
2784 tstamp = crypto_time();
2785 vp->tstamp = htonl(tstamp);
2786 vp->fstamp = htonl(mvkey_info->fstamp);
2787 len = i2d_DSAparams(sdsa, NULL);
2788 if (len == 0) {
2789 msyslog(LOG_ERR, "crypto_bob3: %s",
2790 ERR_error_string(ERR_get_error(), NULL));
2791 DSA_free(sdsa);
2792 return (XEVNT_ERR);
2794 vp->vallen = htonl(len);
2795 ptr = emalloc(len);
2796 vp->ptr = ptr;
2797 i2d_DSAparams(sdsa, &ptr);
2798 DSA_free(sdsa);
2799 if (tstamp == 0)
2800 return (XEVNT_OK);
2802 vp->sig = emalloc(sign_siglen);
2803 EVP_SignInit(&ctx, sign_digest);
2804 EVP_SignUpdate(&ctx, (u_char *)&vp->tstamp, 12);
2805 EVP_SignUpdate(&ctx, vp->ptr, len);
2806 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
2807 vp->siglen = htonl(sign_siglen);
2808 return (XEVNT_OK);
2813 * crypto_mv - verify Bob's response to Alice's challenge
2815 * Returns
2816 * XEVNT_OK success
2817 * XEVNT_ERR protocol error
2818 * XEVNT_FSP bad filestamp
2819 * XEVNT_ID bad or missing group key
2820 * XEVNT_PUB bad or missing public key
2823 crypto_mv(
2824 struct exten *ep, /* extension pointer */
2825 struct peer *peer /* peer structure pointer */
2828 DSA *dsa; /* MV parameters */
2829 DSA *sdsa; /* DSA parameters */
2830 BN_CTX *bctx; /* BIGNUM context */
2831 BIGNUM *k, *u, *v;
2832 u_int len;
2833 const u_char *ptr;
2834 int temp;
2837 * If the MV parameters are not valid or no challenge was sent,
2838 * something awful happened or we are being tormented.
2840 if (peer->ident_pkey == NULL) {
2841 msyslog(LOG_NOTICE, "crypto_mv: scheme unavailable");
2842 return (XEVNT_ID);
2844 if (ntohl(ep->fstamp) != peer->ident_pkey->fstamp) {
2845 msyslog(LOG_NOTICE, "crypto_mv: invalid filestamp %u",
2846 ntohl(ep->fstamp));
2847 return (XEVNT_FSP);
2849 if ((dsa = peer->ident_pkey->pkey->pkey.dsa) == NULL) {
2850 msyslog(LOG_NOTICE, "crypto_mv: defective key");
2851 return (XEVNT_PUB);
2853 if (peer->iffval == NULL) {
2854 msyslog(LOG_NOTICE, "crypto_mv: missing challenge");
2855 return (XEVNT_ID);
2859 * Extract the y, gbar and ghat values from the response.
2861 bctx = BN_CTX_new(); k = BN_new(); u = BN_new(); v = BN_new();
2862 len = ntohl(ep->vallen);
2863 ptr = (u_char *)ep->pkt;
2864 if ((sdsa = d2i_DSAparams(NULL, &ptr, len)) == NULL) {
2865 msyslog(LOG_ERR, "crypto_mv: %s",
2866 ERR_error_string(ERR_get_error(), NULL));
2867 return (XEVNT_ERR);
2871 * Compute (gbar^xhat ghat^xbar) mod p.
2873 BN_mod_exp(u, sdsa->q, dsa->pub_key, dsa->p, bctx);
2874 BN_mod_exp(v, sdsa->g, dsa->priv_key, dsa->p, bctx);
2875 BN_mod_mul(u, u, v, dsa->p, bctx);
2876 BN_mod_mul(u, u, sdsa->p, dsa->p, bctx);
2879 * The result should match r.
2881 temp = BN_cmp(u, peer->iffval);
2882 BN_CTX_free(bctx); BN_free(k); BN_free(u); BN_free(v);
2883 BN_free(peer->iffval);
2884 peer->iffval = NULL;
2885 DSA_free(sdsa);
2886 if (temp == 0)
2887 return (XEVNT_OK);
2889 msyslog(LOG_NOTICE, "crypto_mv: identity not verified");
2890 return (XEVNT_ID);
2895 ***********************************************************************
2897 * The following routines are used to manipulate certificates *
2899 ***********************************************************************
2902 * cert_sign - sign x509 certificate equest and update value structure.
2904 * The certificate request includes a copy of the host certificate,
2905 * which includes the version number, subject name and public key of the
2906 * host. The resulting certificate includes these values plus the
2907 * serial number, issuer name and valid interval of the server. The
2908 * valid interval extends from the current time to the same time one
2909 * year hence. This may extend the life of the signed certificate beyond
2910 * that of the signer certificate.
2912 * It is convenient to use the NTP seconds of the current time as the
2913 * serial number. In the value structure the timestamp is the current
2914 * time and the filestamp is taken from the extension field. Note this
2915 * routine is called only when the client clock is synchronized to a
2916 * proventic source, so timestamp comparisons are valid.
