1 /* $NetBSD: refclock_arc.c,v 1.1.1.1 2009/12/13 16:55:44 kardel Exp $ */
4 * refclock_arc - clock driver for ARCRON MSF/DCF/WWVB receivers
11 #if defined(REFCLOCK) && defined(CLOCK_ARCRON_MSF)
13 static const char arc_version
[] = { "V1.3 2003/02/21" };
15 /* define PRE_NTP420 for compatibility to previous versions of NTP (at least
19 #ifndef ARCRON_NOT_KEEN
20 #define ARCRON_KEEN 1 /* Be keen, and trusting of the clock, if defined. */
23 #ifndef ARCRON_NOT_MULTIPLE_SAMPLES
24 #define ARCRON_MULTIPLE_SAMPLES 1 /* Use all timestamp bytes as samples. */
27 #ifndef ARCRON_NOT_LEAPSECOND_KEEN
28 #ifndef ARCRON_LEAPSECOND_KEEN
29 #undef ARCRON_LEAPSECOND_KEEN /* Respond quickly to leap seconds: doesn't work yet. */
34 Code by Derek Mulcahy, <derek@toybox.demon.co.uk>, 1997.
35 Modifications by Damon Hart-Davis, <d@hd.org>, 1997.
36 Modifications by Paul Alfille, <palfille@partners.org>, 2003.
37 Modifications by Christopher Price, <cprice@cs-home.com>, 2003.
38 Modifications by Nigel Roles <nigel@9fs.org>, 2003.
41 THIS CODE IS SUPPLIED AS IS, WITH NO WARRANTY OF ANY KIND. USE AT
44 Orginally developed and used with ntp3-5.85 by Derek Mulcahy.
46 Built against ntp3-5.90 on Solaris 2.5 using gcc 2.7.2.
48 This code may be freely copied and used and incorporated in other
49 systems providing the disclaimer and notice of authorship are
52 -------------------------------------------------------------------------------
56 1) Called tcgetattr() before modifying, so that fields correctly initialised
57 for all operating systems
59 2) Altered parsing of timestamp line so that it copes with fields which are
60 not always ASCII digits (e.g. status field when battery low)
62 -------------------------------------------------------------------------------
66 MAJOR CHANGES SINCE V1.2
67 ========================
68 1) Applied patch by Andrey Bray <abuse@madhouse.demon.co.uk>
69 2001-02-17 comp.protocols.time.ntp
71 2) Added WWVB support via clock mode command, localtime/UTC time configured
72 via flag1=(0=UTC, 1=localtime)
74 3) Added ignore resync request via flag2=(0=resync, 1=ignore resync)
76 4) Added simplified conversion from localtime to UTC with dst/bst translation
78 5) Added average signal quality poll
80 6) Fixed a badformat error when no code is available due to stripping
83 7) Fixed a badformat error when clearing lencode & memset a_lastcode in poll
86 8) Lots of code cleanup, including standardized DEBUG macros and removal
89 -------------------------------------------------------------------------------
91 Author's original note:
93 I enclose my ntp driver for the Galleon Systems Arc MSF receiver.
95 It works (after a fashion) on both Solaris-1 and Solaris-2.
97 I am currently using ntp3-5.85. I have been running the code for
98 about 7 months without any problems. Even coped with the change to BST!
100 I had to do some funky things to read from the clock because it uses the
101 power from the receive lines to drive the transmit lines. This makes the
102 code look a bit stupid but it works. I also had to put in some delays to
103 allow for the turnaround time from receive to transmit. These delays
104 are between characters when requesting a time stamp so that shouldn't affect
105 the results too drastically.
109 The bottom line is that it works but could easily be improved. You are
110 free to do what you will with the code. I haven't been able to determine
111 how good the clock is. I think that this requires a known good clock
112 to compare it against.
114 -------------------------------------------------------------------------------
116 Damon's notes for adjustments:
118 MAJOR CHANGES SINCE V1.0
119 ========================
120 1) Removal of pollcnt variable that made the clock go permanently
121 off-line once two time polls failed to gain responses.
123 2) Avoiding (at least on Solaris-2) terminal becoming the controlling
124 terminal of the process when we do a low-level open().
126 3) Additional logic (conditional on ARCRON_LEAPSECOND_KEEN being
127 defined) to try to resync quickly after a potential leap-second
128 insertion or deletion.
130 4) Code significantly slimmer at run-time than V1.0.
136 1) The C preprocessor symbol to have the clock built has been changed
137 from ARC to ARCRON_MSF to CLOCK_ARCRON_MSF to minimise the
138 possiblity of clashes with other symbols in the future.
140 2) PRECISION should be -4/-5 (63ms/31ms) for the following reasons:
142 a) The ARC documentation claims the internal clock is (only)
143 accurate to about 20ms relative to Rugby (plus there must be
144 noticable drift and delay in the ms range due to transmission
145 delays and changing atmospheric effects). This clock is not
146 designed for ms accuracy as NTP has spoilt us all to expect.
148 b) The clock oscillator looks like a simple uncompensated quartz
149 crystal of the sort used in digital watches (ie 32768Hz) which
150 can have large temperature coefficients and drifts; it is not
151 clear if this oscillator is properly disciplined to the MSF
152 transmission, but as the default is to resync only once per
153 *day*, we can imagine that it is not, and is free-running. We
154 can minimise drift by resyncing more often (at the cost of
155 reduced battery life), but drift/wander may still be
158 c) Note that the bit time of 3.3ms adds to the potential error in
159 the the clock timestamp, since the bit clock of the serial link
160 may effectively be free-running with respect to the host clock
161 and the MSF clock. Actually, the error is probably 1/16th of
162 the above, since the input data is probably sampled at at least
165 By keeping the clock marked as not very precise, it will have a
166 fairly large dispersion, and thus will tend to be used as a
167 `backup' time source and sanity checker, which this clock is
168 probably ideal for. For an isolated network without other time
169 sources, this clock can probably be expected to provide *much*
170 better than 1s accuracy, which will be fine.
172 By default, PRECISION is set to -4, but experience, especially at a
173 particular geographic location with a particular clock, may allow
174 this to be altered to -5. (Note that skews of +/- 10ms are to be
175 expected from the clock from time-to-time.) This improvement of
176 reported precision can be instigated by setting flag3 to 1, though
177 the PRECISION will revert to the normal value while the clock
178 signal quality is unknown whatever the flag3 setting.
