Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / dist / cmd / ztest / ztest.c
blob53cc6c7093b727508f2efd750e7d2b750dedeb31
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * The objective of this program is to provide a DMU/ZAP/SPA stress test
28 * that runs entirely in userland, is easy to use, and easy to extend.
30 * The overall design of the ztest program is as follows:
32 * (1) For each major functional area (e.g. adding vdevs to a pool,
33 * creating and destroying datasets, reading and writing objects, etc)
34 * we have a simple routine to test that functionality. These
35 * individual routines do not have to do anything "stressful".
37 * (2) We turn these simple functionality tests into a stress test by
38 * running them all in parallel, with as many threads as desired,
39 * and spread across as many datasets, objects, and vdevs as desired.
41 * (3) While all this is happening, we inject faults into the pool to
42 * verify that self-healing data really works.
44 * (4) Every time we open a dataset, we change its checksum and compression
45 * functions. Thus even individual objects vary from block to block
46 * in which checksum they use and whether they're compressed.
48 * (5) To verify that we never lose on-disk consistency after a crash,
49 * we run the entire test in a child of the main process.
50 * At random times, the child self-immolates with a SIGKILL.
51 * This is the software equivalent of pulling the power cord.
52 * The parent then runs the test again, using the existing
53 * storage pool, as many times as desired.
55 * (6) To verify that we don't have future leaks or temporal incursions,
56 * many of the functional tests record the transaction group number
57 * as part of their data. When reading old data, they verify that
58 * the transaction group number is less than the current, open txg.
59 * If you add a new test, please do this if applicable.
61 * When run with no arguments, ztest runs for about five minutes and
62 * produces no output if successful. To get a little bit of information,
63 * specify -V. To get more information, specify -VV, and so on.
65 * To turn this into an overnight stress test, use -T to specify run time.
67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
68 * to increase the pool capacity, fanout, and overall stress level.
70 * The -N(okill) option will suppress kills, so each child runs to completion.
71 * This can be useful when you're trying to distinguish temporal incursions
72 * from plain old race conditions.
75 #include <sys/zfs_context.h>
76 #include <sys/spa.h>
77 #include <sys/dmu.h>
78 #include <sys/txg.h>
79 #include <sys/zap.h>
80 #include <sys/dmu_objset.h>
81 #include <sys/poll.h>
82 #include <sys/stat.h>
83 #include <sys/time.h>
84 #include <sys/wait.h>
85 #include <sys/mman.h>
86 #include <sys/resource.h>
87 #include <sys/zio.h>
88 #include <sys/zio_checksum.h>
89 #include <sys/zio_compress.h>
90 #include <sys/zil.h>
91 #include <sys/vdev_impl.h>
92 #include <sys/vdev_file.h>
93 #include <sys/spa_impl.h>
94 #include <sys/dsl_prop.h>
95 #include <sys/refcount.h>
96 #include <stdio.h>
97 #include <stdio_ext.h>
98 #include <stdlib.h>
99 #include <unistd.h>
100 #include <signal.h>
101 #include <umem.h>
102 #include <dlfcn.h>
103 #include <ctype.h>
104 #include <math.h>
105 #include <sys/fs/zfs.h>
107 static char cmdname[] = "ztest";
108 static char *zopt_pool = cmdname;
110 static uint64_t zopt_vdevs = 5;
111 static uint64_t zopt_vdevtime;
112 static int zopt_ashift = SPA_MINBLOCKSHIFT;
113 static int zopt_mirrors = 2;
114 static int zopt_raidz = 4;
115 static int zopt_raidz_parity = 1;
116 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
117 static int zopt_datasets = 7;
118 static int zopt_threads = 23;
119 static uint64_t zopt_passtime = 60; /* 60 seconds */
120 static uint64_t zopt_killrate = 70; /* 70% kill rate */
121 static int zopt_verbose = 0;
122 static int zopt_init = 1;
123 static char *zopt_dir = "/tmp";
124 static uint64_t zopt_time = 300; /* 5 minutes */
125 static int zopt_maxfaults;
127 typedef struct ztest_block_tag {
128 uint64_t bt_objset;
129 uint64_t bt_object;
130 uint64_t bt_offset;
131 uint64_t bt_txg;
132 uint64_t bt_thread;
133 uint64_t bt_seq;
134 } ztest_block_tag_t;
136 typedef struct ztest_args {
137 char za_pool[MAXNAMELEN];
138 spa_t *za_spa;
139 objset_t *za_os;
140 zilog_t *za_zilog;
141 thread_t za_thread;
142 uint64_t za_instance;
143 uint64_t za_random;
144 uint64_t za_diroff;
145 uint64_t za_diroff_shared;
146 uint64_t za_zil_seq;
147 hrtime_t za_start;
148 hrtime_t za_stop;
149 hrtime_t za_kill;
151 * Thread-local variables can go here to aid debugging.
153 ztest_block_tag_t za_rbt;
154 ztest_block_tag_t za_wbt;
155 dmu_object_info_t za_doi;
156 dmu_buf_t *za_dbuf;
157 } ztest_args_t;
159 typedef void ztest_func_t(ztest_args_t *);
162 * Note: these aren't static because we want dladdr() to work.
164 ztest_func_t ztest_dmu_read_write;
165 ztest_func_t ztest_dmu_write_parallel;
166 ztest_func_t ztest_dmu_object_alloc_free;
167 ztest_func_t ztest_zap;
168 ztest_func_t ztest_zap_parallel;
169 ztest_func_t ztest_traverse;
170 ztest_func_t ztest_dsl_prop_get_set;
171 ztest_func_t ztest_dmu_objset_create_destroy;
172 ztest_func_t ztest_dmu_snapshot_create_destroy;
173 ztest_func_t ztest_spa_create_destroy;
174 ztest_func_t ztest_fault_inject;
175 ztest_func_t ztest_spa_rename;
176 ztest_func_t ztest_vdev_attach_detach;
177 ztest_func_t ztest_vdev_LUN_growth;
178 ztest_func_t ztest_vdev_add_remove;
179 ztest_func_t ztest_vdev_aux_add_remove;
180 ztest_func_t ztest_scrub;
182 typedef struct ztest_info {
183 ztest_func_t *zi_func; /* test function */
184 uint64_t zi_iters; /* iterations per execution */
185 uint64_t *zi_interval; /* execute every <interval> seconds */
186 uint64_t zi_calls; /* per-pass count */
187 uint64_t zi_call_time; /* per-pass time */
188 uint64_t zi_call_total; /* cumulative total */
189 uint64_t zi_call_target; /* target cumulative total */
190 } ztest_info_t;
192 uint64_t zopt_always = 0; /* all the time */
193 uint64_t zopt_often = 1; /* every second */
194 uint64_t zopt_sometimes = 10; /* every 10 seconds */
195 uint64_t zopt_rarely = 60; /* every 60 seconds */
197 ztest_info_t ztest_info[] = {
198 { ztest_dmu_read_write, 1, &zopt_always },
199 { ztest_dmu_write_parallel, 30, &zopt_always },
200 { ztest_dmu_object_alloc_free, 1, &zopt_always },
201 { ztest_zap, 30, &zopt_always },
202 { ztest_zap_parallel, 100, &zopt_always },
203 { ztest_dsl_prop_get_set, 1, &zopt_sometimes },
204 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes },
205 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
206 { ztest_spa_create_destroy, 1, &zopt_sometimes },
207 { ztest_fault_inject, 1, &zopt_sometimes },
208 { ztest_spa_rename, 1, &zopt_rarely },
209 { ztest_vdev_attach_detach, 1, &zopt_rarely },
210 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
211 { ztest_vdev_add_remove, 1, &zopt_vdevtime },
212 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime },
213 { ztest_scrub, 1, &zopt_vdevtime },
216 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
218 #define ZTEST_SYNC_LOCKS 16
221 * Stuff we need to share writably between parent and child.
