4 * refclock_irig - audio IRIG-B/E demodulator/decoder
10 #if defined(REFCLOCK) && defined(CLOCK_IRIG)
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
21 #ifdef HAVE_SYS_IOCTL_H
22 #include <sys/ioctl.h>
23 #endif /* HAVE_SYS_IOCTL_H */
28 * Audio IRIG-B/E demodulator/decoder
30 * This driver synchronizes the computer time using data encoded in
31 * IRIG-B/E signals commonly produced by GPS receivers and other timing
32 * devices. The IRIG signal is an amplitude-modulated carrier with
33 * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
34 * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
35 * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
38 * The driver requires an audio codec or sound card with sampling rate 8
39 * kHz and mu-law companding. This is the same standard as used by the
40 * telephone industry and is supported by most hardware and operating
41 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
42 * implementation, only one audio driver and codec can be supported on a
45 * The program processes 8000-Hz mu-law companded samples using separate
46 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
47 * detector and automatic threshold corrector. Cycle crossings relative
48 * to the corrected slice level determine the width of each pulse and
49 * its value - zero, one or position identifier.
51 * The data encode 20 BCD digits which determine the second, minute,
52 * hour and day of the year and sometimes the year and synchronization
53 * condition. The comb filter exponentially averages the corresponding
54 * samples of successive baud intervals in order to reliably identify
55 * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
56 * additional integration and interpolation to accurately determine the
57 * zero crossing of that cycle, which determines the reference
58 * timestamp. A pulse-width discriminator demodulates the data pulses,
59 * which are then encoded as the BCD digits of the timecode.
61 * The timecode and reference timestamp are updated once each second
62 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
63 * saved for later processing. At poll intervals of 64 s, the saved
64 * samples are processed by a trimmed-mean filter and used to update the
67 * An automatic gain control feature provides protection against
68 * overdriven or underdriven input signal amplitudes. It is designed to
69 * maintain adequate demodulator signal amplitude while avoiding
70 * occasional noise spikes. In order to assure reliable capture, the
71 * decompanded input signal amplitude must be greater than 100 units and
72 * the codec sample frequency error less than 250 PPM (.025 percent).
76 * The timecode format used for debugging and data recording includes
77 * data helpful in diagnosing problems with the IRIG signal and codec
78 * connections. The driver produces one line for each timecode in the
81 * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
83 * If clockstats is enabled, the most recent line is written to the
84 * clockstats file every 64 s. If verbose recording is enabled (fudge
85 * flag 4) each line is written as generated.
87 * The first field containes the error flags in hex, where the hex bits
88 * are interpreted as below. This is followed by the year of century,
89 * day of year and time of day. Note that the time of day is for the
90 * previous minute, not the current time. The status indicator and year
91 * are not produced by some IRIG devices and appear as zeros. Following
92 * these fields are the carrier amplitude (0-3000), codec gain (0-255),
93 * modulation index (0-1), time constant (4-10), carrier phase error
94 * +-.5) and carrier frequency error (PPM). The last field is the on-
95 * time timestamp in NTP format.
97 * The error flags are defined as follows in hex:
99 * x01 Low signal. The carrier amplitude is less than 100 units. This
100 * is usually the result of no signal or wrong input port.
101 * x02 Frequency error. The codec frequency error is greater than 250
102 * PPM. This may be due to wrong signal format or (rarely)
104 * x04 Modulation error. The IRIG modulation index is less than 0.5.
105 * This is usually the result of an overdriven codec, wrong signal
106 * format or wrong input port.
107 * x08 Frame synch error. The decoder frame does not match the IRIG
108 * frame. This is usually the result of an overdriven codec, wrong
109 * signal format or noisy IRIG signal. It may also be the result of
110 * an IRIG signature check which indicates a failure of the IRIG
111 * signal synchronization source.
112 * x10 Data bit error. The data bit length is out of tolerance. This is
113 * usually the result of an overdriven codec, wrong signal format
114 * or noisy IRIG signal.
