Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / bsd / openldap / dist / servers / slapd / entry.c
blobc18310ed50d81697faf54288371c16aa6585175e
1 /* entry.c - routines for dealing with entries */
2 /* $OpenLDAP: pkg/ldap/servers/slapd/entry.c,v 1.148.2.7 2008/02/11 23:43:39 quanah Exp $ */
3 /* This work is part of OpenLDAP Software <http://www.openldap.org/>.
5 * Copyright 1998-2008 The OpenLDAP Foundation.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted only as authorized by the OpenLDAP
10 * Public License.
12 * A copy of this license is available in the file LICENSE in the
13 * top-level directory of the distribution or, alternatively, at
14 * <http://www.OpenLDAP.org/license.html>.
16 /* Portions Copyright (c) 1995 Regents of the University of Michigan.
17 * All rights reserved.
19 * Redistribution and use in source and binary forms are permitted
20 * provided that this notice is preserved and that due credit is given
21 * to the University of Michigan at Ann Arbor. The name of the University
22 * may not be used to endorse or promote products derived from this
23 * software without specific prior written permission. This software
24 * is provided ``as is'' without express or implied warranty.
27 #include "portable.h"
29 #include <stdio.h>
31 #include <ac/ctype.h>
32 #include <ac/errno.h>
33 #include <ac/socket.h>
34 #include <ac/string.h>
36 #include "slap.h"
37 #include "ldif.h"
39 static char *ebuf; /* buf returned by entry2str */
40 static char *ecur; /* pointer to end of currently used ebuf */
41 static int emaxsize;/* max size of ebuf */
44 * Empty root entry
46 const Entry slap_entry_root = {
47 NOID, { 0, "" }, { 0, "" }, NULL, 0, { 0, "" }, NULL
51 * these mutexes must be used when calling the entry2str()
52 * routine since it returns a pointer to static data.
54 ldap_pvt_thread_mutex_t entry2str_mutex;
56 static const struct berval dn_bv = BER_BVC("dn");
59 * Entry free list
61 * Allocate in chunks, minimum of 1000 at a time.
63 #define CHUNK_SIZE 1000
64 typedef struct slap_list {
65 struct slap_list *next;
66 } slap_list;
67 static slap_list *entry_chunks;
68 static Entry *entry_list;
69 static ldap_pvt_thread_mutex_t entry_mutex;
71 int entry_destroy(void)
73 slap_list *e;
74 if ( ebuf ) free( ebuf );
75 ebuf = NULL;
76 ecur = NULL;
77 emaxsize = 0;
79 for ( e=entry_chunks; e; e=entry_chunks ) {
80 entry_chunks = e->next;
81 free( e );
84 ldap_pvt_thread_mutex_destroy( &entry_mutex );
85 ldap_pvt_thread_mutex_destroy( &entry2str_mutex );
86 return attr_destroy();
89 int
90 entry_init(void)
92 ldap_pvt_thread_mutex_init( &entry2str_mutex );
93 ldap_pvt_thread_mutex_init( &entry_mutex );
94 return attr_init();
97 Entry *
98 str2entry( char *s )
100 return str2entry2( s, 1 );
103 #define bvcasematch(bv1, bv2) (ber_bvstrcasecmp(bv1, bv2) == 0)
105 Entry *
106 str2entry2( char *s, int checkvals )
108 int rc;
109 Entry *e;
110 struct berval *type, *vals, *nvals;
111 char *freeval;
112 AttributeDescription *ad, *ad_prev;
113 const char *text;
114 char *next;
115 int attr_cnt;
116 int i, lines;
117 Attribute ahead, *atail;
120 * LDIF is used as the string format.
121 * An entry looks like this:
123 * dn: <dn>\n
124 * [<attr>:[:] <value>\n]
125 * [<tab><continuedvalue>\n]*
126 * ...
128 * If a double colon is used after a type, it means the
129 * following value is encoded as a base 64 string. This
130 * happens if the value contains a non-printing character
131 * or newline.
