Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / bsd / ntp / dist / ntpd / refclock_chu.c
blobd7820296c5224a7f8d37d052d0029ff099e2c640
1 /* $NetBSD$ */
3 /*
4 * refclock_chu - clock driver for Canadian CHU time/frequency station
5 */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
10 #if defined(REFCLOCK) && defined(CLOCK_CHU)
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
18 #include <stdio.h>
19 #include <ctype.h>
20 #include <math.h>
22 #ifdef HAVE_AUDIO
23 #include "audio.h"
24 #endif /* HAVE_AUDIO */
26 #define ICOM 1 /* undefine to suppress ICOM code */
28 #ifdef ICOM
29 #include "icom.h"
30 #endif /* ICOM */
32 * Audio CHU demodulator/decoder
34 * This driver synchronizes the computer time using data encoded in
35 * radio transmissions from Canadian time/frequency station CHU in
36 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
37 * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
38 * ordinary shortwave receiver can be tuned manually to one of these
39 * frequencies or, in the case of ICOM receivers, the receiver can be
40 * tuned automatically as propagation conditions change throughout the
41 * day and season.
43 * The driver requires an audio codec or sound card with sampling rate 8
44 * kHz and mu-law companding. This is the same standard as used by the
45 * telephone industry and is supported by most hardware and operating
46 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
47 * implementation, only one audio driver and codec can be supported on a
48 * single machine.
50 * The driver can be compiled to use a Bell 103 compatible modem or
51 * modem chip to receive the radio signal and demodulate the data.
52 * Alternatively, the driver can be compiled to use the audio codec of
53 * the workstation or another with compatible audio drivers. In the
54 * latter case, the driver implements the modem using DSP routines, so
55 * the radio can be connected directly to either the microphone on line
56 * input port. In either case, the driver decodes the data using a
57 * maximum-likelihood technique which exploits the considerable degree
58 * of redundancy available to maximize accuracy and minimize errors.
60 * The CHU time broadcast includes an audio signal compatible with the
61 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
62 * consists of nine, ten-character bursts transmitted at 300 bps between
63 * seconds 31 and 39 of each minute. Each character consists of eight
64 * data bits plus one start bit and two stop bits to encode two hex
65 * digits. The burst data consist of five characters (ten hex digits)
66 * followed by a repeat of these characters. In format A, the characters
67 * are repeated in the same polarity; in format B, the characters are
68 * repeated in the opposite polarity.
70 * Format A bursts are sent at seconds 32 through 39 of the minute in
71 * hex digits (nibble swapped)
73 * 6dddhhmmss6dddhhmmss
75 * The first ten digits encode a frame marker (6) followed by the day
76 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
77 * format A bursts are sent during the third decade of seconds the tens
78 * digit of ss is always 3. The driver uses this to determine correct
79 * burst synchronization. These digits are then repeated with the same
80 * polarity.
82 * Format B bursts are sent at second 31 of the minute in hex digits
84 * xdyyyyttaaxdyyyyttaa
86 * The first ten digits encode a code (x described below) followed by
87 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
88 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
89 * digits are then repeated with inverted polarity.
91 * The x is coded
93 * 1 Sign of DUT (0 = +)
94 * 2 Leap second warning. One second will be added.
95 * 4 Leap second warning. One second will be subtracted.
96 * 8 Even parity bit for this nibble.
98 * By design, the last stop bit of the last character in the burst
99 * coincides with 0.5 second. Since characters have 11 bits and are
100 * transmitted at 300 bps, the last stop bit of the first character
101 * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
102 * UART, character interrupts can vary somewhere between the end of bit
103 * 9 and end of bit 11. These eccentricities can be corrected along with
104 * the radio propagation delay using fudge time 1.
106 * Debugging aids
108 * The timecode format used for debugging and data recording includes
109 * data helpful in diagnosing problems with the radio signal and serial
110 * connections. With debugging enabled (-d on the ntpd command line),
111 * the driver produces one line for each burst in two formats
112 * corresponding to format A and B.Each line begins with the format code
113 * chuA or chuB followed by the status code and signal level (0-9999).
114 * The remainder of the line is as follows.
116 * Following is format A:
118 * n b f s m code
120 * where n is the number of characters in the burst (0-10), b the burst
121 * distance (0-40), f the field alignment (-1, 0, 1), s the
122 * synchronization distance (0-16), m the burst number (2-9) and code
123 * the burst characters as received. Note that the hex digits in each
124 * character are reversed, so the burst
126 * 10 38 0 16 9 06851292930685129293
128 * is interpreted as containing 10 characters with burst distance 38,
129 * field alignment 0, synchronization distance 16 and burst number 9.
130 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
131 * second 39.
133 * Following is format B:
135 * n b s code
137 * where n is the number of characters in the burst (0-10), b the burst
138 * distance (0-40), s the synchronization distance (0-40) and code the
139 * burst characters as received. Note that the hex digits in each
140 * character are reversed and the last ten digits inverted, so the burst
142 * 10 40 1091891300ef6e76ec
144 * is interpreted as containing 10 characters with burst distance 40.
145 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
146 * - UTC 31 seconds.
148 * Each line is preceeded by the code chuA or chuB, as appropriate. If
149 * the audio driver is compiled, the current gain (0-255) and relative
150 * signal level (0-9999) follow the code. The receiver volume control
151 * should be set so that the gain is somewhere near the middle of the
152 * range 0-255, which results in a signal level near 1000.
154 * In addition to the above, the reference timecode is updated and
155 * written to the clockstats file and debug score after the last burst
156 * received in the minute. The format is
158 * sq yyyy ddd hh:mm:ss l s dd t agc ident m b
160 * s '?' before first synchronized and ' ' after that
161 * q status code (see below)
162 * yyyy year
163 * ddd day of year
164 * hh:mm:ss time of day
165 * l leap second indicator (space, L or D)
166 * dst Canadian daylight code (opaque)
167 * t number of minutes since last synchronized
168 * agc audio gain (0 - 255)
169 * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
170 * m signal metric (0 - 100)
171 * b number of timecodes for the previous minute (0 - 59)
173 * Fudge factors
175 * For accuracies better than the low millisceconds, fudge time1 can be
176 * set to the radio propagation delay from CHU to the receiver. This can
177 * be done conviently using the minimuf program.