115 * x20 Seconds numbering discrepancy. The decoder second does not match
116 * the IRIG second. This is usually the result of an overdriven
117 * codec, wrong signal format or noisy IRIG signal.
118 * x40 Codec error (overrun). The machine is not fast enough to keep up
120 * x80 Device status error (Spectracom).
123 * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
124 * within a few tens of microseconds relative to the IRIG-B signal.
125 * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
126 * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
129 * Unlike other drivers, which can have multiple instantiations, this
130 * one supports only one. It does not seem likely that more than one
131 * audio codec would be useful in a single machine. More than one would
132 * probably chew up too much CPU time anyway.
136 * Fudge flag4 causes the dubugging output described above to be
137 * recorded in the clockstats file. Fudge flag2 selects the audio input
138 * port, where 0 is the mike port (default) and 1 is the line-in port.
139 * It does not seem useful to select the compact disc player port. Fudge
140 * flag3 enables audio monitoring of the input signal. For this purpose,
141 * the monitor gain is set t a default value. Fudgetime2 is used as a
142 * frequency vernier for broken codec sample frequency.
146 * CEVNT_BADTIME invalid date or time
147 * CEVNT_TIMEOUT no IRIG data since last poll
150 * Interface definitions
152 #define DEVICE_AUDIO "/dev/audio" /* audio device name */
153 #define PRECISION (-17) /* precision assumed (about 10 us) */
154 #define REFID "IRIG" /* reference ID */
155 #define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
156 #define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
157 #define SECOND 8000 /* nominal sample rate (Hz) */
158 #define BAUD 80 /* samples per baud interval */
159 #define OFFSET 128 /* companded sample offset */
160 #define SIZE 256 /* decompanding table size */
161 #define CYCLE 8 /* samples per bit */
162 #define SUBFLD 10 /* bits per frame */
163 #define FIELD 100 /* bits per second */
164 #define MINTC 2 /* min PLL time constant */
165 #define MAXTC 10 /* max PLL time constant max */
166 #define MAXAMP 3000. /* maximum signal amplitude */
167 #define MINAMP 2000. /* minimum signal amplitude */
168 #define DRPOUT 100. /* dropout signal amplitude */
169 #define MODMIN 0.5 /* minimum modulation index */
170 #define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
173 * The on-time synchronization point is the positive-going zero crossing
174 * of the first cycle of the second. The IIR baseband filter phase delay
175 * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
176 * due to the codec and other causes was determined by calibrating to a
177 * PPS signal from a GPS receiver.
179 * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
180 * within .02 ms short-term with .02 ms jitter. The processor load due
181 * to the driver is 0.51 percent.
183 #define IRIG_B ((1.03 + 2.68) / 1000) /* IRIG-B system delay (s) */
184 #define IRIG_E ((3.47 + 2.68) / 1000) /* IRIG-E system delay (s) */
187 * Data bit definitions
189 #define BIT0 0 /* zero */
190 #define BIT1 1 /* one */
191 #define BITP 2 /* position identifier */
196 #define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
197 #define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
198 #define IRIG_ERR_MOD 0x04 /* low modulation index */
199 #define IRIG_ERR_SYNCH 0x08 /* frame synch error */
200 #define IRIG_ERR_DECODE 0x10 /* frame decoding error */
201 #define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
202 #define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
203 #define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
205 static char hexchar
[] = "0123456789abcdef";
208 * IRIG unit control structure
211 u_char timecode
[2 * SUBFLD
+ 1]; /* timecode string */
212 l_fp timestamp
; /* audio sample timestamp */
