4 * refclock_chu - clock driver for Canadian CHU time/frequency station
10 #if defined(REFCLOCK) && defined(CLOCK_CHU)
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
24 #endif /* HAVE_AUDIO */
26 #define ICOM 1 /* undefine to suppress ICOM code */
32 * Audio CHU demodulator/decoder
34 * This driver synchronizes the computer time using data encoded in
35 * radio transmissions from Canadian time/frequency station CHU in
36 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
37 * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
38 * ordinary shortwave receiver can be tuned manually to one of these
39 * frequencies or, in the case of ICOM receivers, the receiver can be
40 * tuned automatically as propagation conditions change throughout the
43 * The driver requires an audio codec or sound card with sampling rate 8
44 * kHz and mu-law companding. This is the same standard as used by the
45 * telephone industry and is supported by most hardware and operating
46 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
47 * implementation, only one audio driver and codec can be supported on a
50 * The driver can be compiled to use a Bell 103 compatible modem or
51 * modem chip to receive the radio signal and demodulate the data.
52 * Alternatively, the driver can be compiled to use the audio codec of
53 * the workstation or another with compatible audio drivers. In the
54 * latter case, the driver implements the modem using DSP routines, so
55 * the radio can be connected directly to either the microphone on line
56 * input port. In either case, the driver decodes the data using a
57 * maximum-likelihood technique which exploits the considerable degree
58 * of redundancy available to maximize accuracy and minimize errors.
60 * The CHU time broadcast includes an audio signal compatible with the
61 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
62 * consists of nine, ten-character bursts transmitted at 300 bps between
63 * seconds 31 and 39 of each minute. Each character consists of eight
64 * data bits plus one start bit and two stop bits to encode two hex
65 * digits. The burst data consist of five characters (ten hex digits)
66 * followed by a repeat of these characters. In format A, the characters
67 * are repeated in the same polarity; in format B, the characters are
68 * repeated in the opposite polarity.
70 * Format A bursts are sent at seconds 32 through 39 of the minute in
71 * hex digits (nibble swapped)
73 * 6dddhhmmss6dddhhmmss
75 * The first ten digits encode a frame marker (6) followed by the day
76 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
77 * format A bursts are sent during the third decade of seconds the tens
78 * digit of ss is always 3. The driver uses this to determine correct
79 * burst synchronization. These digits are then repeated with the same
82 * Format B bursts are sent at second 31 of the minute in hex digits
84 * xdyyyyttaaxdyyyyttaa
86 * The first ten digits encode a code (x described below) followed by
87 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
88 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
89 * digits are then repeated with inverted polarity.
93 * 1 Sign of DUT (0 = +)
94 * 2 Leap second warning. One second will be added.
95 * 4 Leap second warning. One second will be subtracted.
96 * 8 Even parity bit for this nibble.
98 * By design, the last stop bit of the last character in the burst
99 * coincides with 0.5 second. Since characters have 11 bits and are
100 * transmitted at 300 bps, the last stop bit of the first character
101 * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
102 * UART, character interrupts can vary somewhere between the end of bit
103 * 9 and end of bit 11. These eccentricities can be corrected along with
104 * the radio propagation delay using fudge time 1.
108 * The timecode format used for debugging and data recording includes
109 * data helpful in diagnosing problems with the radio signal and serial
110 * connections. With debugging enabled (-d on the ntpd command line),
111 * the driver produces one line for each burst in two formats
112 * corresponding to format A and B.Each line begins with the format code
113 * chuA or chuB followed by the status code and signal level (0-9999).
114 * The remainder of the line is as follows.
116 * Following is format A:
120 * where n is the number of characters in the burst (0-10), b the burst
121 * distance (0-40), f the field alignment (-1, 0, 1), s the
122 * synchronization distance (0-16), m the burst number (2-9) and code
123 * the burst characters as received. Note that the hex digits in each
124 * character are reversed, so the burst
126 * 10 38 0 16 9 06851292930685129293
128 * is interpreted as containing 10 characters with burst distance 38,
129 * field alignment 0, synchronization distance 16 and burst number 9.
130 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
133 * Following is format B:
137 * where n is the number of characters in the burst (0-10), b the burst
138 * distance (0-40), s the synchronization distance (0-40) and code the
139 * burst characters as received. Note that the hex digits in each
140 * character are reversed and the last ten digits inverted, so the burst
142 * 10 40 1091891300ef6e76ec
144 * is interpreted as containing 10 characters with burst distance 40.
145 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
148 * Each line is preceeded by the code chuA or chuB, as appropriate. If
149 * the audio driver is compiled, the current gain (0-255) and relative
150 * signal level (0-9999) follow the code. The receiver volume control
151 * should be set so that the gain is somewhere near the middle of the
152 * range 0-255, which results in a signal level near 1000.
154 * In addition to the above, the reference timecode is updated and
155 * written to the clockstats file and debug score after the last burst
156 * received in the minute. The format is
158 * sq yyyy ddd hh:mm:ss l s dd t agc ident m b
160 * s '?' before first synchronized and ' ' after that
161 * q status code (see below)
164 * hh:mm:ss time of day
165 * l leap second indicator (space, L or D)
166 * dst Canadian daylight code (opaque)
167 * t number of minutes since last synchronized
168 * agc audio gain (0 - 255)
169 * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
170 * m signal metric (0 - 100)
171 * b number of timecodes for the previous minute (0 - 59)
175 * For accuracies better than the low millisceconds, fudge time1 can be
176 * set to the radio propagation delay from CHU to the receiver. This can
177 * be done conviently using the minimuf program.
179 * Fudge flag4 causes the dubugging output described above to be
180 * recorded in the clockstats file. When the audio driver is compiled,
181 * fudge flag2 selects the audio input port, where 0 is the mike port
182 * (default) and 1 is the line-in port. It does not seem useful to
183 * select the compact disc player port. Fudge flag3 enables audio
184 * monitoring of the input signal. For this purpose, the monitor gain is
185 * set to a default value.
187 * The audio codec code is normally compiled in the driver if the
188 * architecture supports it (HAVE_AUDIO defined), but is used only if
189 * the link /dev/chu_audio is defined and valid. The serial port code is
190 * always compiled in the driver, but is used only if the autdio codec
191 * is not available and the link /dev/chu%d is defined and valid.
