Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / bsd / ntp / dist / ntpd / refclock_irig.c
blob44ede259f667717492dd7c4ce7966bb958e96c1d
1 /* $NetBSD$ */
3 /*
4 * refclock_irig - audio IRIG-B/E demodulator/decoder
5 */
6 #ifdef HAVE_CONFIG_H
7 #include <config.h>
8 #endif
10 #if defined(REFCLOCK) && defined(CLOCK_IRIG)
12 #include "ntpd.h"
13 #include "ntp_io.h"
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
18 #include <stdio.h>
19 #include <ctype.h>
20 #include <math.h>
21 #ifdef HAVE_SYS_IOCTL_H
22 #include <sys/ioctl.h>
23 #endif /* HAVE_SYS_IOCTL_H */
25 #include "audio.h"
28 * Audio IRIG-B/E demodulator/decoder
30 * This driver synchronizes the computer time using data encoded in
31 * IRIG-B/E signals commonly produced by GPS receivers and other timing
32 * devices. The IRIG signal is an amplitude-modulated carrier with
33 * pulse-width modulated data bits. For IRIG-B, the carrier frequency is
34 * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is
35 * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which
36 & format is in use.
38 * The driver requires an audio codec or sound card with sampling rate 8
39 * kHz and mu-law companding. This is the same standard as used by the
40 * telephone industry and is supported by most hardware and operating
41 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
42 * implementation, only one audio driver and codec can be supported on a
43 * single machine.
45 * The program processes 8000-Hz mu-law companded samples using separate
46 * signal filters for IRIG-B and IRIG-E, a comb filter, envelope
47 * detector and automatic threshold corrector. Cycle crossings relative
48 * to the corrected slice level determine the width of each pulse and
49 * its value - zero, one or position identifier.
51 * The data encode 20 BCD digits which determine the second, minute,
52 * hour and day of the year and sometimes the year and synchronization
53 * condition. The comb filter exponentially averages the corresponding
54 * samples of successive baud intervals in order to reliably identify
55 * the reference carrier cycle. A type-II phase-lock loop (PLL) performs
56 * additional integration and interpolation to accurately determine the
57 * zero crossing of that cycle, which determines the reference
58 * timestamp. A pulse-width discriminator demodulates the data pulses,
59 * which are then encoded as the BCD digits of the timecode.
61 * The timecode and reference timestamp are updated once each second
62 * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples
63 * saved for later processing. At poll intervals of 64 s, the saved
64 * samples are processed by a trimmed-mean filter and used to update the
65 * system clock.
67 * An automatic gain control feature provides protection against
68 * overdriven or underdriven input signal amplitudes. It is designed to
69 * maintain adequate demodulator signal amplitude while avoiding
70 * occasional noise spikes. In order to assure reliable capture, the
71 * decompanded input signal amplitude must be greater than 100 units and
72 * the codec sample frequency error less than 250 PPM (.025 percent).
74 * Monitor Data
76 * The timecode format used for debugging and data recording includes
77 * data helpful in diagnosing problems with the IRIG signal and codec
78 * connections. The driver produces one line for each timecode in the
79 * following format:
81 * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027
83 * If clockstats is enabled, the most recent line is written to the
84 * clockstats file every 64 s. If verbose recording is enabled (fudge
85 * flag 4) each line is written as generated.
87 * The first field containes the error flags in hex, where the hex bits
88 * are interpreted as below. This is followed by the year of century,
89 * day of year and time of day. Note that the time of day is for the
90 * previous minute, not the current time. The status indicator and year
91 * are not produced by some IRIG devices and appear as zeros. Following
92 * these fields are the carrier amplitude (0-3000), codec gain (0-255),
93 * modulation index (0-1), time constant (4-10), carrier phase error
94 * +-.5) and carrier frequency error (PPM). The last field is the on-
95 * time timestamp in NTP format.
97 * The error flags are defined as follows in hex:
99 * x01 Low signal. The carrier amplitude is less than 100 units. This
100 * is usually the result of no signal or wrong input port.
101 * x02 Frequency error. The codec frequency error is greater than 250
102 * PPM. This may be due to wrong signal format or (rarely)
103 * defective codec.
104 * x04 Modulation error. The IRIG modulation index is less than 0.5.