2918 * The host certificate is valid from the time it was generated for a
2919 * period of one year. A signed certificate is valid from the time of
2920 * signature for a period of one year, but only the host certificate (or
2921 * sign certificate if used) is actually used to encrypt and decrypt
2922 * signatures. The signature trail is built from the client via the
2923 * intermediate servers to the trusted server. Each signature on the
2924 * trail must be valid at the time of signature, but it could happen
2925 * that a signer certificate expire before the signed certificate, which
2926 * remains valid until its expiration.
2928 * Returns
2929 * XEVNT_OK success
2930 * XEVNT_CRT bad or missing certificate
2931 * XEVNT_PER host certificate expired
2932 * XEVNT_PUB bad or missing public key
2933 * XEVNT_VFY certificate not verified
2935 static int
2936 cert_sign(
2937 struct exten *ep, /* extension field pointer */
2938 struct value *vp /* value pointer */
2941 X509 *req; /* X509 certificate request */
2942 X509 *cert; /* X509 certificate */
2943 X509_EXTENSION *ext; /* certificate extension */
2944 ASN1_INTEGER *serial; /* serial number */
2945 X509_NAME *subj; /* distinguished (common) name */
2946 EVP_PKEY *pkey; /* public key */
2947 EVP_MD_CTX ctx; /* message digest context */
2948 tstamp_t tstamp; /* NTP timestamp */
2949 u_int len;
2950 const u_char *ptr;
2951 int i, temp;
2954 * Decode ASN.1 objects and construct certificate structure.
2955 * Make sure the system clock is synchronized to a proventic
2956 * source.
2958 tstamp = crypto_time();
2959 if (tstamp == 0)
2960 return (XEVNT_TSP);
2962 ptr = (u_char *)ep->pkt;
2963 if ((req = d2i_X509(NULL, &ptr, ntohl(ep->vallen))) == NULL) {
2964 msyslog(LOG_ERR, "cert_sign: %s",
2965 ERR_error_string(ERR_get_error(), NULL));
2966 return (XEVNT_CRT);
2969 * Extract public key and check for errors.
2971 if ((pkey = X509_get_pubkey(req)) == NULL) {
2972 msyslog(LOG_ERR, "cert_sign: %s",
2973 ERR_error_string(ERR_get_error(), NULL));
2974 X509_free(req);
2975 return (XEVNT_PUB);
2979 * Generate X509 certificate signed by this server. If this is a
2980 * trusted host, the issuer name is the group name; otherwise,
2981 * it is the host name. Also copy any extensions that might be
2982 * present.
2984 cert = X509_new();
2985 X509_set_version(cert, X509_get_version(req));
2986 serial = ASN1_INTEGER_new();
2987 ASN1_INTEGER_set(serial, tstamp);
2988 X509_set_serialNumber(cert, serial);
2989 X509_gmtime_adj(X509_get_notBefore(cert), 0L);
2990 X509_gmtime_adj(X509_get_notAfter(cert), YEAR);
2991 subj = X509_get_issuer_name(cert);
2992 X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
2993 hostval.ptr, strlen(hostval.ptr), -1, 0);
2994 subj = X509_get_subject_name(req);
2995 X509_set_subject_name(cert, subj);
2996 X509_set_pubkey(cert, pkey);
2997 ext = X509_get_ext(req, 0);
2998 temp = X509_get_ext_count(req);
2999 for (i = 0; i < temp; i++) {
3000 ext = X509_get_ext(req, i);
3001 X509_add_ext(cert, ext, -1);
3003 X509_free(req);
3006 * Sign and verify the client certificate, but only if the host
3007 * certificate has not expired.
3009 if (tstamp < cert_host->first || tstamp > cert_host->last) {
3010 X509_free(cert);
3011 return (XEVNT_PER);
3013 X509_sign(cert, sign_pkey, sign_digest);
3014 if (X509_verify(cert, sign_pkey) <= 0) {
3015 msyslog(LOG_ERR, "cert_sign: %s",
3016 ERR_error_string(ERR_get_error(), NULL));
3017 X509_free(cert);
3018 return (XEVNT_VFY);
3020 len = i2d_X509(cert, NULL);
3023 * Build and sign the value structure. We have to sign it here,
3024 * since the response has to be returned right away. This is a
3025 * clogging hazard.