193 * The ICOM code is normally compiled in the driver if selected (ICOM
194 * defined), but is used only if the link /dev/icom%d is defined and
195 * valid and the mode keyword on the server configuration command
196 * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
197 * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
198 * if one. The C-IV trace is turned on if the debug level is greater
203 * CEVNT_BADTIME invalid date or time
204 * CEVNT_PROP propagation failure - no stations heard
207 * Interface definitions
209 #define SPEED232 B300 /* uart speed (300 baud) */
210 #define PRECISION (-10) /* precision assumed (about 1 ms) */
211 #define REFID "CHU" /* reference ID */
212 #define DEVICE "/dev/chu%d" /* device name and unit */
213 #define SPEED232 B300 /* UART speed (300 baud) */
215 #define TUNE .001 /* offset for narrow filter (MHz) */
216 #define DWELL 5 /* minutes in a dwell */
217 #define NCHAN 3 /* number of channels */
218 #define ISTAGE 3 /* number of integrator stages */
223 * Audio demodulator definitions
225 #define SECOND 8000 /* nominal sample rate (Hz) */
226 #define BAUD 300 /* modulation rate (bps) */
227 #define OFFSET 128 /* companded sample offset */
228 #define SIZE 256 /* decompanding table size */
229 #define MAXAMP 6000. /* maximum signal level */
230 #define MAXCLP 100 /* max clips above reference per s */
231 #define SPAN 800. /* min envelope span */
232 #define LIMIT 1000. /* soft limiter threshold */
233 #define AGAIN 6. /* baseband gain */
234 #define LAG 10 /* discriminator lag */
235 #define DEVICE_AUDIO "/dev/audio" /* device name */
236 #define DESCRIPTION "CHU Audio/Modem Receiver" /* WRU */
237 #define AUDIO_BUFSIZ 240 /* audio buffer size (30 ms) */
239 #define DESCRIPTION "CHU Modem Receiver" /* WRU */
240 #endif /* HAVE_AUDIO */
243 * Decoder definitions
245 #define CHAR (11. / 300.) /* character time (s) */
246 #define BURST 11 /* max characters per burst */
247 #define MINCHAR 9 /* min characters per burst */
248 #define MINDIST 28 /* min burst distance (of 40) */
249 #define MINSYNC 8 /* min sync distance (of 16) */
250 #define MINSTAMP 20 /* min timestamps (of 60) */
251 #define MINMETRIC 50 /* min channel metric (of 160) */
254 * The on-time synchronization point for the driver is the last stop bit
255 * of the first character 170 ms. The modem delay is 0.8 ms, while the
256 * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
257 * ms due to the codec and other causes was determined by calibrating to
258 * a PPS signal from a GPS receiver. The additional propagation delay
259 * specific to each receiver location can be programmed in the fudge
262 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
263 * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
264 * offsets vary up to 0.3 ms due to ionospheric layer height variations.
265 * The processor load due to the driver is 0.4 percent.
267 #define PDELAY ((170 + .8 + 4.7 + 1.3) / 1000) /* system delay (s) */
270 * Status bits (status)
272 #define RUNT 0x0001 /* runt burst */
273 #define NOISE 0x0002 /* noise burst */
274 #define BFRAME 0x0004 /* invalid format B frame sync */
275 #define BFORMAT 0x0008 /* invalid format B data */
276 #define AFRAME 0x0010 /* invalid format A frame sync */
277 #define AFORMAT 0x0020 /* invalid format A data */
278 #define DECODE 0x0040 /* invalid data decode */
279 #define STAMP 0x0080 /* too few timestamps */
280 #define AVALID 0x0100 /* valid A frame */
281 #define BVALID 0x0200 /* valid B frame */
282 #define INSYNC 0x0400 /* clock synchronized */
283 #define METRIC 0x0800 /* one or more stations heard */
286 * Alarm status bits (alarm)
288 * These alarms are set at the end of a minute in which at least one
289 * burst was received. SYNERR is raised if the AFRAME or BFRAME status
290 * bits are set during the minute, FMTERR is raised if the AFORMAT or
291 * BFORMAT status bits are set, DECERR is raised if the DECODE status
292 * bit is set and TSPERR is raised if the STAMP status bit is set.
294 #define SYNERR 0x01 /* frame sync error */
295 #define FMTERR 0x02 /* data format error */
296 #define DECERR 0x04 /* data decoding error */
297 #define TSPERR 0x08 /* insufficient data */
301 * Maximum-likelihood UART structure. There are eight of these
302 * corresponding to the number of phases.