213 l_fp tick
; /* audio sample increment */
214 l_fp refstamp
; /* reference timestamp */
215 l_fp chrstamp
; /* baud timestamp */
216 l_fp prvstamp
; /* previous baud timestamp */
217 double integ
[BAUD
]; /* baud integrator */
218 double phase
, freq
; /* logical clock phase and frequency */
219 double zxing
; /* phase detector integrator */
220 double yxing
; /* cycle phase */
221 double exing
; /* envelope phase */
222 double modndx
; /* modulation index */
223 double irig_b
; /* IRIG-B signal amplitude */
224 double irig_e
; /* IRIG-E signal amplitude */
225 int errflg
; /* error flags */
227 * Audio codec variables
229 double comp
[SIZE
]; /* decompanding table */
230 double signal
; /* peak signal for AGC */
231 int port
; /* codec port */
232 int gain
; /* codec gain */
233 int mongain
; /* codec monitor gain */
234 int seccnt
; /* second interval counter */
239 double bpf
[9]; /* IRIG-B filter shift register */
240 double lpf
[5]; /* IRIG-E filter shift register */
241 double envmin
, envmax
; /* envelope min and max */
242 double slice
; /* envelope slice level */
243 double intmin
, intmax
; /* integrated envelope min and max */
244 double maxsignal
; /* integrated peak amplitude */
245 double noise
; /* integrated noise amplitude */
246 double lastenv
[CYCLE
]; /* last cycle amplitudes */
247 double lastint
[CYCLE
]; /* last integrated cycle amplitudes */
248 double lastsig
; /* last carrier sample */
249 double fdelay
; /* filter delay */
250 int decim
; /* sample decimation factor */
251 int envphase
; /* envelope phase */
252 int envptr
; /* envelope phase pointer */
253 int envsw
; /* envelope state */
254 int envxing
; /* envelope slice crossing */
255 int tc
; /* time constant */
256 int tcount
; /* time constant counter */
257 int badcnt
; /* decimation interval counter */
262 int pulse
; /* cycle counter */
263 int cycles
; /* carrier cycles */
264 int dcycles
; /* data cycles */
265 int lastbit
; /* last code element */
266 int second
; /* previous second */
267 int bitcnt
; /* bit count in frame */
268 int frmcnt
; /* bit count in second */
269 int xptr
; /* timecode pointer */
270 int bits
; /* demodulated bits */
274 * Function prototypes
276 static int irig_start (int, struct peer
*);
277 static void irig_shutdown (int, struct peer
*);
278 static void irig_receive (struct recvbuf
*);
279 static void irig_poll (int, struct peer
*);
282 * More function prototypes
284 static void irig_base (struct peer
*, double);
285 static void irig_rf (struct peer
*, double);
286 static void irig_baud (struct peer
*, int);
287 static void irig_decode (struct peer
*, int);
288 static void irig_gain (struct peer
*);
293 struct refclock refclock_irig
= {
294 irig_start
, /* start up driver */
295 irig_shutdown
, /* shut down driver */
296 irig_poll
, /* transmit poll message */
297 noentry
, /* not used (old irig_control) */
298 noentry
, /* initialize driver (not used) */
299 noentry
, /* not used (old irig_buginfo) */
300 NOFLAGS
/* not used */
305 * irig_start - open the devices and initialize data for processing
309 int unit
, /* instance number (used for PCM) */
310 struct peer
*peer
/* peer structure pointer */
313 struct refclockproc
*pp
;
319 int fd
; /* file descriptor */
321 double step
; /* codec adjustment */
326 fd
= audio_init(DEVICE_AUDIO
, AUDIO_BUFSIZ
, unit
);
335 * Allocate and initialize unit structure
337 if (!(up
= (struct irigunit
*)
338 emalloc(sizeof(struct irigunit
)))) {
342 memset((char *)up
, 0, sizeof(struct irigunit
));
344 pp
->unitptr
= (caddr_t
)up
;
345 pp
->io
.clock_recv
= irig_receive
;
346 pp
->io
.srcclock
= (caddr_t
)peer
;
349 if (!io_addclock(&pp
->io
)) {
356 * Initialize miscellaneous variables
358 peer
->precision
= PRECISION
;
359 pp
->clockdesc
= DESCRIPTION
;
360 memcpy((char *)&pp
->refid
, REFID
, 4);
366 * The companded samples are encoded sign-magnitude. The table
367 * contains all the 256 values in the interest of speed.