223 typedef struct ztest_shared {
224 mutex_t zs_vdev_lock;
225 rwlock_t zs_name_lock;
226 uint64_t zs_vdev_primaries;
227 uint64_t zs_vdev_aux;
228 uint64_t zs_enospc_count;
229 hrtime_t zs_start_time;
230 hrtime_t zs_stop_time;
231 uint64_t zs_alloc;
232 uint64_t zs_space;
233 ztest_info_t zs_info[ZTEST_FUNCS];
234 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS];
235 uint64_t zs_seq[ZTEST_SYNC_LOCKS];
236 } ztest_shared_t;
238 static char ztest_dev_template[] = "%s/%s.%llua";
239 static char ztest_aux_template[] = "%s/%s.%s.%llu";
240 static ztest_shared_t *ztest_shared;
242 static int ztest_random_fd;
243 static int ztest_dump_core = 1;
245 static boolean_t ztest_exiting;
247 extern uint64_t metaslab_gang_bang;
249 #define ZTEST_DIROBJ 1
250 #define ZTEST_MICROZAP_OBJ 2
251 #define ZTEST_FATZAP_OBJ 3
253 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10)
254 #define ZTEST_DIRSIZE 256
256 static void usage(boolean_t) __NORETURN;
259 * These libumem hooks provide a reasonable set of defaults for the allocator's
260 * debugging facilities.
262 const char *
263 _umem_debug_init()
265 return ("default,verbose"); /* $UMEM_DEBUG setting */
268 const char *
269 _umem_logging_init(void)
271 return ("fail,contents"); /* $UMEM_LOGGING setting */
274 #define FATAL_MSG_SZ 1024
276 char *fatal_msg;
278 static void
279 fatal(int do_perror, char *message, ...)
281 va_list args;
282 int save_errno = errno;
283 char buf[FATAL_MSG_SZ];
285 (void) fflush(stdout);
287 va_start(args, message);
288 (void) sprintf(buf, "ztest: ");
289 /* LINTED */
290 (void) vsprintf(buf + strlen(buf), message, args);
291 va_end(args);
292 if (do_perror) {
293 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
294 ": %s", strerror(save_errno));
296 (void) fprintf(stderr, "%s\n", buf);
297 fatal_msg = buf; /* to ease debugging */
298 if (ztest_dump_core)
299 abort();
300 exit(3);
303 static int
304 str2shift(const char *buf)
306 const char *ends = "BKMGTPEZ";
307 int i;
309 if (buf[0] == '\0')
310 return (0);
311 for (i = 0; i < strlen(ends); i++) {
312 if (toupper(buf[0]) == ends[i])
313 break;
315 if (i == strlen(ends)) {
316 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
317 buf);
318 usage(B_FALSE);
320 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
321 return (10*i);
323 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
324 usage(B_FALSE);
325 /* NOTREACHED */
328 static uint64_t
329 nicenumtoull(const char *buf)
331 char *end;
332 uint64_t val;
334 val = strtoull(buf, &end, 0);
335 if (end == buf) {
336 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
337 usage(B_FALSE);
338 } else if (end[0] == '.') {
339 double fval = strtod(buf, &end);
340 fval *= pow(2, str2shift(end));
341 if (fval > UINT64_MAX) {
342 (void) fprintf(stderr, "ztest: value too large: %s\n",
343 buf);
344 usage(B_FALSE);
346 val = (uint64_t)fval;
347 } else {
348 int shift = str2shift(end);
349 if (shift >= 64 || (val << shift) >> shift != val) {
350 (void) fprintf(stderr, "ztest: value too large: %s\n",
351 buf);
352 usage(B_FALSE);
354 val <<= shift;
356 return (val);
359 static void
360 usage(boolean_t requested)
362 char nice_vdev_size[10];
363 char nice_gang_bang[10];
364 FILE *fp = requested ? stdout : stderr;
366 nicenum(zopt_vdev_size, nice_vdev_size);
367 nicenum(metaslab_gang_bang, nice_gang_bang);
369 (void) fprintf(fp, "Usage: %s\n"
370 "\t[-v vdevs (default: %llu)]\n"
371 "\t[-s size_of_each_vdev (default: %s)]\n"
372 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n"
373 "\t[-m mirror_copies (default: %d)]\n"
374 "\t[-r raidz_disks (default: %d)]\n"
375 "\t[-R raidz_parity (default: %d)]\n"
376 "\t[-d datasets (default: %d)]\n"
377 "\t[-t threads (default: %d)]\n"
378 "\t[-g gang_block_threshold (default: %s)]\n"
379 "\t[-i initialize pool i times (default: %d)]\n"
380 "\t[-k kill percentage (default: %llu%%)]\n"
381 "\t[-p pool_name (default: %s)]\n"
382 "\t[-f file directory for vdev files (default: %s)]\n"
383 "\t[-V(erbose)] (use multiple times for ever more blather)\n"
384 "\t[-E(xisting)] (use existing pool instead of creating new one)\n"
385 "\t[-T time] total run time (default: %llu sec)\n"
386 "\t[-P passtime] time per pass (default: %llu sec)\n"
387 "\t[-h] (print help)\n"
389 cmdname,
390 (u_longlong_t)zopt_vdevs, /* -v */
391 nice_vdev_size, /* -s */
392 zopt_ashift, /* -a */
393 zopt_mirrors, /* -m */
394 zopt_raidz, /* -r */
395 zopt_raidz_parity, /* -R */
396 zopt_datasets, /* -d */
397 zopt_threads, /* -t */
398 nice_gang_bang, /* -g */
399 zopt_init, /* -i */
400 (u_longlong_t)zopt_killrate, /* -k */
401 zopt_pool, /* -p */
402 zopt_dir, /* -f */
403 (u_longlong_t)zopt_time, /* -T */
404 (u_longlong_t)zopt_passtime); /* -P */
405 exit(requested ? 0 : 1);
408 static uint64_t
409 ztest_random(uint64_t range)
411 uint64_t r;
413 if (range == 0)
414 return (0);
416 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
417 fatal(1, "short read from /dev/urandom");
419 return (r % range);
422 static void
423 ztest_record_enospc(char *s)
425 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>");
426 ztest_shared->zs_enospc_count++;
429 static void
430 process_options(int argc, char **argv)
432 int opt;
433 uint64_t value;
435 /* By default, test gang blocks for blocks 32K and greater */
436 metaslab_gang_bang = 32 << 10;
438 while ((opt = getopt(argc, argv,
439 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) {
440 value = 0;
441 switch (opt) {
442 case 'v':
443 case 's':
444 case 'a':
445 case 'm':
446 case 'r':
447 case 'R':
448 case 'd':
449 case 't':
450 case 'g':
451 case 'i':
452 case 'k':
453 case 'T':
454 case 'P':
455 value = nicenumtoull(optarg);
457 switch (opt) {
458 case 'v':
459 zopt_vdevs = value;
460 break;
461 case 's':
462 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
463 break;
464 case 'a':
465 zopt_ashift = value;
466 break;
467 case 'm':
468 zopt_mirrors = value;
469 break;
470 case 'r':
471 zopt_raidz = MAX(1, value);
472 break;
473 case 'R':
474 zopt_raidz_parity = MIN(MAX(value, 1), 2);
475 break;
476 case 'd':
477 zopt_datasets = MAX(1, value);
478 break;
479 case 't':
480 zopt_threads = MAX(1, value);
481 break;
482 case 'g':
483 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
484 break;
485 case 'i':
486 zopt_init = value;
487 break;
488 case 'k':
489 zopt_killrate = value;
490 break;
491 case 'p':
492 zopt_pool = strdup(optarg);
493 break;
494 case 'f':
495 zopt_dir = strdup(optarg);
496 break;
497 case 'V':
498 zopt_verbose++;
499 break;
500 case 'E':
501 zopt_init = 0;
502 break;
503 case 'T':