134 Debug( LDAP_DEBUG_TRACE, "=> str2entry: \"%s\"\n",
135 s ? s : "NULL", 0, 0 );
137 e = entry_alloc();
139 if( e == NULL ) {
140 Debug( LDAP_DEBUG_ANY,
141 "<= str2entry NULL (entry allocation failed)\n",
142 0, 0, 0 );
143 return( NULL );
146 /* initialize entry */
147 e->e_id = NOID;
149 /* dn + attributes */
150 atail = &ahead;
151 ahead.a_next = NULL;
152 ad = NULL;
153 ad_prev = NULL;
154 attr_cnt = 0;
155 next = s;
157 lines = ldif_countlines( s );
158 type = ch_calloc( 1, (lines+1)*3*sizeof(struct berval)+lines );
159 vals = type+lines+1;
160 nvals = vals+lines+1;
161 freeval = (char *)(nvals+lines+1);
162 i = -1;
164 /* parse into individual values, record DN */
165 while ( (s = ldif_getline( &next )) != NULL ) {
166 int freev;
167 if ( *s == '\n' || *s == '\0' ) {
168 break;
170 i++;
171 if (i >= lines) {
172 Debug( LDAP_DEBUG_TRACE,
173 "<= str2entry ran past end of entry\n", 0, 0, 0 );
174 goto fail;
177 rc = ldif_parse_line2( s, type+i, vals+i, &freev );
178 freeval[i] = freev;
179 if ( rc ) {
180 Debug( LDAP_DEBUG_TRACE,
181 "<= str2entry NULL (parse_line)\n", 0, 0, 0 );
182 continue;
185 if ( bvcasematch( &type[i], &dn_bv ) ) {
186 if ( e->e_dn != NULL ) {
187 Debug( LDAP_DEBUG_ANY, "str2entry: "
188 "entry %ld has multiple DNs \"%s\" and \"%s\"\n",
189 (long) e->e_id, e->e_dn, vals[i].bv_val );
190 goto fail;
193 rc = dnPrettyNormal( NULL, &vals[i], &e->e_name, &e->e_nname, NULL );
194 if( rc != LDAP_SUCCESS ) {
195 Debug( LDAP_DEBUG_ANY, "str2entry: "
196 "entry %ld has invalid DN \"%s\"\n",
197 (long) e->e_id, vals[i].bv_val, 0 );
198 goto fail;
200 if ( freeval[i] ) free( vals[i].bv_val );
201 vals[i].bv_val = NULL;
202 i--;
203 continue;
206 lines = i+1;
208 /* check to make sure there was a dn: line */
209 if ( BER_BVISNULL( &e->e_name )) {
210 Debug( LDAP_DEBUG_ANY, "str2entry: entry %ld has no dn\n",
211 (long) e->e_id, 0, 0 );
212 goto fail;
215 /* Make sure all attributes with multiple values are contiguous */
216 if ( checkvals ) {
217 int j, k;
218 struct berval bv;
219 int fv;
221 for (i=0; i<lines; i++) {
222 for ( j=i+1; j<lines; j++ ) {
223 if ( bvcasematch( type+i, type+j )) {
224 /* out of order, move intervening attributes down */
225 if ( j != i+1 ) {
226 bv = vals[j];
227 fv = freeval[j];
228 for ( k=j; k>i; k-- ) {
229 type[k] = type[k-1];
230 vals[k] = vals[k-1];
231 freeval[k] = freeval[k-1];
233 k++;
234 type[k] = type[i];
235 vals[k] = bv;
236 freeval[k] = fv;
238 i++;
244 if ( lines > 0 ) {
245 for ( i=0; i<=lines; i++ ) {
246 ad_prev = ad;
247 if ( !ad || ( i<lines && !bvcasematch( type+i, &ad->ad_cname ))) {
248 ad = NULL;
249 rc = slap_bv2ad( type+i, &ad, &text );
251 if( rc != LDAP_SUCCESS ) {
252 Debug( slapMode & SLAP_TOOL_MODE
253 ? LDAP_DEBUG_ANY : LDAP_DEBUG_TRACE,
254 "<= str2entry: str2ad(%s): %s\n", type[i].bv_val, text, 0 );
255 if( slapMode & SLAP_TOOL_MODE ) {
256 goto fail;
259 rc = slap_bv2undef_ad( type+i, &ad, &text, 0 );
260 if( rc != LDAP_SUCCESS ) {
261 Debug( LDAP_DEBUG_ANY,
262 "<= str2entry: slap_str2undef_ad(%s): %s\n",
263 type[i].bv_val, text, 0 );