180 IN ANY CASE, BE SURE TO SET AN APPROPRIATE FUDGE FACTOR TO REMOVE
181 ANY RESIDUAL SKEW, eg:
183 server 127.127.27.0 # ARCRON MSF radio clock unit 0.
184 # Fudge timestamps by about 20ms.
185 fudge 127.127.27.0 time1 0.020
187 You will need to observe your system's behaviour, assuming you have
188 some other NTP source to compare it with, to work out what the
189 fudge factor should be. For my Sun SS1 running SunOS 4.1.3_U1 with
190 my MSF clock with my distance from the MSF transmitter, +20ms
191 seemed about right, after some observation.
193 3) REFID has been made "MSFa" to reflect the MSF time source and the
196 4) DEFAULT_RESYNC_TIME is the time in seconds (by default) before
197 forcing a resync since the last attempt. This is picked to give a
198 little less than an hour between resyncs and to try to avoid
199 clashing with any regular event at a regular time-past-the-hour
200 which might cause systematic errors.
202 The INITIAL_RESYNC_DELAY is to avoid bothering the clock and
203 running down its batteries unnecesarily if ntpd is going to crash
204 or be killed or reconfigured quickly. If ARCRON_KEEN is defined
205 then this period is long enough for (with normal polling rates)
206 enough time samples to have been taken to allow ntpd to sync to
207 the clock before the interruption for the clock to resync to MSF.
208 This avoids ntpd syncing to another peer first and then
209 almost immediately hopping to the MSF clock.
211 The RETRY_RESYNC_TIME is used before rescheduling a resync after a
212 resync failed to reveal a statisfatory signal quality (too low or
215 5) The clock seems quite jittery, so I have increased the
216 median-filter size from the typical (previous) value of 3. I
217 discard up to half the results in the filter. It looks like maybe
218 1 sample in 10 or so (maybe less) is a spike, so allow the median
219 filter to discard at least 10% of its entries or 1 entry, whichever
222 6) Sleeping *before* each character sent to the unit to allow required
223 inter-character time but without introducting jitter and delay in
224 handling the response if possible.
226 7) If the flag ARCRON_KEEN is defined, take time samples whenever
227 possible, even while resyncing, etc. We rely, in this case, on the
228 clock always giving us a reasonable time or else telling us in the
229 status byte at the end of the timestamp that it failed to sync to
230 MSF---thus we should never end up syncing to completely the wrong
233 8) If the flag ARCRON_OWN_FILTER is defined, use own versions of
234 refclock median-filter routines to get round small bug in 3-5.90
235 code which does not return the median offset. XXX Removed this
236 bit due NTP Version 4 upgrade - dlm.
238 9) We would appear to have a year-2000 problem with this clock since
239 it returns only the two least-significant digits of the year. But
240 ntpd ignores the year and uses the local-system year instead, so
241 this is in fact not a problem. Nevertheless, we attempt to do a
242 sensible thing with the dates, wrapping them into a 100-year
245 10)Logs stats information that can be used by Derek's Tcl/Tk utility
246 to show the status of the clock.
248 11)The clock documentation insists that the number of bits per
249 character to be sent to the clock, and sent by it, is 11, including
250 one start bit and two stop bits. The data format is either 7+even
257 * Eliminate use of scanf(), and maybe sprintf().
259 * Allow user setting of resync interval to trade battery life for
260 accuracy; maybe could be done via fudge factor or unit number.
262 * Possibly note the time since the last resync of the MSF clock to
263 MSF as the age of the last reference timestamp, ie trust the
264 clock's oscillator not very much...
266 * Add very slow auto-adjustment up to a value of +/- time2 to correct
267 for long-term errors in the clock value (time2 defaults to 0 so the
268 correction would be disabled by default).
270 * Consider trying to use the tty_clk/ppsclock support.
272 * Possibly use average or maximum signal quality reported during
273 resync, rather than just the last one, which may be atypical.
278 /* Notes for HKW Elektronik GmBH Radio clock driver */
279 /* Author Lyndon David, Sentinet Ltd, Feb 1997 */
280 /* These notes seem also to apply usefully to the ARCRON clock. */
282 /* The HKW clock module is a radio receiver tuned into the Rugby */
283 /* MSF time signal tranmitted on 60 kHz. The clock module connects */
284 /* to the computer via a serial line and transmits the time encoded */
285 /* in 15 bytes at 300 baud 7 bits two stop bits even parity */
287 /* Clock communications, from the datasheet */
288 /* All characters sent to the clock are echoed back to the controlling */
290 /* Transmit time/date information */
291 /* syntax ASCII o<cr> */
292 /* Character o may be replaced if neccesary by a character whose code */
293 /* contains the lowest four bits f(hex) eg */
294 /* syntax binary: xxxx1111 00001101 */
297 You have to wait for character echo + 10ms before sending next character.
300 /* The clock replies to this command with a sequence of 15 characters */
301 /* which contain the complete time and a final <cr> making 16 characters */
303 /* The RC computer clock will not reply immediately to this command because */
304 /* the start bit edge of the first reply character marks the beginning of */
305 /* the second. So the RC Computer Clock will reply to this command at the */
306 /* start of the next second */
307 /* The characters have the following meaning */
310 /* 3. minutes tens */
311 /* 4. minutes units */
312 /* 5. seconds tens */
313 /* 6. seconds units */
314 /* 7. day of week 1-monday 7-sunday */
315 /* 8. day of month tens */
316 /* 9. day of month units */
318 /* 11. month units */
321 /* 14. BST/UTC status */
327 /* bit 2 =1 if UTC is in effect, complementary to the BST bit */
328 /* bit 1 =1 if BST is in effect, according to the BST bit */
329 /* bit 0 BST/UTC change impending bit=1 in case of change impending */
335 /* bit 3 =1 if low battery is detected */
336 /* bit 2 =1 if the very last reception attempt failed and a valid */
337 /* time information already exists (bit0=1) */
338 /* =0 if the last reception attempt was successful */
339 /* bit 1 =1 if at least one reception since 2:30 am was successful */
340 /* =0 if no reception attempt since 2:30 am was successful */
341 /* bit 0 =1 if the RC Computer Clock contains valid time information */
342 /* This bit is zero after reset and one after the first */
343 /* successful reception attempt */
346 Also note g<cr> command which confirms that a resync is in progress, and
347 if so what signal quality (0--5) is available.