305 l_fp cstamp
; /* last bit timestamp */
306 double shift
[12]; /* sample shift register */
307 double span
; /* shift register envelope span */
308 double dist
; /* sample distance */
309 int uart
; /* decoded character */
311 #endif /* HAVE_AUDIO */
315 * CHU station structure. There are three of these corresponding to the
319 double integ
[ISTAGE
]; /* circular integrator */
320 double metric
; /* integrator sum */
321 int iptr
; /* integrator pointer */
322 int probe
; /* dwells since last probe */
327 * CHU unit control structure
330 u_char decode
[20][16]; /* maximum-likelihood decoding matrix */
331 l_fp cstamp
[BURST
]; /* character timestamps */
332 l_fp tstamp
[MAXSTAGE
]; /* timestamp samples */
333 l_fp timestamp
; /* current buffer timestamp */
334 l_fp laststamp
; /* last buffer timestamp */
335 l_fp charstamp
; /* character time as a l_fp */
336 int second
; /* counts the seconds of the minute */
337 int errflg
; /* error flags */
338 int status
; /* status bits */
339 char ident
[5]; /* station ID and channel */
341 int fd_icom
; /* ICOM file descriptor */
342 int chan
; /* radio channel */
343 int dwell
; /* dwell cycle */
344 struct xmtr xmtr
[NCHAN
]; /* station metric */
348 * Character burst variables
350 int cbuf
[BURST
]; /* character buffer */
351 int ntstamp
; /* number of timestamp samples */
352 int ndx
; /* buffer start index */
353 int prevsec
; /* previous burst second */
354 int burdist
; /* burst distance */
355 int syndist
; /* sync distance */
356 int burstcnt
; /* format A bursts this minute */
357 double maxsignal
; /* signal level (modem only) */
358 int gain
; /* codec gain (modem only) */
363 int leap
; /* leap/dut code */
364 int dut
; /* UTC1 correction */
365 int tai
; /* TAI - UTC correction */
366 int dst
; /* Canadian DST code */
370 * Audio codec variables
372 int fd_audio
; /* audio port file descriptor */
373 double comp
[SIZE
]; /* decompanding table */
374 int port
; /* codec port */
375 int mongain
; /* codec monitor gain */
376 int clipcnt
; /* sample clip count */
377 int seccnt
; /* second interval counter */
382 l_fp tick
; /* audio sample increment */
383 double bpf
[9]; /* IIR bandpass filter */
384 double disc
[LAG
]; /* discriminator shift register */
385 double lpf
[27]; /* FIR lowpass filter */
386 double monitor
; /* audio monitor */
387 int discptr
; /* discriminator pointer */
390 * Maximum-likelihood UART variables
392 double baud
; /* baud interval */
393 struct surv surv
[8]; /* UART survivor structures */
394 int decptr
; /* decode pointer */
395 int decpha
; /* decode phase */
396 int dbrk
; /* holdoff counter */
397 #endif /* HAVE_AUDIO */
401 * Function prototypes
403 static int chu_start (int, struct peer
*);
404 static void chu_shutdown (int, struct peer
*);
405 static void chu_receive (struct recvbuf
*);
406 static void chu_second (int, struct peer
*);
407 static void chu_poll (int, struct peer
*);
410 * More function prototypes
412 static void chu_decode (struct peer
*, int, l_fp
);
413 static void chu_burst (struct peer
*);
414 static void chu_clear (struct peer
*);
415 static void chu_a (struct peer
*, int);
416 static void chu_b (struct peer
*, int);
417 static int chu_dist (int, int);
418 static double chu_major (struct peer
*);
420 static void chu_uart (struct surv
*, double);
421 static void chu_rf (struct peer
*, double);
422 static void chu_gain (struct peer
*);
423 static void chu_audio_receive (struct recvbuf
*rbufp
);
424 #endif /* HAVE_AUDIO */
426 static int chu_newchan (struct peer
*, double);
428 static void chu_serial_receive (struct recvbuf
*rbufp
);
433 static char hexchar
[] = "0123456789abcdef_*=";
437 * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
438 * transmits on USB with carrier so we can use AM and the narrow SSB
441 static double qsy
[NCHAN
] = {3.330, 7.850, 14.670}; /* freq (MHz) */
447 struct refclock refclock_chu
= {
448 chu_start
, /* start up driver */
449 chu_shutdown
, /* shut down driver */
450 chu_poll
, /* transmit poll message */
451 noentry
, /* not used (old chu_control) */
452 noentry
, /* initialize driver (not used) */
453 noentry
, /* not used (old chu_buginfo) */
454 chu_second
/* housekeeping timer */
459 * chu_start - open the devices and initialize data for processing
463 int unit
, /* instance number (not used) */
464 struct peer
*peer
/* peer structure pointer */
468 struct refclockproc
*pp
;
469 char device
[20]; /* device name */
470 int fd
; /* file descriptor */
475 int fd_audio
; /* audio port file descriptor */
477 double step
; /* codec adjustment */
480 * Open audio device. Don't complain if not there.
482 fd_audio
= audio_init(DEVICE_AUDIO
, AUDIO_BUFSIZ
, unit
);
484 if (fd_audio
> 0 && debug
)
489 * If audio is unavailable, Open serial port in raw mode.
494 sprintf(device
, DEVICE
, unit
);
495 fd
= refclock_open(device
, SPEED232
, LDISC_RAW
);
497 #else /* HAVE_AUDIO */
500 * Open serial port in raw mode.
502 sprintf(device
, DEVICE
, unit
);
503 fd
= refclock_open(device
, SPEED232
, LDISC_RAW
);
504 #endif /* HAVE_AUDIO */
509 * Allocate and initialize unit structure
511 if (!(up
= (struct chuunit
*)
512 emalloc(sizeof(struct chuunit
)))) {
516 memset((char *)up
, 0, sizeof(struct chuunit
));
518 pp
->unitptr
= (caddr_t
)up
;
519 pp
->io
.clock_recv
= chu_receive
;
520 pp
->io
.srcclock
= (caddr_t
)peer
;
523 if (!io_addclock(&pp
->io
)) {
530 * Initialize miscellaneous variables
532 peer
->precision
= PRECISION
;
533 pp
->clockdesc
= DESCRIPTION
;
534 strcpy(up
->ident
, "CHU");
535 memcpy(&pp
->refid
, up
->ident
, 4);
536 DTOLFP(CHAR
, &up
->charstamp
);
540 * The companded samples are encoded sign-magnitude. The table
541 * contains all the 256 values in the interest of speed. We do
542 * this even if the audio codec is not available. C'est la lazy.
544 up
->fd_audio
= fd_audio
;
546 up
->comp
[0] = up
->comp
[OFFSET
] = 0.;
547 up
->comp
[1] = 1; up
->comp
[OFFSET
+ 1] = -1.;
548 up
->comp
[2] = 3; up
->comp
[OFFSET
+ 2] = -3.;
550 for (i
= 3; i
< OFFSET
; i
++) {
551 up
->comp
[i
] = up
->comp
[i
- 1] + step
;
552 up
->comp
[OFFSET
+ i
] = -up
->comp
[i
];
556 DTOLFP(1. / SECOND
, &up
->tick
);
557 #endif /* HAVE_AUDIO */
565 if (peer
->ttl
& 0x80)
566 up
->fd_icom
= icom_init("/dev/icom", B1200
,
569 up
->fd_icom
= icom_init("/dev/icom", B9600
,
572 if (up
->fd_icom
> 0) {
573 if (chu_newchan(peer
, 0) != 0) {
574 msyslog(LOG_NOTICE
, "icom: radio not found");
578 msyslog(LOG_NOTICE
, "icom: autotune enabled");
587 * chu_shutdown - shut down the clock
591 int unit
, /* instance number (not used) */
592 struct peer
*peer
/* peer structure pointer */
596 struct refclockproc
*pp
;
599 up
= (struct chuunit
*)pp
->unitptr
;
603 io_closeclock(&pp
->io
);
613 * chu_receive - receive data from the audio or serial device
617 struct recvbuf
*rbufp
/* receive buffer structure pointer */
622 struct refclockproc
*pp
;
625 peer
= (struct peer
*)rbufp
->recv_srcclock
;
627 up
= (struct chuunit
*)pp
->unitptr
;
630 * If the audio codec is warmed up, the buffer contains codec
631 * samples which need to be demodulated and decoded into CHU
632 * characters using the software UART. Otherwise, the buffer
633 * contains CHU characters from the serial port, so the software
634 * UART is bypassed. In this case the CPU will probably run a
635 * few degrees cooler.