264 goto fail;
268 /* require ';binary' when appropriate (ITS#5071) */
269 if ( slap_syntax_is_binary( ad->ad_type->sat_syntax ) && !slap_ad_is_binary( ad ) ) {
270 Debug( LDAP_DEBUG_ANY,
271 "str2entry: attributeType %s #%d: "
272 "needs ';binary' transfer as per syntax %s\n",
273 ad->ad_cname.bv_val, 0,
274 ad->ad_type->sat_syntax->ssyn_oid );
275 goto fail;
279 if (( ad_prev && ad != ad_prev ) || ( i == lines )) {
280 int j, k;
281 /* FIXME: we only need this when migrating from an unsorted DB */
282 if ( atail != &ahead && atail->a_desc->ad_type->sat_flags & SLAP_AT_SORTED_VAL ) {
283 rc = slap_sort_vals( (Modifications *)atail, &text, &j, NULL );
284 if ( rc == LDAP_SUCCESS ) {
285 atail->a_flags |= SLAP_ATTR_SORTED_VALS;
286 } else if ( rc == LDAP_TYPE_OR_VALUE_EXISTS ) {
287 Debug( LDAP_DEBUG_ANY,
288 "str2entry: attributeType %s value #%d provided more than once\n",
289 atail->a_desc->ad_cname.bv_val, j, 0 );
290 goto fail;
293 atail->a_next = attr_alloc( NULL );
294 atail = atail->a_next;
295 atail->a_flags = 0;
296 atail->a_numvals = attr_cnt;
297 atail->a_desc = ad_prev;
298 atail->a_vals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval));
299 if( ad_prev->ad_type->sat_equality &&
300 ad_prev->ad_type->sat_equality->smr_normalize )
301 atail->a_nvals = ch_malloc( (attr_cnt + 1) * sizeof(struct berval));
302 else
303 atail->a_nvals = NULL;
304 k = i - attr_cnt;
305 for ( j=0; j<attr_cnt; j++ ) {
306 if ( freeval[k] )
307 atail->a_vals[j] = vals[k];
308 else
309 ber_dupbv( atail->a_vals+j, &vals[k] );
310 vals[k].bv_val = NULL;
311 if ( atail->a_nvals ) {
312 atail->a_nvals[j] = nvals[k];
313 nvals[k].bv_val = NULL;
315 k++;
317 BER_BVZERO( &atail->a_vals[j] );
318 if ( atail->a_nvals ) {
319 BER_BVZERO( &atail->a_nvals[j] );
320 } else {
321 atail->a_nvals = atail->a_vals;
323 attr_cnt = 0;
324 if ( i == lines ) break;
327 if ( BER_BVISNULL( &vals[i] ) ) {
328 Debug( LDAP_DEBUG_ANY,
329 "str2entry: attributeType %s #%d: "
330 "no value\n",
331 ad->ad_cname.bv_val, attr_cnt, 0 );
332 goto fail;
335 if( slapMode & SLAP_TOOL_MODE ) {
336 struct berval pval;
337 slap_syntax_validate_func *validate =
338 ad->ad_type->sat_syntax->ssyn_validate;
339 slap_syntax_transform_func *pretty =
340 ad->ad_type->sat_syntax->ssyn_pretty;
342 if ( pretty ) {
343 rc = ordered_value_pretty( ad,
344 &vals[i], &pval, NULL );
346 } else if ( validate ) {
348 * validate value per syntax
350 rc = ordered_value_validate( ad, &vals[i], LDAP_MOD_ADD );
352 } else {
353 Debug( LDAP_DEBUG_ANY,
354 "str2entry: attributeType %s #%d: "
355 "no validator for syntax %s\n",
356 ad->ad_cname.bv_val, attr_cnt,
357 ad->ad_type->sat_syntax->ssyn_oid );
358 goto fail;
361 if( rc != 0 ) {
362 Debug( LDAP_DEBUG_ANY,
363 "str2entry: invalid value "
364 "for attributeType %s #%d (syntax %s)\n",
365 ad->ad_cname.bv_val, attr_cnt,
366 ad->ad_type->sat_syntax->ssyn_oid );
367 goto fail;
370 if( pretty ) {
371 if ( freeval[i] ) free( vals[i].bv_val );
372 vals[i] = pval;
373 freeval[i] = 1;
377 if ( ad->ad_type->sat_equality &&