179 * Fudge flag4 causes the dubugging output described above to be
180 * recorded in the clockstats file. When the audio driver is compiled,
181 * fudge flag2 selects the audio input port, where 0 is the mike port
182 * (default) and 1 is the line-in port. It does not seem useful to
183 * select the compact disc player port. Fudge flag3 enables audio
184 * monitoring of the input signal. For this purpose, the monitor gain is
185 * set to a default value.
187 * The audio codec code is normally compiled in the driver if the
188 * architecture supports it (HAVE_AUDIO defined), but is used only if
189 * the link /dev/chu_audio is defined and valid. The serial port code is
190 * always compiled in the driver, but is used only if the autdio codec
191 * is not available and the link /dev/chu%d is defined and valid.
193 * The ICOM code is normally compiled in the driver if selected (ICOM
194 * defined), but is used only if the link /dev/icom%d is defined and
195 * valid and the mode keyword on the server configuration command
196 * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
197 * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
198 * if one. The C-IV trace is turned on if the debug level is greater
199 * than one.
201 * Alarm codes
203 * CEVNT_BADTIME invalid date or time
204 * CEVNT_PROP propagation failure - no stations heard
207 * Interface definitions
209 #define SPEED232 B300 /* uart speed (300 baud) */
210 #define PRECISION (-10) /* precision assumed (about 1 ms) */
211 #define REFID "CHU" /* reference ID */
212 #define DEVICE "/dev/chu%d" /* device name and unit */
213 #define SPEED232 B300 /* UART speed (300 baud) */
214 #ifdef ICOM
215 #define TUNE .001 /* offset for narrow filter (MHz) */
216 #define DWELL 5 /* minutes in a dwell */
217 #define NCHAN 3 /* number of channels */
218 #define ISTAGE 3 /* number of integrator stages */
219 #endif /* ICOM */
221 #ifdef HAVE_AUDIO
223 * Audio demodulator definitions
225 #define SECOND 8000 /* nominal sample rate (Hz) */
226 #define BAUD 300 /* modulation rate (bps) */
227 #define OFFSET 128 /* companded sample offset */
228 #define SIZE 256 /* decompanding table size */
229 #define MAXAMP 6000. /* maximum signal level */
230 #define MAXCLP 100 /* max clips above reference per s */
231 #define SPAN 800. /* min envelope span */
232 #define LIMIT 1000. /* soft limiter threshold */
233 #define AGAIN 6. /* baseband gain */
234 #define LAG 10 /* discriminator lag */
235 #define DEVICE_AUDIO "/dev/audio" /* device name */
236 #define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */
237 #define AUDIO_BUFSIZ 240 /* audio buffer size (30 ms) */
238 #else
239 #define DESCRIPTION "CHU Modem Receiver" /* WRU */
240 #endif /* HAVE_AUDIO */
243 * Decoder definitions
245 #define CHAR (11. / 300.) /* character time (s) */
246 #define BURST 11 /* max characters per burst */
247 #define MINCHAR 9 /* min characters per burst */
248 #define MINDIST 28 /* min burst distance (of 40) */
249 #define MINSYNC 8 /* min sync distance (of 16) */
250 #define MINSTAMP 20 /* min timestamps (of 60) */
251 #define MINMETRIC 50 /* min channel metric (of 160) */
254 * The on-time synchronization point for the driver is the last stop bit
255 * of the first character 170 ms. The modem delay is 0.8 ms, while the
256 * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
257 * ms due to the codec and other causes was determined by calibrating to
258 * a PPS signal from a GPS receiver. The additional propagation delay
259 * specific to each receiver location can be programmed in the fudge
260 * time1.
262 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
263 * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
264 * offsets vary up to 0.3 ms due to ionospheric layer height variations.
265 * The processor load due to the driver is 0.4 percent.
267 #define PDELAY ((170 + .8 + 4.7 + 1.3) / 1000) /* system delay (s) */
270 * Status bits (status)
272 #define RUNT 0x0001 /* runt burst */
273 #define NOISE 0x0002 /* noise burst */
274 #define BFRAME 0x0004 /* invalid format B frame sync */
275 #define BFORMAT 0x0008 /* invalid format B data */
276 #define AFRAME 0x0010 /* invalid format A frame sync */
277 #define AFORMAT 0x0020 /* invalid format A data */
278 #define DECODE 0x0040 /* invalid data decode */
279 #define STAMP 0x0080 /* too few timestamps */
280 #define AVALID 0x0100 /* valid A frame */
281 #define BVALID 0x0200 /* valid B frame */
282 #define INSYNC 0x0400 /* clock synchronized */
283 #define METRIC 0x0800 /* one or more stations heard */
286 * Alarm status bits (alarm)
288 * These alarms are set at the end of a minute in which at least one
289 * burst was received. SYNERR is raised if the AFRAME or BFRAME status
290 * bits are set during the minute, FMTERR is raised if the AFORMAT or
291 * BFORMAT status bits are set, DECERR is raised if the DECODE status
292 * bit is set and TSPERR is raised if the STAMP status bit is set.
294 #define SYNERR 0x01 /* frame sync error */
295 #define FMTERR 0x02 /* data format error */
296 #define DECERR 0x04 /* data decoding error */
297 #define TSPERR 0x08 /* insufficient data */
299 #ifdef HAVE_AUDIO
301 * Maximum-likelihood UART structure. There are eight of these
302 * corresponding to the number of phases.
304 struct surv {
305 l_fp cstamp; /* last bit timestamp */
306 double shift[12]; /* sample shift register */
307 double span; /* shift register envelope span */
308 double dist; /* sample distance */
309 int uart; /* decoded character */
311 #endif /* HAVE_AUDIO */
313 #ifdef ICOM
315 * CHU station structure. There are three of these corresponding to the
316 * three frequencies.