105 * This is usually the result of an overdriven codec, wrong signal
106 * format or wrong input port.
107 * x08 Frame synch error. The decoder frame does not match the IRIG
108 * frame. This is usually the result of an overdriven codec, wrong
109 * signal format or noisy IRIG signal. It may also be the result of
110 * an IRIG signature check which indicates a failure of the IRIG
111 * signal synchronization source.
112 * x10 Data bit error. The data bit length is out of tolerance. This is
113 * usually the result of an overdriven codec, wrong signal format
114 * or noisy IRIG signal.
115 * x20 Seconds numbering discrepancy. The decoder second does not match
116 * the IRIG second. This is usually the result of an overdriven
117 * codec, wrong signal format or noisy IRIG signal.
118 * x40 Codec error (overrun). The machine is not fast enough to keep up
119 * with the codec.
120 * x80 Device status error (Spectracom).
123 * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock
124 * within a few tens of microseconds relative to the IRIG-B signal.
125 * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun
126 * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth
127 * modulation.
129 * Unlike other drivers, which can have multiple instantiations, this
130 * one supports only one. It does not seem likely that more than one
131 * audio codec would be useful in a single machine. More than one would
132 * probably chew up too much CPU time anyway.
134 * Fudge factors
136 * Fudge flag4 causes the dubugging output described above to be
137 * recorded in the clockstats file. Fudge flag2 selects the audio input
138 * port, where 0 is the mike port (default) and 1 is the line-in port.
139 * It does not seem useful to select the compact disc player port. Fudge
140 * flag3 enables audio monitoring of the input signal. For this purpose,
141 * the monitor gain is set t a default value. Fudgetime2 is used as a
142 * frequency vernier for broken codec sample frequency.
144 * Alarm codes
146 * CEVNT_BADTIME invalid date or time
147 * CEVNT_TIMEOUT no IRIG data since last poll
150 * Interface definitions
152 #define DEVICE_AUDIO "/dev/audio" /* audio device name */
153 #define PRECISION (-17) /* precision assumed (about 10 us) */
154 #define REFID "IRIG" /* reference ID */
155 #define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */
156 #define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */
157 #define SECOND 8000 /* nominal sample rate (Hz) */
158 #define BAUD 80 /* samples per baud interval */
159 #define OFFSET 128 /* companded sample offset */
160 #define SIZE 256 /* decompanding table size */
161 #define CYCLE 8 /* samples per bit */
162 #define SUBFLD 10 /* bits per frame */
163 #define FIELD 100 /* bits per second */
164 #define MINTC 2 /* min PLL time constant */
165 #define MAXTC 10 /* max PLL time constant max */
166 #define MAXAMP 3000. /* maximum signal amplitude */
167 #define MINAMP 2000. /* minimum signal amplitude */
168 #define DRPOUT 100. /* dropout signal amplitude */
169 #define MODMIN 0.5 /* minimum modulation index */
170 #define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */
173 * The on-time synchronization point is the positive-going zero crossing
174 * of the first cycle of the second. The IIR baseband filter phase delay
175 * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms
176 * due to the codec and other causes was determined by calibrating to a
177 * PPS signal from a GPS receiver.
179 * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally
180 * within .02 ms short-term with .02 ms jitter. The processor load due
181 * to the driver is 0.51 percent.
