Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / bsd / ntp / dist / util / jitter.h
blobf7aa50c1a7a7c9a8fe06ca25cc2f2a75b535d476
1 /* $NetBSD$ */
3 /*
4 * ntp_types.h - defines how int32 and u_int32 are treated.
5 * For 64 bit systems like the DEC Alpha, they have to be defined
6 * as int and u_int.
7 * For 32 bit systems, define them as long and u_long
8 */
9 #define SIZEOF_INT 4
12 * VMS DECC (v4.1), {u_char,u_short,u_long} are only in SOCKET.H,
13 * and u_int isn't defined anywhere
15 #if defined(VMS)
16 #include <socket.h>
17 typedef unsigned int u_int;
19 * Note: VMS DECC has long == int (even on __alpha),
20 * so the distinction below doesn't matter
22 #endif /* VMS */
24 #if (SIZEOF_INT == 4)
25 # ifndef int32
26 # define int32 int
27 # endif
28 # ifndef u_int32
29 # define u_int32 unsigned int
30 # endif
31 #else /* not sizeof(int) == 4 */
32 # if (SIZEOF_LONG == 4)
33 # else /* not sizeof(long) == 4 */
34 # ifndef int32
35 # define int32 long
36 # endif
37 # ifndef u_int32
38 # define u_int32 unsigned long
39 # endif
40 # endif /* not sizeof(long) == 4 */
41 # include "Bletch: what's 32 bits on this machine?"
42 #endif /* not sizeof(int) == 4 */
44 typedef unsigned short associd_t; /* association ID */
45 typedef u_int32 keyid_t; /* cryptographic key ID */
46 typedef u_int32 tstamp_t; /* NTP seconds timestamp */
49 * NTP uses two fixed point formats. The first (l_fp) is the "long"
50 * format and is 64 bits long with the decimal between bits 31 and 32.
51 * This is used for time stamps in the NTP packet header (in network
52 * byte order) and for internal computations of offsets (in local host
53 * byte order). We use the same structure for both signed and unsigned
54 * values, which is a big hack but saves rewriting all the operators
55 * twice. Just to confuse this, we also sometimes just carry the
56 * fractional part in calculations, in both signed and unsigned forms.
57 * Anyway, an l_fp looks like:
59 * 0 1 2 3
60 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
61 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
62 * | Integral Part |
63 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
64 * | Fractional Part |
65 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
68 typedef struct {
69 union {
70 u_int32 Xl_ui;
71 int32 Xl_i;
72 } Ul_i;
73 union {
74 u_int32 Xl_uf;
75 int32 Xl_f;
76 } Ul_f;
77 } l_fp;
79 #define l_ui Ul_i.Xl_ui /* unsigned integral part */
80 #define l_i Ul_i.Xl_i /* signed integral part */
81 #define l_uf Ul_f.Xl_uf /* unsigned fractional part */
82 #define l_f Ul_f.Xl_f /* signed fractional part */
85 * Fractional precision (of an l_fp) is actually the number of
86 * bits in a long.