318 struct xmtr {
319 double integ[ISTAGE]; /* circular integrator */
320 double metric; /* integrator sum */
321 int iptr; /* integrator pointer */
322 int probe; /* dwells since last probe */
324 #endif /* ICOM */
327 * CHU unit control structure
329 struct chuunit {
330 u_char decode[20][16]; /* maximum-likelihood decoding matrix */
331 l_fp cstamp[BURST]; /* character timestamps */
332 l_fp tstamp[MAXSTAGE]; /* timestamp samples */
333 l_fp timestamp; /* current buffer timestamp */
334 l_fp laststamp; /* last buffer timestamp */
335 l_fp charstamp; /* character time as a l_fp */
336 int second; /* counts the seconds of the minute */
337 int errflg; /* error flags */
338 int status; /* status bits */
339 char ident[5]; /* station ID and channel */
340 #ifdef ICOM
341 int fd_icom; /* ICOM file descriptor */
342 int chan; /* radio channel */
343 int dwell; /* dwell cycle */
344 struct xmtr xmtr[NCHAN]; /* station metric */
345 #endif /* ICOM */
348 * Character burst variables
350 int cbuf[BURST]; /* character buffer */
351 int ntstamp; /* number of timestamp samples */
352 int ndx; /* buffer start index */
353 int prevsec; /* previous burst second */
354 int burdist; /* burst distance */
355 int syndist; /* sync distance */
356 int burstcnt; /* format A bursts this minute */
357 double maxsignal; /* signal level (modem only) */
358 int gain; /* codec gain (modem only) */
361 * Format particulars
363 int leap; /* leap/dut code */
364 int dut; /* UTC1 correction */
365 int tai; /* TAI - UTC correction */
366 int dst; /* Canadian DST code */
368 #ifdef HAVE_AUDIO
370 * Audio codec variables
372 int fd_audio; /* audio port file descriptor */
373 double comp[SIZE]; /* decompanding table */
374 int port; /* codec port */
375 int mongain; /* codec monitor gain */
376 int clipcnt; /* sample clip count */
377 int seccnt; /* second interval counter */
380 * Modem variables
382 l_fp tick; /* audio sample increment */
383 double bpf[9]; /* IIR bandpass filter */
384 double disc[LAG]; /* discriminator shift register */
385 double lpf[27]; /* FIR lowpass filter */
386 double monitor; /* audio monitor */
387 int discptr; /* discriminator pointer */
390 * Maximum-likelihood UART variables
392 double baud; /* baud interval */
393 struct surv surv[8]; /* UART survivor structures */
394 int decptr; /* decode pointer */
395 int decpha; /* decode phase */
396 int dbrk; /* holdoff counter */
397 #endif /* HAVE_AUDIO */
401 * Function prototypes
403 static int chu_start (int, struct peer *);
404 static void chu_shutdown (int, struct peer *);
405 static void chu_receive (struct recvbuf *);
406 static void chu_second (int, struct peer *);
407 static void chu_poll (int, struct peer *);
410 * More function prototypes
412 static void chu_decode (struct peer *, int, l_fp);
413 static void chu_burst (struct peer *);
414 static void chu_clear (struct peer *);
415 static void chu_a (struct peer *, int);
416 static void chu_b (struct peer *, int);
417 static int chu_dist (int, int);
418 static double chu_major (struct peer *);
419 #ifdef HAVE_AUDIO
420 static void chu_uart (struct surv *, double);
421 static void chu_rf (struct peer *, double);
422 static void chu_gain (struct peer *);
423 static void chu_audio_receive (struct recvbuf *rbufp);
424 #endif /* HAVE_AUDIO */
425 #ifdef ICOM
426 static int chu_newchan (struct peer *, double);
427 #endif /* ICOM */
428 static void chu_serial_receive (struct recvbuf *rbufp);
431 * Global variables
433 static char hexchar[] = "0123456789abcdef_*=";
435 #ifdef ICOM
437 * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
438 * transmits on USB with carrier so we can use AM and the narrow SSB
439 * filter.
441 static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */
442 #endif /* ICOM */
445 * Transfer vector
447 struct refclock refclock_chu = {
448 chu_start, /* start up driver */
449 chu_shutdown, /* shut down driver */
450 chu_poll, /* transmit poll message */
451 noentry, /* not used (old chu_control) */
452 noentry, /* initialize driver (not used) */
453 noentry, /* not used (old chu_buginfo) */
454 chu_second /* housekeeping timer */
459 * chu_start - open the devices and initialize data for processing
461 static int
462 chu_start(
463 int unit, /* instance number (not used) */
464 struct peer *peer /* peer structure pointer */
467 struct chuunit *up;
468 struct refclockproc *pp;
469 char device[20]; /* device name */
470 int fd; /* file descriptor */
471 #ifdef ICOM
472 int temp;
473 #endif /* ICOM */
474 #ifdef HAVE_AUDIO
475 int fd_audio; /* audio port file descriptor */
476 int i; /* index */
477 double step; /* codec adjustment */
480 * Open audio device. Don't complain if not there.
482 fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
483 #ifdef DEBUG
484 if (fd_audio > 0 && debug)
485 audio_show();
486 #endif
489 * If audio is unavailable, Open serial port in raw mode.
491 if (fd_audio > 0) {
492 fd = fd_audio;
493 } else {
494 sprintf(device, DEVICE, unit);
495 fd = refclock_open(device, SPEED232, LDISC_RAW);
497 #else /* HAVE_AUDIO */
500 * Open serial port in raw mode.
502 sprintf(device, DEVICE, unit);
503 fd = refclock_open(device, SPEED232, LDISC_RAW);
504 #endif /* HAVE_AUDIO */
505 if (fd < 0)
506 return (0);
509 * Allocate and initialize unit structure
511 if (!(up = (struct chuunit *)
512 emalloc(sizeof(struct chuunit)))) {
513 close(fd);
514 return (0);
516 memset((char *)up, 0, sizeof(struct chuunit));
517 pp = peer->procptr;
518 pp->unitptr = (caddr_t)up;
519 pp->io.clock_recv = chu_receive;
520 pp->io.srcclock = (caddr_t)peer;
521 pp->io.datalen = 0;
522 pp->io.fd = fd;
523 if (!io_addclock(&pp->io)) {
524 close(fd);
525 free(up);
526 return (0);
530 * Initialize miscellaneous variables
532 peer->precision = PRECISION;
533 pp->clockdesc = DESCRIPTION;
534 strcpy(up->ident, "CHU");
535 memcpy(&pp->refid, up->ident, 4);
536 DTOLFP(CHAR, &up->charstamp);
537 #ifdef HAVE_AUDIO
540 * The companded samples are encoded sign-magnitude. The table
541 * contains all the 256 values in the interest of speed. We do
542 * this even if the audio codec is not available. C'est la lazy.