183 #define IRIG_B ((1.03 + 2.68) / 1000) /* IRIG-B system delay (s) */
184 #define IRIG_E ((3.47 + 2.68) / 1000) /* IRIG-E system delay (s) */
187 * Data bit definitions
189 #define BIT0 0 /* zero */
190 #define BIT1 1 /* one */
191 #define BITP 2 /* position identifier */
194 * Error flags
196 #define IRIG_ERR_AMP 0x01 /* low carrier amplitude */
197 #define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */
198 #define IRIG_ERR_MOD 0x04 /* low modulation index */
199 #define IRIG_ERR_SYNCH 0x08 /* frame synch error */
200 #define IRIG_ERR_DECODE 0x10 /* frame decoding error */
201 #define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */
202 #define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */
203 #define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */
205 static char hexchar[] = "0123456789abcdef";
208 * IRIG unit control structure
210 struct irigunit {
211 u_char timecode[2 * SUBFLD + 1]; /* timecode string */
212 l_fp timestamp; /* audio sample timestamp */
213 l_fp tick; /* audio sample increment */
214 l_fp refstamp; /* reference timestamp */
215 l_fp chrstamp; /* baud timestamp */
216 l_fp prvstamp; /* previous baud timestamp */
217 double integ[BAUD]; /* baud integrator */
218 double phase, freq; /* logical clock phase and frequency */
219 double zxing; /* phase detector integrator */
220 double yxing; /* cycle phase */
221 double exing; /* envelope phase */
222 double modndx; /* modulation index */
223 double irig_b; /* IRIG-B signal amplitude */
224 double irig_e; /* IRIG-E signal amplitude */
225 int errflg; /* error flags */
227 * Audio codec variables
229 double comp[SIZE]; /* decompanding table */
230 double signal; /* peak signal for AGC */
231 int port; /* codec port */
232 int gain; /* codec gain */
233 int mongain; /* codec monitor gain */
234 int seccnt; /* second interval counter */
237 * RF variables
239 double bpf[9]; /* IRIG-B filter shift register */
240 double lpf[5]; /* IRIG-E filter shift register */
241 double envmin, envmax; /* envelope min and max */
242 double slice; /* envelope slice level */
243 double intmin, intmax; /* integrated envelope min and max */
244 double maxsignal; /* integrated peak amplitude */
245 double noise; /* integrated noise amplitude */
246 double lastenv[CYCLE]; /* last cycle amplitudes */
247 double lastint[CYCLE]; /* last integrated cycle amplitudes */
248 double lastsig; /* last carrier sample */
249 double fdelay; /* filter delay */
250 int decim; /* sample decimation factor */
251 int envphase; /* envelope phase */
252 int envptr; /* envelope phase pointer */
253 int envsw; /* envelope state */
254 int envxing; /* envelope slice crossing */
255 int tc; /* time constant */
256 int tcount; /* time constant counter */
257 int badcnt; /* decimation interval counter */
260 * Decoder variables
262 int pulse; /* cycle counter */
263 int cycles; /* carrier cycles */
264 int dcycles; /* data cycles */
265 int lastbit; /* last code element */
266 int second; /* previous second */
267 int bitcnt; /* bit count in frame */
268 int frmcnt; /* bit count in second */
269 int xptr; /* timecode pointer */
270 int bits; /* demodulated bits */
274 * Function prototypes
276 static int irig_start (int, struct peer *);
277 static void irig_shutdown (int, struct peer *);
278 static void irig_receive (struct recvbuf *);
279 static void irig_poll (int, struct peer *);
282 * More function prototypes
284 static void irig_base (struct peer *, double);
285 static void irig_rf (struct peer *, double);
286 static void irig_baud (struct peer *, int);
287 static void irig_decode (struct peer *, int);
288 static void irig_gain (struct peer *);
291 * Transfer vector
293 struct refclock refclock_irig = {
294 irig_start, /* start up driver */
295 irig_shutdown, /* shut down driver */
296 irig_poll, /* transmit poll message */
297 noentry, /* not used (old irig_control) */
298 noentry, /* initialize driver (not used) */
299 noentry, /* not used (old irig_buginfo) */
300 NOFLAGS /* not used */
305 * irig_start - open the devices and initialize data for processing
307 static int
308 irig_start(
309 int unit, /* instance number (used for PCM) */
310 struct peer *peer /* peer structure pointer */
313 struct refclockproc *pp;
314 struct irigunit *up;
317 * Local variables
319 int fd; /* file descriptor */
320 int i; /* index */
321 double step; /* codec adjustment */
324 * Open audio device
326 fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
327 if (fd < 0)
328 return (0);
329 #ifdef DEBUG
330 if (debug)
331 audio_show();
332 #endif
335 * Allocate and initialize unit structure
337 if (!(up = (struct irigunit *)
338 emalloc(sizeof(struct irigunit)))) {
339 (void) close(fd);
340 return (0);
342 memset((char *)up, 0, sizeof(struct irigunit));
343 pp = peer->procptr;
344 pp->unitptr = (caddr_t)up;
345 pp->io.clock_recv = irig_receive;
346 pp->io.srcclock = (caddr_t)peer;
347 pp->io.datalen = 0;
348 pp->io.fd = fd;
349 if (!io_addclock(&pp->io)) {
350 (void)close(fd);
351 free(up);
352 return (0);
356 * Initialize miscellaneous variables
358 peer->precision = PRECISION;
359 pp->clockdesc = DESCRIPTION;
360 memcpy((char *)&pp->refid, REFID, 4);
361 up->tc = MINTC;
362 up->decim = 1;
363 up->gain = 127;
366 * The companded samples are encoded sign-magnitude. The table
367 * contains all the 256 values in the interest of speed.