637 if (up
->fd_audio
> 0)
638 chu_audio_receive(rbufp
);
640 chu_serial_receive(rbufp
);
642 chu_serial_receive(rbufp
);
643 #endif /* HAVE_AUDIO */
649 * chu_audio_receive - receive data from the audio device
653 struct recvbuf
*rbufp
/* receive buffer structure pointer */
657 struct refclockproc
*pp
;
660 double sample
; /* codec sample */
661 u_char
*dpt
; /* buffer pointer */
662 int bufcnt
; /* buffer counter */
663 l_fp ltemp
; /* l_fp temp */
665 peer
= (struct peer
*)rbufp
->recv_srcclock
;
667 up
= (struct chuunit
*)pp
->unitptr
;
670 * Main loop - read until there ain't no more. Note codec
671 * samples are bit-inverted.
673 DTOLFP((double)rbufp
->recv_length
/ SECOND
, <emp
);
674 L_SUB(&rbufp
->recv_time
, <emp
);
675 up
->timestamp
= rbufp
->recv_time
;
676 dpt
= rbufp
->recv_buffer
;
677 for (bufcnt
= 0; bufcnt
< rbufp
->recv_length
; bufcnt
++) {
678 sample
= up
->comp
[~*dpt
++ & 0xff];
681 * Clip noise spikes greater than MAXAMP. If no clips,
682 * increase the gain a tad; if the clips are too high,
685 if (sample
> MAXAMP
) {
688 } else if (sample
< -MAXAMP
) {
692 chu_rf(peer
, sample
);
693 L_ADD(&up
->timestamp
, &up
->tick
);
696 * Once each second ride gain.
698 up
->seccnt
= (up
->seccnt
+ 1) % SECOND
;
699 if (up
->seccnt
== 0) {
705 * Set the input port and monitor gain for the next buffer.
707 if (pp
->sloppyclockflag
& CLK_FLAG2
)
711 if (pp
->sloppyclockflag
& CLK_FLAG3
)
712 up
->mongain
= MONGAIN
;
719 * chu_rf - filter and demodulate the FSK signal
721 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
722 * and space 2025 Hz. It uses a bandpass filter followed by a soft
723 * limiter, FM discriminator and lowpass filter. A maximum-likelihood
724 * decoder samples the baseband signal at eight times the baud rate and
725 * detects the start bit of each character.
727 * The filters are built for speed, which explains the rather clumsy
728 * code. Hopefully, the compiler will efficiently implement the move-
729 * and-muiltiply-and-add operations.
733 struct peer
*peer
, /* peer structure pointer */
734 double sample
/* analog sample */
737 struct refclockproc
*pp
;
744 double signal
; /* bandpass signal */
745 double limit
; /* limiter signal */
746 double disc
; /* discriminator signal */
747 double lpf
; /* lowpass signal */
748 double dist
; /* UART signal distance */
752 up
= (struct chuunit
*)pp
->unitptr
;
755 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
756 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
757 * phase delay 0.24 ms.
759 signal
= (up
->bpf
[8] = up
->bpf
[7]) * 5.844676e-01;
760 signal
+= (up
->bpf
[7] = up
->bpf
[6]) * 4.884860e-01;
761 signal
+= (up
->bpf
[6] = up
->bpf
[5]) * 2.704384e+00;
762 signal
+= (up
->bpf
[5] = up
->bpf
[4]) * 1.645032e+00;
763 signal
+= (up
->bpf
[4] = up
->bpf
[3]) * 4.644557e+00;
764 signal
+= (up
->bpf
[3] = up
->bpf
[2]) * 1.879165e+00;
765 signal
+= (up
->bpf
[2] = up
->bpf
[1]) * 3.522634e+00;
766 signal
+= (up
->bpf
[1] = up
->bpf
[0]) * 7.315738e-01;
767 up
->bpf
[0] = sample
- signal
;
768 signal
= up
->bpf
[0] * 6.176213e-03
769 + up
->bpf
[1] * 3.156599e-03
770 + up
->bpf
[2] * 7.567487e-03
771 + up
->bpf
[3] * 4.344580e-03
772 + up
->bpf
[4] * 1.190128e-02
773 + up
->bpf
[5] * 4.344580e-03
774 + up
->bpf
[6] * 7.567487e-03
775 + up
->bpf
[7] * 3.156599e-03
776 + up
->bpf
[8] * 6.176213e-03;
778 up
->monitor
= signal
/ 4.; /* note monitor after filter */
781 * Soft limiter/discriminator. The 11-sample discriminator lag
782 * interval corresponds to three cycles of 2125 Hz, which
783 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
784 * Hz. The discriminator output varies +-0.5 interval for input
785 * frequency 2025-2225 Hz. However, we don't get to sample at
786 * this frequency, so the discriminator output is biased. Life
792 else if (limit
< -LIMIT
)
794 disc
= up
->disc
[up
->discptr
] * -limit
;
795 up
->disc
[up
->discptr
] = limit
;
796 up
->discptr
= (up
->discptr
+ 1 ) % LAG
;
803 * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
805 lpf
= (up
->lpf
[26] = up
->lpf
[25]) * 2.538771e-02;
806 lpf
+= (up
->lpf
[25] = up
->lpf