544 up->fd_audio = fd_audio;
545 up->gain = 127;
546 up->comp[0] = up->comp[OFFSET] = 0.;
547 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
548 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
549 step = 2.;
550 for (i = 3; i < OFFSET; i++) {
551 up->comp[i] = up->comp[i - 1] + step;
552 up->comp[OFFSET + i] = -up->comp[i];
553 if (i % 16 == 0)
554 step *= 2.;
556 DTOLFP(1. / SECOND, &up->tick);
557 #endif /* HAVE_AUDIO */
558 #ifdef ICOM
559 temp = 0;
560 #ifdef DEBUG
561 if (debug > 1)
562 temp = P_TRACE;
563 #endif
564 if (peer->ttl > 0) {
565 if (peer->ttl & 0x80)
566 up->fd_icom = icom_init("/dev/icom", B1200,
567 temp);
568 else
569 up->fd_icom = icom_init("/dev/icom", B9600,
570 temp);
572 if (up->fd_icom > 0) {
573 if (chu_newchan(peer, 0) != 0) {
574 msyslog(LOG_NOTICE, "icom: radio not found");
575 close(up->fd_icom);
576 up->fd_icom = 0;
577 } else {
578 msyslog(LOG_NOTICE, "icom: autotune enabled");
581 #endif /* ICOM */
582 return (1);
587 * chu_shutdown - shut down the clock
589 static void
590 chu_shutdown(
591 int unit, /* instance number (not used) */
592 struct peer *peer /* peer structure pointer */
595 struct chuunit *up;
596 struct refclockproc *pp;
598 pp = peer->procptr;
599 up = (struct chuunit *)pp->unitptr;
600 if (up == NULL)
601 return;
603 io_closeclock(&pp->io);
604 #ifdef ICOM
605 if (up->fd_icom > 0)
606 close(up->fd_icom);
607 #endif /* ICOM */
608 free(up);
613 * chu_receive - receive data from the audio or serial device
615 static void
616 chu_receive(
617 struct recvbuf *rbufp /* receive buffer structure pointer */
620 #ifdef HAVE_AUDIO
621 struct chuunit *up;
622 struct refclockproc *pp;
623 struct peer *peer;
625 peer = (struct peer *)rbufp->recv_srcclock;
626 pp = peer->procptr;
627 up = (struct chuunit *)pp->unitptr;
630 * If the audio codec is warmed up, the buffer contains codec
631 * samples which need to be demodulated and decoded into CHU
632 * characters using the software UART. Otherwise, the buffer
633 * contains CHU characters from the serial port, so the software
634 * UART is bypassed. In this case the CPU will probably run a
635 * few degrees cooler.
637 if (up->fd_audio > 0)
638 chu_audio_receive(rbufp);
639 else
640 chu_serial_receive(rbufp);
641 #else
642 chu_serial_receive(rbufp);
643 #endif /* HAVE_AUDIO */
647 #ifdef HAVE_AUDIO
649 * chu_audio_receive - receive data from the audio device
651 static void
652 chu_audio_receive(
653 struct recvbuf *rbufp /* receive buffer structure pointer */
656 struct chuunit *up;
657 struct refclockproc *pp;
658 struct peer *peer;
660 double sample; /* codec sample */
661 u_char *dpt; /* buffer pointer */
662 int bufcnt; /* buffer counter */
663 l_fp ltemp; /* l_fp temp */
665 peer = (struct peer *)rbufp->recv_srcclock;
666 pp = peer->procptr;
667 up = (struct chuunit *)pp->unitptr;
670 * Main loop - read until there ain't no more. Note codec
671 * samples are bit-inverted.
673 DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
674 L_SUB(&rbufp->recv_time, &ltemp);
675 up->timestamp = rbufp->recv_time;
676 dpt = rbufp->recv_buffer;
677 for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
678 sample = up->comp[~*dpt++ & 0xff];
681 * Clip noise spikes greater than MAXAMP. If no clips,
682 * increase the gain a tad; if the clips are too high,
683 * decrease a tad.
685 if (sample > MAXAMP) {
686 sample = MAXAMP;
687 up->clipcnt++;
688 } else if (sample < -MAXAMP) {
689 sample = -MAXAMP;
690 up->clipcnt++;
692 chu_rf(peer, sample);
693 L_ADD(&up->timestamp, &up->tick);
696 * Once each second ride gain.
698 up->seccnt = (up->seccnt + 1) % SECOND;
699 if (up->seccnt == 0) {
700 chu_gain(peer);
705 * Set the input port and monitor gain for the next buffer.
707 if (pp->sloppyclockflag & CLK_FLAG2)
708 up->port = 2;
709 else
710 up->port = 1;
711 if (pp->sloppyclockflag & CLK_FLAG3)
712 up->mongain = MONGAIN;
713 else
714 up->mongain = 0;
719 * chu_rf - filter and demodulate the FSK signal
721 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
722 * and space 2025 Hz. It uses a bandpass filter followed by a soft
723 * limiter, FM discriminator and lowpass filter. A maximum-likelihood
724 * decoder samples the baseband signal at eight times the baud rate and
725 * detects the start bit of each character.
727 * The filters are built for speed, which explains the rather clumsy
728 * code. Hopefully, the compiler will efficiently implement the move-
729 * and-muiltiply-and-add operations.
731 static void
732 chu_rf(
733 struct peer *peer, /* peer structure pointer */
734 double sample /* analog sample */
737 struct refclockproc *pp;
738 struct chuunit *up;
739 struct surv *sp;
742 * Local variables
744 double signal; /* bandpass signal */
745 double limit; /* limiter signal */
746 double disc; /* discriminator signal */
747 double lpf; /* lowpass signal */
748 double dist; /* UART signal distance */
749 int i, j;
751 pp = peer->procptr;
752 up = (struct chuunit *)pp->unitptr;
755 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
756 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
757 * phase delay 0.24 ms.
759 signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
760 signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
761 signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
762 signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
763 signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
764 signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
765 signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
766 signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
767 up->bpf[0] = sample - signal;
768 signal = up->bpf[0] * 6.176213e-03
769 + up->bpf[1] * 3.156599e-03
770 + up->bpf[2] * 7.567487e-03
771 + up->bpf[3] * 4.344580e-03
772 + up->bpf[4] * 1.190128e-02
773 + up->bpf[5] * 4.344580e-03
774 + up->bpf[6] * 7.567487e-03
775 + up->bpf[7] * 3.156599e-03
776 + up->bpf[8] * 6.176213e-03;
778 up->monitor = signal / 4.; /* note monitor after filter */
781 * Soft limiter/discriminator. The 11-sample discriminator lag
782 * interval corresponds to three cycles of 2125 Hz, which
783 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
784 * Hz. The discriminator output varies +-0.5 interval for input
785 * frequency 2025-2225 Hz. However, we don't get to sample at
786 * this frequency, so the discriminator output is biased. Life
787 * at 8000 Hz sucks.