88 #define FRACTION_PREC (32)
92 * The second fixed point format is 32 bits, with the decimal between
93 * bits 15 and 16. There is a signed version (s_fp) and an unsigned
94 * version (u_fp). This is used to represent synchronizing distance
95 * and synchronizing dispersion in the NTP packet header (again, in
96 * network byte order) and internally to hold both distance and
97 * dispersion values (in local byte order). In network byte order
98 * it looks like:
100 * 0 1 2 3
101 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
102 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
103 * | Integer Part | Fraction Part |
104 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
107 typedef int32 s_fp;
108 typedef u_int32 u_fp;
111 * A unit second in fp format. Actually 2**(half_the_bits_in_a_long)
113 #define FP_SECOND (0x10000)
116 * Byte order conversions
118 #define HTONS_FP(x) (htonl(x))
119 #define HTONL_FP(h, n) do { (n)->l_ui = htonl((h)->l_ui); \
120 (n)->l_uf = htonl((h)->l_uf); } while (0)
121 #define NTOHS_FP(x) (ntohl(x))
122 #define NTOHL_FP(n, h) do { (h)->l_ui = ntohl((n)->l_ui); \
123 (h)->l_uf = ntohl((n)->l_uf); } while (0)
124 #define NTOHL_MFP(ni, nf, hi, hf) \
125 do { (hi) = ntohl(ni); (hf) = ntohl(nf); } while (0)
126 #define HTONL_MFP(hi, hf, ni, nf) \
127 do { (ni) = ntohl(hi); (nf) = ntohl(hf); } while (0)
129 /* funny ones. Converts ts fractions to net order ts */
130 #define HTONL_UF(uf, nts) \
131 do { (nts)->l_ui = 0; (nts)->l_uf = htonl(uf); } while (0)
132 #define HTONL_F(f, nts) do { (nts)->l_uf = htonl(f); \
133 if ((f) & 0x80000000) \
134 (nts)->l_i = -1; \
135 else \
136 (nts)->l_i = 0; \
137 } while (0)
140 * Conversions between the two fixed point types
142 #define MFPTOFP(x_i, x_f) (((x_i) >= 0x00010000) ? 0x7fffffff : \
143 (((x_i) <= -0x00010000) ? 0x80000000 : \
144 (((x_i)<<16) | (((x_f)>>16)&0xffff))))
145 #define LFPTOFP(v) MFPTOFP((v)->l_i, (v)->l_f)
147 #define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16)
148 #define FPTOLFP(x, v) (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0)
150 #define MAXLFP(v) ((v)->l_ui = 0x7fffffff, (v)->l_uf = 0xffffffff)
151 #define MINLFP(v) ((v)->l_ui = 0x80000000, (v)->l_uf = 0)
154 * Primitive operations on long fixed point values. If these are
155 * reminiscent of assembler op codes it's only because some may
156 * be replaced by inline assembler for particular machines someday.
157 * These are the (kind of inefficient) run-anywhere versions.
159 #define M_NEG(v_i, v_f) /* v = -v */ \
160 do { \
161 if ((v_f) == 0) \
162 (v_i) = -((s_fp)(v_i)); \
163 else { \
164 (v_f) = -((s_fp)(v_f)); \
165 (v_i) = ~(v_i); \
167 } while(0)
169 #define M_NEGM(r_i, r_f, a_i, a_f) /* r = -a */ \
170 do { \
171 if ((a_f) == 0) { \
172 (r_f) = 0; \
173 (r_i) = -(a_i); \
174 } else { \
175 (r_f) = -(a_f); \
176 (r_i) = ~(a_i); \
178 } while(0)
180 #define M_ADD(r_i, r_f, a_i, a_f) /* r += a */ \
181 do { \
182 register u_int32 lo_tmp; \
183 register u_int32 hi_tmp; \
185 lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
186 hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
187 if (lo_tmp & 0x10000) \
188 hi_tmp++; \
189 (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
191 (r_i) += (a_i); \
192 if (hi_tmp & 0x10000) \
193 (r_i)++; \
194 } while (0)
196 #define M_ADD3(r_ovr, r_i, r_f, a_ovr, a_i, a_f) /* r += a, three word */ \