3027 memset(vp, 0, sizeof(struct value));
3028 vp->tstamp = htonl(tstamp);
3029 vp->fstamp = ep->fstamp;
3030 vp->vallen = htonl(len);
3031 vp->ptr = emalloc(len);
3032 ptr = vp->ptr;
3033 i2d_X509(cert, (unsigned char **)&ptr);
3034 vp->siglen = 0;
3035 if (tstamp != 0) {
3036 vp->sig = emalloc(sign_siglen);
3037 EVP_SignInit(&ctx, sign_digest);
3038 EVP_SignUpdate(&ctx, (u_char *)vp, 12);
3039 EVP_SignUpdate(&ctx, vp->ptr, len);
3040 if (EVP_SignFinal(&ctx, vp->sig, &len, sign_pkey))
3041 vp->siglen = htonl(sign_siglen);
3043 #ifdef DEBUG
3044 if (debug > 1)
3045 X509_print_fp(stdout, cert);
3046 #endif
3047 X509_free(cert);
3048 return (XEVNT_OK);
3053 * cert_install - install certificate in certificate cache
3055 * This routine encodes an extension field into a certificate info/value
3056 * structure. It searches the certificate list for duplicates and
3057 * expunges whichever is older. Finally, it inserts this certificate
3058 * first on the list.
3060 * Returns certificate info pointer if valid, NULL if not.
3062 struct cert_info *
3063 cert_install(
3064 struct exten *ep, /* cert info/value */
3065 struct peer *peer /* peer structure */
3068 struct cert_info *cp, *xp, **zp;
3071 * Parse and validate the signed certificate. If valid,
3072 * construct the info/value structure; otherwise, scamper home
3073 * empty handed.
3075 if ((cp = cert_parse((u_char *)ep->pkt, (long)ntohl(ep->vallen),
3076 (tstamp_t)ntohl(ep->fstamp))) == NULL)
3077 return (NULL);
3080 * Scan certificate list looking for another certificate with
3081 * the same subject and issuer. If another is found with the
3082 * same or older filestamp, unlink it and return the goodies to
3083 * the heap. If another is found with a later filestamp, discard
3084 * the new one and leave the building with the old one.
3086 * Make a note to study this issue again. An earlier certificate
3087 * with a long lifetime might be overtaken by a later
3088 * certificate with a short lifetime, thus invalidating the
3089 * earlier signature. However, we gotta find a way to leak old
3090 * stuff from the cache, so we do it anyway.
3092 zp = &cinfo;
3093 for (xp = cinfo; xp != NULL; xp = xp->link) {
3094 if (strcmp(cp->subject, xp->subject) == 0 &&
3095 strcmp(cp->issuer, xp->issuer) == 0) {
3096 if (ntohl(cp->cert.fstamp) <=
3097 ntohl(xp->cert.fstamp)) {
3098 cert_free(cp);
3099 cp = xp;
3100 } else {
3101 *zp = xp->link;
3102 cert_free(xp);
3103 xp = NULL;
3105 break;
3107 zp = &xp->link;
3109 if (xp == NULL) {
3110 cp->link = cinfo;
3111 cinfo = cp;
3113 cp->flags |= CERT_VALID;
3114 crypto_update();
3115 return (cp);
3120 * cert_hike - verify the signature using the issuer public key
3122 * Returns
3123 * XEVNT_OK success
3124 * XEVNT_CRT bad or missing certificate
3125 * XEVNT_PER host certificate expired
3126 * XEVNT_VFY certificate not verified
3129 cert_hike(
3130 struct peer *peer, /* peer structure pointer */
3131 struct cert_info *yp /* issuer certificate */
3134 struct cert_info *xp; /* subject certificate */
3135 X509 *cert; /* X509 certificate */
3136 const u_char *ptr;
3139 * Save the issuer on the new certificate, but remember the old
3140 * one.
3142 if (peer->issuer != NULL)
3143 free(peer->issuer);
3144 peer->issuer = emalloc(strlen(yp->issuer) + 1);
3145 strcpy(peer->issuer, yp->issuer);
3146 xp = peer->xinfo;
3147 peer->xinfo = yp;
3150 * If subject Y matches issuer Y, then the certificate trail is
3151 * complete. If Y is not trusted, the server certificate has yet
3152 * been signed, so keep trying. Otherwise, save the group key
3153 * and light the valid bit. If the host certificate is trusted,
3154 * do not execute a sign exchange. If no identity scheme is in
3155 * use, light the identity and proventic bits.
3157 if (strcmp(yp->subject, yp->issuer) == 0) {
3158 if (!(yp->flags & CERT_TRUST))
3159 return (XEVNT_OK);
3161 peer->grpkey = yp->grpkey;
3162 peer->crypto |= CRYPTO_FLAG_CERT;
3163 if (!(peer->crypto & CRYPTO_FLAG_MASK))
3164 peer->crypto |= CRYPTO_FLAG_VRFY |
3165 CRYPTO_FLAG_PROV;
3168 * If the server has an an identity scheme, fetch the
3169 * identity credentials. If not, the identity is
3170 * verified only by the trusted certificate. The next
3171 * signature will set the server proventic.
3173 if (!(peer->crypto & CRYPTO_FLAG_MASK) ||
3174 sys_groupname == NULL)
3175 peer->crypto |= CRYPTO_FLAG_VRFY;
3179 * If X exists, verify signature X using public key Y.