789 limit = signal;
790 if (limit > LIMIT)
791 limit = LIMIT;
792 else if (limit < -LIMIT)
793 limit = -LIMIT;
794 disc = up->disc[up->discptr] * -limit;
795 up->disc[up->discptr] = limit;
796 up->discptr = (up->discptr + 1 ) % LAG;
797 if (disc >= 0)
798 disc = SQRT(disc);
799 else
800 disc = -SQRT(-disc);
803 * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
805 lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
806 lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
807 lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
808 lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
809 lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
810 lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
811 lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
812 lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
813 lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
814 lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
815 lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
816 lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
817 lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
818 lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
819 lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
820 lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
821 lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
822 lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
823 lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
824 lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
825 lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
826 lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
827 lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
828 lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
829 lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
830 lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
831 lpf += up->lpf[0] = disc * 2.538771e-02;
834 * Maximum-likelihood decoder. The UART updates each of the
835 * eight survivors and determines the span, slice level and
836 * tentative decoded character. Valid 11-bit characters are
837 * framed so that bit 10 and bit 11 (stop bits) are mark and bit
838 * 1 (start bit) is space. When a valid character is found, the
839 * survivor with maximum distance determines the final decoded
840 * character.
842 up->baud += 1. / SECOND;
843 if (up->baud > 1. / (BAUD * 8.)) {
844 up->baud -= 1. / (BAUD * 8.);
845 up->decptr = (up->decptr + 1) % 8;
846 sp = &up->surv[up->decptr];
847 sp->cstamp = up->timestamp;
848 chu_uart(sp, -lpf * AGAIN);
849 if (up->dbrk > 0) {
850 up->dbrk--;
851 if (up->dbrk > 0)
852 return;
854 up->decpha = up->decptr;
856 if (up->decptr != up->decpha)
857 return;
859 dist = 0;
860 j = -1;
861 for (i = 0; i < 8; i++) {
864 * The timestamp is taken at the last bit, so
865 * for correct decoding we reqire sufficient
866 * span and correct start bit and two stop bits.
868 if ((up->surv[i].uart & 0x601) != 0x600 ||
869 up->surv[i].span < SPAN)
870 continue;
872 if (up->surv[i].dist > dist) {
873 dist = up->surv[i].dist;
874 j = i;
877 if (j < 0)
878 return;
881 * Process the character, then blank the decoder until
882 * the end of the next character.This sets the decoding
883 * phase of the entire burst from the phase of the first
884 * character.
886 up->maxsignal = up->surv[j].span;
887 chu_decode(peer, (up->surv[j].uart >> 1) & 0xff,
888 up->surv[j].cstamp);
889 up->dbrk = 88;
895 * chu_uart - maximum-likelihood UART
897 * This routine updates a shift register holding the last 11 envelope
898 * samples. It then computes the slice level and span over these samples
899 * and determines the tentative data bits and distance. The calling
900 * program selects over the last eight survivors the one with maximum
901 * distance to determine the decoded character.
903 static void
904 chu_uart(
905 struct surv *sp, /* survivor structure pointer */
906 double sample /* baseband signal */
909 double es_max, es_min; /* max/min envelope */
910 double slice; /* slice level */
911 double dist; /* distance */
912 double dtemp;
913 int i;
916 * Save the sample and shift right. At the same time, measure
917 * the maximum and minimum over all eleven samples.
919 es_max = -1e6;
920 es_min = 1e6;
921 sp->shift[0] = sample;
922 for (i = 11; i > 0; i--) {
923 sp->shift[i] = sp->shift[i - 1];
924 if (sp->shift[i] > es_max)
925 es_max = sp->shift[i];
926 if (sp->shift[i] < es_min)
927 es_min = sp->shift[i];
931 * Determine the span as the maximum less the minimum and the
932 * slice level as the minimum plus a fraction of the span. Note
933 * the slight bias toward mark to correct for the modem tendency
934 * to make more mark than space errors. Compute the distance on
935 * the assumption the last two bits must be mark, the first
936 * space and the rest either mark or space.
938 sp->span = es_max - es_min;
939 slice = es_min + .45 * sp->span;
940 dist = 0;
941 sp->uart = 0;
942 for (i = 1; i < 12; i++) {
943 sp->uart <<= 1;
944 dtemp = sp->shift[i];
945 if (dtemp > slice)
946 sp->uart |= 0x1;
947 if (i == 1 || i == 2) {
948 dist += dtemp - es_min;
949 } else if (i == 11) {
950 dist += es_max - dtemp;
951 } else {
952 if (dtemp > slice)
953 dist += dtemp - es_min;
954 else
955 dist += es_max - dtemp;
958 sp->dist = dist / (11 * sp->span);
960 #endif /* HAVE_AUDIO */
964 * chu_serial_receive - receive data from the serial device
966 static void
967 chu_serial_receive(
968 struct recvbuf *rbufp /* receive buffer structure pointer */
971 struct chuunit *up;
972 struct refclockproc *pp;
973 struct peer *peer;
975 u_char *dpt; /* receive buffer pointer */
977 peer = (struct peer *)rbufp->recv_srcclock;
978 pp = peer->procptr;
979 up = (struct chuunit *)pp->unitptr;
981 dpt = (u_char *)&rbufp->recv_space;
982 chu_decode(peer, *dpt, rbufp->recv_time);
987 * chu_decode - decode the character data
989 static void
990 chu_decode(
991 struct peer *peer, /* peer structure pointer */
992 int hexhex, /* data character */
993 l_fp cstamp /* data character timestamp */
996 struct refclockproc *pp;
997 struct chuunit *up;
999 l_fp tstmp; /* timestamp temp */
1000 double dtemp;
1002 pp = peer->procptr;
1003 up = (struct chuunit *)pp->unitptr;
1006 * If the interval since the last character is greater than the
1007 * longest burst, process the last burst and start a new one. If
1008 * the interval is less than this but greater than two
1009 * characters, consider this a noise burst and reject it.
1011 tstmp = up->timestamp;
1012 if (L_ISZERO(&up->laststamp))
1013 up->laststamp = up->timestamp;
1014 L_SUB(&tstmp, &up->laststamp);
1015 up->laststamp = up->timestamp;
1016 LFPTOD(&tstmp, dtemp);
1017 if (dtemp > BURST * CHAR) {
1018 chu_burst(peer);
1019 up->ndx = 0;
1020 } else if (dtemp > 2.5 * CHAR) {
1021 up->ndx = 0;
1025 * Append the character to the current burst and append the
1026 * character timestamp to the timestamp list.