378 ad->ad_type->sat_equality->smr_normalize )
380 rc = ordered_value_normalize(
381 SLAP_MR_VALUE_OF_ATTRIBUTE_SYNTAX,
383 ad->ad_type->sat_equality,
384 &vals[i], &nvals[i], NULL );
386 if ( rc ) {
387 Debug( LDAP_DEBUG_ANY,
388 "<= str2entry NULL (smr_normalize %s %d)\n", ad->ad_cname.bv_val, rc, 0 );
389 goto fail;
393 attr_cnt++;
397 free( type );
398 atail->a_next = NULL;
399 e->e_attrs = ahead.a_next;
401 Debug(LDAP_DEBUG_TRACE, "<= str2entry(%s) -> 0x%lx\n",
402 e->e_dn, (unsigned long) e, 0 );
403 return( e );
405 fail:
406 for ( i=0; i<lines; i++ ) {
407 if ( freeval[i] ) free( vals[i].bv_val );
408 free( nvals[i].bv_val );
410 free( type );
411 entry_free( e );
412 return NULL;
416 #define GRABSIZE BUFSIZ
418 #define MAKE_SPACE( n ) { \
419 while ( ecur + (n) > ebuf + emaxsize ) { \
420 ptrdiff_t offset; \
421 offset = (int) (ecur - ebuf); \
422 ebuf = ch_realloc( ebuf, \
423 emaxsize + GRABSIZE ); \
424 emaxsize += GRABSIZE; \
425 ecur = ebuf + offset; \
429 char *
430 entry2str(
431 Entry *e,
432 int *len )
434 Attribute *a;
435 struct berval *bv;
436 int i;
437 ber_len_t tmplen;
439 assert( e != NULL );
442 * In string format, an entry looks like this:
443 * dn: <dn>\n
444 * [<attr>: <value>\n]*
447 ecur = ebuf;
449 /* put the dn */
450 if ( e->e_dn != NULL ) {
451 /* put "dn: <dn>" */
452 tmplen = e->e_name.bv_len;
453 MAKE_SPACE( LDIF_SIZE_NEEDED( 2, tmplen ));
454 ldif_sput( &ecur, LDIF_PUT_VALUE, "dn", e->e_dn, tmplen );
457 /* put the attributes */
458 for ( a = e->e_attrs; a != NULL; a = a->a_next ) {
459 /* put "<type>:[:] <value>" line for each value */
460 for ( i = 0; a->a_vals[i].bv_val != NULL; i++ ) {
461 bv = &a->a_vals[i];
462 tmplen = a->a_desc->ad_cname.bv_len;
463 MAKE_SPACE( LDIF_SIZE_NEEDED( tmplen, bv->bv_len ));
464 ldif_sput( &ecur, LDIF_PUT_VALUE,
465 a->a_desc->ad_cname.bv_val,
466 bv->bv_val, bv->bv_len );
469 MAKE_SPACE( 1 );
470 *ecur = '\0';
471 *len = ecur - ebuf;
473 return( ebuf );
476 void
477 entry_clean( Entry *e )
479 /* free an entry structure */
480 assert( e != NULL );
482 /* e_private must be freed by the caller */
483 assert( e->e_private == NULL );
485 e->e_id = 0;
487 /* free DNs */
488 if ( !BER_BVISNULL( &e->e_name ) ) {
489 free( e->e_name.bv_val );
490 BER_BVZERO( &e->e_name );
492 if ( !BER_BVISNULL( &e->e_nname ) ) {
493 free( e->e_nname.bv_val );
494 BER_BVZERO( &e->e_nname );
497 if ( !BER_BVISNULL( &e->e_bv ) ) {
498 free( e->e_bv.bv_val );
499 BER_BVZERO( &e->e_bv );
502 /* free attributes */
503 if ( e->e_attrs ) {
504 attrs_free( e->e_attrs );
505 e->e_attrs = NULL;
508 e->e_ocflags = 0;
511 void
512 entry_free( Entry *e )
514 entry_clean( e );
516 ldap_pvt_thread_mutex_lock( &entry_mutex );
517 e->e_private = entry_list;
518 entry_list = e;
519 ldap_pvt_thread_mutex_unlock( &entry_mutex );
522 /* These parameters work well on AMD64 */
523 #if 0
524 #define STRIDE 8
525 #define STRIPE 5
526 #else
527 #define STRIDE 1
528 #define STRIPE 1
529 #endif
530 #define STRIDE_FACTOR (STRIDE*STRIPE)
533 entry_prealloc( int num )
535 Entry *e, **prev, *tmp;