197 do { \
198 register u_int32 lo_tmp; \
199 register u_int32 hi_tmp; \
201 lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \
202 hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \
203 if (lo_tmp & 0x10000) \
204 hi_tmp++; \
205 (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
207 lo_tmp = ((r_i) & 0xffff) + ((a_i) & 0xffff); \
208 if (hi_tmp & 0x10000) \
209 lo_tmp++; \
210 hi_tmp = (((r_i) >> 16) & 0xffff) + (((a_i) >> 16) & 0xffff); \
211 if (lo_tmp & 0x10000) \
212 hi_tmp++; \
213 (r_i) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
215 (r_ovr) += (a_ovr); \
216 if (hi_tmp & 0x10000) \
217 (r_ovr)++; \
218 } while (0)
220 #define M_SUB(r_i, r_f, a_i, a_f) /* r -= a */ \
221 do { \
222 register u_int32 lo_tmp; \
223 register u_int32 hi_tmp; \
225 if ((a_f) == 0) { \
226 (r_i) -= (a_i); \
227 } else { \
228 lo_tmp = ((r_f) & 0xffff) + ((-((s_fp)(a_f))) & 0xffff); \
229 hi_tmp = (((r_f) >> 16) & 0xffff) \
230 + (((-((s_fp)(a_f))) >> 16) & 0xffff); \
231 if (lo_tmp & 0x10000) \
232 hi_tmp++; \
233 (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \
235 (r_i) += ~(a_i); \
236 if (hi_tmp & 0x10000) \
237 (r_i)++; \
239 } while (0)
241 #define M_RSHIFTU(v_i, v_f) /* v >>= 1, v is unsigned */ \
242 do { \
243 (v_f) = (u_int32)(v_f) >> 1; \
244 if ((v_i) & 01) \
245 (v_f) |= 0x80000000; \
246 (v_i) = (u_int32)(v_i) >> 1; \
247 } while (0)
249 #define M_RSHIFT(v_i, v_f) /* v >>= 1, v is signed */ \
250 do { \
251 (v_f) = (u_int32)(v_f) >> 1; \
252 if ((v_i) & 01) \
253 (v_f) |= 0x80000000; \
254 if ((v_i) & 0x80000000) \
255 (v_i) = ((v_i) >> 1) | 0x80000000; \
256 else \
257 (v_i) = (v_i) >> 1; \
258 } while (0)
260 #define M_LSHIFT(v_i, v_f) /* v <<= 1 */ \
261 do { \
262 (v_i) <<= 1; \
263 if ((v_f) & 0x80000000) \
264 (v_i) |= 0x1; \
265 (v_f) <<= 1; \
266 } while (0)
268 #define M_LSHIFT3(v_ovr, v_i, v_f) /* v <<= 1, with overflow */ \
269 do { \
270 (v_ovr) <<= 1; \
271 if ((v_i) & 0x80000000) \
272 (v_ovr) |= 0x1; \
273 (v_i) <<= 1; \
274 if ((v_f) & 0x80000000) \
275 (v_i) |= 0x1; \
276 (v_f) <<= 1; \
277 } while (0)
279 #define M_ADDUF(r_i, r_f, uf) /* r += uf, uf is u_int32 fraction */ \
280 M_ADD((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */
282 #define M_SUBUF(r_i, r_f, uf) /* r -= uf, uf is u_int32 fraction */ \
283 M_SUB((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */
285 #define M_ADDF(r_i, r_f, f) /* r += f, f is a int32 fraction */ \
286 do { \
287 if ((f) > 0) \
288 M_ADD((r_i), (r_f), 0, (f)); \
289 else if ((f) < 0) \
290 M_ADD((r_i), (r_f), (-1), (f));\
291 } while(0)
293 #define M_ISNEG(v_i, v_f) /* v < 0 */ \
294 (((v_i) & 0x80000000) != 0)
296 #define M_ISHIS(a_i, a_f, b_i, b_f) /* a >= b unsigned */ \
297 (((u_int32)(a_i)) > ((u_int32)(b_i)) || \
298 ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
300 #define M_ISGEQ(a_i, a_f, b_i, b_f) /* a >= b signed */ \
301 (((int32)(a_i)) > ((int32)(b_i)) || \
302 ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f))))
304 #define M_ISEQU(a_i, a_f, b_i, b_f) /* a == b unsigned */ \
305 ((a_i) == (b_i) && (a_f) == (b_f))
308 * Operations on the long fp format
310 #define L_ADD(r, a) M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
311 #define L_SUB(r, a) M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf)
312 #define L_NEG(v) M_NEG((v)->l_ui, (v)->l_uf)