1028 if (up->ndx < BURST) {
1029 up->cbuf[up->ndx] = hexhex & 0xff;
1030 up->cstamp[up->ndx] = cstamp;
1031 up->ndx++;
1038 * chu_burst - search for valid burst format
1040 static void
1041 chu_burst(
1042 struct peer *peer
1045 struct chuunit *up;
1046 struct refclockproc *pp;
1048 int i;
1050 pp = peer->procptr;
1051 up = (struct chuunit *)pp->unitptr;
1054 * Correlate a block of five characters with the next block of
1055 * five characters. The burst distance is defined as the number
1056 * of bits that match in the two blocks for format A and that
1057 * match the inverse for format B.
1059 if (up->ndx < MINCHAR) {
1060 up->status |= RUNT;
1061 return;
1063 up->burdist = 0;
1064 for (i = 0; i < 5 && i < up->ndx - 5; i++)
1065 up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
1068 * If the burst distance is at least MINDIST, this must be a
1069 * format A burst; if the value is not greater than -MINDIST, it
1070 * must be a format B burst. If the B burst is perfect, we
1071 * believe it; otherwise, it is a noise burst and of no use to
1072 * anybody.
1074 if (up->burdist >= MINDIST) {
1075 chu_a(peer, up->ndx);
1076 } else if (up->burdist <= -MINDIST) {
1077 chu_b(peer, up->ndx);
1078 } else {
1079 up->status |= NOISE;
1080 return;
1084 * If this is a valid burst, wait a guard time of ten seconds to
1085 * allow for more bursts, then arm the poll update routine to
1086 * process the minute. Don't do this if this is called from the
1087 * timer interrupt routine.
1089 if (peer->outdate != current_time)
1090 peer->nextdate = current_time + 10;
1095 * chu_b - decode format B burst
1097 static void
1098 chu_b(
1099 struct peer *peer,
1100 int nchar
1103 struct refclockproc *pp;
1104 struct chuunit *up;
1106 u_char code[11]; /* decoded timecode */
1107 char tbuf[80]; /* trace buffer */
1108 int i;
1110 pp = peer->procptr;
1111 up = (struct chuunit *)pp->unitptr;
1114 * In a format B burst, a character is considered valid only if
1115 * the first occurence matches the last occurence. The burst is
1116 * considered valid only if all characters are valid; that is,
1117 * only if the distance is 40. Note that once a valid frame has
1118 * been found errors are ignored.
1120 sprintf(tbuf, "chuB %04x %4.0f %2d %2d ", up->status,
1121 up->maxsignal, nchar, -up->burdist);
1122 for (i = 0; i < nchar; i++)
1123 sprintf(&tbuf[strlen(tbuf)], "%02x", up->cbuf[i]);
1124 if (pp->sloppyclockflag & CLK_FLAG4)
1125 record_clock_stats(&peer->srcadr, tbuf);
1126 #ifdef DEBUG
1127 if (debug)
1128 printf("%s\n", tbuf);
1129 #endif
1130 if (up->burdist > -40) {
1131 up->status |= BFRAME;
1132 return;
1136 * Convert the burst data to internal format. Don't bother with
1137 * the timestamps.
1139 for (i = 0; i < 5; i++) {
1140 code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1141 code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1142 4) & 0xf];
1144 if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1145 &pp->year, &up->tai, &up->dst) != 5) {
1146 up->status |= BFORMAT;
1147 return;
1149 up->status |= BVALID;
1150 if (up->leap & 0x8)
1151 up->dut = -up->dut;
1156 * chu_a - decode format A burst
1158 static void
1159 chu_a(
1160 struct peer *peer,
1161 int nchar
1164 struct refclockproc *pp;
1165 struct chuunit *up;
1167 char tbuf[80]; /* trace buffer */
1168 l_fp offset; /* timestamp offset */
1169 int val; /* distance */
1170 int temp;
1171 int i, j, k;
1173 pp = peer->procptr;
1174 up = (struct chuunit *)pp->unitptr;
1177 * Determine correct burst phase. There are three cases
1178 * corresponding to in-phase, one character early or one
1179 * character late. These cases are distinguished by the position
1180 * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
1181 * positions 4 and 9. The correct phase is when the distance
1182 * relative to the framing digits is maximum. The burst is valid
1183 * only if the maximum distance is at least MINSYNC.
1185 up->syndist = k = 0;
1186 val = -16;
1187 for (i = -1; i < 2; i++) {
1188 temp = up->cbuf[i + 4] & 0xf;
1189 if (i >= 0)
1190 temp |= (up->cbuf[i] & 0xf) << 4;
1191 val = chu_dist(temp, 0x63);
1192 temp = (up->cbuf[i + 5] & 0xf) << 4;
1193 if (i + 9 < nchar)
1194 temp |= up->cbuf[i + 9] & 0xf;
1195 val += chu_dist(temp, 0x63);
1196 if (val > up->syndist) {
1197 up->syndist = val;
1198 k = i;
1203 * Extract the second number; it must be in the range 2 through
1204 * 9 and the two repititions must be the same.
1206 temp = (up->cbuf[k + 4] >> 4) & 0xf;
1207 if (temp < 2 || temp > 9 || k + 9 >= nchar || temp !=
1208 ((up->cbuf[k + 9] >> 4) & 0xf))
1209 temp = 0;
1210 sprintf(tbuf, "chuA %04x %4.0f %2d %2d %2d %2d %1d ",
1211 up->status, up->maxsignal, nchar, up->burdist, k,
1212 up->syndist, temp);
1213 for (i = 0; i < nchar; i++)
1214 sprintf(&tbuf[strlen(tbuf)], "%02x",
1215 up->cbuf[i]);
1216 if (pp->sloppyclockflag & CLK_FLAG4)
1217 record_clock_stats(&peer->srcadr, tbuf);
1218 #ifdef DEBUG
1219 if (debug)
1220 printf("%s\n", tbuf);
1221 #endif
1222 if (up->syndist < MINSYNC) {
1223 up->status |= AFRAME;
1224 return;
1228 * A valid burst requires the first seconds number to match the
1229 * last seconds number. If so, the burst timestamps are
1230 * corrected to the current minute and saved for later
1231 * processing. In addition, the seconds decode is advanced from
1232 * the previous burst to the current one.