3181 if (xp == NULL)
3182 return (XEVNT_OK);
3184 ptr = (u_char *)xp->cert.ptr;
3185 cert = d2i_X509(NULL, &ptr, ntohl(xp->cert.vallen));
3186 if (cert == NULL) {
3187 xp->flags |= CERT_ERROR;
3188 return (XEVNT_CRT);
3190 if (X509_verify(cert, yp->pkey) <= 0) {
3191 X509_free(cert);
3192 xp->flags |= CERT_ERROR;
3193 return (XEVNT_VFY);
3195 X509_free(cert);
3198 * Signature X is valid only if it begins during the
3199 * lifetime of Y.
3201 if (xp->first < yp->first || xp->first > yp->last) {
3202 xp->flags |= CERT_ERROR;
3203 return (XEVNT_PER);
3205 xp->flags |= CERT_SIGN;
3206 return (XEVNT_OK);
3211 * cert_parse - parse x509 certificate and create info/value structures.
3213 * The server certificate includes the version number, issuer name,
3214 * subject name, public key and valid date interval. If the issuer name
3215 * is the same as the subject name, the certificate is self signed and
3216 * valid only if the server is configured as trustable. If the names are
3217 * different, another issuer has signed the server certificate and
3218 * vouched for it. In this case the server certificate is valid if
3219 * verified by the issuer public key.
3221 * Returns certificate info/value pointer if valid, NULL if not.
3223 struct cert_info * /* certificate information structure */
3224 cert_parse(
3225 u_char *asn1cert, /* X509 certificate */
3226 long len, /* certificate length */
3227 tstamp_t fstamp /* filestamp */
3230 X509 *cert; /* X509 certificate */
3231 X509_EXTENSION *ext; /* X509v3 extension */
3232 struct cert_info *ret; /* certificate info/value */
3233 BIO *bp;
3234 char pathbuf[MAXFILENAME];
3235 const u_char *ptr;
3236 int temp, cnt, i;
3239 * Decode ASN.1 objects and construct certificate structure.
3241 ptr = asn1cert;
3242 if ((cert = d2i_X509(NULL, &ptr, len)) == NULL) {
3243 msyslog(LOG_ERR, "cert_parse: %s",
3244 ERR_error_string(ERR_get_error(), NULL));
3245 return (NULL);
3247 #ifdef DEBUG
3248 if (debug > 1)
3249 X509_print_fp(stdout, cert);
3250 #endif
3253 * Extract version, subject name and public key.
3255 ret = emalloc(sizeof(struct cert_info));
3256 memset(ret, 0, sizeof(struct cert_info));
3257 if ((ret->pkey = X509_get_pubkey(cert)) == NULL) {
3258 msyslog(LOG_ERR, "cert_parse: %s",
3259 ERR_error_string(ERR_get_error(), NULL));
3260 cert_free(ret);
3261 X509_free(cert);
3262 return (NULL);
3264 ret->version = X509_get_version(cert);
3265 X509_NAME_oneline(X509_get_subject_name(cert), pathbuf,
3266 MAXFILENAME);
3267 ptr = strstr(pathbuf, "CN=");
3268 if (ptr == NULL) {
3269 msyslog(LOG_NOTICE, "cert_parse: invalid subject %s",
3270 pathbuf);
3271 cert_free(ret);
3272 X509_free(cert);
3273 return (NULL);
3275 ret->subject = estrdup(ptr + 3);
3278 * Extract remaining objects. Note that the NTP serial number is
3279 * the NTP seconds at the time of signing, but this might not be
3280 * the case for other authority. We don't bother to check the
3281 * objects at this time, since the real crunch can happen only
3282 * when the time is valid but not yet certificated.
3284 ret->nid = OBJ_obj2nid(cert->cert_info->signature->algorithm);
3285 ret->digest = (const EVP_MD *)EVP_get_digestbynid(ret->nid);
3286 ret->serial =
3287 (u_long)ASN1_INTEGER_get(X509_get_serialNumber(cert));
3288 X509_NAME_oneline(X509_get_issuer_name(cert), pathbuf,
3289 MAXFILENAME);
3290 if ((ptr = strstr(pathbuf, "CN=")) == NULL) {
3291 msyslog(LOG_NOTICE, "cert_parse: invalid issuer %s",
3292 pathbuf);
3293 cert_free(ret);
3294 X509_free(cert);
3295 return (NULL);
3297 ret->issuer = estrdup(ptr + 3);
3298 ret->first = asn2ntp(X509_get_notBefore(cert));
3299 ret->last = asn2ntp(X509_get_notAfter(cert));
3302 * Extract extension fields. These are ad hoc ripoffs of
3303 * currently assigned functions and will certainly be changed
3304 * before prime time.
3306 cnt = X509_get_ext_count(cert);
3307 for (i = 0; i < cnt; i++) {
3308 ext = X509_get_ext(cert, i);
3309 temp = OBJ_obj2nid(ext->object);
3310 switch (temp) {
3313 * If a key_usage field is present, we decode whether
3314 * this is a trusted or private certificate. This is
3315 * dorky; all we want is to compare NIDs, but OpenSSL
3316 * insists on BIO text strings.