504 zopt_time = value;
505 break;
506 case 'P':
507 zopt_passtime = MAX(1, value);
508 break;
509 case 'h':
510 usage(B_TRUE);
511 break;
512 case '?':
513 default:
514 usage(B_FALSE);
515 break;
519 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
521 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX);
522 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1;
525 static uint64_t
526 ztest_get_ashift(void)
528 if (zopt_ashift == 0)
529 return (SPA_MINBLOCKSHIFT + ztest_random(3));
530 return (zopt_ashift);
533 static nvlist_t *
534 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
536 char pathbuf[MAXPATHLEN];
537 uint64_t vdev;
538 nvlist_t *file;
540 if (ashift == 0)
541 ashift = ztest_get_ashift();
543 if (path == NULL) {
544 path = pathbuf;
546 if (aux != NULL) {
547 vdev = ztest_shared->zs_vdev_aux;
548 (void) sprintf(path, ztest_aux_template,
549 zopt_dir, zopt_pool, aux, vdev);
550 } else {
551 vdev = ztest_shared->zs_vdev_primaries++;
552 (void) sprintf(path, ztest_dev_template,
553 zopt_dir, zopt_pool, vdev);
557 if (size != 0) {
558 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
559 if (fd == -1)
560 fatal(1, "can't open %s", path);
561 if (ftruncate(fd, size) != 0)
562 fatal(1, "can't ftruncate %s", path);
563 (void) close(fd);
566 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
567 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
568 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
569 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
571 return (file);
574 static nvlist_t *
575 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
577 nvlist_t *raidz, **child;
578 int c;
580 if (r < 2)
581 return (make_vdev_file(path, aux, size, ashift));
582 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
584 for (c = 0; c < r; c++)
585 child[c] = make_vdev_file(path, aux, size, ashift);
587 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
588 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
589 VDEV_TYPE_RAIDZ) == 0);
590 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
591 zopt_raidz_parity) == 0);
592 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
593 child, r) == 0);
595 for (c = 0; c < r; c++)
596 nvlist_free(child[c]);
598 umem_free(child, r * sizeof (nvlist_t *));
600 return (raidz);
603 static nvlist_t *
604 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
605 int r, int m)
607 nvlist_t *mirror, **child;
608 int c;
610 if (m < 1)
611 return (make_vdev_raidz(path, aux, size, ashift, r));
613 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
615 for (c = 0; c < m; c++)
616 child[c] = make_vdev_raidz(path, aux, size, ashift, r);
618 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
619 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
620 VDEV_TYPE_MIRROR) == 0);
621 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
622 child, m) == 0);
624 for (c = 0; c < m; c++)
625 nvlist_free(child[c]);
627 umem_free(child, m * sizeof (nvlist_t *));
629 return (mirror);
632 static nvlist_t *
633 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
634 int log, int r, int m, int t)
636 nvlist_t *root, **child;
637 int c;
639 ASSERT(t > 0);
641 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
643 for (c = 0; c < t; c++) {
644 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
645 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
646 log) == 0);
649 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
650 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
651 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
652 child, t) == 0);
654 for (c = 0; c < t; c++)
655 nvlist_free(child[c]);
657 umem_free(child, t * sizeof (nvlist_t *));
659 return (root);
662 static void
663 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx)
665 int bs = SPA_MINBLOCKSHIFT +
666 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1);
667 int ibs = DN_MIN_INDBLKSHIFT +
668 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1);
669 int error;
671 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx);
672 if (error) {
673 char osname[300];
674 dmu_objset_name(os, osname);
675 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d",
676 osname, object, 1 << bs, ibs, error);
680 static uint8_t
681 ztest_random_checksum(void)
683 uint8_t checksum;
685 do {
686 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS);
687 } while (zio_checksum_table[checksum].ci_zbt);
689 if (checksum == ZIO_CHECKSUM_OFF)
690 checksum = ZIO_CHECKSUM_ON;
692 return (checksum);
695 static uint8_t
696 ztest_random_compress(void)
698 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS));
701 typedef struct ztest_replay {
702 objset_t *zr_os;
703 uint64_t zr_assign;
704 } ztest_replay_t;
706 static int
707 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap)
709 objset_t *os = zr->zr_os;
710 dmu_tx_t *tx;
711 int error;
713 if (byteswap)
714 byteswap_uint64_array(lr, sizeof (*lr));
716 tx = dmu_tx_create(os);
717 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
718 error = dmu_tx_assign(tx, zr->zr_assign);
719 if (error) {
720 dmu_tx_abort(tx);
721 return (error);
724 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0,
725 DMU_OT_NONE, 0, tx);
726 ASSERT3U(error, ==, 0);
727 dmu_tx_commit(tx);
729 if (zopt_verbose >= 5) {
730 char osname[MAXNAMELEN];
731 dmu_objset_name(os, osname);
732 (void) printf("replay create of %s object %llu"
733 " in txg %llu = %d\n",
734 osname, (u_longlong_t)lr->lr_doid,
735 (u_longlong_t)zr->zr_assign, error);
738 return (error);
741 static int
742 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap)
744 objset_t *os = zr->zr_os;
745 dmu_tx_t *tx;
746 int error;
748 if (byteswap)
749 byteswap_uint64_array(lr, sizeof (*lr));
751 tx = dmu_tx_create(os);
752 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END);
753 error = dmu_tx_assign(tx, zr->zr_assign);
754 if (error) {
755 dmu_tx_abort(tx);
756 return (error);
759 error = dmu_object_free(os, lr->lr_doid, tx);
760 dmu_tx_commit(tx);
762 return (error);
765 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
766 NULL, /* 0 no such transaction type */
767 ztest_replay_create, /* TX_CREATE */
768 NULL, /* TX_MKDIR */
769 NULL, /* TX_MKXATTR */
770 NULL, /* TX_SYMLINK */
771 ztest_replay_remove, /* TX_REMOVE */
772 NULL, /* TX_RMDIR */
773 NULL, /* TX_LINK */
774 NULL, /* TX_RENAME */
775 NULL, /* TX_WRITE */
776 NULL, /* TX_TRUNCATE */
777 NULL, /* TX_SETATTR */
778 NULL, /* TX_ACL */
782 * Verify that we can't destroy an active pool, create an existing pool,
783 * or create a pool with a bad vdev spec.