348 Also note h<cr> command which starts a resync to MSF signal.
354 #include "ntp_refclock.h"
355 #include "ntp_calendar.h"
356 #include "ntp_stdlib.h"
361 #if defined(HAVE_BSD_TTYS)
363 #endif /* HAVE_BSD_TTYS */
365 #if defined(HAVE_SYSV_TTYS)
367 #endif /* HAVE_SYSV_TTYS */
369 #if defined(HAVE_TERMIOS)
374 * This driver supports the ARCRON MSF/DCF/WWVB Radio Controlled Clock
378 * Interface definitions
380 #define DEVICE "/dev/arc%d" /* Device name and unit. */
381 #define SPEED B300 /* UART speed (300 baud) */
382 #define PRECISION (-4) /* Precision (~63 ms). */
383 #define HIGHPRECISION (-5) /* If things are going well... */
384 #define REFID "MSFa" /* Reference ID. */
385 #define REFID_MSF "MSF" /* Reference ID. */
386 #define REFID_DCF77 "DCF" /* Reference ID. */
387 #define REFID_WWVB "WWVB" /* Reference ID. */
388 #define DESCRIPTION "ARCRON MSF/DCF/WWVB Receiver"
396 #define LENARC 16 /* Format `o' timecode length. */
398 #define BITSPERCHAR 11 /* Bits per character. */
399 #define BITTIME 0x0DA740E /* Time for 1 bit at 300bps. */
400 #define CHARTIME10 0x8888888 /* Time for 10-bit char at 300bps. */
401 #define CHARTIME11 0x962FC96 /* Time for 11-bit char at 300bps. */
402 #define CHARTIME /* Time for char at 300bps. */ \
403 ( (BITSPERCHAR == 11) ? CHARTIME11 : ( (BITSPERCHAR == 10) ? CHARTIME10 : \
404 (BITSPERCHAR * BITTIME) ) )
406 /* Allow for UART to accept char half-way through final stop bit. */
407 #define INITIALOFFSET (u_int32)(-BITTIME/2)
410 charoffsets[x] is the time after the start of the second that byte
411 x (with the first byte being byte 1) is received by the UART,
412 assuming that the initial edge of the start bit of the first byte
413 is on-time. The values are represented as the fractional part of
416 We store enough values to have the offset of each byte including
417 the trailing \r, on the assumption that the bytes follow one
418 another without gaps.
420 static const u_int32 charoffsets
[LENARC
+1] = {
421 #if BITSPERCHAR == 11 /* Usual case. */
422 /* Offsets computed as accurately as possible... */
424 INITIALOFFSET
+ 0x0962fc96, /* 1 chars, 11 bits */
425 INITIALOFFSET
+ 0x12c5f92c, /* 2 chars, 22 bits */
426 INITIALOFFSET
+ 0x1c28f5c3, /* 3 chars, 33 bits */
427 INITIALOFFSET
+ 0x258bf259, /* 4 chars, 44 bits */
428 INITIALOFFSET
+ 0x2eeeeeef, /* 5 chars, 55 bits */
429 INITIALOFFSET
+ 0x3851eb85, /* 6 chars, 66 bits */
430 INITIALOFFSET
+ 0x41b4e81b, /* 7 chars, 77 bits */
431 INITIALOFFSET
+ 0x4b17e4b1, /* 8 chars, 88 bits */
432 INITIALOFFSET
+ 0x547ae148, /* 9 chars, 99 bits */
433 INITIALOFFSET
+ 0x5dddddde, /* 10 chars, 110 bits */
434 INITIALOFFSET
+ 0x6740da74, /* 11 chars, 121 bits */
435 INITIALOFFSET
+ 0x70a3d70a, /* 12 chars, 132 bits */
436 INITIALOFFSET
+ 0x7a06d3a0, /* 13 chars, 143 bits */
437 INITIALOFFSET
+ 0x8369d037, /* 14 chars, 154 bits */
438 INITIALOFFSET
+ 0x8ccccccd, /* 15 chars, 165 bits */
439 INITIALOFFSET
+ 0x962fc963 /* 16 chars, 176 bits */
441 /* Offsets computed with a small rounding error... */
443 INITIALOFFSET
+ 1 * CHARTIME
,
444 INITIALOFFSET
+ 2 * CHARTIME
,
445 INITIALOFFSET
+ 3 * CHARTIME
,
446 INITIALOFFSET
+ 4 * CHARTIME
,
447 INITIALOFFSET
+ 5 * CHARTIME
,
448 INITIALOFFSET
+ 6 * CHARTIME
,
449 INITIALOFFSET
+ 7 * CHARTIME
,
450 INITIALOFFSET
+ 8 * CHARTIME
,
451 INITIALOFFSET
+ 9 * CHARTIME
,
452 INITIALOFFSET
+ 10 * CHARTIME
,
453 INITIALOFFSET
+ 11 * CHARTIME
,
454 INITIALOFFSET
+ 12 * CHARTIME
,
455 INITIALOFFSET
+ 13 * CHARTIME
,
456 INITIALOFFSET
+ 14 * CHARTIME
,
457 INITIALOFFSET
+ 15 * CHARTIME
,
458 INITIALOFFSET
+ 16 * CHARTIME
462 #define DEFAULT_RESYNC_TIME (57*60) /* Gap between resync attempts (s). */
463 #define RETRY_RESYNC_TIME (27*60) /* Gap to emergency resync attempt. */
465 #define INITIAL_RESYNC_DELAY 500 /* Delay before first resync. */
467 #define INITIAL_RESYNC_DELAY 50 /* Delay before first resync. */
470 static const int moff
[12] =
471 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
472 /* Flags for a raw open() of the clock serial device. */
473 #ifdef O_NOCTTY /* Good, we can avoid tty becoming controlling tty. */
474 #define OPEN_FLAGS (O_RDWR | O_NOCTTY)
475 #else /* Oh well, it may not matter... */
476 #define OPEN_FLAGS (O_RDWR)
480 /* Length of queue of command bytes to be sent. */
481 #define CMDQUEUELEN 4 /* Enough for two cmds + each \r. */
482 /* Queue tick time; interval in seconds between chars taken off queue. */
483 /* Must be >= 2 to allow o\r response to come back uninterrupted. */
484 #define QUEUETICK 2 /* Allow o\r reply to finish. */
487 * ARC unit control structure
490 l_fp lastrec
; /* Time tag for the receive time (system). */
491 int status
; /* Clock status. */
493 int quality
; /* Quality of reception 0--5 for unit. */
494 /* We may also use the values -1 or 6 internally. */
495 u_long quality_stamp
; /* Next time to reset quality average. */
497 u_long next_resync
; /* Next resync time (s) compared to current_time. */
498 int resyncing
; /* Resync in progress if true. */
500 /* In the outgoing queue, cmdqueue[0] is next to be sent. */
501 char cmdqueue
[CMDQUEUELEN
+1]; /* Queue of outgoing commands + \0. */
503 u_long saved_flags
; /* Saved fudge flags. */
506 #ifdef ARCRON_LEAPSECOND_KEEN
507 /* The flag `possible_leap' is set non-zero when any MSF unit
508 thinks a leap-second may have happened.