3318 case NID_ext_key_usage:
3319 bp = BIO_new(BIO_s_mem());
3320 X509V3_EXT_print(bp, ext, 0, 0);
3321 BIO_gets(bp, pathbuf, MAXFILENAME);
3322 BIO_free(bp);
3323 if (strcmp(pathbuf, "Trust Root") == 0)
3324 ret->flags |= CERT_TRUST;
3325 else if (strcmp(pathbuf, "Private") == 0)
3326 ret->flags |= CERT_PRIV;
3327 #if DEBUG
3328 if (debug)
3329 printf("cert_parse: %s: %s\n",
3330 OBJ_nid2ln(temp), pathbuf);
3331 #endif
3332 break;
3335 * If a NID_subject_key_identifier field is present, it
3336 * contains the GQ public key.
3338 case NID_subject_key_identifier:
3339 ret->grpkey = BN_bin2bn(&ext->value->data[2],
3340 ext->value->length - 2, NULL);
3341 /* fall through */
3342 #if DEBUG
3343 default:
3344 if (debug)
3345 printf("cert_parse: %s\n",
3346 OBJ_nid2ln(temp));
3347 #endif
3350 if (strcmp(ret->subject, ret->issuer) == 0) {
3353 * If certificate is self signed, verify signature.
3355 if (X509_verify(cert, ret->pkey) <= 0) {
3356 msyslog(LOG_NOTICE,
3357 "cert_parse: signature not verified %s",
3358 ret->subject);
3359 cert_free(ret);
3360 X509_free(cert);
3361 return (NULL);
3363 } else {
3366 * Check for a certificate loop.
3368 if (strcmp(hostval.ptr, ret->issuer) == 0) {
3369 msyslog(LOG_NOTICE,
3370 "cert_parse: certificate trail loop %s",
3371 ret->subject);
3372 cert_free(ret);
3373 X509_free(cert);
3374 return (NULL);
3379 * Verify certificate valid times. Note that certificates cannot
3380 * be retroactive.
3382 if (ret->first > ret->last || ret->first < fstamp) {
3383 msyslog(LOG_NOTICE,
3384 "cert_parse: invalid times %s first %u last %u fstamp %u",
3385 ret->subject, ret->first, ret->last, fstamp);
3386 cert_free(ret);
3387 X509_free(cert);
3388 return (NULL);
3392 * Build the value structure to sign and send later.
3394 ret->cert.fstamp = htonl(fstamp);
3395 ret->cert.vallen = htonl(len);
3396 ret->cert.ptr = emalloc(len);
3397 memcpy(ret->cert.ptr, asn1cert, len);
3398 X509_free(cert);
3399 return (ret);
3404 * cert_free - free certificate information structure
3406 void
3407 cert_free(
3408 struct cert_info *cinf /* certificate info/value structure */
3411 if (cinf->pkey != NULL)
3412 EVP_PKEY_free(cinf->pkey);
3413 if (cinf->subject != NULL)
3414 free(cinf->subject);
3415 if (cinf->issuer != NULL)
3416 free(cinf->issuer);
3417 if (cinf->grpkey != NULL)
3418 BN_free(cinf->grpkey);
3419 value_free(&cinf->cert);
3420 free(cinf);
3425 * crypto_key - load cryptographic parameters and keys
3427 * This routine searches the key cache for matching name in the form
3428 * ntpkey_<key>_<name>, where <key> is one of host, sign, iff, gq, mv,
3429 * and <name> is the host/group name. If not found, it tries to load a
3430 * PEM-encoded file of the same name and extracts the filestamp from
3431 * the first line of the file name. It returns the key pointer if valid,
3432 * NULL if not.
3434 static struct pkey_info *
3435 crypto_key(
3436 char *cp, /* file name */
3437 char *passwd1, /* password */
3438 sockaddr_u *addr /* IP address */
3441 FILE *str; /* file handle */
3442 struct pkey_info *pkp; /* generic key */
3443 EVP_PKEY *pkey = NULL; /* public/private key */
3444 tstamp_t fstamp;
3445 char filename[MAXFILENAME]; /* name of key file */
3446 char linkname[MAXFILENAME]; /* filestamp buffer) */
3447 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3448 char *ptr;
3451 * Search the key cache for matching key and name.
3453 for (pkp = pkinfo; pkp != NULL; pkp = pkp->link) {
3454 if (strcmp(cp, pkp->name) == 0)
3455 return (pkp);
3459 * Open the key file. If the first character of the file name is
3460 * not '/', prepend the keys directory string. If something goes
3461 * wrong, abandon ship.
3463 if (*cp == '/')
3464 strcpy(filename, cp);
3465 else
3466 snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3467 str = fopen(filename, "r");
3468 if (str == NULL)
3469 return (NULL);
3472 * Read the filestamp, which is contained in the first line.