785 void
786 ztest_spa_create_destroy(ztest_args_t *za)
788 int error;
789 spa_t *spa;
790 nvlist_t *nvroot;
793 * Attempt to create using a bad file.
795 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
796 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL);
797 nvlist_free(nvroot);
798 if (error != ENOENT)
799 fatal(0, "spa_create(bad_file) = %d", error);
802 * Attempt to create using a bad mirror.
804 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
805 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL);
806 nvlist_free(nvroot);
807 if (error != ENOENT)
808 fatal(0, "spa_create(bad_mirror) = %d", error);
811 * Attempt to create an existing pool. It shouldn't matter
812 * what's in the nvroot; we should fail with EEXIST.
814 (void) rw_rdlock(&ztest_shared->zs_name_lock);
815 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
816 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL);
817 nvlist_free(nvroot);
818 if (error != EEXIST)
819 fatal(0, "spa_create(whatever) = %d", error);
821 error = spa_open(za->za_pool, &spa, FTAG);
822 if (error)
823 fatal(0, "spa_open() = %d", error);
825 error = spa_destroy(za->za_pool);
826 if (error != EBUSY)
827 fatal(0, "spa_destroy() = %d", error);
829 spa_close(spa, FTAG);
830 (void) rw_unlock(&ztest_shared->zs_name_lock);
833 static vdev_t *
834 vdev_lookup_by_path(vdev_t *vd, const char *path)
836 vdev_t *mvd;
838 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
839 return (vd);
841 for (int c = 0; c < vd->vdev_children; c++)
842 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
843 NULL)
844 return (mvd);
846 return (NULL);
850 * Verify that vdev_add() works as expected.
852 void
853 ztest_vdev_add_remove(ztest_args_t *za)
855 spa_t *spa = za->za_spa;
856 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
857 nvlist_t *nvroot;
858 int error;
860 (void) mutex_lock(&ztest_shared->zs_vdev_lock);
862 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
864 ztest_shared->zs_vdev_primaries =
865 spa->spa_root_vdev->vdev_children * leaves;
867 spa_config_exit(spa, SCL_VDEV, FTAG);
870 * Make 1/4 of the devices be log devices.
872 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
873 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1);
875 error = spa_vdev_add(spa, nvroot);
876 nvlist_free(nvroot);
878 (void) mutex_unlock(&ztest_shared->zs_vdev_lock);
880 if (error == ENOSPC)
881 ztest_record_enospc("spa_vdev_add");
882 else if (error != 0)
883 fatal(0, "spa_vdev_add() = %d", error);
887 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
889 void
890 ztest_vdev_aux_add_remove(ztest_args_t *za)
892 spa_t *spa = za->za_spa;
893 vdev_t *rvd = spa->spa_root_vdev;
894 spa_aux_vdev_t *sav;
895 char *aux;
896 uint64_t guid = 0;
897 int error;
899 if (ztest_random(2) == 0) {
900 sav = &spa->spa_spares;
901 aux = ZPOOL_CONFIG_SPARES;
902 } else {
903 sav = &spa->spa_l2cache;
904 aux = ZPOOL_CONFIG_L2CACHE;
907 (void) mutex_lock(&ztest_shared->zs_vdev_lock);
909 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
911 if (sav->sav_count != 0 && ztest_random(4) == 0) {
913 * Pick a random device to remove.
915 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
916 } else {
918 * Find an unused device we can add.
920 ztest_shared->zs_vdev_aux = 0;
921 for (;;) {
922 char path[MAXPATHLEN];
923 int c;
924 (void) sprintf(path, ztest_aux_template, zopt_dir,
925 zopt_pool, aux, ztest_shared->zs_vdev_aux);
926 for (c = 0; c < sav->sav_count; c++)
927 if (strcmp(sav->sav_vdevs[c]->vdev_path,
928 path) == 0)
929 break;
930 if (c == sav->sav_count &&
931 vdev_lookup_by_path(rvd, path) == NULL)
932 break;
933 ztest_shared->zs_vdev_aux++;
937 spa_config_exit(spa, SCL_VDEV, FTAG);
939 if (guid == 0) {
941 * Add a new device.
943 nvlist_t *nvroot = make_vdev_root(NULL, aux,
944 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
945 error = spa_vdev_add(spa, nvroot);
946 if (error != 0)
947 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
948 nvlist_free(nvroot);
949 } else {
951 * Remove an existing device. Sometimes, dirty its
952 * vdev state first to make sure we handle removal
953 * of devices that have pending state changes.
955 if (ztest_random(2) == 0)
956 (void) vdev_online(spa, guid, B_FALSE, NULL);
958 error = spa_vdev_remove(spa, guid, B_FALSE);
959 if (error != 0 && error != EBUSY)
960 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
963 (void) mutex_unlock(&ztest_shared->zs_vdev_lock);
967 * Verify that we can attach and detach devices.
969 void
970 ztest_vdev_attach_detach(ztest_args_t *za)
972 spa_t *spa = za->za_spa;
973 spa_aux_vdev_t *sav = &spa->spa_spares;
974 vdev_t *rvd = spa->spa_root_vdev;
975 vdev_t *oldvd, *newvd, *pvd;
976 nvlist_t *root;
977 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
978 uint64_t leaf, top;
979 uint64_t ashift = ztest_get_ashift();
980 uint64_t oldguid;
981 size_t oldsize, newsize;
982 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
983 int replacing;
984 int oldvd_has_siblings = B_FALSE;
985 int newvd_is_spare = B_FALSE;
986 int oldvd_is_log;
987 int error, expected_error;
989 (void) mutex_lock(&ztest_shared->zs_vdev_lock);
991 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
994 * Decide whether to do an attach or a replace.
996 replacing = ztest_random(2);
999 * Pick a random top-level vdev.
1001 top = ztest_random(rvd->vdev_children);
1004 * Pick a random leaf within it.
1006 leaf = ztest_random(leaves);
1009 * Locate this vdev.
1011 oldvd = rvd->vdev_child[top];
1012 if (zopt_mirrors >= 1)
1013 oldvd = oldvd->vdev_child[leaf / zopt_raidz];
1014 if (zopt_raidz > 1)
1015 oldvd = oldvd->vdev_child[leaf % zopt_raidz];
1018 * If we're already doing an attach or replace, oldvd may be a
1019 * mirror vdev -- in which case, pick a random child.