510 Set whenever we receive a valid time sample in the first hour of
511 the first day of the first/seventh months.
513 Outside the special hour this value is unconditionally set
514 to zero by the receive routine.
516 On finding itself in this timeslot, as long as the value is
517 non-negative, the receive routine sets it to a positive value to
518 indicate a resync to MSF should be performed.
520 In the poll routine, if this value is positive and we are not
521 already resyncing (eg from a sync that started just before
522 midnight), start resyncing and set this value negative to
523 indicate that a leap-triggered resync has been started. Having
524 set this negative prevents the receive routine setting it
525 positive and thus prevents multiple resyncs during the witching
528 static int possible_leap
= 0; /* No resync required by default. */
532 static void dummy_event_handler (struct peer
*);
533 static void arc_event_handler (struct peer
*);
536 #define QUALITY_UNKNOWN -1 /* Indicates unknown clock quality. */
537 #define MIN_CLOCK_QUALITY 0 /* Min quality clock will return. */
538 #define MIN_CLOCK_QUALITY_OK 3 /* Min quality for OK reception. */
539 #define MAX_CLOCK_QUALITY 5 /* Max quality clock will return. */
542 * Function prototypes
544 static int arc_start (int, struct peer
*);
545 static void arc_shutdown (int, struct peer
*);
546 static void arc_receive (struct recvbuf
*);
547 static void arc_poll (int, struct peer
*);
552 struct refclock refclock_arc
= {
553 arc_start
, /* start up driver */
554 arc_shutdown
, /* shut down driver */
555 arc_poll
, /* transmit poll message */
556 noentry
, /* not used (old arc_control) */
557 noentry
, /* initialize driver (not used) */
558 noentry
, /* not used (old arc_buginfo) */
559 NOFLAGS
/* not used */
562 /* Queue us up for the next tick. */
563 #define ENQUEUE(up) \
565 peer->nextaction = current_time + QUEUETICK; \
568 /* Placeholder event handler---does nothing safely---soaks up loose tick. */
575 if(debug
) { printf("arc: dummy_event_handler() called.\n"); }
580 Normal event handler.
582 Take first character off queue and send to clock if not a null.
584 Shift characters down and put a null on the end.
586 We assume that there is no parallelism so no race condition, but even
587 if there is nothing bad will happen except that we might send some bad
588 data to the clock once in a while.
595 struct refclockproc
*pp
= peer
->procptr
;
596 register struct arcunit
*up
= (struct arcunit
*)pp
->unitptr
;
600 if(debug
> 2) { printf("arc: arc_event_handler() called.\n"); }
603 c
= up
->cmdqueue
[0]; /* Next char to be sent. */
604 /* Shift down characters, shifting trailing \0 in at end. */
605 for(i
= 0; i
< CMDQUEUELEN
; ++i
)
606 { up
->cmdqueue
[i
] = up
->cmdqueue
[i
+1]; }
608 /* Don't send '\0' characters. */
610 if(write(pp
->io
.fd
, &c
, 1) != 1) {
611 msyslog(LOG_NOTICE
, "ARCRON: write to fd %d failed", pp
->io
.fd
);
614 else if(debug
) { printf("arc: sent `%2.2x', fd %d.\n", c
, pp
->io
.fd
); }
622 * arc_start - open the devices and initialize data for processing
630 register struct arcunit
*up
;
631 struct refclockproc
*pp
;
638 msyslog(LOG_NOTICE
, "ARCRON: %s: opening unit %d", arc_version
, unit
);
641 printf("arc: %s: attempt to open unit %d.\n", arc_version
, unit
);
645 /* Prevent a ridiculous device number causing overflow of device[]. */
646 if((unit
< 0) || (unit
> 255)) { return(0); }
649 * Open serial port. Use CLK line discipline, if available.
651 (void)sprintf(device
, DEVICE
, unit
);
652 if (!(fd
= refclock_open(device
, SPEED
, LDISC_CLK
)))
655 if(debug
) { printf("arc: unit %d using open().\n", unit
); }
657 fd
= tty_open(device
, OPEN_FLAGS
, 0777);
660 if(debug
) { printf("arc: failed [tty_open()] to open %s.\n", device
); }
666 fcntl(fd
, F_SETFL
, 0); /* clear the descriptor flags */
670 { printf("arc: opened RS232 port with file descriptor %d.\n", fd
); }
677 arg
.c_iflag
= IGNBRK
| ISTRIP
;
679 arg
.c_cflag
= B300
| CS8
| CREAD
| CLOCAL
| CSTOPB
;
684 tcsetattr(fd
, TCSANOW
, &arg
);
688 msyslog(LOG_ERR
, "ARCRON: termios not supported in this driver");
695 up
= (struct arcunit
*) emalloc(sizeof(struct arcunit
));
696 if(!up
) { (void) close(fd
); return(0); }
697 /* Set structure to all zeros... */
698 memset((char *)up
, 0, sizeof(struct arcunit
));
700 pp
->io
.clock_recv
= arc_receive
;
701 pp
->io
.srcclock
= (caddr_t
)peer
;
704 if(!io_addclock(&pp
->io
)) { (void) close(fd
); free(up
); return(0); }
705 pp
->unitptr
= (caddr_t
)up
;
708 * Initialize miscellaneous variables
710 peer
->precision
= PRECISION
;
711 peer
->stratum
= 2; /* Default to stratum 2 not 0. */
712 pp
->clockdesc
= DESCRIPTION
;
713 if (peer
->MODE
> 3) {
714 msyslog(LOG_NOTICE
, "ARCRON: Invalid mode %d", peer
->MODE
);
718 if(debug
) { printf("arc: mode = %d.\n", peer
->MODE
); }
720 switch (peer
->MODE
) {
722 memcpy((char *)&pp
->refid
, REFID_MSF
, 4);
725 memcpy((char *)&pp
->refid
, REFID_DCF77
, 4);
728 memcpy((char *)&pp
->refid
, REFID_WWVB
, 4);
731 memcpy((char *)&pp
->refid
, REFID
, 4);
734 /* Spread out resyncs so that they should remain separated. */
735 up
->next_resync
= current_time
+ INITIAL_RESYNC_DELAY
+ (67*unit
)%1009;
737 #if 0 /* Not needed because of zeroing of arcunit structure... */
738 up
->resyncing
= 0; /* Not resyncing yet. */
739 up
->saved_flags
= 0; /* Default is all flags off. */
740 /* Clear send buffer out... */
743 for(i
= CMDQUEUELEN
; i
>= 0; --i
) { up
->cmdqueue
[i
] = '\0'; }
748 up
->quality
= QUALITY_UNKNOWN
; /* Trust the clock immediately. */
750 up
->quality
= MIN_CLOCK_QUALITY
;/* Don't trust the clock yet. */
753 peer
->action
= arc_event_handler
;
762 * arc_shutdown - shut down the clock
770 register struct arcunit
*up
;
771 struct refclockproc
*pp
;
773 peer
->action
= dummy_event_handler
;
776 up
= (struct arcunit
*)pp
->unitptr
;
777 io_closeclock(&pp
->io
);