369 up->comp[0] = up->comp[OFFSET] = 0.;
370 up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
371 up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
372 step = 2.;
373 for (i = 3; i < OFFSET; i++) {
374 up->comp[i] = up->comp[i - 1] + step;
375 up->comp[OFFSET + i] = -up->comp[i];
376 if (i % 16 == 0)
377 step *= 2.;
379 DTOLFP(1. / SECOND, &up->tick);
380 return (1);
385 * irig_shutdown - shut down the clock
387 static void
388 irig_shutdown(
389 int unit, /* instance number (not used) */
390 struct peer *peer /* peer structure pointer */
393 struct refclockproc *pp;
394 struct irigunit *up;
396 pp = peer->procptr;
397 up = (struct irigunit *)pp->unitptr;
398 io_closeclock(&pp->io);
399 free(up);
404 * irig_receive - receive data from the audio device
406 * This routine reads input samples and adjusts the logical clock to
407 * track the irig clock by dropping or duplicating codec samples.
409 static void
410 irig_receive(
411 struct recvbuf *rbufp /* receive buffer structure pointer */
414 struct peer *peer;
415 struct refclockproc *pp;
416 struct irigunit *up;
419 * Local variables
421 double sample; /* codec sample */
422 u_char *dpt; /* buffer pointer */
423 int bufcnt; /* buffer counter */
424 l_fp ltemp; /* l_fp temp */
426 peer = (struct peer *)rbufp->recv_srcclock;
427 pp = peer->procptr;
428 up = (struct irigunit *)pp->unitptr;
431 * Main loop - read until there ain't no more. Note codec
432 * samples are bit-inverted.
434 DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
435 L_SUB(&rbufp->recv_time, &ltemp);
436 up->timestamp = rbufp->recv_time;
437 dpt = rbufp->recv_buffer;
438 for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
439 sample = up->comp[~*dpt++ & 0xff];
442 * Variable frequency oscillator. The codec oscillator
443 * runs at the nominal rate of 8000 samples per second,
444 * or 125 us per sample. A frequency change of one unit
445 * results in either duplicating or deleting one sample
446 * per second, which results in a frequency change of
447 * 125 PPM.
449 up->phase += (up->freq + clock_codec) / SECOND;
450 up->phase += pp->fudgetime2 / 1e6;
451 if (up->phase >= .5) {
452 up->phase -= 1.;
453 } else if (up->phase < -.5) {
454 up->phase += 1.;
455 irig_rf(peer, sample);
456 irig_rf(peer, sample);
457 } else {
458 irig_rf(peer, sample);
460 L_ADD(&up->timestamp, &up->tick);
461 sample = fabs(sample);
462 if (sample > up->signal)
463 up->signal = sample;
464 up->signal += (sample - up->signal) /
465 1000;
468 * Once each second, determine the IRIG format and gain.
470 up->seccnt = (up->seccnt + 1) % SECOND;
471 if (up->seccnt == 0) {
472 if (up->irig_b > up->irig_e) {
473 up->decim = 1;
474 up->fdelay = IRIG_B;
475 } else {
476 up->decim = 10;
477 up->fdelay = IRIG_E;
479 up->irig_b = up->irig_e = 0;
480 irig_gain(peer);
486 * Set the input port and monitor gain for the next buffer.
488 if (pp->sloppyclockflag & CLK_FLAG2)
489 up->port = 2;
490 else
491 up->port = 1;
492 if (pp->sloppyclockflag & CLK_FLAG3)
493 up->mongain = MONGAIN;
494 else
495 up->mongain = 0;
500 * irig_rf - RF processing
502 * This routine filters the RF signal using a bandass filter for IRIG-B
503 * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are
504 * decimated by a factor of ten. Note that the codec filters function as
505 * roofing filters to attenuate both the high and low ends of the
506 * passband. IIR filter coefficients were determined using Matlab Signal
507 * Processing Toolkit.