1021 while (oldvd->vdev_children != 0) {
1022 oldvd_has_siblings = B_TRUE;
1023 ASSERT(oldvd->vdev_children == 2);
1024 oldvd = oldvd->vdev_child[ztest_random(2)];
1027 oldguid = oldvd->vdev_guid;
1028 oldsize = vdev_get_rsize(oldvd);
1029 oldvd_is_log = oldvd->vdev_top->vdev_islog;
1030 (void) strcpy(oldpath, oldvd->vdev_path);
1031 pvd = oldvd->vdev_parent;
1034 * If oldvd has siblings, then half of the time, detach it.
1036 if (oldvd_has_siblings && ztest_random(2) == 0) {
1037 spa_config_exit(spa, SCL_VDEV, FTAG);
1038 error = spa_vdev_detach(spa, oldguid, B_FALSE);
1039 if (error != 0 && error != ENODEV && error != EBUSY)
1040 fatal(0, "detach (%s) returned %d",
1041 oldpath, error);
1042 (void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1043 return;
1047 * For the new vdev, choose with equal probability between the two
1048 * standard paths (ending in either 'a' or 'b') or a random hot spare.
1050 if (sav->sav_count != 0 && ztest_random(3) == 0) {
1051 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
1052 newvd_is_spare = B_TRUE;
1053 (void) strcpy(newpath, newvd->vdev_path);
1054 } else {
1055 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
1056 zopt_dir, zopt_pool, top * leaves + leaf);
1057 if (ztest_random(2) == 0)
1058 newpath[strlen(newpath) - 1] = 'b';
1059 newvd = vdev_lookup_by_path(rvd, newpath);
1062 if (newvd) {
1063 newsize = vdev_get_rsize(newvd);
1064 } else {
1066 * Make newsize a little bigger or smaller than oldsize.
1067 * If it's smaller, the attach should fail.
1068 * If it's larger, and we're doing a replace,
1069 * we should get dynamic LUN growth when we're done.
1071 newsize = 10 * oldsize / (9 + ztest_random(3));
1075 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
1076 * unless it's a replace; in that case any non-replacing parent is OK.
1078 * If newvd is already part of the pool, it should fail with EBUSY.
1080 * If newvd is too small, it should fail with EOVERFLOW.
1082 if (pvd->vdev_ops != &vdev_mirror_ops &&
1083 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
1084 pvd->vdev_ops == &vdev_replacing_ops ||
1085 pvd->vdev_ops == &vdev_spare_ops))
1086 expected_error = ENOTSUP;
1087 else if (newvd_is_spare && (!replacing || oldvd_is_log))
1088 expected_error = ENOTSUP;
1089 else if (newvd == oldvd)
1090 expected_error = replacing ? 0 : EBUSY;
1091 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
1092 expected_error = EBUSY;
1093 else if (newsize < oldsize)
1094 expected_error = EOVERFLOW;
1095 else if (ashift > oldvd->vdev_top->vdev_ashift)
1096 expected_error = EDOM;
1097 else
1098 expected_error = 0;
1100 spa_config_exit(spa, SCL_VDEV, FTAG);
1103 * Build the nvlist describing newpath.
1105 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
1106 ashift, 0, 0, 0, 1);
1108 error = spa_vdev_attach(spa, oldguid, root, replacing);
1110 nvlist_free(root);
1113 * If our parent was the replacing vdev, but the replace completed,
1114 * then instead of failing with ENOTSUP we may either succeed,
1115 * fail with ENODEV, or fail with EOVERFLOW.
1117 if (expected_error == ENOTSUP &&
1118 (error == 0 || error == ENODEV || error == EOVERFLOW))
1119 expected_error = error;
1122 * If someone grew the LUN, the replacement may be too small.
1124 if (error == EOVERFLOW || error == EBUSY)
1125 expected_error = error;
1127 /* XXX workaround 6690467 */
1128 if (error != expected_error && expected_error != EBUSY) {
1129 fatal(0, "attach (%s %llu, %s %llu, %d) "
1130 "returned %d, expected %d",
1131 oldpath, (longlong_t)oldsize, newpath,
1132 (longlong_t)newsize, replacing, error, expected_error);
1135 (void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1139 * Verify that dynamic LUN growth works as expected.
1141 /* ARGSUSED */
1142 void
1143 ztest_vdev_LUN_growth(ztest_args_t *za)
1145 spa_t *spa = za->za_spa;
1146 char dev_name[MAXPATHLEN];
1147 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
1148 uint64_t vdev;
1149 size_t fsize;
1150 int fd;
1152 (void) mutex_lock(&ztest_shared->zs_vdev_lock);
1155 * Pick a random leaf vdev.
1157 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1158 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves);
1159 spa_config_exit(spa, SCL_VDEV, FTAG);
1161 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
1163 if ((fd = open(dev_name, O_RDWR)) != -1) {
1165 * Determine the size.
1167 fsize = lseek(fd, 0, SEEK_END);
1170 * If it's less than 2x the original size, grow by around 3%.
1172 if (fsize < 2 * zopt_vdev_size) {
1173 size_t newsize = fsize + ztest_random(fsize / 32);
1174 (void) ftruncate(fd, newsize);
1175 if (zopt_verbose >= 6) {
1176 (void) printf("%s grew from %lu to %lu bytes\n",
1177 dev_name, (ulong_t)fsize, (ulong_t)newsize);
1180 (void) close(fd);
1183 (void) mutex_unlock(&ztest_shared->zs_vdev_lock);
1186 /* ARGSUSED */
1187 static void
1188 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
1191 * Create the directory object.
1193 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ,
1194 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE,
1195 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0);
1197 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ,
1198 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1200 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ,
1201 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
1204 static int
1205 ztest_destroy_cb(char *name, void *arg)
1207 ztest_args_t *za = arg;
1208 objset_t *os;
1209 dmu_object_info_t *doi = &za->za_doi;
1210 int error;
1213 * Verify that the dataset contains a directory object.
1215 error = dmu_objset_open(name, DMU_OST_OTHER,
1216 DS_MODE_USER | DS_MODE_READONLY, &os);
1217 ASSERT3U(error, ==, 0);
1218 error = dmu_object_info(os, ZTEST_DIROBJ, doi);
1219 if (error != ENOENT) {
1220 /* We could have crashed in the middle of destroying it */
1221 ASSERT3U(error, ==, 0);
1222 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER);
1223 ASSERT3S(doi->doi_physical_blks, >=, 0);
1225 dmu_objset_close(os);
1228 * Destroy the dataset.