536 slap_list *s;
537 int i, j;
539 if (!num) return 0;
541 #if STRIDE_FACTOR > 1
542 /* Round up to our stride factor */
543 num += STRIDE_FACTOR-1;
544 num /= STRIDE_FACTOR;
545 num *= STRIDE_FACTOR;
546 #endif
548 s = ch_calloc( 1, sizeof(slap_list) + num * sizeof(Entry));
549 s->next = entry_chunks;
550 entry_chunks = s;
552 prev = &tmp;
553 for (i=0; i<STRIPE; i++) {
554 e = (Entry *)(s+1);
555 e += i;
556 for (j=i; j<num; j+= STRIDE) {
557 *prev = e;
558 prev = (Entry **)&e->e_private;
559 e += STRIDE;
562 *prev = entry_list;
563 entry_list = (Entry *)(s+1);
565 return 0;
568 Entry *
569 entry_alloc( void )
571 Entry *e;
573 ldap_pvt_thread_mutex_lock( &entry_mutex );
574 if ( !entry_list )
575 entry_prealloc( CHUNK_SIZE );
576 e = entry_list;
577 entry_list = e->e_private;
578 e->e_private = NULL;
579 ldap_pvt_thread_mutex_unlock( &entry_mutex );
581 return e;
586 * These routines are used only by Backend.
588 * the Entry has three entry points (ways to find things):
590 * by entry e.g., if you already have an entry from the cache
591 * and want to delete it. (really by entry ptr)
592 * by dn e.g., when looking for the base object of a search
593 * by id e.g., for search candidates
595 * these correspond to three different avl trees that are maintained.
599 entry_cmp( Entry *e1, Entry *e2 )
601 return SLAP_PTRCMP( e1, e2 );
605 entry_dn_cmp( const void *v_e1, const void *v_e2 )
607 /* compare their normalized UPPERCASED dn's */
608 const Entry *e1 = v_e1, *e2 = v_e2;
610 return ber_bvcmp( &e1->e_nname, &e2->e_nname );
614 entry_id_cmp( const void *v_e1, const void *v_e2 )
616 const Entry *e1 = v_e1, *e2 = v_e2;
617 return( e1->e_id < e2->e_id ? -1 : (e1->e_id > e2->e_id ? 1 : 0) );
620 /* This is like a ber_len */
621 #define entry_lenlen(l) (((l) < 0x80) ? 1 : ((l) < 0x100) ? 2 : \
622 ((l) < 0x10000) ? 3 : ((l) < 0x1000000) ? 4 : 5)
624 static void
625 entry_putlen(unsigned char **buf, ber_len_t len)
627 ber_len_t lenlen = entry_lenlen(len);
629 if (lenlen == 1) {
630 **buf = (unsigned char) len;
631 } else {
632 int i;
633 **buf = 0x80 | ((unsigned char) lenlen - 1);
634 for (i=lenlen-1; i>0; i--) {
635 (*buf)[i] = (unsigned char) len;
636 len >>= 8;
639 *buf += lenlen;
642 static ber_len_t
643 entry_getlen(unsigned char **buf)
645 ber_len_t len;
646 int i;
648 len = *(*buf)++;
649 if (len <= 0x7f)
650 return len;
651 i = len & 0x7f;
652 len = 0;
653 for (;i > 0; i--) {
654 len <<= 8;
655 len |= *(*buf)++;
657 return len;
660 /* Count up the sizes of the components of an entry */
661 void entry_partsize(Entry *e, ber_len_t *plen,
662 int *pnattrs, int *pnvals, int norm)
664 ber_len_t len, dnlen, ndnlen;
665 int i, nat = 0, nval = 0;
666 Attribute *a;
668 dnlen = e->e_name.bv_len;
669 len = dnlen + 1; /* trailing NUL byte */
670 len += entry_lenlen(dnlen);
671 if (norm) {
672 ndnlen = e->e_nname.bv_len;
673 len += ndnlen + 1;
674 len += entry_lenlen(ndnlen);
676 for (a=e->e_attrs; a; a=a->a_next) {
677 /* For AttributeDesc, we only store the attr name */
678 nat++;
679 len += a->a_desc->ad_cname.bv_len+1;