369 up
->comp
[0] = up
->comp
[OFFSET
] = 0.;
370 up
->comp
[1] = 1; up
->comp
[OFFSET
+ 1] = -1.;
371 up
->comp
[2] = 3; up
->comp
[OFFSET
+ 2] = -3.;
373 for (i
= 3; i
< OFFSET
; i
++) {
374 up
->comp
[i
] = up
->comp
[i
- 1] + step
;
375 up
->comp
[OFFSET
+ i
] = -up
->comp
[i
];
379 DTOLFP(1. / SECOND
, &up
->tick
);
385 * irig_shutdown - shut down the clock
389 int unit
, /* instance number (not used) */
390 struct peer
*peer
/* peer structure pointer */
393 struct refclockproc
*pp
;
397 up
= (struct irigunit
*)pp
->unitptr
;
398 io_closeclock(&pp
->io
);
404 * irig_receive - receive data from the audio device
406 * This routine reads input samples and adjusts the logical clock to
407 * track the irig clock by dropping or duplicating codec samples.
411 struct recvbuf
*rbufp
/* receive buffer structure pointer */
415 struct refclockproc
*pp
;
421 double sample
; /* codec sample */
422 u_char
*dpt
; /* buffer pointer */
423 int bufcnt
; /* buffer counter */
424 l_fp ltemp
; /* l_fp temp */
426 peer
= (struct peer
*)rbufp
->recv_srcclock
;
428 up
= (struct irigunit
*)pp
->unitptr
;
431 * Main loop - read until there ain't no more. Note codec
432 * samples are bit-inverted.
434 DTOLFP((double)rbufp
->recv_length
/ SECOND
, <emp
);
435 L_SUB(&rbufp
->recv_time
, <emp
);
436 up
->timestamp
= rbufp
->recv_time
;
437 dpt
= rbufp
->recv_buffer
;
438 for (bufcnt
= 0; bufcnt
< rbufp
->recv_length
; bufcnt
++) {
439 sample
= up
->comp
[~*dpt
++ & 0xff];
442 * Variable frequency oscillator. The codec oscillator
443 * runs at the nominal rate of 8000 samples per second,
444 * or 125 us per sample. A frequency change of one unit
445 * results in either duplicating or deleting one sample
446 * per second, which results in a frequency change of
449 up
->phase
+= (up
->freq
+ clock_codec
) / SECOND
;
450 up
->phase
+= pp
->fudgetime2
/ 1e6
;
451 if (up
->phase
>= .5) {
453 } else if (up
->phase
< -.5) {
455 irig_rf(peer
, sample
);
456 irig_rf(peer
, sample
);
458 irig_rf(peer
, sample
);
460 L_ADD(&up
->timestamp
, &up
->tick
);
461 sample
= fabs(sample
);
462 if (sample
> up
->signal
)
464 up
->signal
+= (sample
- up
->signal
) /
468 * Once each second, determine the IRIG format and gain.
470 up
->seccnt
= (up
->seccnt
+ 1) % SECOND
;
471 if (up
->seccnt
== 0) {
472 if (up
->irig_b
> up
->irig_e
) {
479 up
->irig_b
= up
->irig_e
= 0;
486 * Set the input port and monitor gain for the next buffer.
488 if (pp
->sloppyclockflag
& CLK_FLAG2
)
492 if (pp
->sloppyclockflag
& CLK_FLAG3
)
493 up
->mongain
= MONGAIN
;
500 * irig_rf - RF processing
502 * This routine filters the RF signal using a bandass filter for IRIG-B
503 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
504 * decimated by a factor of ten. Note that the codec filters function as
505 * roofing filters to attenuate both the high and low ends of the
506 * passband. IIR filter coefficients were determined using Matlab Signal
507 * Processing Toolkit.
511 struct peer
*peer
, /* peer structure pointer */
512 double sample
/* current signal sample */
515 struct refclockproc
*pp
;
521 double irig_b
, irig_e
; /* irig filter outputs */
524 up
= (struct irigunit
*)pp
->unitptr
;
527 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
528 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
529 * phase delay 1.03 ms.