3474 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3475 msyslog(LOG_ERR, "crypto_key: empty file %s",
3476 filename);
3477 fclose(str);
3478 return (NULL);
3480 if ((ptr = strrchr(ptr, '.')) == NULL) {
3481 msyslog(LOG_ERR, "crypto_key: no filestamp %s",
3482 filename);
3483 fclose(str);
3484 return (NULL);
3486 if (sscanf(++ptr, "%u", &fstamp) != 1) {
3487 msyslog(LOG_ERR, "crypto_key: invalid filestamp %s",
3488 filename);
3489 fclose(str);
3490 return (NULL);
3494 * Read and decrypt PEM-encoded private key. If it fails to
3495 * decrypt, game over.
3497 pkey = PEM_read_PrivateKey(str, NULL, NULL, passwd1);
3498 fclose(str);
3499 if (pkey == NULL) {
3500 msyslog(LOG_ERR, "crypto_key: %s",
3501 ERR_error_string(ERR_get_error(), NULL));
3502 exit (-1);
3506 * Make a new entry in the key cache.
3508 pkp = emalloc(sizeof(struct pkey_info));
3509 pkp->link = pkinfo;
3510 pkinfo = pkp;
3511 pkp->pkey = pkey;
3512 pkp->name = emalloc(strlen(cp) + 1);
3513 pkp->fstamp = fstamp;
3514 strcpy(pkp->name, cp);
3517 * Leave tracks in the cryptostats.
3519 if ((ptr = strrchr(linkname, '\n')) != NULL)
3520 *ptr = '\0';
3521 snprintf(statstr, NTP_MAXSTRLEN, "%s mod %d", &linkname[2],
3522 EVP_PKEY_size(pkey) * 8);
3523 record_crypto_stats(addr, statstr);
3524 #ifdef DEBUG
3525 if (debug)
3526 printf("crypto_key: %s\n", statstr);
3527 if (debug > 1) {
3528 if (pkey->type == EVP_PKEY_DSA)
3529 DSA_print_fp(stdout, pkey->pkey.dsa, 0);
3530 else if (pkey->type == EVP_PKEY_RSA)
3531 RSA_print_fp(stdout, pkey->pkey.rsa, 0);
3533 #endif
3534 return (pkp);
3539 ***********************************************************************
3541 * The following routines are used only at initialization time *
3543 ***********************************************************************
3546 * crypto_cert - load certificate from file
3548 * This routine loads an X.509 RSA or DSA certificate from a file and
3549 * constructs a info/cert value structure for this machine. The
3550 * structure includes a filestamp extracted from the file name. Later
3551 * the certificate can be sent to another machine on request.
3553 * Returns certificate info/value pointer if valid, NULL if not.
3555 static struct cert_info * /* certificate information */
3556 crypto_cert(
3557 char *cp /* file name */
3560 struct cert_info *ret; /* certificate information */
3561 FILE *str; /* file handle */
3562 char filename[MAXFILENAME]; /* name of certificate file */
3563 char linkname[MAXFILENAME]; /* filestamp buffer */
3564 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3565 tstamp_t fstamp; /* filestamp */
3566 long len;
3567 char *ptr;
3568 char *name, *header;
3569 u_char *data;
3572 * Open the certificate file. If the first character of the file
3573 * name is not '/', prepend the keys directory string. If
3574 * something goes wrong, abandon ship.
3576 if (*cp == '/')
3577 strcpy(filename, cp);
3578 else
3579 snprintf(filename, MAXFILENAME, "%s/%s", keysdir, cp);
3580 str = fopen(filename, "r");
3581 if (str == NULL)
3582 return (NULL);
3585 * Read the filestamp, which is contained in the first line.
3587 if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
3588 msyslog(LOG_ERR, "crypto_cert: empty file %s",
3589 filename);
3590 fclose(str);
3591 return (NULL);
3593 if ((ptr = strrchr(ptr, '.')) == NULL) {
3594 msyslog(LOG_ERR, "crypto_cert: no filestamp %s\n",
3595 filename);
3596 fclose(str);
3597 return (NULL);
3599 if (sscanf(++ptr, "%u", &fstamp) != 1) {
3600 msyslog(LOG_ERR, "crypto_cert: invalid filestamp %s\n",
3601 filename);
3602 fclose(str);
3603 return (NULL);
3607 * Read PEM-encoded certificate and install.
3609 if (!PEM_read(str, &name, &header, &data, &len)) {
3610 msyslog(LOG_ERR, "crypto_cert: %s\n",
3611 ERR_error_string(ERR_get_error(), NULL));
3612 fclose(str);
3613 return (NULL);
3615 fclose(str);
3616 free(header);
3617 if (strcmp(name, "CERTIFICATE") != 0) {
3618 msyslog(LOG_NOTICE, "crypto_cert: wrong PEM type %s",
3619 name);
3620 free(name);
3621 free(data);
3622 return (NULL);
3624 free(name);
3627 * Parse certificate and generate info/value structure. The
3628 * pointer and copy nonsense is due something broken in Solaris.