782 Compute space left in output buffer.
786 register struct arcunit
*up
791 /* Compute space left in buffer after any pending output. */
792 for(spaceleft
= 0; spaceleft
< CMDQUEUELEN
; ++spaceleft
)
793 { if(up
->cmdqueue
[CMDQUEUELEN
- 1 - spaceleft
] != '\0') { break; } }
798 Send command by copying into command buffer as far forward as possible,
799 after any pending output.
801 Indicate an error by returning 0 if there is not space for the command.
805 register struct arcunit
*up
,
811 int spaceleft
= space_left(up
);
814 if(debug
> 1) { printf("arc: spaceleft = %d.\n", spaceleft
); }
816 if(spaceleft
< sl
) { /* Should not normally happen... */
818 msyslog(LOG_NOTICE
, "ARCRON: send-buffer overrun (%d/%d)",
821 return(0); /* FAILED! */
824 /* Copy in the command to be sent. */
825 while(*s
&& spaceleft
> 0) { up
->cmdqueue
[CMDQUEUELEN
- spaceleft
--] = *s
++; }
832 get2(char *p
, int *val
)
834 if (!isdigit((unsigned char)p
[0]) || !isdigit((unsigned char)p
[1])) return 0;
835 *val
= (p
[0] - '0') * 10 + p
[1] - '0';
840 get1(char *p
, int *val
)
842 if (!isdigit((unsigned char)p
[0])) return 0;
847 /* Macro indicating action we will take for different quality values. */
848 #define quality_action(q) \
849 (((q) == QUALITY_UNKNOWN) ? "UNKNOWN, will use clock anyway" : \
850 (((q) < MIN_CLOCK_QUALITY_OK) ? "TOO POOR, will not use clock" : \
851 "OK, will use clock"))
854 * arc_receive - receive data from the serial interface
858 struct recvbuf
*rbufp
861 register struct arcunit
*up
;
862 struct refclockproc
*pp
;
865 int i
, n
, wday
, month
, flags
, status
;
867 static int quality_average
= 0;
868 static int quality_sum
= 0;
869 static int quality_polls
= 0;
872 * Initialize pointers and read the timecode and timestamp
874 peer
= (struct peer
*)rbufp
->recv_srcclock
;
876 up
= (struct arcunit
*)pp
->unitptr
;
880 If the command buffer is empty, and we are resyncing, insert a
881 g\r quality request into it to poll for signal quality again.
883 if((up
->resyncing
) && (space_left(up
) == CMDQUEUELEN
)) {
885 if(debug
> 1) { printf("arc: inserting signal-quality poll.\n"); }
887 send_slow(up
, pp
->io
.fd
, "g\r");
891 The `arc_last_offset' is the offset in lastcode[] of the last byte
892 received, and which we assume actually received the input
895 (When we get round to using tty_clk and it is available, we
896 assume that we will receive the whole timecode with the
897 trailing \r, and that that \r will be timestamped. But this
898 assumption also works if receive the characters one-by-one.)
900 arc_last_offset
= pp
->lencode
+rbufp
->recv_length
- 1;
903 We catch a timestamp iff:
905 * The command code is `o' for a timestamp.
907 * If ARCRON_MULTIPLE_SAMPLES is undefined then we must have
908 exactly char in the buffer (the command code) so that we
909 only sample the first character of the timecode as our
912 * The first character in the buffer is not the echoed `\r'
913 from the `o` command (so if we are to timestamp an `\r' it
914 must not be first in the receive buffer with lencode==1.
915 (Even if we had other characters following it, we probably
916 would have a premature timestamp on the '\r'.)
918 * We have received at least one character (I cannot imagine
919 how it could be otherwise, but anyway...).
921 c
= rbufp
->recv_buffer
[0];
922 if((pp
->a_lastcode
[0] == 'o') &&
923 #ifndef ARCRON_MULTIPLE_SAMPLES
924 (pp
->lencode
== 1) &&
926 ((pp
->lencode
!= 1) || (c
!= '\r')) &&
927 (arc_last_offset
>= 1)) {
928 /* Note that the timestamp should be corrected if >1 char rcvd. */
930 timestamp
= rbufp
->recv_time
;
932 if(debug
) { /* Show \r as `R', other non-printing char as `?'. */
933 printf("arc: stamp -->%c<-- (%d chars rcvd)\n",
934 ((c
== '\r') ? 'R' : (isgraph((unsigned char)c
) ? c
: '?')),
940 Now correct timestamp by offset of last byte received---we
941 subtract from the receive time the delay implied by the
942 extra characters received.
944 Reject the input if the resulting code is too long, but
945 allow for the trailing \r, normally not used but a good
946 handle for tty_clk or somesuch kernel timestamper.
948 if(arc_last_offset
> LENARC
) {
951 printf("arc: input code too long (%d cf %d); rejected.\n",
952 arc_last_offset
, LENARC
);
956 refclock_report(peer
, CEVNT_BADREPLY
);
960 L_SUBUF(×tamp
, charoffsets
[arc_last_offset
]);
964 "arc: %s%d char(s) rcvd, the last for lastcode[%d]; -%sms offset applied.\n",
965 ((rbufp
->recv_length
> 1) ? "*** " : ""),
968 mfptoms((unsigned long)0,
969 charoffsets
[arc_last_offset
],
974 #ifdef ARCRON_MULTIPLE_SAMPLES
976 If taking multiple samples, capture the current adjusted
979 * No timestamp has yet been captured (it is zero), OR
981 * This adjusted timestamp is earlier than the one already
982 captured, on the grounds that this one suffered less
983 delay in being delivered to us and is more accurate.