[24]) * 1.084671e-01;
807 lpf
+= (up
->lpf
[24] = up
->lpf
[23]) * 2.003159e-01;
808 lpf
+= (up
->lpf
[23] = up
->lpf
[22]) * 2.985303e-01;
809 lpf
+= (up
->lpf
[22] = up
->lpf
[21]) * 4.003697e-01;
810 lpf
+= (up
->lpf
[21] = up
->lpf
[20]) * 5.028552e-01;
811 lpf
+= (up
->lpf
[20] = up
->lpf
[19]) * 6.028795e-01;
812 lpf
+= (up
->lpf
[19] = up
->lpf
[18]) * 6.973249e-01;
813 lpf
+= (up
->lpf
[18] = up
->lpf
[17]) * 7.831828e-01;
814 lpf
+= (up
->lpf
[17] = up
->lpf
[16]) * 8.576717e-01;
815 lpf
+= (up
->lpf
[16] = up
->lpf
[15]) * 9.183463e-01;
816 lpf
+= (up
->lpf
[15] = up
->lpf
[14]) * 9.631951e-01;
817 lpf
+= (up
->lpf
[14] = up
->lpf
[13]) * 9.907208e-01;
818 lpf
+= (up
->lpf
[13] = up
->lpf
[12]) * 1.000000e+00;
819 lpf
+= (up
->lpf
[12] = up
->lpf
[11]) * 9.907208e-01;
820 lpf
+= (up
->lpf
[11] = up
->lpf
[10]) * 9.631951e-01;
821 lpf
+= (up
->lpf
[10] = up
->lpf
[9]) * 9.183463e-01;
822 lpf
+= (up
->lpf
[9] = up
->lpf
[8]) * 8.576717e-01;
823 lpf
+= (up
->lpf
[8] = up
->lpf
[7]) * 7.831828e-01;
824 lpf
+= (up
->lpf
[7] = up
->lpf
[6]) * 6.973249e-01;
825 lpf
+= (up
->lpf
[6] = up
->lpf
[5]) * 6.028795e-01;
826 lpf
+= (up
->lpf
[5] = up
->lpf
[4]) * 5.028552e-01;
827 lpf
+= (up
->lpf
[4] = up
->lpf
[3]) * 4.003697e-01;
828 lpf
+= (up
->lpf
[3] = up
->lpf
[2]) * 2.985303e-01;
829 lpf
+= (up
->lpf
[2] = up
->lpf
[1]) * 2.003159e-01;
830 lpf
+= (up
->lpf
[1] = up
->lpf
[0]) * 1.084671e-01;
831 lpf
+= up
->lpf
[0] = disc
* 2.538771e-02;
834 * Maximum-likelihood decoder. The UART updates each of the
835 * eight survivors and determines the span, slice level and
836 * tentative decoded character. Valid 11-bit characters are
837 * framed so that bit 10 and bit 11 (stop bits) are mark and bit
838 * 1 (start bit) is space. When a valid character is found, the
839 * survivor with maximum distance determines the final decoded
842 up
->baud
+= 1. / SECOND
;
843 if (up
->baud
> 1. / (BAUD
* 8.)) {
844 up
->baud
-= 1. / (BAUD
* 8.);
845 up
->decptr
= (up
->decptr
+ 1) % 8;
846 sp
= &up
->surv
[up
->decptr
];
847 sp
->cstamp
= up
->timestamp
;
848 chu_uart(sp
, -lpf
* AGAIN
);
854 up
->decpha
= up
->decptr
;
856 if (up
->decptr
!= up
->decpha
)
861 for (i
= 0; i
< 8; i
++) {
864 * The timestamp is taken at the last bit, so
865 * for correct decoding we reqire sufficient
866 * span and correct start bit and two stop bits.
868 if ((up
->surv
[i
].uart
& 0x601) != 0x600 ||
869 up
->surv
[i
].span
< SPAN
)
872 if (up
->surv
[i
].dist
> dist
) {
873 dist
= up
->surv
[i
].dist
;
881 * Process the character, then blank the decoder until
882 * the end of the next character.This sets the decoding
883 * phase of the entire burst from the phase of the first
886 up
->maxsignal
= up
->surv
[j
].span
;
887 chu_decode(peer
, (up
->surv
[j
].uart
>> 1) & 0xff,
895 * chu_uart - maximum-likelihood UART
897 * This routine updates a shift register holding the last 11 envelope
898 * samples. It then computes the slice level and span over these samples
899 * and determines the tentative data bits and distance. The calling
900 * program selects over the last eight survivors the one with maximum
901 * distance to determine the decoded character.
905 struct surv
*sp
, /* survivor structure pointer */
906 double sample
/* baseband signal */
909 double es_max
, es_min
; /* max/min envelope */
910 double slice
; /* slice level */
911 double dist
; /* distance */
916 * Save the sample and shift right. At the same time, measure
917 * the maximum and minimum over all eleven samples.
921 sp
->shift
[0] = sample
;
922 for (i
= 11; i
> 0; i
--) {
923 sp
->shift
[i
] = sp
->shift
[i
- 1];
924 if (sp
->shift
[i
] > es_max
)
925 es_max
= sp
->shift
[i
];
926 if (sp
->shift
[i
] < es_min
)
927 es_min
= sp
->shift
[i
];
931 * Determine the span as the maximum less the minimum and the
932 * slice level as the minimum plus a fraction of the span. Note
933 * the slight bias toward mark to correct for the modem tendency
934 * to make more mark than space errors. Compute the distance on
935 * the assumption the last two bits must be mark, the first
936 * space and the rest either mark or space.