1230 error = dmu_objset_destroy(name);
1231 if (error) {
1232 (void) dmu_objset_open(name, DMU_OST_OTHER,
1233 DS_MODE_USER | DS_MODE_READONLY, &os);
1234 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error);
1236 return (0);
1240 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
1242 static uint64_t
1243 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode)
1245 itx_t *itx;
1246 lr_create_t *lr;
1247 size_t namesize;
1248 char name[24];
1250 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object);
1251 namesize = strlen(name) + 1;
1253 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize +
1254 ztest_random(ZIL_MAX_BLKSZ));
1255 lr = (lr_create_t *)&itx->itx_lr;
1256 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr));
1257 lr->lr_doid = object;
1258 lr->lr_foid = 0;
1259 lr->lr_mode = mode;
1260 lr->lr_uid = 0;
1261 lr->lr_gid = 0;
1262 lr->lr_gen = dmu_tx_get_txg(tx);
1263 lr->lr_crtime[0] = time(NULL);
1264 lr->lr_crtime[1] = 0;
1265 lr->lr_rdev = 0;
1266 bcopy(name, (char *)(lr + 1), namesize);
1268 return (zil_itx_assign(zilog, itx, tx));
1271 void
1272 ztest_dmu_objset_create_destroy(ztest_args_t *za)
1274 int error;
1275 objset_t *os, *os2;
1276 char name[100];
1277 int basemode, expected_error;
1278 zilog_t *zilog;
1279 uint64_t seq;
1280 uint64_t objects;
1281 ztest_replay_t zr;
1283 (void) rw_rdlock(&ztest_shared->zs_name_lock);
1284 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool,
1285 (u_longlong_t)za->za_instance);
1287 basemode = DS_MODE_TYPE(za->za_instance);
1288 if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER)
1289 basemode = DS_MODE_USER;
1292 * If this dataset exists from a previous run, process its replay log
1293 * half of the time. If we don't replay it, then dmu_objset_destroy()
1294 * (invoked from ztest_destroy_cb() below) should just throw it away.
1296 if (ztest_random(2) == 0 &&
1297 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) {
1298 zr.zr_os = os;
1299 zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL);
1300 dmu_objset_close(os);
1304 * There may be an old instance of the dataset we're about to
1305 * create lying around from a previous run. If so, destroy it
1306 * and all of its snapshots.
1308 (void) dmu_objset_find(name, ztest_destroy_cb, za,
1309 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1312 * Verify that the destroyed dataset is no longer in the namespace.
1314 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1315 if (error != ENOENT)
1316 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p",
1317 name, os);
1320 * Verify that we can create a new dataset.
1322 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
1323 ztest_create_cb, NULL);
1324 if (error) {
1325 if (error == ENOSPC) {
1326 ztest_record_enospc("dmu_objset_create");
1327 (void) rw_unlock(&ztest_shared->zs_name_lock);
1328 return;
1330 fatal(0, "dmu_objset_create(%s) = %d", name, error);
1333 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os);
1334 if (error) {
1335 fatal(0, "dmu_objset_open(%s) = %d", name, error);
1339 * Open the intent log for it.
1341 zilog = zil_open(os, NULL);
1344 * Put a random number of objects in there.
1346 objects = ztest_random(20);
1347 seq = 0;
1348 while (objects-- != 0) {
1349 uint64_t object;
1350 dmu_tx_t *tx = dmu_tx_create(os);
1351 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name));
1352 error = dmu_tx_assign(tx, TXG_WAIT);
1353 if (error) {
1354 dmu_tx_abort(tx);
1355 } else {
1356 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1357 DMU_OT_NONE, 0, tx);
1358 ztest_set_random_blocksize(os, object, tx);
1359 seq = ztest_log_create(zilog, tx, object,
1360 DMU_OT_UINT64_OTHER);
1361 dmu_write(os, object, 0, sizeof (name), name, tx);
1362 dmu_tx_commit(tx);
1364 if (ztest_random(5) == 0) {
1365 zil_commit(zilog, seq, object);
1367 if (ztest_random(100) == 0) {
1368 error = zil_suspend(zilog);
1369 if (error == 0) {
1370 zil_resume(zilog);
1376 * Verify that we cannot create an existing dataset.
1378 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL);
1379 if (error != EEXIST)
1380 fatal(0, "created existing dataset, error = %d", error);
1383 * Verify that multiple dataset holds are allowed, but only when
1384 * the new access mode is compatible with the base mode.
1386 if (basemode == DS_MODE_OWNER) {
1387 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER,
1388 &os2);
1389 if (error)
1390 fatal(0, "dmu_objset_open('%s') = %d", name, error);
1391 else
1392 dmu_objset_close(os2);
1394 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2);
1395 expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0;
1396 if (error != expected_error)
1397 fatal(0, "dmu_objset_open('%s') = %d, expected %d",
1398 name, error, expected_error);
1399 if (error == 0)
1400 dmu_objset_close(os2);
1402 zil_close(zilog);
1403 dmu_objset_close(os);
1405 error = dmu_objset_destroy(name);
1406 if (error)
1407 fatal(0, "dmu_objset_destroy(%s) = %d", name, error);
1409 (void) rw_unlock(&ztest_shared->zs_name_lock);
1413 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
1415 void
1416 ztest_dmu_snapshot_create_destroy(ztest_args_t *za)
1418 int error;
1419 objset_t *os = za->za_os;
1420 char snapname[100];
1421 char osname[MAXNAMELEN];
1423 (void) rw_rdlock(&ztest_shared->zs_name_lock);
1424 dmu_objset_name(os, osname);
1425 (void) snprintf(snapname, 100, "%s@%llu", osname,
1426 (u_longlong_t)za->za_instance);
1428 error = dmu_objset_destroy(snapname);
1429 if (error != 0 && error != ENOENT)
1430 fatal(0, "dmu_objset_destroy() = %d", error);
1431 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE);
1432 if (error == ENOSPC)
1433 ztest_record_enospc("dmu_take_snapshot");
1434 else if (error != 0 && error != EEXIST)
1435 fatal(0, "dmu_take_snapshot() = %d", error);
1436 (void) rw_unlock(&ztest_shared->zs_name_lock);
1440 * Verify that dmu_object_{alloc,free} work as expected.
1442 void
1443 ztest_dmu_object_alloc_free(ztest_args_t *za)
1445 objset_t *os = za->za_os;
1446 dmu_buf_t *db;
1447 dmu_tx_t *tx;
1448 uint64_t batchobj, object, batchsize, endoff, temp;
1449 int b, c, error, bonuslen;
1450 dmu_object_info_t *doi = &za->za_doi;
1451 char osname[MAXNAMELEN];
1453 dmu_objset_name(os, osname);
1455 endoff = -8ULL;
1456 batchsize = 2;
1459 * Create a batch object if necessary, and record it in the directory.
1461 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1462 sizeof (uint64_t), &batchobj));
1463 if (batchobj == 0) {
1464 tx = dmu_tx_create(os);
1465 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
1466 sizeof (uint64_t));
1467 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1468 error = dmu_tx_assign(tx, TXG_WAIT);
1469 if (error) {
1470 ztest_record_enospc("create a batch object");
1471 dmu_tx_abort(tx);
1472 return;
1474 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1475 DMU_OT_NONE, 0, tx);
1476 ztest_set_random_blocksize(os, batchobj, tx);
1477 dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
1478 sizeof (uint64_t), &batchobj, tx);
1479 dmu_tx_commit(tx);
1483 * Destroy the previous batch of objects.
1485 for (b = 0; b < batchsize; b++) {
1486 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t),
1487 sizeof (uint64_t), &object));
1488 if (object == 0)
1489 continue;
1491 * Read and validate contents.
