Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / dist / cmd / zfs / zfs_iter.c
bloba22370a0279561f2b8082b7c38d06264f949c1f0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <libintl.h>
27 #include <libuutil.h>
28 #include <stddef.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <strings.h>
33 #include <libzfs.h>
35 #include "zfs_util.h"
36 #include "zfs_iter.h"
39 * This is a private interface used to gather up all the datasets specified on
40 * the command line so that we can iterate over them in order.
42 * First, we iterate over all filesystems, gathering them together into an
43 * AVL tree. We report errors for any explicitly specified datasets
44 * that we couldn't open.
46 * When finished, we have an AVL tree of ZFS handles. We go through and execute
47 * the provided callback for each one, passing whatever data the user supplied.
50 typedef struct zfs_node {
51 zfs_handle_t *zn_handle;
52 uu_avl_node_t zn_avlnode;
53 } zfs_node_t;
55 typedef struct callback_data {
56 uu_avl_t *cb_avl;
57 int cb_flags;
58 zfs_type_t cb_types;
59 zfs_sort_column_t *cb_sortcol;
60 zprop_list_t **cb_proplist;
61 } callback_data_t;
63 uu_avl_pool_t *avl_pool;
66 * Include snaps if they were requested or if this a zfs list where types
67 * were not specified and the "listsnapshots" property is set on this pool.
69 static int
70 zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb)
72 zpool_handle_t *zph;
74 if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0)
75 return (cb->cb_types & ZFS_TYPE_SNAPSHOT);
77 zph = zfs_get_pool_handle(zhp);
78 return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL));
82 * Called for each dataset. If the object is of an appropriate type,
83 * add it to the avl tree and recurse over any children as necessary.
85 static int
86 zfs_callback(zfs_handle_t *zhp, void *data)
88 callback_data_t *cb = data;
89 int dontclose = 0;
90 int include_snaps = zfs_include_snapshots(zhp, cb);
92 if ((zfs_get_type(zhp) & cb->cb_types) ||
93 ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) {
94 uu_avl_index_t idx;
95 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
97 node->zn_handle = zhp;
98 uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
99 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
100 &idx) == NULL) {
101 if (cb->cb_proplist &&
102 zfs_expand_proplist(zhp, cb->cb_proplist) != 0) {
103 free(node);
104 return (-1);
106 uu_avl_insert(cb->cb_avl, node, idx);
107 dontclose = 1;
108 } else {
109 free(node);
114 * Recurse if necessary.
116 if (cb->cb_flags & ZFS_ITER_RECURSE) {
117 if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM)
118 (void) zfs_iter_filesystems(zhp, zfs_callback, data);
119 if ((zfs_get_type(zhp) != ZFS_TYPE_SNAPSHOT) && include_snaps)
120 (void) zfs_iter_snapshots(zhp, zfs_callback, data);
123 if (!dontclose)
124 zfs_close(zhp);
126 return (0);
130 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
131 boolean_t reverse)
133 zfs_sort_column_t *col;
134 zfs_prop_t prop;
136 if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL &&
137 !zfs_prop_user(name))
138 return (-1);
140 col = safe_malloc(sizeof (zfs_sort_column_t));
142 col->sc_prop = prop;
143 col->sc_reverse = reverse;
144 if (prop == ZPROP_INVAL) {
145 col->sc_user_prop = safe_malloc(strlen(name) + 1);
146 (void) strcpy(col->sc_user_prop, name);
149 if (*sc == NULL) {
150 col->sc_last = col;
151 *sc = col;
152 } else {
153 (*sc)->sc_last->sc_next = col;
154 (*sc)->sc_last = col;
157 return (0);
160 void
161 zfs_free_sort_columns(zfs_sort_column_t *sc)
163 zfs_sort_column_t *col;
165 while (sc != NULL) {
166 col = sc->sc_next;
167 free(sc->sc_user_prop);
168 free(sc);
169 sc = col;
173 /* ARGSUSED */
174 static int
175 zfs_compare(const void *larg, const void *rarg, void *unused)
177 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
178 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
179 const char *lname = zfs_get_name(l);
180 const char *rname = zfs_get_name(r);
181 char *lat, *rat;
182 uint64_t lcreate, rcreate;
183 int ret;
185 lat = (char *)strchr(lname, '@');
186 rat = (char *)strchr(rname, '@');
188 if (lat != NULL)
189 *lat = '\0';
190 if (rat != NULL)
191 *rat = '\0';
193 ret = strcmp(lname, rname);
194 if (ret == 0) {
196 * If we're comparing a dataset to one of its snapshots, we
197 * always make the full dataset first.
199 if (lat == NULL) {
200 ret = -1;
201 } else if (rat == NULL) {
202 ret = 1;
203 } else {
205 * If we have two snapshots from the same dataset, then
206 * we want to sort them according to creation time. We
207 * use the hidden CREATETXG property to get an absolute
208 * ordering of snapshots.
210 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
211 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
213 if (lcreate < rcreate)
214 ret = -1;
215 else if (lcreate > rcreate)
216 ret = 1;
220 if (lat != NULL)
221 *lat = '@';
222 if (rat != NULL)
223 *rat = '@';
225 return (ret);
229 * Sort datasets by specified columns.
231 * o Numeric types sort in ascending order.
232 * o String types sort in alphabetical order.
233 * o Types inappropriate for a row sort that row to the literal
234 * bottom, regardless of the specified ordering.