938 sp
->span
= es_max
- es_min
;
939 slice
= es_min
+ .45 * sp
->span
;
942 for (i
= 1; i
< 12; i
++) {
944 dtemp
= sp
->shift
[i
];
947 if (i
== 1 || i
== 2) {
948 dist
+= dtemp
- es_min
;
949 } else if (i
== 11) {
950 dist
+= es_max
- dtemp
;
953 dist
+= dtemp
- es_min
;
955 dist
+= es_max
- dtemp
;
958 sp
->dist
= dist
/ (11 * sp
->span
);
960 #endif /* HAVE_AUDIO */
964 * chu_serial_receive - receive data from the serial device
968 struct recvbuf
*rbufp
/* receive buffer structure pointer */
972 struct refclockproc
*pp
;
975 u_char
*dpt
; /* receive buffer pointer */
977 peer
= (struct peer
*)rbufp
->recv_srcclock
;
979 up
= (struct chuunit
*)pp
->unitptr
;
981 dpt
= (u_char
*)&rbufp
->recv_space
;
982 chu_decode(peer
, *dpt
, rbufp
->recv_time
);
987 * chu_decode - decode the character data
991 struct peer
*peer
, /* peer structure pointer */
992 int hexhex
, /* data character */
993 l_fp cstamp
/* data character timestamp */
996 struct refclockproc
*pp
;
999 l_fp tstmp
; /* timestamp temp */
1003 up
= (struct chuunit
*)pp
->unitptr
;
1006 * If the interval since the last character is greater than the
1007 * longest burst, process the last burst and start a new one. If
1008 * the interval is less than this but greater than two
1009 * characters, consider this a noise burst and reject it.
1011 tstmp
= up
->timestamp
;
1012 if (L_ISZERO(&up
->laststamp
))
1013 up
->laststamp
= up
->timestamp
;
1014 L_SUB(&tstmp
, &up
->laststamp
);
1015 up
->laststamp
= up
->timestamp
;
1016 LFPTOD(&tstmp
, dtemp
);
1017 if (dtemp
> BURST
* CHAR
) {
1020 } else if (dtemp
> 2.5 * CHAR
) {
1025 * Append the character to the current burst and append the
1026 * character timestamp to the timestamp list.
1028 if (up
->ndx
< BURST
) {
1029 up
->cbuf
[up
->ndx
] = hexhex
& 0xff;
1030 up
->cstamp
[up
->ndx
] = cstamp
;
1038 * chu_burst - search for valid burst format
1046 struct refclockproc
*pp
;
1051 up
= (struct chuunit
*)pp
->unitptr
;
1054 * Correlate a block of five characters with the next block of
1055 * five characters. The burst distance is defined as the number
1056 * of bits that match in the two blocks for format A and that
1057 * match the inverse for format B.
1059 if (up
->ndx
< MINCHAR
) {
1064 for (i
= 0; i
< 5 && i
< up
->ndx
- 5; i
++)
1065 up
->burdist
+= chu_dist(up
->cbuf
[i
], up
->cbuf
[i
+ 5]);
1068 * If the burst distance is at least MINDIST, this must be a
1069 * format A burst; if the value is not greater than -MINDIST, it
1070 * must be a format B burst. If the B burst is perfect, we
1071 * believe it; otherwise, it is a noise burst and of no use to
1074 if (up
->burdist
>= MINDIST
) {
1075 chu_a(peer
, up
->ndx
);
1076 } else if (up
->burdist
<= -MINDIST
) {
1077 chu_b(peer
, up
->ndx
);
1079 up
->status
|= NOISE
;
1084 * If this is a valid burst, wait a guard time of ten seconds to
1085 * allow for more bursts, then arm the poll update routine to
1086 * process the minute. Don't do this if this is called from the
1087 * timer interrupt routine.
1089 if (peer
->outdate
!= current_time
)
1090 peer
->nextdate
= current_time
+ 10;
1095 * chu_b - decode format B burst
1103 struct refclockproc
*pp
;
1106 u_char code
[11]; /* decoded timecode */
1107 char tbuf
[80]; /* trace buffer */
1111 up
= (struct chuunit
*)pp
->unitptr
;
1114 * In a format B burst, a character is considered valid only if
1115 * the first occurence matches the last occurence. The burst is
1116 * considered valid only if all characters are valid; that is,
1117 * only if the distance is 40. Note that once a valid frame has
1118 * been found errors are ignored.
1120 sprintf(tbuf
, "chuB %04x %4.0f %2d %2d ", up
->status
,
1121 up
->maxsignal
, nchar
, -up
->burdist
);
1122 for (i
= 0; i
< nchar
; i
++)
1123 sprintf(&tbuf
[strlen(tbuf
)], "%02x", up
->cbuf
[i
]);
1124 if (pp
->sloppyclockflag
& CLK_FLAG4
)
1125 record_clock_stats(&peer
->srcadr
, tbuf
);
1128 printf("%s\n", tbuf
);
1130 if (up
->burdist
> -40) {
1131 up
->status
|= BFRAME
;
1136 * Convert the burst data to internal format. Don't bother with
1139 for (i
= 0; i
< 5; i
++) {
1140 code
[2 * i
] = hexchar
[up
->cbuf
[i
] & 0xf];
1141 code
[2 * i
+ 1] = hexchar
[(up
->cbuf
[i
] >>
1144 if (sscanf((char *)code
, "%1x%1d%4d%2d%2x", &up
->leap
, &up
->dut
,
1145 &pp
->year
, &up
->tai
, &up
->dst
) != 5) {
1146 up
->status
|= BFORMAT
;
1149 up
->status
|= BVALID
;
1156 * chu_a - decode format A burst
1164 struct refclockproc
*pp
;
1167 char tbuf
[80]; /* trace buffer */
1168 l_fp offset
; /* timestamp offset */
1169 int val
; /* distance */
1174 up
= (struct chuunit
*)pp
->unitptr
;
1177 * Determine correct burst phase. There are three cases
1178 * corresponding to in-phase, one character early or one
1179 * character late. These cases are distinguished by the position
1180 * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
1181 * positions 4 and 9. The correct phase is when the distance
1182 * relative to the framing digits is maximum. The burst is valid
1183 * only if the maximum distance is at least MINSYNC.
1185 up
->syndist
= k
= 0;
1187 for (i
= -1; i
< 2; i
++) {
1188 temp
= up
->cbuf
[i
+ 4] & 0xf;
1190 temp
|= (up
->cbuf
[i
] & 0xf) << 4;
1191 val
= chu_dist(temp
, 0x63);
1192 temp
= (up
->cbuf
[i
+ 5] & 0xf) << 4;
1194 temp
|= up
->cbuf
[i
+ 9] & 0xf;
1195 val
+= chu_dist(temp
, 0x63);
1196 if (val
> up
->syndist
) {
1203 * Extract the second number; it must be in the range 2 through
1204 * 9 and the two repititions must be the same.