1492 * We expect the nth byte of the bonus buffer to be n.
1494 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db));
1495 za->za_dbuf = db;
1497 dmu_object_info_from_db(db, doi);
1498 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER);
1499 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER);
1500 ASSERT3S(doi->doi_physical_blks, >=, 0);
1502 bonuslen = doi->doi_bonus_size;
1504 for (c = 0; c < bonuslen; c++) {
1505 if (((uint8_t *)db->db_data)[c] !=
1506 (uint8_t)(c + bonuslen)) {
1507 fatal(0,
1508 "bad bonus: %s, obj %llu, off %d: %u != %u",
1509 osname, object, c,
1510 ((uint8_t *)db->db_data)[c],
1511 (uint8_t)(c + bonuslen));
1515 dmu_buf_rele(db, FTAG);
1516 za->za_dbuf = NULL;
1519 * We expect the word at endoff to be our object number.
1521 VERIFY(0 == dmu_read(os, object, endoff,
1522 sizeof (uint64_t), &temp));
1524 if (temp != object) {
1525 fatal(0, "bad data in %s, got %llu, expected %llu",
1526 osname, temp, object);
1530 * Destroy old object and clear batch entry.
1532 tx = dmu_tx_create(os);
1533 dmu_tx_hold_write(tx, batchobj,
1534 b * sizeof (uint64_t), sizeof (uint64_t));
1535 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1536 error = dmu_tx_assign(tx, TXG_WAIT);
1537 if (error) {
1538 ztest_record_enospc("free object");
1539 dmu_tx_abort(tx);
1540 return;
1542 error = dmu_object_free(os, object, tx);
1543 if (error) {
1544 fatal(0, "dmu_object_free('%s', %llu) = %d",
1545 osname, object, error);
1547 object = 0;
1549 dmu_object_set_checksum(os, batchobj,
1550 ztest_random_checksum(), tx);
1551 dmu_object_set_compress(os, batchobj,
1552 ztest_random_compress(), tx);
1554 dmu_write(os, batchobj, b * sizeof (uint64_t),
1555 sizeof (uint64_t), &object, tx);
1557 dmu_tx_commit(tx);
1561 * Before creating the new batch of objects, generate a bunch of churn.
1563 for (b = ztest_random(100); b > 0; b--) {
1564 tx = dmu_tx_create(os);
1565 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1566 error = dmu_tx_assign(tx, TXG_WAIT);
1567 if (error) {
1568 ztest_record_enospc("churn objects");
1569 dmu_tx_abort(tx);
1570 return;
1572 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1573 DMU_OT_NONE, 0, tx);
1574 ztest_set_random_blocksize(os, object, tx);
1575 error = dmu_object_free(os, object, tx);
1576 if (error) {
1577 fatal(0, "dmu_object_free('%s', %llu) = %d",
1578 osname, object, error);
1580 dmu_tx_commit(tx);
1584 * Create a new batch of objects with randomly chosen
1585 * blocksizes and record them in the batch directory.
1587 for (b = 0; b < batchsize; b++) {
1588 uint32_t va_blksize;
1589 u_longlong_t va_nblocks;
1591 tx = dmu_tx_create(os);
1592 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t),
1593 sizeof (uint64_t));
1594 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1595 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff,
1596 sizeof (uint64_t));
1597 error = dmu_tx_assign(tx, TXG_WAIT);
1598 if (error) {
1599 ztest_record_enospc("create batchobj");
1600 dmu_tx_abort(tx);
1601 return;
1603 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1;
1605 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1606 DMU_OT_PLAIN_OTHER, bonuslen, tx);
1608 ztest_set_random_blocksize(os, object, tx);
1610 dmu_object_set_checksum(os, object,
1611 ztest_random_checksum(), tx);
1612 dmu_object_set_compress(os, object,
1613 ztest_random_compress(), tx);
1615 dmu_write(os, batchobj, b * sizeof (uint64_t),
1616 sizeof (uint64_t), &object, tx);
1619 * Write to both the bonus buffer and the regular data.
1621 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0);
1622 za->za_dbuf = db;
1623 ASSERT3U(bonuslen, <=, db->db_size);
1625 dmu_object_size_from_db(db, &va_blksize, &va_nblocks);
1626 ASSERT3S(va_nblocks, >=, 0);
1628 dmu_buf_will_dirty(db, tx);
1631 * See comments above regarding the contents of
1632 * the bonus buffer and the word at endoff.
1634 for (c = 0; c < bonuslen; c++)
1635 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen);
1637 dmu_buf_rele(db, FTAG);
1638 za->za_dbuf = NULL;
1641 * Write to a large offset to increase indirection.
1643 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx);
1645 dmu_tx_commit(tx);
1650 * Verify that dmu_{read,write} work as expected.
1652 typedef struct bufwad {
1653 uint64_t bw_index;
1654 uint64_t bw_txg;
1655 uint64_t bw_data;
1656 } bufwad_t;
1658 typedef struct dmu_read_write_dir {
1659 uint64_t dd_packobj;
1660 uint64_t dd_bigobj;
1661 uint64_t dd_chunk;
1662 } dmu_read_write_dir_t;
1664 void
1665 ztest_dmu_read_write(ztest_args_t *za)
1667 objset_t *os = za->za_os;
1668 dmu_read_write_dir_t dd;
1669 dmu_tx_t *tx;
1670 int i, freeit, error;
1671 uint64_t n, s, txg;
1672 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
1673 uint64_t packoff, packsize, bigoff, bigsize;
1674 uint64_t regions = 997;
1675 uint64_t stride = 123456789ULL;
1676 uint64_t width = 40;
1677 int free_percent = 5;
1680 * This test uses two objects, packobj and bigobj, that are always
1681 * updated together (i.e. in the same tx) so that their contents are
1682 * in sync and can be compared. Their contents relate to each other
1683 * in a simple way: packobj is a dense array of 'bufwad' structures,
1684 * while bigobj is a sparse array of the same bufwads. Specifically,
1685 * for any index n, there are three bufwads that should be identical:
1687 * packobj, at offset n * sizeof (bufwad_t)
1688 * bigobj, at the head of the nth chunk
1689 * bigobj, at the tail of the nth chunk
1691 * The chunk size is arbitrary. It doesn't have to be a power of two,
1692 * and it doesn't have any relation to the object blocksize.
1693 * The only requirement is that it can hold at least two bufwads.
1695 * Normally, we write the bufwad to each of these locations.
1696 * However, free_percent of the time we instead write zeroes to
1697 * packobj and perform a dmu_free_range() on bigobj. By comparing
1698 * bigobj to packobj, we can verify that the DMU is correctly
1699 * tracking which parts of an object are allocated and free,
1700 * and that the contents of the allocated blocks are correct.
1704 * Read the directory info. If it's the first time, set things up.