986 if(L_ISZERO(&(up
->lastrec
)) ||
987 L_ISGEQ(&(up
->lastrec
), ×tamp
))
992 printf("arc: system timestamp captured.\n");
993 #ifdef ARCRON_MULTIPLE_SAMPLES
994 if(!L_ISZERO(&(up
->lastrec
))) {
997 L_SUB(&diff
, ×tamp
);
998 printf("arc: adjusted timestamp by -%sms.\n",
999 mfptoms(diff
.l_i
, diff
.l_f
, 3));
1004 up
->lastrec
= timestamp
;
1009 /* Just in case we still have lots of rubbish in the buffer... */
1010 /* ...and to avoid the same timestamp being reused by mistake, */
1011 /* eg on receipt of the \r coming in on its own after the */
1013 if(pp
->lencode
>= LENARC
) {
1015 if(debug
&& (rbufp
->recv_buffer
[0] != '\r'))
1016 { printf("arc: rubbish in pp->a_lastcode[].\n"); }
1022 /* Append input to code buffer, avoiding overflow. */
1023 for(i
= 0; i
< rbufp
->recv_length
; i
++) {
1024 if(pp
->lencode
>= LENARC
) { break; } /* Avoid overflow... */
1025 c
= rbufp
->recv_buffer
[i
];
1027 /* Drop trailing '\r's and drop `h' command echo totally. */
1028 if(c
!= '\r' && c
!= 'h') { pp
->a_lastcode
[pp
->lencode
++] = c
; }
1031 If we've just put an `o' in the lastcode[0], clear the
1032 timestamp in anticipation of a timecode arriving soon.
1034 We would expect to get to process this before any of the
1037 if((c
== 'o') && (pp
->lencode
== 1)) {
1038 L_CLR(&(up
->lastrec
));
1040 if(debug
> 1) { printf("arc: clearing timestamp.\n"); }
1044 if (pp
->lencode
== 0) return;
1046 /* Handle a quality message. */
1047 if(pp
->a_lastcode
[0] == 'g') {
1050 if(pp
->lencode
< 3) { return; } /* Need more data... */
1051 r
= (pp
->a_lastcode
[1] & 0x7f); /* Strip parity. */
1052 q
= (pp
->a_lastcode
[2] & 0x7f); /* Strip parity. */
1053 if(((q
& 0x70) != 0x30) || ((q
& 0xf) > MAX_CLOCK_QUALITY
) ||
1054 ((r
& 0x70) != 0x30)) {
1055 /* Badly formatted response. */
1057 if(debug
) { printf("arc: bad `g' response %2x %2x.\n", r
, q
); }
1061 if(r
== '3') { /* Only use quality value whilst sync in progress. */
1062 if (up
->quality_stamp
< current_time
) {
1063 struct calendar cal
;
1066 get_systime (&new_stamp
);
1067 caljulian (new_stamp
.l_ui
, &cal
);
1069 current_time
+ 60 - cal
.second
+ 5;
1073 quality_sum
+= (q
& 0xf);
1075 quality_average
= (quality_sum
/ quality_polls
);
1077 if(debug
) { printf("arc: signal quality %d (%d).\n", quality_average
, (q
& 0xf)); }
1079 } else if( /* (r == '2') && */ up
->resyncing
) {
1080 up
->quality
= quality_average
;
1084 printf("arc: sync finished, signal quality %d: %s\n",
1086 quality_action(up
->quality
));
1090 "ARCRON: sync finished, signal quality %d: %s",
1092 quality_action(up
->quality
));
1093 up
->resyncing
= 0; /* Resync is over. */
1094 quality_average
= 0;
1099 /* Clock quality dubious; resync earlier than usual. */
1100 if((up
->quality
== QUALITY_UNKNOWN
) ||
1101 (up
->quality
< MIN_CLOCK_QUALITY_OK
))
1102 { up
->next_resync
= current_time
+ RETRY_RESYNC_TIME
; }
1109 /* Stop now if this is not a timecode message. */
1110 if(pp
->a_lastcode
[0] != 'o') {
1112 refclock_report(peer
, CEVNT_BADREPLY
);
1116 /* If we don't have enough data, wait for more... */
1117 if(pp
->lencode
< LENARC
) { return; }
1120 /* WE HAVE NOW COLLECTED ONE TIMESTAMP (phew)... */
1122 if(debug
> 1) { printf("arc: NOW HAVE TIMESTAMP...\n"); }
1125 /* But check that we actually captured a system timestamp on it. */
1126 if(L_ISZERO(&(up
->lastrec
))) {
1128 if(debug
) { printf("arc: FAILED TO GET SYSTEM TIMESTAMP\n"); }
1131 refclock_report(peer
, CEVNT_BADREPLY
);
1135 Append a mark of the clock's received signal quality for the
1136 benefit of Derek Mulcahy's Tcl/Tk utility (we map the `unknown'
1137 quality value to `6' for his s/w) and terminate the string for
1138 sure. This should not go off the buffer end.
1140 pp
->a_lastcode
[pp
->lencode
] = ((up
->quality
== QUALITY_UNKNOWN
) ?
1141 '6' : ('0' + up
->quality
));
1142 pp
->a_lastcode
[pp
->lencode
+ 1] = '\0'; /* Terminate for printf(). */
1145 /* We don't use the micro-/milli- second part... */
1149 /* We don't use the nano-second part... */
1152 /* Validate format and numbers. */
1153 if (pp
->a_lastcode
[0] != 'o'
1154 || !get2(pp
->a_lastcode
+ 1, &pp
->hour
)
1155 || !get2(pp
->a_lastcode
+ 3, &pp
->minute
)
1156 || !get2(pp
->a_lastcode
+ 5, &pp
->second
)
1157 || !get1(pp
->a_lastcode
+ 7, &wday
)
1158 || !get2(pp
->a_lastcode
+ 8, &pp
->day
)
1159 || !get2(pp
->a_lastcode
+ 10, &month
)
1160 || !get2(pp
->a_lastcode
+ 12, &pp
->year
)) {
1162 /* Would expect to have caught major problems already... */
1163 if(debug
) { printf("arc: badly formatted data.\n"); }
1166 refclock_report(peer
, CEVNT_BADREPLY
);
1169 flags
= pp
->a_lastcode
[14];
1170 status
= pp
->a_lastcode
[15];
1172 if(debug
) { printf("arc: status 0x%.2x flags 0x%.2x\n", flags
, status
); }
1177 Validate received values at least enough to prevent internal
1178 array-bounds problems, etc.