680 len += entry_lenlen(a->a_desc->ad_cname.bv_len);
681 for (i=0; a->a_vals[i].bv_val; i++) {
682 nval++;
683 len += a->a_vals[i].bv_len + 1;
684 len += entry_lenlen(a->a_vals[i].bv_len);
686 len += entry_lenlen(i);
687 nval++; /* empty berval at end */
688 if (norm && a->a_nvals != a->a_vals) {
689 for (i=0; a->a_nvals[i].bv_val; i++) {
690 nval++;
691 len += a->a_nvals[i].bv_len + 1;
692 len += entry_lenlen(a->a_nvals[i].bv_len);
694 len += entry_lenlen(i); /* i nvals */
695 nval++;
696 } else {
697 len += entry_lenlen(0); /* 0 nvals */
700 len += entry_lenlen(nat);
701 len += entry_lenlen(nval);
702 *plen = len;
703 *pnattrs = nat;
704 *pnvals = nval;
707 /* Add up the size of the entry for a flattened buffer */
708 ber_len_t entry_flatsize(Entry *e, int norm)
710 ber_len_t len;
711 int nattrs, nvals;
713 entry_partsize(e, &len, &nattrs, &nvals, norm);
714 len += sizeof(Entry) + (nattrs * sizeof(Attribute)) +
715 (nvals * sizeof(struct berval));
716 return len;
719 /* Flatten an Entry into a buffer. The buffer is filled with just the
720 * strings/bervals of all the entry components. Each field is preceded
721 * by its length, encoded the way ber_put_len works. Every field is NUL
722 * terminated. The entire buffer size is precomputed so that a single
723 * malloc can be performed. The entry size is also recorded,
724 * to aid in entry_decode.
726 int entry_encode(Entry *e, struct berval *bv)
728 ber_len_t len, dnlen, ndnlen;
729 int i, nattrs, nvals;
730 Attribute *a;
731 unsigned char *ptr;
733 Debug( LDAP_DEBUG_TRACE, "=> entry_encode(0x%08lx): %s\n",
734 (long) e->e_id, e->e_dn, 0 );
735 dnlen = e->e_name.bv_len;
736 ndnlen = e->e_nname.bv_len;
738 entry_partsize( e, &len, &nattrs, &nvals, 1 );
740 bv->bv_len = len;
741 bv->bv_val = ch_malloc(len);
742 ptr = (unsigned char *)bv->bv_val;
743 entry_putlen(&ptr, nattrs);
744 entry_putlen(&ptr, nvals);
745 entry_putlen(&ptr, dnlen);
746 AC_MEMCPY(ptr, e->e_dn, dnlen);
747 ptr += dnlen;
748 *ptr++ = '\0';
749 entry_putlen(&ptr, ndnlen);
750 AC_MEMCPY(ptr, e->e_ndn, ndnlen);
751 ptr += ndnlen;
752 *ptr++ = '\0';
754 for (a=e->e_attrs; a; a=a->a_next) {
755 entry_putlen(&ptr, a->a_desc->ad_cname.bv_len);
756 AC_MEMCPY(ptr, a->a_desc->ad_cname.bv_val,
757 a->a_desc->ad_cname.bv_len);
758 ptr += a->a_desc->ad_cname.bv_len;
759 *ptr++ = '\0';
760 if (a->a_vals) {
761 for (i=0; a->a_vals[i].bv_val; i++);
762 assert( i == a->a_numvals );
763 entry_putlen(&ptr, i);
764 for (i=0; a->a_vals[i].bv_val; i++) {
765 entry_putlen(&ptr, a->a_vals[i].bv_len);
766 AC_MEMCPY(ptr, a->a_vals[i].bv_val,
767 a->a_vals[i].bv_len);
768 ptr += a->a_vals[i].bv_len;
769 *ptr++ = '\0';
771 if (a->a_nvals != a->a_vals) {
772 entry_putlen(&ptr, i);
773 for (i=0; a->a_nvals[i].bv_val; i++) {
774 entry_putlen(&ptr, a->a_nvals[i].bv_len);
775 AC_MEMCPY(ptr, a->a_nvals[i].bv_val,
776 a->a_nvals[i].bv_len);
777 ptr += a->a_nvals[i].bv_len;
778 *ptr++ = '\0';
780 } else {
781 entry_putlen(&ptr, 0);
785 return 0;
788 /* Retrieve an Entry that was stored using entry_encode above.