509 static void
510 irig_rf(
511 struct peer *peer, /* peer structure pointer */
512 double sample /* current signal sample */
515 struct refclockproc *pp;
516 struct irigunit *up;
519 * Local variables
521 double irig_b, irig_e; /* irig filter outputs */
523 pp = peer->procptr;
524 up = (struct irigunit *)pp->unitptr;
527 * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz
528 * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple,
529 * phase delay 1.03 ms.
531 irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001;
532 irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000;
533 irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001;
534 irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001;
535 irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001;
536 irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001;
537 irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001;
538 irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000;
539 up->bpf[0] = sample - irig_b;
540 irig_b = up->bpf[0] * 4.952157e-003
541 + up->bpf[1] * -2.055878e-002
542 + up->bpf[2] * 4.401413e-002
543 + up->bpf[3] * -6.558851e-002
544 + up->bpf[4] * 7.462108e-002
545 + up->bpf[5] * -6.558851e-002
546 + up->bpf[6] * 4.401413e-002
547 + up->bpf[7] * -2.055878e-002
548 + up->bpf[8] * 4.952157e-003;
549 up->irig_b += irig_b * irig_b;
552 * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass,
553 * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay
554 * 3.47 ms.
556 irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001;
557 irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000;
558 irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000;
559 irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000;
560 up->lpf[0] = sample - irig_e;
561 irig_e = up->lpf[0] * 3.215696e-003
562 + up->lpf[1] * -1.174951e-002
563 + up->lpf[2] * 1.712074e-002
564 + up->lpf[3] * -1.174951e-002
565 + up->lpf[4] * 3.215696e-003;
566 up->irig_e += irig_e * irig_e;
569 * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E).
571 up->badcnt = (up->badcnt + 1) % up->decim;
572 if (up->badcnt == 0) {
573 if (up->decim == 1)
574 irig_base(peer, irig_b);
575 else
576 irig_base(peer, irig_e);
581 * irig_base - baseband processing
583 * This routine processes the baseband signal and demodulates the AM
584 * carrier using a synchronous detector. It then synchronizes to the
585 * data frame at the baud rate and decodes the width-modulated data
586 * pulses.
588 static void
589 irig_base(
590 struct peer *peer, /* peer structure pointer */
591 double sample /* current signal sample */
594 struct refclockproc *pp;
595 struct irigunit *up;
598 * Local variables
600 double lope; /* integrator output */
601 double env; /* envelope detector output */
602 double dtemp;
603 int carphase; /* carrier phase */
605 pp = peer->procptr;
606 up = (struct irigunit *)pp->unitptr;
609 * Synchronous baud integrator. Corresponding samples of current
610 * and past baud intervals are integrated to refine the envelope
611 * amplitude and phase estimate. We keep one cycle (1 ms) of the
612 * raw data and one baud (10 ms) of the integrated data.
614 up->envphase = (up->envphase + 1) % BAUD;
615 up->integ[up->envphase] += (sample - up->integ[up->envphase]) /
616 (5 * up->tc);
617 lope = up->integ[up->envphase];
618 carphase = up->envphase % CYCLE;
619 up->lastenv[carphase] = sample;
620 up->lastint[carphase] = lope;
623 * Phase detector. Find the negative-going zero crossing
624 * relative to sample 4 in the 8-sample sycle. A phase change of
625 * 360 degrees produces an output change of one unit.
627 if (up->lastsig > 0 && lope <= 0)
628 up->zxing += (double)(carphase - 4) / CYCLE;
629 up->lastsig = lope;
632 * End of the baud. Update signal/noise estimates and PLL
633 * phase, frequency and time constant.