531 irig_b
= (up
->bpf
[8] = up
->bpf
[7]) * 6.505491e-001;
532 irig_b
+= (up
->bpf
[7] = up
->bpf
[6]) * -3.875180e+000;
533 irig_b
+= (up
->bpf
[6] = up
->bpf
[5]) * 1.151180e+001;
534 irig_b
+= (up
->bpf
[5] = up
->bpf
[4]) * -2.141264e+001;
535 irig_b
+= (up
->bpf
[4] = up
->bpf
[3]) * 2.712837e+001;
536 irig_b
+= (up
->bpf
[3] = up
->bpf
[2]) * -2.384486e+001;
537 irig_b
+= (up
->bpf
[2] = up
->bpf
[1]) * 1.427663e+001;
538 irig_b
+= (up
->bpf
[1] = up
->bpf
[0]) * -5.352734e+000;
539 up
->bpf
[0] = sample
- irig_b
;
540 irig_b
= up
->bpf
[0] * 4.952157e-003
541 + up
->bpf
[1] * -2.055878e-002
542 + up
->bpf
[2] * 4.401413e-002
543 + up
->bpf
[3] * -6.558851e-002
544 + up
->bpf
[4] * 7.462108e-002
545 + up
->bpf
[5] * -6.558851e-002
546 + up
->bpf
[6] * 4.401413e-002
547 + up
->bpf
[7] * -2.055878e-002
548 + up
->bpf
[8] * 4.952157e-003;
549 up
->irig_b
+= irig_b
* irig_b
;
552 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
553 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
556 irig_e
= (up
->lpf
[4] = up
->lpf
[3]) * 8.694604e-001;
557 irig_e
+= (up
->lpf
[3] = up
->lpf
[2]) * -3.589893e+000;
558 irig_e
+= (up
->lpf
[2] = up
->lpf
[1]) * 5.570154e+000;
559 irig_e
+= (up
->lpf
[1] = up
->lpf
[0]) * -3.849667e+000;
560 up
->lpf
[0] = sample
- irig_e
;
561 irig_e
= up
->lpf
[0] * 3.215696e-003
562 + up
->lpf
[1] * -1.174951e-002
563 + up
->lpf
[2] * 1.712074e-002
564 + up
->lpf
[3] * -1.174951e-002
565 + up
->lpf
[4] * 3.215696e-003;
566 up
->irig_e
+= irig_e
* irig_e
;
569 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
571 up
->badcnt
= (up
->badcnt
+ 1) % up
->decim
;
572 if (up
->badcnt
== 0) {
574 irig_base(peer
, irig_b
);
576 irig_base(peer
, irig_e
);
581 * irig_base - baseband processing
583 * This routine processes the baseband signal and demodulates the AM
584 * carrier using a synchronous detector. It then synchronizes to the
585 * data frame at the baud rate and decodes the width-modulated data
590 struct peer
*peer
, /* peer structure pointer */
591 double sample
/* current signal sample */
594 struct refclockproc
*pp
;
600 double lope
; /* integrator output */
601 double env
; /* envelope detector output */
603 int carphase
; /* carrier phase */
606 up
= (struct irigunit
*)pp
->unitptr
;
609 * Synchronous baud integrator. Corresponding samples of current
610 * and past baud intervals are integrated to refine the envelope
611 * amplitude and phase estimate. We keep one cycle (1 ms) of the
612 * raw data and one baud (10 ms) of the integrated data.
614 up
->envphase
= (up
->envphase
+ 1) % BAUD
;
615 up
->integ
[up
->envphase
] += (sample
- up
->integ
[up
->envphase
]) /
617 lope
= up
->integ
[up
->envphase
];
618 carphase
= up
->envphase
% CYCLE
;
619 up
->lastenv
[carphase
] = sample
;
620 up
->lastint
[carphase
] = lope
;
623 * Phase detector. Find the negative-going zero crossing
624 * relative to sample 4 in the 8-sample sycle. A phase change of
625 * 360 degrees produces an output change of one unit.