1234 if (temp == 0) {
1235 up->status |= AFORMAT;
1236 } else {
1237 up->status |= AVALID;
1238 up->second = pp->second = 30 + temp;
1239 offset.l_ui = 30 + temp;
1240 offset.l_f = 0;
1241 i = 0;
1242 if (k < 0)
1243 offset = up->charstamp;
1244 else if (k > 0)
1245 i = 1;
1246 for (; i < nchar && i < k + 10; i++) {
1247 up->tstamp[up->ntstamp] = up->cstamp[i];
1248 L_SUB(&up->tstamp[up->ntstamp], &offset);
1249 L_ADD(&offset, &up->charstamp);
1250 if (up->ntstamp < MAXSTAGE - 1)
1251 up->ntstamp++;
1253 while (temp > up->prevsec) {
1254 for (j = 15; j > 0; j--) {
1255 up->decode[9][j] = up->decode[9][j - 1];
1256 up->decode[19][j] =
1257 up->decode[19][j - 1];
1259 up->decode[9][j] = up->decode[19][j] = 0;
1260 up->prevsec++;
1265 * Stash the data in the decoding matrix.
1267 i = -(2 * k);
1268 for (j = 0; j < nchar; j++) {
1269 if (i < 0 || i > 18) {
1270 i += 2;
1271 continue;
1273 up->decode[i][up->cbuf[j] & 0xf]++;
1274 i++;
1275 up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1276 i++;
1278 up->burstcnt++;
1283 * chu_poll - called by the transmit procedure
1285 static void
1286 chu_poll(
1287 int unit,
1288 struct peer *peer /* peer structure pointer */
1291 struct refclockproc *pp;
1293 pp = peer->procptr;
1294 pp->polls++;
1299 * chu_second - process minute data
1301 static void
1302 chu_second(
1303 int unit,
1304 struct peer *peer /* peer structure pointer */
1307 struct refclockproc *pp;
1308 struct chuunit *up;
1309 l_fp offset;
1310 char synchar, qual, leapchar;
1311 int minset, i;
1312 double dtemp;
1314 pp = peer->procptr;
1315 up = (struct chuunit *)pp->unitptr;
1318 * This routine is called once per minute to process the
1319 * accumulated burst data. We do a bit of fancy footwork so that
1320 * this doesn't run while burst data are being accumulated.
1322 up->second = (up->second + 1) % 60;
1323 if (up->second != 0)
1324 return;
1327 * Process the last burst, if still in the burst buffer.
1328 * If the minute contains a valid B frame with sufficient A
1329 * frame metric, it is considered valid. However, the timecode
1330 * is sent to clockstats even if invalid.
1332 chu_burst(peer);
1333 minset = ((current_time - peer->update) + 30) / 60;
1334 dtemp = chu_major(peer);
1335 qual = 0;
1336 if (up->status & (BFRAME | AFRAME))
1337 qual |= SYNERR;
1338 if (up->status & (BFORMAT | AFORMAT))
1339 qual |= FMTERR;
1340 if (up->status & DECODE)
1341 qual |= DECERR;
1342 if (up->status & STAMP)
1343 qual |= TSPERR;
1344 if (up->status & BVALID && dtemp >= MINMETRIC)
1345 up->status |= INSYNC;
1346 synchar = leapchar = ' ';
1347 if (!(up->status & INSYNC)) {
1348 pp->leap = LEAP_NOTINSYNC;
1349 synchar = '?';
1350 } else if (up->leap & 0x2) {
1351 pp->leap = LEAP_ADDSECOND;
1352 leapchar = 'L';
1353 } else if (up->leap & 0x4) {
1354 pp->leap = LEAP_DELSECOND;
1355 leapchar = 'l';
1356 } else {
1357 pp->leap = LEAP_NOWARNING;
1359 sprintf(pp->a_lastcode,
1360 "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
1361 synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1362 pp->second, leapchar, up->dst, up->dut, minset, up->gain,
1363 up->ident, dtemp, up->ntstamp);
1364 pp->lencode = strlen(pp->a_lastcode);
1367 * If in sync and the signal metric is above threshold, the
1368 * timecode is ipso fatso valid and can be selected to
1369 * discipline the clock.
1371 if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) &&
1372 dtemp > MINMETRIC) {
1373 if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1374 up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1375 up->errflg = CEVNT_BADTIME;
1376 } else {
1377 offset.l_uf = 0;
1378 for (i = 0; i < up->ntstamp; i++)
1379 refclock_process_offset(pp, offset,
1380 up->tstamp[i], PDELAY +
1381 pp->fudgetime1);
1382 pp->lastref = up->timestamp;
1383 refclock_receive(peer);
1386 if (dtemp > 0)
1387 record_clock_stats(&peer->srcadr, pp->a_lastcode);
1388 #ifdef DEBUG
1389 if (debug)
1390 printf("chu: timecode %d %s\n", pp->lencode,
1391 pp->a_lastcode);
1392 #endif
1393 #ifdef ICOM
1394 chu_newchan(peer, dtemp);
1395 #endif /* ICOM */
1396 chu_clear(peer);
1397 if (up->errflg)
1398 refclock_report(peer, up->errflg);
1399 up->errflg = 0;
1404 * chu_major - majority decoder
1406 static double
1407 chu_major(
1408 struct peer *peer /* peer structure pointer */
1411 struct refclockproc *pp;
1412 struct chuunit *up;
1414 u_char code[11]; /* decoded timecode */
1415 int metric; /* distance metric */
1416 int val1; /* maximum distance */
1417 int synchar; /* stray cat */
1418 int temp;
1419 int i, j, k;
1421 pp = peer->procptr;
1422 up = (struct chuunit *)pp->unitptr;
1425 * Majority decoder. Each burst encodes two replications at each
1426 * digit position in the timecode. Each row of the decoding
1427 * matrix encodes the number of occurences of each digit found
1428 * at the corresponding position. The maximum over all
1429 * occurrences at each position is the distance for this
1430 * position and the corresponding digit is the maximum-
1431 * likelihood candidate. If the distance is not more than half
1432 * the total number of occurences, a majority has not been found
1433 * and the data are discarded. The decoding distance is defined
1434 * as the sum of the distances over the first nine digits. The
1435 * tenth digit varies over the seconds, so we don't count it.