635 if (up->envphase == 0) {
636 up->maxsignal = up->intmax; up->noise = up->intmin;
637 up->intmin = 1e6; up->intmax = -1e6;
638 if (up->maxsignal < DRPOUT)
639 up->errflg |= IRIG_ERR_AMP;
640 if (up->maxsignal > 0)
641 up->modndx = (up->maxsignal - up->noise) /
642 up->maxsignal;
643 else
644 up->modndx = 0;
645 if (up->modndx < MODMIN)
646 up->errflg |= IRIG_ERR_MOD;
647 if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ |
648 IRIG_ERR_MOD | IRIG_ERR_SYNCH)) {
649 up->tc = MINTC;
650 up->tcount = 0;
654 * Update PLL phase and frequency. The PLL time constant
655 * is set initially to stabilize the frequency within a
656 * minute or two, then increases to the maximum. The
657 * frequency is clamped so that the PLL capture range
658 * cannot be exceeded.
660 dtemp = up->zxing * up->decim / BAUD;
661 up->yxing = dtemp;
662 up->zxing = 0.;
663 up->phase += dtemp / up->tc;
664 up->freq += dtemp / (4. * up->tc * up->tc);
665 if (up->freq > MAXFREQ) {
666 up->freq = MAXFREQ;
667 up->errflg |= IRIG_ERR_FREQ;
668 } else if (up->freq < -MAXFREQ) {
669 up->freq = -MAXFREQ;
670 up->errflg |= IRIG_ERR_FREQ;
675 * Synchronous demodulator. There are eight samples in the cycle
676 * and ten cycles in the baud. Since the PLL has aligned the
677 * negative-going zero crossing at sample 4, the maximum
678 * amplitude is at sample 2 and minimum at sample 6. The
679 * beginning of the data pulse is determined from the integrated
680 * samples, while the end of the pulse is determined from the
681 * raw samples. The raw data bits are demodulated relative to
682 * the slice level and left-shifted in the decoding register.
684 if (carphase != 7)
685 return;
687 lope = (up->lastint[2] - up->lastint[6]) / 2.;
688 if (lope > up->intmax)
689 up->intmax = lope;
690 if (lope < up->intmin)
691 up->intmin = lope;
694 * Pulse code demodulator and reference timestamp. The decoder
695 * looks for a sequence of ten bits; the first two bits must be
696 * one, the last two bits must be zero. Frame synch is asserted
697 * when three correct frames have been found.
699 up->pulse = (up->pulse + 1) % 10;
700 up->cycles <<= 1;
701 if (lope >= (up->maxsignal + up->noise) / 2.)
702 up->cycles |= 1;
703 if ((up->cycles & 0x303c0f03) == 0x300c0300) {
704 if (up->pulse != 0)
705 up->errflg |= IRIG_ERR_SYNCH;
706 up->pulse = 0;
710 * Assemble the baud and max/min to get the slice level for the
711 * next baud. The slice level is based on the maximum over the
712 * first two bits and the minimum over the last two bits, with
713 * the slice level halfway between the maximum and minimum.
715 env = (up->lastenv[2] - up->lastenv[6]) / 2.;
716 up->dcycles <<= 1;
717 if (env >= up->slice)
718 up->dcycles |= 1;
719 switch(up->pulse) {
721 case 0:
722 irig_baud(peer, up->dcycles);
723 if (env < up->envmin)
724 up->envmin = env;
725 up->slice = (up->envmax + up->envmin) / 2;
726 up->envmin = 1e6; up->envmax = -1e6;
727 break;
729 case 1:
730 up->envmax = env;
731 break;
733 case 2:
734 if (env > up->envmax)
735 up->envmax = env;
736 break;
738 case 9:
739 up->envmin = env;
740 break;
745 * irig_baud - update the PLL and decode the pulse-width signal
747 static void
748 irig_baud(
749 struct peer *peer, /* peer structure pointer */
750 int bits /* decoded bits */
753 struct refclockproc *pp;
754 struct irigunit *up;
755 double dtemp;
756 l_fp ltemp;
758 pp = peer->procptr;
759 up = (struct irigunit *)pp->unitptr;
762 * The PLL time constant starts out small, in order to
763 * sustain a frequency tolerance of 250 PPM. It
764 * gradually increases as the loop settles down. Note
765 * that small wiggles are not believed, unless they
766 * persist for lots of samples.