627 if (up
->lastsig
> 0 && lope
<= 0)
628 up
->zxing
+= (double)(carphase
- 4) / CYCLE
;
632 * End of the baud. Update signal/noise estimates and PLL
633 * phase, frequency and time constant.
635 if (up
->envphase
== 0) {
636 up
->maxsignal
= up
->intmax
; up
->noise
= up
->intmin
;
637 up
->intmin
= 1e6
; up
->intmax
= -1e6
;
638 if (up
->maxsignal
< DRPOUT
)
639 up
->errflg
|= IRIG_ERR_AMP
;
640 if (up
->maxsignal
> 0)
641 up
->modndx
= (up
->maxsignal
- up
->noise
) /
645 if (up
->modndx
< MODMIN
)
646 up
->errflg
|= IRIG_ERR_MOD
;
647 if (up
->errflg
& (IRIG_ERR_AMP
| IRIG_ERR_FREQ
|
648 IRIG_ERR_MOD
| IRIG_ERR_SYNCH
)) {
654 * Update PLL phase and frequency. The PLL time constant
655 * is set initially to stabilize the frequency within a
656 * minute or two, then increases to the maximum. The
657 * frequency is clamped so that the PLL capture range
658 * cannot be exceeded.
660 dtemp
= up
->zxing
* up
->decim
/ BAUD
;
663 up
->phase
+= dtemp
/ up
->tc
;
664 up
->freq
+= dtemp
/ (4. * up
->tc
* up
->tc
);
665 if (up
->freq
> MAXFREQ
) {
667 up
->errflg
|= IRIG_ERR_FREQ
;
668 } else if (up
->freq
< -MAXFREQ
) {
670 up
->errflg
|= IRIG_ERR_FREQ
;
675 * Synchronous demodulator. There are eight samples in the cycle
676 * and ten cycles in the baud. Since the PLL has aligned the
677 * negative-going zero crossing at sample 4, the maximum
678 * amplitude is at sample 2 and minimum at sample 6. The
679 * beginning of the data pulse is determined from the integrated
680 * samples, while the end of the pulse is determined from the
681 * raw samples. The raw data bits are demodulated relative to
682 * the slice level and left-shifted in the decoding register.
687 lope
= (up
->lastint
[2] - up
->lastint
[6]) / 2.;
688 if (lope
> up
->intmax
)
690 if (lope
< up
->intmin
)
694 * Pulse code demodulator and reference timestamp. The decoder
695 * looks for a sequence of ten bits; the first two bits must be
696 * one, the last two bits must be zero. Frame synch is asserted
697 * when three correct frames have been found.
699 up
->pulse
= (up
->pulse
+ 1) % 10;
701 if (lope
>= (up
->maxsignal
+ up
->noise
) / 2.)
703 if ((up
->cycles
& 0x303c0f03) == 0x300c0300) {
705 up
->errflg
|= IRIG_ERR_SYNCH
;
710 * Assemble the baud and max/min to get the slice level for the
711 * next baud. The slice level is based on the maximum over the
712 * first two bits and the minimum over the last two bits, with
713 * the slice level halfway between the maximum and minimum.
715 env
= (up
->lastenv
[2] - up
->lastenv
[6]) / 2.;
717 if (env
>= up
->slice
)
722 irig_baud(peer
, up
->dcycles
);
723 if (env
< up
->envmin
)
725 up
->slice
= (up
->envmax
+ up
->envmin
) / 2;
726 up
->envmin
= 1e6
; up
->envmax
= -1e6
;
734 if (env
> up
->envmax
)
745 * irig_baud - update the PLL and decode the pulse-width signal
749 struct peer
*peer
, /* peer structure pointer */
750 int bits
/* decoded bits */
753 struct refclockproc
*pp
;
759 up
= (struct irigunit
*)pp
->unitptr
;
762 * The PLL time constant starts out small, in order to
763 * sustain a frequency tolerance of 250 PPM. It
764 * gradually increases as the loop settles down. Note
765 * that small wiggles are not believed, unless they
766 * persist for lots of samples.