789 * First entry_header must be called to decode the size of the entry.
790 * Then a single block of memory must be malloc'd to accomodate the
791 * bervals and the bulk data. Next the bulk data is retrieved from
792 * the DB and parsed by entry_decode.
794 * Note: everything is stored in a single contiguous block, so
795 * you can not free individual attributes or names from this
796 * structure. Attempting to do so will likely corrupt memory.
798 int entry_header(EntryHeader *eh)
800 unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
802 eh->nattrs = entry_getlen(&ptr);
803 if ( !eh->nattrs ) {
804 Debug( LDAP_DEBUG_ANY,
805 "entry_header: attribute count was zero\n", 0, 0, 0);
806 return LDAP_OTHER;
808 eh->nvals = entry_getlen(&ptr);
809 if ( !eh->nvals ) {
810 Debug( LDAP_DEBUG_ANY,
811 "entry_header: value count was zero\n", 0, 0, 0);
812 return LDAP_OTHER;
814 eh->data = (char *)ptr;
815 return LDAP_SUCCESS;
818 #ifdef SLAP_ZONE_ALLOC
819 int entry_decode(EntryHeader *eh, Entry **e, void *ctx)
820 #else
821 int entry_decode(EntryHeader *eh, Entry **e)
822 #endif
824 int i, j, nattrs, nvals;
825 int rc;
826 Attribute *a;
827 Entry *x;
828 const char *text;
829 AttributeDescription *ad;
830 unsigned char *ptr = (unsigned char *)eh->bv.bv_val;
831 BerVarray bptr;
833 nattrs = eh->nattrs;
834 nvals = eh->nvals;
835 x = entry_alloc();
836 x->e_attrs = attrs_alloc( nattrs );
837 ptr = (unsigned char *)eh->data;
838 i = entry_getlen(&ptr);
839 x->e_name.bv_val = (char *) ptr;
840 x->e_name.bv_len = i;
841 ptr += i+1;
842 i = entry_getlen(&ptr);
843 x->e_nname.bv_val = (char *) ptr;
844 x->e_nname.bv_len = i;
845 ptr += i+1;
846 Debug( LDAP_DEBUG_TRACE,
847 "entry_decode: \"%s\"\n",
848 x->e_dn, 0, 0 );
849 x->e_bv = eh->bv;
851 a = x->e_attrs;
852 bptr = (BerVarray)eh->bv.bv_val;
854 while ((i = entry_getlen(&ptr))) {
855 struct berval bv;
856 bv.bv_len = i;
857 bv.bv_val = (char *) ptr;
858 ad = NULL;
859 rc = slap_bv2ad( &bv, &ad, &text );
861 if( rc != LDAP_SUCCESS ) {
862 Debug( LDAP_DEBUG_TRACE,
863 "<= entry_decode: str2ad(%s): %s\n", ptr, text, 0 );
864 rc = slap_bv2undef_ad( &bv, &ad, &text, 0 );
866 if( rc != LDAP_SUCCESS ) {
867 Debug( LDAP_DEBUG_ANY,
868 "<= entry_decode: slap_str2undef_ad(%s): %s\n",
869 ptr, text, 0 );
870 return rc;
873 ptr += i + 1;
874 a->a_desc = ad;
875 a->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS;
876 j = entry_getlen(&ptr);
877 a->a_numvals = j;
878 a->a_vals = bptr;
880 while (j) {
881 i = entry_getlen(&ptr);
882 bptr->bv_len = i;
883 bptr->bv_val = (char *)ptr;
884 ptr += i+1;
885 bptr++;
886 j--;
888 bptr->bv_val = NULL;
889 bptr->bv_len = 0;
890 bptr++;
892 j = entry_getlen(&ptr);
893 if (j) {
894 a->a_nvals = bptr;
895 while (j) {
896 i = entry_getlen(&ptr);
897 bptr->bv_len = i;
898 bptr->bv_val = (char *)ptr;
899 ptr += i+1;
900 bptr++;
901 j--;
903 bptr->bv_val = NULL;
904 bptr->bv_len = 0;
905 bptr++;
906 } else {
907 a->a_nvals = a->a_vals;