768 up->exing = -up->yxing;
769 if (fabs(up->envxing - up->envphase) <= 1) {
770 up->tcount++;
771 if (up->tcount > 20 * up->tc) {
772 up->tc++;
773 if (up->tc > MAXTC)
774 up->tc = MAXTC;
775 up->tcount = 0;
776 up->envxing = up->envphase;
777 } else {
778 up->exing -= up->envxing - up->envphase;
780 } else {
781 up->tcount = 0;
782 up->envxing = up->envphase;
786 * Strike the baud timestamp as the positive zero crossing of
787 * the first bit, accounting for the codec delay and filter
788 * delay.
790 up->prvstamp = up->chrstamp;
791 dtemp = up->decim * (up->exing / SECOND) + up->fdelay;
792 DTOLFP(dtemp, &ltemp);
793 up->chrstamp = up->timestamp;
794 L_SUB(&up->chrstamp, &ltemp);
797 * The data bits are collected in ten-bit bauds. The first two
798 * bits are not used. The resulting patterns represent runs of
799 * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining
800 * 8-bit run represents a soft error and is treated as 0.
802 switch (up->dcycles & 0xff) {
804 case 0x00: /* 0-1 bits (0) */
805 case 0x80:
806 irig_decode(peer, BIT0);
807 break;
809 case 0xc0: /* 2-4 bits (1) */
810 case 0xe0:
811 case 0xf0:
812 irig_decode(peer, BIT1);
813 break;
815 case 0xf8: /* (5-7 bits (PI) */
816 case 0xfc:
817 case 0xfe:
818 irig_decode(peer, BITP);
819 break;
821 default: /* 8 bits (error) */
822 irig_decode(peer, BIT0);
823 up->errflg |= IRIG_ERR_DECODE;
829 * irig_decode - decode the data
831 * This routine assembles bauds into digits, digits into frames and
832 * frames into the timecode fields. Bits can have values of zero, one
833 * or position identifier. There are four bits per digit, ten digits per
834 * frame and ten frames per second.
836 static void
837 irig_decode(
838 struct peer *peer, /* peer structure pointer */
839 int bit /* data bit (0, 1 or 2) */
842 struct refclockproc *pp;
843 struct irigunit *up;
846 * Local variables
848 int syncdig; /* sync digit (Spectracom) */
849 char sbs[6]; /* binary seconds since 0h */
850 char spare[2]; /* mulligan digits */
851 int temp;
853 pp = peer->procptr;
854 up = (struct irigunit *)pp->unitptr;
857 * Assemble frame bits.
859 up->bits >>= 1;
860 if (bit == BIT1) {
861 up->bits |= 0x200;
862 } else if (bit == BITP && up->lastbit == BITP) {
865 * Frame sync - two adjacent position identifiers, which
866 * mark the beginning of the second. The reference time
867 * is the beginning of the second position identifier,
868 * so copy the character timestamp to the reference
869 * timestamp.
871 if (up->frmcnt != 1)
872 up->errflg |= IRIG_ERR_SYNCH;
873 up->frmcnt = 1;
874 up->refstamp = up->prvstamp;
876 up->lastbit = bit;
877 if (up->frmcnt % SUBFLD == 0) {
880 * End of frame. Encode two hexadecimal digits in
881 * little-endian timecode field. Note frame 1 is shifted
882 * right one bit to account for the marker PI.
884 temp = up->bits;
885 if (up->frmcnt == 10)
886 temp >>= 1;
887 if (up->xptr >= 2) {
888 up->timecode[--up->xptr] = hexchar[temp & 0xf];
889 up->timecode[--up->xptr] = hexchar[(temp >> 5) &
890 0xf];
892 if (up->frmcnt == 0) {
895 * End of second. Decode the timecode and wind
896 * the clock. Not all IRIG generators have the
897 * year; if so, it is nonzero after year 2000.
898 * Not all have the hardware status bit; if so,
899 * it is lit when the source is okay and dim
900 * when bad. We watch this only if the year is
901 * nonzero. Not all are configured for signature
902 * control. If so, all BCD digits are set to
903 * zero if the source is bad. In this case the
904 * refclock_process() will reject the timecode
905 * as invalid.