768 up
->exing
= -up
->yxing
;
769 if (fabs(up
->envxing
- up
->envphase
) <= 1) {
771 if (up
->tcount
> 20 * up
->tc
) {
776 up
->envxing
= up
->envphase
;
778 up
->exing
-= up
->envxing
- up
->envphase
;
782 up
->envxing
= up
->envphase
;
786 * Strike the baud timestamp as the positive zero crossing of
787 * the first bit, accounting for the codec delay and filter
790 up
->prvstamp
= up
->chrstamp
;
791 dtemp
= up
->decim
* (up
->exing
/ SECOND
) + up
->fdelay
;
792 DTOLFP(dtemp
, <emp
);
793 up
->chrstamp
= up
->timestamp
;
794 L_SUB(&up
->chrstamp
, <emp
);
797 * The data bits are collected in ten-bit bauds. The first two
798 * bits are not used. The resulting patterns represent runs of
799 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
800 * 8-bit run represents a soft error and is treated as 0.
802 switch (up
->dcycles
& 0xff) {
804 case 0x00: /* 0-1 bits (0) */
806 irig_decode(peer
, BIT0
);
809 case 0xc0: /* 2-4 bits (1) */
812 irig_decode(peer
, BIT1
);
815 case 0xf8: /* (5-7 bits (PI) */
818 irig_decode(peer
, BITP
);
821 default: /* 8 bits (error) */
822 irig_decode(peer
, BIT0
);
823 up
->errflg
|= IRIG_ERR_DECODE
;
829 * irig_decode - decode the data
831 * This routine assembles bauds into digits, digits into frames and
832 * frames into the timecode fields. Bits can have values of zero, one
833 * or position identifier. There are four bits per digit, ten digits per
834 * frame and ten frames per second.
838 struct peer
*peer
, /* peer structure pointer */
839 int bit
/* data bit (0, 1 or 2) */
842 struct refclockproc
*pp
;
848 int syncdig
; /* sync digit (Spectracom) */
849 char sbs
[6]; /* binary seconds since 0h */
850 char spare
[2]; /* mulligan digits */
854 up
= (struct irigunit
*)pp
->unitptr
;
857 * Assemble frame bits.
862 } else if (bit
== BITP
&& up
->lastbit
== BITP
) {
865 * Frame sync - two adjacent position identifiers, which
866 * mark the beginning of the second. The reference time
867 * is the beginning of the second position identifier,
868 * so copy the character timestamp to the reference
872 up
->errflg
|= IRIG_ERR_SYNCH
;
874 up
->refstamp
= up
->prvstamp
;
877 if (up
->frmcnt
% SUBFLD
== 0) {
880 * End of frame. Encode two hexadecimal digits in
881 * little-endian timecode field. Note frame 1 is shifted
882 * right one bit to account for the marker PI.
885 if (up
->frmcnt
== 10)
888 up
->timecode
[--up
->xptr
] = hexchar
[temp
& 0xf];
889 up
->timecode
[--up
->xptr
] = hexchar
[(temp
>> 5) &
892 if (up
->frmcnt
== 0) {
895 * End of second. Decode the timecode and wind
896 * the clock. Not all IRIG generators have the
897 * year; if so, it is nonzero after year 2000.