909 /* FIXME: This is redundant once a sorted entry is saved into the DB */
910 if ( a->a_desc->ad_type->sat_flags & SLAP_AT_SORTED_VAL ) {
911 rc = slap_sort_vals( (Modifications *)a, &text, &j, NULL );
912 if ( rc == LDAP_SUCCESS ) {
913 a->a_flags |= SLAP_ATTR_SORTED_VALS;
914 } else if ( rc == LDAP_TYPE_OR_VALUE_EXISTS ) {
915 /* should never happen */
916 Debug( LDAP_DEBUG_ANY,
917 "entry_decode: attributeType %s value #%d provided more than once\n",
918 a->a_desc->ad_cname.bv_val, j, 0 );
919 return rc;
922 a = a->a_next;
923 nattrs--;
924 if ( !nattrs )
925 break;
928 Debug(LDAP_DEBUG_TRACE, "<= entry_decode(%s)\n",
929 x->e_dn, 0, 0 );
930 *e = x;
931 return 0;
934 Entry *entry_dup( Entry *e )
936 Entry *ret;
938 ret = entry_alloc();
940 ret->e_id = e->e_id;
941 ber_dupbv( &ret->e_name, &e->e_name );
942 ber_dupbv( &ret->e_nname, &e->e_nname );
943 ret->e_attrs = attrs_dup( e->e_attrs );
944 ret->e_ocflags = e->e_ocflags;
946 return ret;
949 #if 1
950 /* Duplicates an entry using a single malloc. Saves CPU time, increases
951 * heap usage because a single large malloc is harder to satisfy than
952 * lots of small ones, and the freed space isn't as easily reusable.
954 * Probably not worth using this function.
956 Entry *entry_dup_bv( Entry *e )
958 ber_len_t len;
959 int nattrs, nvals;
960 Entry *ret;
961 struct berval *bvl;
962 char *ptr;
963 Attribute *src, *dst;
965 ret = entry_alloc();
967 entry_partsize(e, &len, &nattrs, &nvals, 1);
968 ret->e_id = e->e_id;
969 ret->e_attrs = attrs_alloc( nattrs );
970 ret->e_ocflags = e->e_ocflags;
971 ret->e_bv.bv_len = len + nvals * sizeof(struct berval);
972 ret->e_bv.bv_val = ch_malloc( ret->e_bv.bv_len );
974 bvl = (struct berval *)ret->e_bv.bv_val;
975 ptr = (char *)(bvl + nvals);
977 ret->e_name.bv_len = e->e_name.bv_len;
978 ret->e_name.bv_val = ptr;
979 AC_MEMCPY( ptr, e->e_name.bv_val, e->e_name.bv_len );
980 ptr += e->e_name.bv_len;
981 *ptr++ = '\0';
983 ret->e_nname.bv_len = e->e_nname.bv_len;
984 ret->e_nname.bv_val = ptr;
985 AC_MEMCPY( ptr, e->e_nname.bv_val, e->e_nname.bv_len );
986 ptr += e->e_name.bv_len;
987 *ptr++ = '\0';
989 dst = ret->e_attrs;
990 for (src = e->e_attrs; src; src=src->a_next,dst=dst->a_next ) {
991 int i;
992 dst->a_desc = src->a_desc;
993 dst->a_flags = SLAP_ATTR_DONT_FREE_DATA | SLAP_ATTR_DONT_FREE_VALS;
994 dst->a_vals = bvl;
995 dst->a_numvals = src->a_numvals;
996 for ( i=0; src->a_vals[i].bv_val; i++ ) {
997 bvl->bv_len = src->a_vals[i].bv_len;
998 bvl->bv_val = ptr;
999 AC_MEMCPY( ptr, src->a_vals[i].bv_val, bvl->bv_len );
1000 ptr += bvl->bv_len;
1001 *ptr++ = '\0';
1002 bvl++;
1004 BER_BVZERO(bvl);
1005 bvl++;
1006 if ( src->a_vals != src->a_nvals ) {
1007 dst->a_nvals = bvl;
1008 for ( i=0; src->a_nvals[i].bv_val; i++ ) {
1009 bvl->bv_len = src->a_nvals[i].bv_len;
1010 bvl->bv_val = ptr;
1011 AC_MEMCPY( ptr, src->a_nvals[i].bv_val, bvl->bv_len );
1012 ptr += bvl->bv_len;
1013 *ptr++ = '\0';
1014 bvl++;
1016 BER_BVZERO(bvl);
1017 bvl++;
1020 return ret;
1022 #endif