907 up->xptr = 2 * SUBFLD;
908 if (sscanf((char *)up->timecode,
909 "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year,
910 &syncdig, spare, &pp->day, &pp->hour,
911 &pp->minute, &pp->second) != 8)
912 pp->leap = LEAP_NOTINSYNC;
913 else
914 pp->leap = LEAP_NOWARNING;
915 up->second = (up->second + up->decim) % 60;
918 * Raise an alarm if the day field is zero,
919 * which happens when signature control is
920 * enabled and the device has lost
921 * synchronization. Raise an alarm if the year
922 * field is nonzero and the sync indicator is
923 * zero, which happens when a Spectracom radio
924 * has lost synchronization. Raise an alarm if
925 * the expected second does not agree with the
926 * decoded second, which happens with a garbled
927 * IRIG signal. We are very particular.
929 if (pp->day == 0 || (pp->year != 0 && syncdig ==
931 up->errflg |= IRIG_ERR_SIGERR;
932 if (pp->second != up->second)
933 up->errflg |= IRIG_ERR_CHECK;
934 up->second = pp->second;
937 * Wind the clock only if there are no errors
938 * and the time constant has reached the
939 * maximum.
941 if (up->errflg == 0 && up->tc == MAXTC) {
942 pp->lastref = pp->lastrec;
943 pp->lastrec = up->refstamp;
944 if (!refclock_process(pp))
945 refclock_report(peer,
946 CEVNT_BADTIME);
948 sprintf(pp->a_lastcode,
949 "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s",
950 up->errflg, pp->year, pp->day,
951 pp->hour, pp->minute, pp->second,
952 up->maxsignal, up->gain, up->modndx,
953 up->tc, up->exing * 1e6 / SECOND, up->freq *
954 1e6 / SECOND, ulfptoa(&pp->lastrec, 6));
955 pp->lencode = strlen(pp->a_lastcode);
956 up->errflg = 0;
957 if (pp->sloppyclockflag & CLK_FLAG4) {
958 record_clock_stats(&peer->srcadr,
959 pp->a_lastcode);
960 #ifdef DEBUG
961 if (debug)
962 printf("irig %s\n",
963 pp->a_lastcode);
964 #endif /* DEBUG */
968 up->frmcnt = (up->frmcnt + 1) % FIELD;
973 * irig_poll - called by the transmit procedure
975 * This routine sweeps up the timecode updates since the last poll. For
976 * IRIG-B there should be at least 60 updates; for IRIG-E there should
977 * be at least 6. If nothing is heard, a timeout event is declared.
979 static void
980 irig_poll(
981 int unit, /* instance number (not used) */
982 struct peer *peer /* peer structure pointer */
985 struct refclockproc *pp;
986 struct irigunit *up;
988 pp = peer->procptr;
989 up = (struct irigunit *)pp->unitptr;
991 if (pp->coderecv == pp->codeproc) {
992 refclock_report(peer, CEVNT_TIMEOUT);
993 return;
996 refclock_receive(peer);
997 if (!(pp->sloppyclockflag & CLK_FLAG4)) {
998 record_clock_stats(&peer->srcadr, pp->a_lastcode);
999 #ifdef DEBUG
1000 if (debug)
1001 printf("irig %s\n", pp->a_lastcode);
1002 #endif /* DEBUG */
1004 pp->polls++;
1010 * irig_gain - adjust codec gain
1012 * This routine is called at the end of each second. It uses the AGC to
1013 * bradket the maximum signal level between MINAMP and MAXAMP to avoid
1014 * hunting. The routine also jiggles the input port and selectively
1015 * mutes the monitor.
1017 static void
1018 irig_gain(
1019 struct peer *peer /* peer structure pointer */
1022 struct refclockproc *pp;
1023 struct irigunit *up;
1025 pp = peer->procptr;
1026 up = (struct irigunit *)pp->unitptr;
1029 * Apparently, the codec uses only the high order bits of the
1030 * gain control field. Thus, it may take awhile for changes to
1031 * wiggle the hardware bits.
1033 if (up->maxsignal < MINAMP) {
1034 up->gain += 4;
1035 if (up->gain > MAXGAIN)
1036 up->gain = MAXGAIN;
1037 } else if (up->maxsignal > MAXAMP) {
1038 up->gain -= 4;
1039 if (up->gain < 0)
1040 up->gain = 0;
1042 audio_gain(up->gain, up->mongain, up->port);
1046 #else
1047 int refclock_irig_bs;
1048 #endif /* REFCLOCK */