898 * Not all have the hardware status bit; if so,
899 * it is lit when the source is okay and dim
900 * when bad. We watch this only if the year is
901 * nonzero. Not all are configured for signature
902 * control. If so, all BCD digits are set to
903 * zero if the source is bad. In this case the
904 * refclock_process() will reject the timecode
907 up
->xptr
= 2 * SUBFLD
;
908 if (sscanf((char *)up
->timecode
,
909 "%6s%2d%1d%2s%3d%2d%2d%2d", sbs
, &pp
->year
,
910 &syncdig
, spare
, &pp
->day
, &pp
->hour
,
911 &pp
->minute
, &pp
->second
) != 8)
912 pp
->leap
= LEAP_NOTINSYNC
;
914 pp
->leap
= LEAP_NOWARNING
;
915 up
->second
= (up
->second
+ up
->decim
) % 60;
918 * Raise an alarm if the day field is zero,
919 * which happens when signature control is
920 * enabled and the device has lost
921 * synchronization. Raise an alarm if the year
922 * field is nonzero and the sync indicator is
923 * zero, which happens when a Spectracom radio
924 * has lost synchronization. Raise an alarm if
925 * the expected second does not agree with the
926 * decoded second, which happens with a garbled
927 * IRIG signal. We are very particular.
929 if (pp
->day
== 0 || (pp
->year
!= 0 && syncdig
==
931 up
->errflg
|= IRIG_ERR_SIGERR
;
932 if (pp
->second
!= up
->second
)
933 up
->errflg
|= IRIG_ERR_CHECK
;
934 up
->second
= pp
->second
;
937 * Wind the clock only if there are no errors
938 * and the time constant has reached the
941 if (up
->errflg
== 0 && up
->tc
== MAXTC
) {
942 pp
->lastref
= pp
->lastrec
;
943 pp
->lastrec
= up
->refstamp
;
944 if (!refclock_process(pp
))
945 refclock_report(peer
,
948 sprintf(pp
->a_lastcode
,
949 "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
950 up
->errflg
, pp
->year
, pp
->day
,
951 pp
->hour
, pp
->minute
, pp
->second
,
952 up
->maxsignal
, up
->gain
, up
->modndx
,
953 up
->tc
, up
->exing
* 1e6
/ SECOND
, up
->freq
*
954 1e6
/ SECOND
, ulfptoa(&pp
->lastrec
, 6));
955 pp
->lencode
= strlen(pp
->a_lastcode
);
957 if (pp
->sloppyclockflag
& CLK_FLAG4
) {
958 record_clock_stats(&peer
->srcadr
,
968 up
->frmcnt
= (up
->frmcnt
+ 1) % FIELD
;
973 * irig_poll - called by the transmit procedure
975 * This routine sweeps up the timecode updates since the last poll. For
976 * IRIG-B there should be at least 60 updates; for IRIG-E there should
977 * be at least 6. If nothing is heard, a timeout event is declared.
981 int unit
, /* instance number (not used) */
982 struct peer
*peer
/* peer structure pointer */
985 struct refclockproc
*pp
;
989 up
= (struct irigunit
*)pp
->unitptr
;
991 if (pp
->coderecv
== pp
->codeproc
) {
992 refclock_report(peer
, CEVNT_TIMEOUT
);
996 refclock_receive(peer
);
997 if (!(pp
->sloppyclockflag
& CLK_FLAG4
)) {
998 record_clock_stats(&peer
->srcadr
, pp
->a_lastcode
);
1001 printf("irig %s\n", pp
->a_lastcode
);
1010 * irig_gain - adjust codec gain
1012 * This routine is called at the end of each second. It uses the AGC to
1013 * bradket the maximum signal level between MINAMP and MAXAMP to avoid
1014 * hunting. The routine also jiggles the input port and selectively
1015 * mutes the monitor.
1019 struct peer
*peer
/* peer structure pointer */
1022 struct refclockproc
*pp
;
1023 struct irigunit
*up
;
1026 up
= (struct irigunit
*)pp
->unitptr
;
1029 * Apparently, the codec uses only the high order bits of the
1030 * gain control field. Thus, it may take awhile for changes to
1031 * wiggle the hardware bits.
1033 if (up
->maxsignal
< MINAMP
) {
1035 if (up
->gain
> MAXGAIN
)
1037 } else if (up
->maxsignal
> MAXAMP
) {
1042 audio_gain(up
->gain
, up
->mongain
, up
->port
);
1047 int refclock_irig_bs
;
1048 #endif /* REFCLOCK */