3630 ret = cert_parse(data, len, fstamp);
3631 free(data);
3632 if (ret == NULL)
3633 return (NULL);
3635 if ((ptr = strrchr(linkname, '\n')) != NULL)
3636 *ptr = '\0';
3637 snprintf(statstr, NTP_MAXSTRLEN, "%s 0x%x len %lu",
3638 &linkname[2], ret->flags, len);
3639 record_crypto_stats(NULL, statstr);
3640 #ifdef DEBUG
3641 if (debug)
3642 printf("crypto_cert: %s\n", statstr);
3643 #endif
3644 return (ret);
3649 * crypto_setup - load keys, certificate and identity parameters
3651 * This routine loads the public/private host key and certificate. If
3652 * available, it loads the public/private sign key, which defaults to
3653 * the host key. The host key must be RSA, but the sign key can be
3654 * either RSA or DSA. If a trusted certificate, it loads the identity
3655 * parameters. In either case, the public key on the certificate must
3656 * agree with the sign key.
3658 * Required but missing files and inconsistent data and errors are
3659 * fatal. Allowing configuration to continue would be hazardous and
3660 * require really messy error checks.
3662 void
3663 crypto_setup(void)
3665 struct pkey_info *pinfo; /* private/public key */
3666 char filename[MAXFILENAME]; /* file name buffer */
3667 char * randfile;
3668 char statstr[NTP_MAXSTRLEN]; /* statistics for filegen */
3669 l_fp seed; /* crypto PRNG seed as NTP timestamp */
3670 u_int len;
3671 int bytes;
3672 u_char *ptr;
3675 * Check for correct OpenSSL version and avoid initialization in
3676 * the case of multiple crypto commands.
3678 if (crypto_flags & CRYPTO_FLAG_ENAB) {
3679 msyslog(LOG_NOTICE,
3680 "crypto_setup: spurious crypto command");
3681 return;
3683 ssl_check_version();
3686 * Load required random seed file and seed the random number
3687 * generator. Be default, it is found as .rnd in the user home
3688 * directory. The root home directory may be / or /root,
3689 * depending on the system. Wiggle the contents a bit and write
3690 * it back so the sequence does not repeat when we next restart.
3692 if (!RAND_status()) {
3693 if (rand_file == NULL) {
3694 RAND_file_name(filename, sizeof(filename));
3695 randfile = filename;
3696 } else if (*rand_file != '/') {
3697 snprintf(filename, sizeof(filename), "%s/%s",
3698 keysdir, rand_file);
3699 randfile = filename;
3700 } else
3701 randfile = rand_file;
3703 if ((bytes = RAND_load_file(randfile, -1)) == 0) {
3704 msyslog(LOG_ERR,
3705 "crypto_setup: random seed file %s missing",
3706 randfile);
3707 exit (-1);
3709 get_systime(&seed);
3710 RAND_seed(&seed, sizeof(l_fp));
3711 RAND_write_file(randfile);
3712 #ifdef DEBUG
3713 if (debug)
3714 printf(
3715 "crypto_setup: OpenSSL version %lx random seed file %s bytes read %d\n",
3716 SSLeay(), randfile, bytes);
3717 #endif
3721 * Initialize structures.
3723 if (sys_hostname == NULL) {
3724 gethostname(filename, MAXFILENAME);
3725 sys_hostname = emalloc(strlen(filename) + 1);
3726 strcpy(sys_hostname, filename);
3728 if (passwd == NULL)
3729 passwd = sys_hostname;
3730 memset(&hostval, 0, sizeof(hostval));
3731 memset(&pubkey, 0, sizeof(pubkey));
3732 memset(&tai_leap, 0, sizeof(tai_leap));
3735 * Load required host key from file "ntpkey_host_<hostname>". If
3736 * no host key file is not found or has invalid password, life
3737 * as we know it ends. The host key also becomes the default
3738 * sign key.
3740 snprintf(filename, MAXFILENAME, "ntpkey_host_%s", sys_hostname);
3741 pinfo = crypto_key(filename, passwd, NULL);
3742 if (pinfo == NULL) {
3743 msyslog(LOG_ERR,
3744 "crypto_setup: host key file %s not found or corrupt",
3745 filename);
3746 exit (-1);
3748 if (pinfo->pkey->type != EVP_PKEY_RSA) {
3749 msyslog(LOG_ERR,
3750 "crypto_setup: host key is not RSA key type");
3751 exit (-1);
3753 host_pkey = pinfo->pkey;
3754 sign_pkey = host_pkey;
3755 hostval.fstamp = htonl(pinfo->fstamp);
3758 * Construct public key extension field for agreement scheme.
3760 len = i2d_PublicKey(host_pkey, NULL);
3761 ptr = emalloc(len);
3762 pubkey.ptr = ptr;
3763 i2d_PublicKey(host_pkey, &ptr);
3764 pubkey.fstamp = hostval.fstamp;
3765 pubkey.vallen = htonl(len);
3768 * Load optional sign key from file "ntpkey_sign_<hostname>". If
3769 * available, it becomes the sign key.
3771 snprintf(filename, MAXFILENAME, "ntpkey_sign_%s", sys_hostname);
3772 pinfo = crypto_key(filename, passwd, NULL); if (pinfo != NULL)
3773 sign_pkey = pinfo->pkey;
3776 * Load required certificate from file "ntpkey_cert_<hostname>".