236 * If no sort columns are specified, or two datasets compare equally
237 * across all specified columns, they are sorted alphabetically by name
238 * with snapshots grouped under their parents.
240 static int
241 zfs_sort(const void *larg, const void *rarg, void *data)
243 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
244 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
245 zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
246 zfs_sort_column_t *psc;
248 for (psc = sc; psc != NULL; psc = psc->sc_next) {
249 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
250 char *lstr, *rstr;
251 uint64_t lnum, rnum;
252 boolean_t lvalid, rvalid;
253 int ret = 0;
256 * We group the checks below the generic code. If 'lstr' and
257 * 'rstr' are non-NULL, then we do a string based comparison.
258 * Otherwise, we compare 'lnum' and 'rnum'.
260 lstr = rstr = NULL;
261 if (psc->sc_prop == ZPROP_INVAL) {
262 nvlist_t *luser, *ruser;
263 nvlist_t *lval, *rval;
265 luser = zfs_get_user_props(l);
266 ruser = zfs_get_user_props(r);
268 lvalid = (nvlist_lookup_nvlist(luser,
269 psc->sc_user_prop, &lval) == 0);
270 rvalid = (nvlist_lookup_nvlist(ruser,
271 psc->sc_user_prop, &rval) == 0);
273 if (lvalid)
274 verify(nvlist_lookup_string(lval,
275 ZPROP_VALUE, &lstr) == 0);
276 if (rvalid)
277 verify(nvlist_lookup_string(rval,
278 ZPROP_VALUE, &rstr) == 0);
280 } else if (zfs_prop_is_string(psc->sc_prop)) {
281 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
282 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
283 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
284 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
286 lstr = lbuf;
287 rstr = rbuf;
288 } else {
289 lvalid = zfs_prop_valid_for_type(psc->sc_prop,
290 zfs_get_type(l));
291 rvalid = zfs_prop_valid_for_type(psc->sc_prop,
292 zfs_get_type(r));
294 if (lvalid)
295 (void) zfs_prop_get_numeric(l, psc->sc_prop,
296 &lnum, NULL, NULL, 0);
297 if (rvalid)
298 (void) zfs_prop_get_numeric(r, psc->sc_prop,
299 &rnum, NULL, NULL, 0);
302 if (!lvalid && !rvalid)
303 continue;
304 else if (!lvalid)
305 return (1);
306 else if (!rvalid)
307 return (-1);
309 if (lstr)
310 ret = strcmp(lstr, rstr);
311 else if (lnum < rnum)
312 ret = -1;
313 else if (lnum > rnum)
314 ret = 1;
316 if (ret != 0) {
317 if (psc->sc_reverse == B_TRUE)
318 ret = (ret < 0) ? 1 : -1;
319 return (ret);
323 return (zfs_compare(larg, rarg, NULL));
327 zfs_for_each(int argc, char **argv, int flags, zfs_type_t types,
328 zfs_sort_column_t *sortcol, zprop_list_t **proplist,
329 zfs_iter_f callback, void *data)
331 callback_data_t cb;
332 int ret = 0;
333 zfs_node_t *node;
334 uu_avl_walk_t *walk;
336 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
337 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
339 if (avl_pool == NULL) {
340 (void) fprintf(stderr,
341 gettext("internal error: out of memory\n"));
342 exit(1);
345 cb.cb_sortcol = sortcol;
346 cb.cb_flags = flags;
347 cb.cb_proplist = proplist;
348 cb.cb_types = types;
349 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) {
350 (void) fprintf(stderr,
351 gettext("internal error: out of memory\n"));
352 exit(1);
355 if (argc == 0) {
357 * If given no arguments, iterate over all datasets.
359 cb.cb_flags |= ZFS_ITER_RECURSE;
360 ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
361 } else {
362 int i;
363 zfs_handle_t *zhp;
364 zfs_type_t argtype;
367 * If we're recursive, then we always allow filesystems as
368 * arguments. If we also are interested in snapshots, then we
369 * can take volumes as well.
371 argtype = types;
372 if (flags & ZFS_ITER_RECURSE) {
373 argtype |= ZFS_TYPE_FILESYSTEM;
374 if (types & ZFS_TYPE_SNAPSHOT)
375 argtype |= ZFS_TYPE_VOLUME;
378 for (i = 0; i < argc; i++) {
379 if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) {
380 zhp = zfs_path_to_zhandle(g_zfs, argv[i],
381 argtype);
382 } else {
383 zhp = zfs_open(g_zfs, argv[i], argtype);
385 if (zhp != NULL)
386 ret |= zfs_callback(zhp, &cb);
387 else
388 ret = 1;
393 * At this point we've got our AVL tree full of zfs handles, so iterate
394 * over each one and execute the real user callback.
396 for (node = uu_avl_first(cb.cb_avl); node != NULL;
397 node = uu_avl_next(cb.cb_avl, node))
398 ret |= callback(node->zn_handle, data);
401 * Finally, clean up the AVL tree.
403 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) {
404 (void) fprintf(stderr,
405 gettext("internal error: out of memory"));
406 exit(1);
409 while ((node = uu_avl_walk_next(walk)) != NULL) {
410 uu_avl_remove(cb.cb_avl, node);
411 zfs_close(node->zn_handle);
412 free(node);
415 uu_avl_walk_end(walk);
416 uu_avl_destroy(cb.cb_avl);
417 uu_avl_pool_destroy(avl_pool);
419 return (ret);