1206 temp
= (up
->cbuf
[k
+ 4] >> 4) & 0xf;
1207 if (temp
< 2 || temp
> 9 || k
+ 9 >= nchar
|| temp
!=
1208 ((up
->cbuf
[k
+ 9] >> 4) & 0xf))
1210 sprintf(tbuf
, "chuA %04x %4.0f %2d %2d %2d %2d %1d ",
1211 up
->status
, up
->maxsignal
, nchar
, up
->burdist
, k
,
1213 for (i
= 0; i
< nchar
; i
++)
1214 sprintf(&tbuf
[strlen(tbuf
)], "%02x",
1216 if (pp
->sloppyclockflag
& CLK_FLAG4
)
1217 record_clock_stats(&peer
->srcadr
, tbuf
);
1220 printf("%s\n", tbuf
);
1222 if (up
->syndist
< MINSYNC
) {
1223 up
->status
|= AFRAME
;
1228 * A valid burst requires the first seconds number to match the
1229 * last seconds number. If so, the burst timestamps are
1230 * corrected to the current minute and saved for later
1231 * processing. In addition, the seconds decode is advanced from
1232 * the previous burst to the current one.
1235 up
->status
|= AFORMAT
;
1237 up
->status
|= AVALID
;
1238 up
->second
= pp
->second
= 30 + temp
;
1239 offset
.l_ui
= 30 + temp
;
1243 offset
= up
->charstamp
;
1246 for (; i
< nchar
&& i
< k
+ 10; i
++) {
1247 up
->tstamp
[up
->ntstamp
] = up
->cstamp
[i
];
1248 L_SUB(&up
->tstamp
[up
->ntstamp
], &offset
);
1249 L_ADD(&offset
, &up
->charstamp
);
1250 if (up
->ntstamp
< MAXSTAGE
- 1)
1253 while (temp
> up
->prevsec
) {
1254 for (j
= 15; j
> 0; j
--) {
1255 up
->decode
[9][j
] = up
->decode
[9][j
- 1];
1257 up
->decode
[19][j
- 1];
1259 up
->decode
[9][j
] = up
->decode
[19][j
] = 0;
1265 * Stash the data in the decoding matrix.
1268 for (j
= 0; j
< nchar
; j
++) {
1269 if (i
< 0 || i
> 18) {
1273 up
->decode
[i
][up
->cbuf
[j
] & 0xf]++;
1275 up
->decode
[i
][(up
->cbuf
[j
] >> 4) & 0xf]++;
1283 * chu_poll - called by the transmit procedure
1288 struct peer
*peer
/* peer structure pointer */
1291 struct refclockproc
*pp
;
1299 * chu_second - process minute data
1304 struct peer
*peer
/* peer structure pointer */
1307 struct refclockproc
*pp
;
1310 char synchar
, qual
, leapchar
;
1315 up
= (struct chuunit
*)pp
->unitptr
;
1318 * This routine is called once per minute to process the
1319 * accumulated burst data. We do a bit of fancy footwork so that
1320 * this doesn't run while burst data are being accumulated.
1322 up
->second
= (up
->second
+ 1) % 60;
1323 if (up
->second
!= 0)
1327 * Process the last burst, if still in the burst buffer.
1328 * If the minute contains a valid B frame with sufficient A
1329 * frame metric, it is considered valid. However, the timecode
1330 * is sent to clockstats even if invalid.
1333 minset
= ((current_time
- peer
->update
) + 30) / 60;
1334 dtemp
= chu_major(peer
);
1336 if (up
->status
& (BFRAME
| AFRAME
))
1338 if (up
->status
& (BFORMAT
| AFORMAT
))
1340 if (up
->status
& DECODE
)
1342 if (up
->status
& STAMP
)
1344 if (up
->status
& BVALID
&& dtemp
>= MINMETRIC
)
1345 up
->status
|= INSYNC
;
1346 synchar
= leapchar
= ' ';
1347 if (!(up
->status
& INSYNC
)) {
1348 pp
->leap
= LEAP_NOTINSYNC
;
1350 } else if (up
->leap
& 0x2) {
1351 pp
->leap
= LEAP_ADDSECOND
;
1353 } else if (up
->leap
& 0x4) {
1354 pp
->leap
= LEAP_DELSECOND
;
1357 pp
->leap
= LEAP_NOWARNING
;
1359 sprintf(pp
->a_lastcode
,
1360 "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
1361 synchar
, qual
, pp
->year
, pp
->day
, pp
->hour
, pp
->minute
,
1362 pp
->second
, leapchar
, up
->dst
, up
->dut
, minset
, up
->gain
,
1363 up
->ident
, dtemp
, up
->ntstamp
);
1364 pp
->lencode
= strlen(pp
->a_lastcode
);
1367 * If in sync and the signal metric is above threshold, the
1368 * timecode is ipso fatso valid and can be selected to
1369 * discipline the clock.
1371 if (up
->status
& INSYNC
&& !(up
->status
& (DECODE
| STAMP
)) &&
1372 dtemp
> MINMETRIC
) {
1373 if (!clocktime(pp
->day
, pp
->hour
, pp
->minute
, 0, GMT
,
1374 up
->tstamp
[0].l_ui
, &pp
->yearstart
, &offset
.l_ui
)) {
1375 up
->errflg
= CEVNT_BADTIME
;
1378 for (i
= 0; i
< up
->ntstamp
; i
++)
1379 refclock_process_offset(pp
, offset
,
1380 up
->tstamp
[i
], PDELAY
+
1382 pp
->lastref
= up
->timestamp
;
1383 refclock_receive(peer
);
1387 record_clock_stats(&peer
->srcadr
, pp
->a_lastcode
);
1390 printf("chu: timecode %d %s\n", pp
->lencode
,
1394 chu_newchan(peer
, dtemp
);
1398 refclock_report(peer
, up
->errflg
);
1404 * chu_major - majority decoder
1408 struct peer
*peer
/* peer structure pointer */
1411 struct refclockproc
*pp
;
1414 u_char code
[11]; /* decoded timecode */
1415 int metric
; /* distance metric */
1416 int val1
; /* maximum distance */
1417 int synchar
; /* stray cat */
1422 up
= (struct chuunit
*)pp
->unitptr
;
1425 * Majority decoder. Each burst encodes two replications at each
1426 * digit position in the timecode. Each row of the decoding
1427 * matrix encodes the number of occurences of each digit found
1428 * at the corresponding position. The maximum over all
1429 * occurrences at each position is the distance for this
1430 * position and the corresponding digit is the maximum-
1431 * likelihood candidate. If the distance is not more than half
1432 * the total number of occurences, a majority has not been found
1433 * and the data are discarded. The decoding distance is defined
1434 * as the sum of the distances over the first nine digits. The
1435 * tenth digit varies over the seconds, so we don't count it.