3778 snprintf(filename, MAXFILENAME, "ntpkey_cert_%s", sys_hostname);
3779 cinfo = crypto_cert(filename);
3780 if (cinfo == NULL) {
3781 msyslog(LOG_ERR,
3782 "crypto_setup: certificate file %s not found or corrupt",
3783 filename);
3784 exit (-1);
3786 cert_host = cinfo;
3787 sign_digest = cinfo->digest;
3788 sign_siglen = EVP_PKEY_size(sign_pkey);
3789 if (cinfo->flags & CERT_PRIV)
3790 crypto_flags |= CRYPTO_FLAG_PRIV;
3793 * The certificate must be self-signed.
3795 if (strcmp(cinfo->subject, cinfo->issuer) != 0) {
3796 msyslog(LOG_ERR,
3797 "crypto_setup: certificate %s is not self-signed",
3798 filename);
3799 exit (-1);
3801 hostval.vallen = htonl(strlen(cinfo->subject));
3802 hostval.ptr = cinfo->subject;
3805 * If trusted certificate, the subject name must match the group
3806 * name.
3808 if (cinfo->flags & CERT_TRUST) {
3809 if (sys_groupname == NULL) {
3810 sys_groupname = hostval.ptr;
3811 } else if (strcmp(hostval.ptr, sys_groupname) != 0) {
3812 msyslog(LOG_ERR,
3813 "crypto_setup: trusted certificate name %s does not match group name %s",
3814 hostval.ptr, sys_groupname);
3815 exit (-1);
3818 if (sys_groupname != NULL) {
3821 * Load optional IFF parameters from file
3822 * "ntpkey_iffkey_<groupname>".
3824 snprintf(filename, MAXFILENAME, "ntpkey_iffkey_%s",
3825 sys_groupname);
3826 iffkey_info = crypto_key(filename, passwd, NULL);
3827 if (iffkey_info != NULL)
3828 crypto_flags |= CRYPTO_FLAG_IFF;
3831 * Load optional GQ parameters from file
3832 * "ntpkey_gqkey_<groupname>".
3834 snprintf(filename, MAXFILENAME, "ntpkey_gqkey_%s",
3835 sys_groupname);
3836 gqkey_info = crypto_key(filename, passwd, NULL);
3837 if (gqkey_info != NULL)
3838 crypto_flags |= CRYPTO_FLAG_GQ;
3841 * Load optional MV parameters from file
3842 * "ntpkey_mvkey_<groupname>".
3844 snprintf(filename, MAXFILENAME, "ntpkey_mvkey_%s",
3845 sys_groupname);
3846 mvkey_info = crypto_key(filename, passwd, NULL);
3847 if (mvkey_info != NULL)
3848 crypto_flags |= CRYPTO_FLAG_MV;
3852 * We met the enemy and he is us. Now strike up the dance.
3854 crypto_flags |= CRYPTO_FLAG_ENAB | (cinfo->nid << 16);
3855 snprintf(statstr, NTP_MAXSTRLEN,
3856 "setup 0x%x host %s %s", crypto_flags, sys_hostname,
3857 OBJ_nid2ln(cinfo->nid));
3858 record_crypto_stats(NULL, statstr);
3859 #ifdef DEBUG
3860 if (debug)
3861 printf("crypto_setup: %s\n", statstr);
3862 #endif
3867 * crypto_config - configure data from the crypto command.
3869 void
3870 crypto_config(
3871 int item, /* configuration item */
3872 char *cp /* item name */
3875 int nid;
3877 #ifdef DEBUG
3878 if (debug > 1)
3879 printf("crypto_config: item %d %s\n", item, cp);
3880 #endif
3881 switch (item) {
3884 * Set host name (host).
3886 case CRYPTO_CONF_PRIV:
3887 sys_hostname = emalloc(strlen(cp) + 1);
3888 strcpy(sys_hostname, cp);
3889 break;
3892 * Set group name (ident).
3894 case CRYPTO_CONF_IDENT:
3895 sys_groupname = emalloc(strlen(cp) + 1);
3896 strcpy(sys_groupname, cp);
3897 break;
3900 * Set private key password (pw).
3902 case CRYPTO_CONF_PW:
3903 passwd = emalloc(strlen(cp) + 1);
3904 strcpy(passwd, cp);
3905 break;
3908 * Set random seed file name (randfile).
3910 case CRYPTO_CONF_RAND:
3911 rand_file = emalloc(strlen(cp) + 1);
3912 strcpy(rand_file, cp);
3913 break;
3916 * Set message digest NID.
3918 case CRYPTO_CONF_NID:
3919 nid = OBJ_sn2nid(cp);
3920 if (nid == 0)
3921 msyslog(LOG_ERR,
3922 "crypto_config: invalid digest name %s", cp);
3923 else
3924 crypto_nid = nid;
3925 break;
3928 # else
3929 int ntp_crypto_bs_pubkey;
3930 # endif /* OPENSSL */