1437 metric = 0;
1438 for (i = 0; i < 9; i++) {
1439 val1 = 0;
1440 k = 0;
1441 for (j = 0; j < 16; j++) {
1442 temp = up->decode[i][j] + up->decode[i + 10][j];
1443 if (temp > val1) {
1444 val1 = temp;
1445 k = j;
1448 if (val1 <= up->burstcnt)
1449 up->status |= DECODE;
1450 metric += val1;
1451 code[i] = hexchar[k];
1455 * Compute the timecode timestamp from the days, hours and
1456 * minutes of the timecode. Use clocktime() for the aggregate
1457 * minutes and the minute offset computed from the burst
1458 * seconds. Note that this code relies on the filesystem time
1459 * for the years and does not use the years of the timecode.
1461 if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1462 &pp->hour, &pp->minute) != 4)
1463 up->status |= DECODE;
1464 if (up->ntstamp < MINSTAMP)
1465 up->status |= STAMP;
1466 return (metric);
1471 * chu_clear - clear decoding matrix
1473 static void
1474 chu_clear(
1475 struct peer *peer /* peer structure pointer */
1478 struct refclockproc *pp;
1479 struct chuunit *up;
1480 int i, j;
1482 pp = peer->procptr;
1483 up = (struct chuunit *)pp->unitptr;
1486 * Clear stuff for the minute.
1488 up->ndx = up->prevsec = 0;
1489 up->burstcnt = up->ntstamp = 0;
1490 up->status &= INSYNC | METRIC;
1491 for (i = 0; i < 20; i++) {
1492 for (j = 0; j < 16; j++)
1493 up->decode[i][j] = 0;
1497 #ifdef ICOM
1499 * chu_newchan - called once per minute to find the best channel;
1500 * returns zero on success, nonzero if ICOM error.
1502 static int
1503 chu_newchan(
1504 struct peer *peer,
1505 double met
1508 struct chuunit *up;
1509 struct refclockproc *pp;
1510 struct xmtr *sp;
1511 int rval;
1512 double metric;
1513 int i;
1515 pp = peer->procptr;
1516 up = (struct chuunit *)pp->unitptr;
1519 * The radio can be tuned to three channels: 0 (3330 kHz), 1
1520 * (7850 kHz) and 2 (14670 kHz). There are five one-minute
1521 * dwells in each cycle. During the first dwell the radio is
1522 * tuned to one of the three channels to measure the channel
1523 * metric. The channel is selected as the one least recently
1524 * measured. During the remaining four dwells the radio is tuned
1525 * to the channel with the highest channel metric.
1527 if (up->fd_icom <= 0)
1528 return (0);
1531 * Update the current channel metric and age of all channels.
1532 * Scan all channels for the highest metric.
1534 sp = &up->xmtr[up->chan];
1535 sp->metric -= sp->integ[sp->iptr];
1536 sp->integ[sp->iptr] = met;
1537 sp->metric += sp->integ[sp->iptr];
1538 sp->probe = 0;
1539 sp->iptr = (sp->iptr + 1) % ISTAGE;
1540 metric = 0;
1541 for (i = 0; i < NCHAN; i++) {
1542 up->xmtr[i].probe++;
1543 if (up->xmtr[i].metric > metric) {
1544 up->status |= METRIC;
1545 metric = up->xmtr[i].metric;
1546 up->chan = i;
1551 * Start the next dwell. If the first dwell or no stations have
1552 * been heard, continue round-robin scan.
1554 up->dwell = (up->dwell + 1) % DWELL;
1555 if (up->dwell == 0 || metric == 0) {
1556 rval = 0;
1557 for (i = 0; i < NCHAN; i++) {
1558 if (up->xmtr[i].probe > rval) {
1559 rval = up->xmtr[i].probe;
1560 up->chan = i;
1565 /* Retune the radio at each dwell in case somebody nudges the
1566 * tuning knob.
1568 rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] +
1569 TUNE);
1570 sprintf(up->ident, "CHU%d", up->chan);
1571 memcpy(&pp->refid, up->ident, 4);
1572 memcpy(&peer->refid, up->ident, 4);
1573 if (metric == 0 && up->status & METRIC) {
1574 up->status &= ~METRIC;
1575 refclock_report(peer, CEVNT_PROP);
1577 return (rval);
1579 #endif /* ICOM */
1583 * chu_dist - determine the distance of two octet arguments
1585 static int
1586 chu_dist(
1587 int x, /* an octet of bits */
1588 int y /* another octet of bits */
1591 int val; /* bit count */
1592 int temp;
1593 int i;
1596 * The distance is determined as the weight of the exclusive OR
1597 * of the two arguments. The weight is determined by the number
1598 * of one bits in the result. Each one bit increases the weight,
1599 * while each zero bit decreases it.
1601 temp = x ^ y;
1602 val = 0;
1603 for (i = 0; i < 8; i++) {
1604 if ((temp & 0x1) == 0)
1605 val++;
1606 else
1607 val--;
1608 temp >>= 1;
1610 return (val);
1614 #ifdef HAVE_AUDIO
1616 * chu_gain - adjust codec gain
1618 * This routine is called at the end of each second. During the second
1619 * the number of signal clips above the MAXAMP threshold (6000). If
1620 * there are no clips, the gain is bumped up; if there are more than
1621 * MAXCLP clips (100), it is bumped down. The decoder is relatively
1622 * insensitive to amplitude, so this crudity works just peachy. The
1623 * routine also jiggles the input port and selectively mutes the
1625 static void
1626 chu_gain(
1627 struct peer *peer /* peer structure pointer */
1630 struct refclockproc *pp;
1631 struct chuunit *up;
1633 pp = peer->procptr;
1634 up = (struct chuunit *)pp->unitptr;
1637 * Apparently, the codec uses only the high order bits of the
1638 * gain control field. Thus, it may take awhile for changes to
1639 * wiggle the hardware bits.
1641 if (up->clipcnt == 0) {
1642 up->gain += 4;
1643 if (up->gain > MAXGAIN)
1644 up->gain = MAXGAIN;
1645 } else if (up->clipcnt > MAXCLP) {
1646 up->gain -= 4;
1647 if (up->gain < 0)
1648 up->gain = 0;
1650 audio_gain(up->gain, up->mongain, up->port);
1651 up->clipcnt = 0;
1653 #endif /* HAVE_AUDIO */
1656 #else
1657 int refclock_chu_bs;
1658 #endif /* REFCLOCK */