1180 if((pp
->hour
< 0) || (pp
->hour
> 23) ||
1181 (pp
->minute
< 0) || (pp
->minute
> 59) ||
1182 (pp
->second
< 0) || (pp
->second
> 60) /*Allow for leap seconds.*/ ||
1183 (wday
< 1) || (wday
> 7) ||
1184 (pp
->day
< 1) || (pp
->day
> 31) ||
1185 (month
< 1) || (month
> 12) ||
1186 (pp
->year
< 0) || (pp
->year
> 99)) {
1187 /* Data out of range. */
1189 refclock_report(peer
, CEVNT_BADREPLY
);
1194 if(peer
->MODE
== 0) { /* compatiblity to original version */
1196 /* Check that BST/UTC bits are the complement of one another. */
1197 if(!(bst
& 2) == !(bst
& 4)) {
1199 refclock_report(peer
, CEVNT_BADREPLY
);
1203 if(status
& 0x8) { msyslog(LOG_NOTICE
, "ARCRON: battery low"); }
1205 /* Year-2000 alert! */
1206 /* Attempt to wrap 2-digit date into sensible window. */
1207 if(pp
->year
< YEAR_PIVOT
) { pp
->year
+= 100; } /* Y2KFixes */
1208 pp
->year
+= 1900; /* use full four-digit year */ /* Y2KFixes */
1210 Attempt to do the right thing by screaming that the code will
1211 soon break when we get to the end of its useful life. What a
1212 hero I am... PLEASE FIX LEAP-YEAR AND WRAP CODE IN 209X!
1214 if(pp
->year
>= YEAR_PIVOT
+2000-2 ) { /* Y2KFixes */
1215 /*This should get attention B^> */
1217 "ARCRON: fix me! EITHER YOUR DATE IS BADLY WRONG or else I will break soon!");
1221 printf("arc: n=%d %02d:%02d:%02d %02d/%02d/%04d %1d %1d\n",
1223 pp
->hour
, pp
->minute
, pp
->second
,
1224 pp
->day
, month
, pp
->year
, flags
, status
);
1229 The status value tested for is not strictly supported by the
1230 clock spec since the value of bit 2 (0x4) is claimed to be
1231 undefined for MSF, yet does seem to indicate if the last resync
1232 was successful or not.
1234 pp
->leap
= LEAP_NOWARNING
;
1237 if(status
!= up
->status
)
1238 { msyslog(LOG_NOTICE
, "ARCRON: signal acquired"); }
1240 if(status
!= up
->status
) {
1241 msyslog(LOG_NOTICE
, "ARCRON: signal lost");
1242 pp
->leap
= LEAP_NOTINSYNC
; /* MSF clock is free-running. */
1243 up
->status
= status
;
1245 refclock_report(peer
, CEVNT_FAULT
);
1249 up
->status
= status
;
1251 if (peer
->MODE
== 0) { /* compatiblity to original version */
1254 pp
->day
+= moff
[month
- 1];
1256 if(isleap_4(pp
->year
) && month
> 2) { pp
->day
++; }/* Y2KFixes */
1258 /* Convert to UTC if required */
1264 /* If we try to wrap round the year
1265 * (BST on 1st Jan), reject.*/
1268 refclock_report(peer
, CEVNT_BADTIME
);
1275 if(peer
->MODE
> 0) {
1276 if(pp
->sloppyclockflag
& CLK_FLAG1
) {
1282 * Convert to GMT for sites that distribute localtime.
1283 * This means we have to do Y2K conversion on the
1284 * 2-digit year; otherwise, we get the time wrong.
1287 memset(&local
, 0, sizeof(local
));
1289 local
.tm_year
= pp
->year
-1900;
1290 local
.tm_mon
= month
-1;
1291 local
.tm_mday
= pp
->day
;
1292 local
.tm_hour
= pp
->hour
;
1293 local
.tm_min
= pp
->minute
;
1294 local
.tm_sec
= pp
->second
;
1295 switch (peer
->MODE
) {
1297 local
.tm_isdst
= (flags
& 2);
1300 local
.tm_isdst
= (flags
& 2);
1303 switch (flags
& 3) {
1304 case 0: /* It is unclear exactly when the
1305 Arcron changes from DST->ST and
1306 ST->DST. Testing has shown this
1307 to be irregular. For the time
1308 being, let the OS decide. */
1312 printf ("arc: DST = 00 (0)\n");
1315 case 1: /* dst->st time */
1316 local
.tm_isdst
= -1;
1319 printf ("arc: DST = 01 (1)\n");
1322 case 2: /* st->dst time */
1323 local
.tm_isdst
= -1;
1326 printf ("arc: DST = 10 (2)\n");
1329 case 3: /* dst time */
1333 printf ("arc: DST = 11 (3)\n");
1339 msyslog(LOG_NOTICE
, "ARCRON: Invalid mode %d",
1344 unixtime
= mktime (&local
);
1345 if ((gmtp
= gmtime (&unixtime
)) == NULL
)
1348 refclock_report (peer
, CEVNT_FAULT
);
1351 pp
->year
= gmtp
->tm_year
+1900;
1352 month
= gmtp
->tm_mon
+1;
1353 pp
->day
= ymd2yd(pp
->year
,month
,gmtp
->tm_mday
);
1354 /* pp->day = gmtp->tm_yday; */
1355 pp
->hour
= gmtp
->tm_hour
;
1356 pp
->minute
= gmtp
->tm_min
;
1357 pp
->second
= gmtp
->tm_sec
;
1361 printf ("arc: time is %04d/%02d/%02d %02d:%02d:%02d UTC\n",
1362 pp
->year
,month
,gmtp
->tm_mday
,pp
->hour
,pp
->minute
,
1369 * For more rational sites distributing UTC
1371 pp
->day
= ymd2yd(pp
->year
,month
,pp
->day
);
1375 if (peer
->MODE
== 0) { /* compatiblity to original version */
1376 /* If clock signal quality is
1377 * unknown, revert to default PRECISION...*/
1378 if(up
->quality
== QUALITY_UNKNOWN
) {
1379 peer
->precision
= PRECISION
;
1380 } else { /* ...else improve precision if flag3 is set... */
1381 peer
->precision
= ((pp
->sloppyclockflag
& CLK_FLAG3
) ?