313 #define L_ADDUF(r, uf) M_ADDUF((r)->l_ui, (r)->l_uf, (uf))
314 #define L_SUBUF(r, uf) M_SUBUF((r)->l_ui, (r)->l_uf, (uf))
315 #define L_ADDF(r, f) M_ADDF((r)->l_ui, (r)->l_uf, (f))
316 #define L_RSHIFT(v) M_RSHIFT((v)->l_i, (v)->l_uf)
317 #define L_RSHIFTU(v) M_RSHIFT((v)->l_ui, (v)->l_uf)
318 #define L_LSHIFT(v) M_LSHIFT((v)->l_ui, (v)->l_uf)
319 #define L_CLR(v) ((v)->l_ui = (v)->l_uf = 0)
321 #define L_ISNEG(v) (((v)->l_ui & 0x80000000) != 0)
322 #define L_ISZERO(v) ((v)->l_ui == 0 && (v)->l_uf == 0)
323 #define L_ISHIS(a, b) ((a)->l_ui > (b)->l_ui || \
324 ((a)->l_ui == (b)->l_ui && (a)->l_uf >= (b)->l_uf))
325 #define L_ISGEQ(a, b) ((a)->l_i > (b)->l_i || \
326 ((a)->l_i == (b)->l_i && (a)->l_uf >= (b)->l_uf))
327 #define L_ISEQU(a, b) M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf)
330 * s_fp/double and u_fp/double conversions
332 #define FRIC 65536. /* 2^16 as a double */
333 #define DTOFP(r) ((s_fp)((r) * FRIC))
334 #define DTOUFP(r) ((u_fp)((r) * FRIC))
335 #define FPTOD(r) ((double)(r) / FRIC)
338 * l_fp/double conversions
340 #define FRAC 4294967296. /* 2^32 as a double */
341 #define M_DTOLFP(d, r_i, r_uf) /* double to l_fp */ \
342 do { \
343 register double d_tmp; \
345 d_tmp = (d); \
346 if (d_tmp < 0) { \
347 d_tmp = -d_tmp; \
348 (r_i) = (int32)(d_tmp); \
349 (r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
350 M_NEG((r_i), (r_uf)); \
351 } else { \
352 (r_i) = (int32)(d_tmp); \
353 (r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \
355 } while (0)
356 #define M_LFPTOD(r_i, r_uf, d) /* l_fp to double */ \
357 do { \
358 register l_fp l_tmp; \
360 l_tmp.l_i = (r_i); \
361 l_tmp.l_f = (r_uf); \
362 if (l_tmp.l_i < 0) { \
363 M_NEG(l_tmp.l_i, l_tmp.l_uf); \
364 (d) = -((double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC); \
365 } else { \
366 (d) = (double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC; \
368 } while (0)
369 #define DTOLFP(d, v) M_DTOLFP((d), (v)->l_ui, (v)->l_uf)
370 #define LFPTOD(v, d) M_LFPTOD((v)->l_ui, (v)->l_uf, (d))
373 * Prototypes
375 #if 0
376 extern char * dofptoa (u_fp, int, short, int);
377 extern char * dolfptoa (u_long, u_long, int, short, int);
378 #endif
380 extern int atolfp (const char *, l_fp *);
381 extern int buftvtots (const char *, l_fp *);
382 extern char * fptoa (s_fp, short);
383 extern char * fptoms (s_fp, short);
384 extern int hextolfp (const char *, l_fp *);
385 extern void gpstolfp (int, int, unsigned long, l_fp *);
386 extern int mstolfp (const char *, l_fp *);
387 extern char * prettydate (l_fp *);
388 extern char * gmprettydate (l_fp *);
389 extern char * uglydate (l_fp *);
390 extern void mfp_mul (int32 *, u_int32 *, int32, u_int32, int32, u_int32);
392 extern void get_systime (l_fp *);
393 extern int step_systime (double);
394 extern int adj_systime (double);
396 #define lfptoa(_fpv, _ndec) mfptoa((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
397 #define lfptoms(_fpv, _ndec) mfptoms((_fpv)->l_ui, (_fpv)->l_uf, (_ndec))
399 #define ufptoa(_fpv, _ndec) dofptoa((_fpv), 0, (_ndec), 0)
400 #define ufptoms(_fpv, _ndec) dofptoa((_fpv), 0, (_ndec), 1)
401 #define ulfptoa(_fpv, _ndec) dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 0)
402 #define ulfptoms(_fpv, _ndec) dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 1)
403 #define umfptoa(_fpi, _fpf, _ndec) dolfptoa((_fpi), (_fpf), 0, (_ndec), 0)