1438 for (i
= 0; i
< 9; i
++) {
1441 for (j
= 0; j
< 16; j
++) {
1442 temp
= up
->decode
[i
][j
] + up
->decode
[i
+ 10][j
];
1448 if (val1
<= up
->burstcnt
)
1449 up
->status
|= DECODE
;
1451 code
[i
] = hexchar
[k
];
1455 * Compute the timecode timestamp from the days, hours and
1456 * minutes of the timecode. Use clocktime() for the aggregate
1457 * minutes and the minute offset computed from the burst
1458 * seconds. Note that this code relies on the filesystem time
1459 * for the years and does not use the years of the timecode.
1461 if (sscanf((char *)code
, "%1x%3d%2d%2d", &synchar
, &pp
->day
,
1462 &pp
->hour
, &pp
->minute
) != 4)
1463 up
->status
|= DECODE
;
1464 if (up
->ntstamp
< MINSTAMP
)
1465 up
->status
|= STAMP
;
1471 * chu_clear - clear decoding matrix
1475 struct peer
*peer
/* peer structure pointer */
1478 struct refclockproc
*pp
;
1483 up
= (struct chuunit
*)pp
->unitptr
;
1486 * Clear stuff for the minute.
1488 up
->ndx
= up
->prevsec
= 0;
1489 up
->burstcnt
= up
->ntstamp
= 0;
1490 up
->status
&= INSYNC
| METRIC
;
1491 for (i
= 0; i
< 20; i
++) {
1492 for (j
= 0; j
< 16; j
++)
1493 up
->decode
[i
][j
] = 0;
1499 * chu_newchan - called once per minute to find the best channel;
1500 * returns zero on success, nonzero if ICOM error.
1509 struct refclockproc
*pp
;
1516 up
= (struct chuunit
*)pp
->unitptr
;
1519 * The radio can be tuned to three channels: 0 (3330 kHz), 1
1520 * (7850 kHz) and 2 (14670 kHz). There are five one-minute
1521 * dwells in each cycle. During the first dwell the radio is
1522 * tuned to one of the three channels to measure the channel
1523 * metric. The channel is selected as the one least recently
1524 * measured. During the remaining four dwells the radio is tuned
1525 * to the channel with the highest channel metric.
1527 if (up
->fd_icom
<= 0)
1531 * Update the current channel metric and age of all channels.
1532 * Scan all channels for the highest metric.
1534 sp
= &up
->xmtr
[up
->chan
];
1535 sp
->metric
-= sp
->integ
[sp
->iptr
];
1536 sp
->integ
[sp
->iptr
] = met
;
1537 sp
->metric
+= sp
->integ
[sp
->iptr
];
1539 sp
->iptr
= (sp
->iptr
+ 1) % ISTAGE
;
1541 for (i
= 0; i
< NCHAN
; i
++) {
1542 up
->xmtr
[i
].probe
++;
1543 if (up
->xmtr
[i
].metric
> metric
) {
1544 up
->status
|= METRIC
;
1545 metric
= up
->xmtr
[i
].metric
;
1551 * Start the next dwell. If the first dwell or no stations have
1552 * been heard, continue round-robin scan.
1554 up
->dwell
= (up
->dwell
+ 1) % DWELL
;
1555 if (up
->dwell
== 0 || metric
== 0) {
1557 for (i
= 0; i
< NCHAN
; i
++) {
1558 if (up
->xmtr
[i
].probe
> rval
) {
1559 rval
= up
->xmtr
[i
].probe
;
1565 /* Retune the radio at each dwell in case somebody nudges the
1568 rval
= icom_freq(up
->fd_icom
, peer
->ttl
& 0x7f, qsy
[up
->chan
] +
1570 sprintf(up
->ident
, "CHU%d", up
->chan
);
1571 memcpy(&pp
->refid
, up
->ident
, 4);
1572 memcpy(&peer
->refid
, up
->ident
, 4);
1573 if (metric
== 0 && up
->status
& METRIC
) {
1574 up
->status
&= ~METRIC
;
1575 refclock_report(peer
, CEVNT_PROP
);
1583 * chu_dist - determine the distance of two octet arguments
1587 int x
, /* an octet of bits */
1588 int y
/* another octet of bits */
1591 int val
; /* bit count */
1596 * The distance is determined as the weight of the exclusive OR
1597 * of the two arguments. The weight is determined by the number
1598 * of one bits in the result. Each one bit increases the weight,
1599 * while each zero bit decreases it.
1603 for (i
= 0; i
< 8; i
++) {
1604 if ((temp
& 0x1) == 0)
1616 * chu_gain - adjust codec gain
1618 * This routine is called at the end of each second. During the second
1619 * the number of signal clips above the MAXAMP threshold (6000). If
1620 * there are no clips, the gain is bumped up; if there are more than
1621 * MAXCLP clips (100), it is bumped down. The decoder is relatively
1622 * insensitive to amplitude, so this crudity works just peachy. The
1623 * routine also jiggles the input port and selectively mutes the
1627 struct peer
*peer
/* peer structure pointer */
1630 struct refclockproc
*pp
;
1634 up
= (struct chuunit
*)pp
->unitptr
;
1637 * Apparently, the codec uses only the high order bits of the
1638 * gain control field. Thus, it may take awhile for changes to
1639 * wiggle the hardware bits.
1641 if (up
->clipcnt
== 0) {
1643 if (up
->gain
> MAXGAIN
)
1645 } else if (up
->clipcnt
> MAXCLP
) {
1650 audio_gain(up
->gain
, up
->mongain
, up
->port
);
1653 #endif /* HAVE_AUDIO */
1657 int refclock_chu_bs
;
1658 #endif /* REFCLOCK */