1382 HIGHPRECISION
: PRECISION
);
1385 if ((status
== 0x3) && (pp
->sloppyclockflag
& CLK_FLAG2
)) {
1386 peer
->precision
= ((pp
->sloppyclockflag
& CLK_FLAG3
) ?
1387 HIGHPRECISION
: PRECISION
);
1388 } else if (up
->quality
== QUALITY_UNKNOWN
) {
1389 peer
->precision
= PRECISION
;
1391 peer
->precision
= ((pp
->sloppyclockflag
& CLK_FLAG3
) ?
1392 HIGHPRECISION
: PRECISION
);
1396 /* Notice and log any change (eg from initial defaults) for flags. */
1397 if(up
->saved_flags
!= pp
->sloppyclockflag
) {
1399 msyslog(LOG_NOTICE
, "ARCRON: flags enabled: %s%s%s%s",
1400 ((pp
->sloppyclockflag
& CLK_FLAG1
) ? "1" : "."),
1401 ((pp
->sloppyclockflag
& CLK_FLAG2
) ? "2" : "."),
1402 ((pp
->sloppyclockflag
& CLK_FLAG3
) ? "3" : "."),
1403 ((pp
->sloppyclockflag
& CLK_FLAG4
) ? "4" : "."));
1404 /* Note effects of flags changing... */
1406 printf("arc: PRECISION = %d.\n", peer
->precision
);
1409 up
->saved_flags
= pp
->sloppyclockflag
;
1412 /* Note time of last believable timestamp. */
1413 pp
->lastrec
= up
->lastrec
;
1415 #ifdef ARCRON_LEAPSECOND_KEEN
1416 /* Find out if a leap-second might just have happened...
1417 (ie is this the first hour of the first day of Jan or Jul?)
1419 if((pp
->hour
== 0) &&
1421 ((month
== 1) || (month
== 7))) {
1422 if(possible_leap
>= 0) {
1423 /* A leap may have happened, and no resync has started yet...*/
1427 /* Definitely not leap-second territory... */
1432 if (!refclock_process(pp
)) {
1434 refclock_report(peer
, CEVNT_BADTIME
);
1437 record_clock_stats(&peer
->srcadr
, pp
->a_lastcode
);
1438 refclock_receive(peer
);
1442 /* request_time() sends a time request to the clock with given peer. */
1443 /* This automatically reports a fault if necessary. */
1444 /* No data should be sent after this until arc_poll() returns. */
1445 static void request_time (int, struct peer
*);
1452 struct refclockproc
*pp
= peer
->procptr
;
1453 register struct arcunit
*up
= (struct arcunit
*)pp
->unitptr
;
1455 if(debug
) { printf("arc: unit %d: requesting time.\n", unit
); }
1457 if (!send_slow(up
, pp
->io
.fd
, "o\r")) {
1460 printf("arc: unit %d: problem sending", unit
);
1464 refclock_report(peer
, CEVNT_FAULT
);
1471 * arc_poll - called by the transmit procedure
1479 register struct arcunit
*up
;
1480 struct refclockproc
*pp
;
1481 int resync_needed
; /* Should we start a resync? */
1484 up
= (struct arcunit
*)pp
->unitptr
;
1487 memset(pp
->a_lastcode
, 0, sizeof(pp
->a_lastcode
));
1492 tcflush(pp
->io
.fd
, TCIFLUSH
);
1495 /* Resync if our next scheduled resync time is here or has passed. */
1496 resync_needed
= ( !(pp
->sloppyclockflag
& CLK_FLAG2
) &&
1497 (up
->next_resync
<= current_time
) );
1499 #ifdef ARCRON_LEAPSECOND_KEEN
1501 Try to catch a potential leap-second insertion or deletion quickly.
1503 In addition to the normal NTP fun of clocks that don't report
1504 leap-seconds spooking their hosts, this clock does not even
1505 sample the radio sugnal the whole time, so may miss a
1506 leap-second insertion or deletion for up to a whole sample
1509 To try to minimise this effect, if in the first few minutes of
1510 the day immediately following a leap-second-insertion point
1511 (ie in the first hour of the first day of the first and sixth
1512 months), and if the last resync was in the previous day, and a
1513 resync is not already in progress, resync the clock
1517 if((possible_leap
> 0) && /* Must be 00:XX 01/0{1,7}/XXXX. */
1518 (!up
->resyncing
)) { /* No resync in progress yet. */
1520 possible_leap
= -1; /* Prevent multiple resyncs. */
1521 msyslog(LOG_NOTICE
,"ARCRON: unit %d: checking for leap second",unit
);
1525 /* Do a resync if required... */
1527 /* First, reset quality value to `unknown' so we can detect */
1528 /* when a quality message has been responded to by this */
1529 /* being set to some other value. */
1530 up
->quality
= QUALITY_UNKNOWN
;
1532 /* Note that we are resyncing... */
1535 /* Now actually send the resync command and an immediate poll. */
1537 if(debug
) { printf("arc: sending resync command (h\\r).\n"); }
1539 msyslog(LOG_NOTICE
, "ARCRON: unit %d: sending resync command", unit
);
1540 send_slow(up
, pp
->io
.fd
, "h\r");
1542 /* Schedule our next resync... */
1543 up
->next_resync
= current_time
+ DEFAULT_RESYNC_TIME
;
1545 /* Drop through to request time if appropriate. */
1548 /* If clock quality is too poor to trust, indicate a fault. */
1549 /* If quality is QUALITY_UNKNOWN and ARCRON_KEEN is defined,*/
1550 /* we'll cross our fingers and just hope that the thing */
1551 /* synced so quickly we did not catch it---we'll */
1552 /* double-check the clock is OK elsewhere. */
1555 (up
->quality
!= QUALITY_UNKNOWN
) &&
1557 (up
->quality
== QUALITY_UNKNOWN
) ||
1559 (up
->quality
< MIN_CLOCK_QUALITY_OK
)) {
1562 printf("arc: clock quality %d too poor.\n", up
->quality
);
1566 refclock_report(peer
, CEVNT_FAULT
);
1569 /* This is the normal case: request a timestamp. */
1570 request_time(unit
, peer
);
1574 int refclock_arc_bs
;