1706 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
1707 sizeof (dd), &dd));
1708 if (dd.dd_chunk == 0) {
1709 ASSERT(dd.dd_packobj == 0);
1710 ASSERT(dd.dd_bigobj == 0);
1711 tx = dmu_tx_create(os);
1712 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd));
1713 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1714 error = dmu_tx_assign(tx, TXG_WAIT);
1715 if (error) {
1716 ztest_record_enospc("create r/w directory");
1717 dmu_tx_abort(tx);
1718 return;
1721 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1722 DMU_OT_NONE, 0, tx);
1723 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0,
1724 DMU_OT_NONE, 0, tx);
1725 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t);
1727 ztest_set_random_blocksize(os, dd.dd_packobj, tx);
1728 ztest_set_random_blocksize(os, dd.dd_bigobj, tx);
1730 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd,
1731 tx);
1732 dmu_tx_commit(tx);
1736 * Prefetch a random chunk of the big object.
1737 * Our aim here is to get some async reads in flight
1738 * for blocks that we may free below; the DMU should
1739 * handle this race correctly.
1741 n = ztest_random(regions) * stride + ztest_random(width);
1742 s = 1 + ztest_random(2 * width - 1);
1743 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk);
1746 * Pick a random index and compute the offsets into packobj and bigobj.
1748 n = ztest_random(regions) * stride + ztest_random(width);
1749 s = 1 + ztest_random(width - 1);
1751 packoff = n * sizeof (bufwad_t);
1752 packsize = s * sizeof (bufwad_t);
1754 bigoff = n * dd.dd_chunk;
1755 bigsize = s * dd.dd_chunk;
1757 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
1758 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
1761 * free_percent of the time, free a range of bigobj rather than
1762 * overwriting it.
1764 freeit = (ztest_random(100) < free_percent);
1767 * Read the current contents of our objects.
1769 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf);
1770 ASSERT3U(error, ==, 0);
1771 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf);
1772 ASSERT3U(error, ==, 0);
1775 * Get a tx for the mods to both packobj and bigobj.
1777 tx = dmu_tx_create(os);
1779 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize);
1781 if (freeit)
1782 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize);
1783 else
1784 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize);
1786 error = dmu_tx_assign(tx, TXG_WAIT);
1788 if (error) {
1789 ztest_record_enospc("dmu r/w range");
1790 dmu_tx_abort(tx);
1791 umem_free(packbuf, packsize);
1792 umem_free(bigbuf, bigsize);
1793 return;
1796 txg = dmu_tx_get_txg(tx);
1799 * For each index from n to n + s, verify that the existing bufwad
1800 * in packobj matches the bufwads at the head and tail of the
1801 * corresponding chunk in bigobj. Then update all three bufwads
1802 * with the new values we want to write out.
1804 for (i = 0; i < s; i++) {
1805 /* LINTED */
1806 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
1807 /* LINTED */
1808 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk);
1809 /* LINTED */
1810 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1;
1812 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
1813 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
1815 if (pack->bw_txg > txg)
1816 fatal(0, "future leak: got %llx, open txg is %llx",
1817 pack->bw_txg, txg);
1819 if (pack->bw_data != 0 && pack->bw_index != n + i)
1820 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
1821 pack->bw_index, n, i);
1823 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
1824 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
1826 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
1827 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
1829 if (freeit) {
1830 bzero(pack, sizeof (bufwad_t));
1831 } else {
1832 pack->bw_index = n + i;
1833 pack->bw_txg = txg;
1834 pack->bw_data = 1 + ztest_random(-2ULL);
1836 *bigH = *pack;
1837 *bigT = *pack;
1841 * We've verified all the old bufwads, and made new ones.
1842 * Now write them out.
1844 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx);
1846 if (freeit) {
1847 if (zopt_verbose >= 6) {
1848 (void) printf("freeing offset %llx size %llx"
1849 " txg %llx\n",
1850 (u_longlong_t)bigoff,
1851 (u_longlong_t)bigsize,
1852 (u_longlong_t)txg);
1854 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff,
1855 bigsize, tx));
1856 } else {
1857 if (zopt_verbose >= 6) {
1858 (void) printf("writing offset %llx size %llx"
1859 " txg %llx\n",
1860 (u_longlong_t)bigoff,
1861 (u_longlong_t)bigsize,
1862 (u_longlong_t)txg);
1864 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx);
1867 dmu_tx_commit(tx);
1870 * Sanity check the stuff we just wrote.
1873 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
1874 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
1876 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff,
1877 packsize, packcheck));
1878 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff,
1879 bigsize, bigcheck));
1881 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
1882 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
1884 umem_free(packcheck, packsize);
1885 umem_free(bigcheck, bigsize);
1888 umem_free(packbuf, packsize);
1889 umem_free(bigbuf, bigsize);
1892 void
1893 ztest_dmu_check_future_leak(ztest_args_t *za)
1895 objset_t *os = za->za_os;
1896 dmu_buf_t *db;
1897 ztest_block_tag_t *bt;
1898 dmu_object_info_t *doi = &za->za_doi;
1901 * Make sure that, if there is a write record in the bonus buffer
1902 * of the ZTEST_DIROBJ, that the txg for this record is <= the
1903 * last synced txg of the pool.
1905 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
1906 za->za_dbuf = db;
1907 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0);
1908 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt));
1909 ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
1910 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0);
1911 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt));
1912 if (bt->bt_objset != 0) {
1913 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1914 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ);
1915 ASSERT3U(bt->bt_offset, ==, -1ULL);
1916 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa));
1918 dmu_buf_rele(db, FTAG);
1919 za->za_dbuf = NULL;
1922 void
1923 ztest_dmu_write_parallel(ztest_args_t *za)
1925 objset_t *os = za->za_os;
1926 ztest_block_tag_t *rbt = &za->za_rbt;
1927 ztest_block_tag_t *wbt = &za->za_wbt;
1928 const size_t btsize = sizeof (ztest_block_tag_t);
1929 dmu_buf_t *db;
1930 int b, error;
1931 int bs = ZTEST_DIROBJ_BLOCKSIZE;
1932 int do_free = 0;
1933 uint64_t off, txg, txg_how;
1934 mutex_t *lp;
1935 char osname[MAXNAMELEN];
1936 char iobuf[SPA_MAXBLOCKSIZE];
1937 blkptr_t blk = { 0 };
1938 uint64_t blkoff;
1939 zbookmark_t zb;
1940 dmu_tx_t *tx = dmu_tx_create(os);
1942 dmu_objset_name(os, osname);
1945 * Have multiple threads write to large offsets in ZTEST_DIROBJ
1946 * to verify that having multiple threads writing to the same object
1947 * in parallel doesn't cause any trouble.
1949 if (ztest_random(4) == 0) {
1951 * Do the bonus buffer instead of a regular block.
1952 * We need a lock to serialize resize vs. others,
1953 * so we hash on the objset ID.
1955 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS;
1956 off = -1ULL;
1957 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ);
1958 } else {
1959 b = ztest_random(ZTEST_SYNC_LOCKS);
1960 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT);
1961 if (ztest_random(4) == 0) {
1962 do_free = 1;
1963 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs);
1964 } else {
1965 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs);
1969 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT;
1970 error = dmu_tx_assign(tx, txg_how);
1971 if (error) {
1972 if (error == ERESTART) {
1973 ASSERT(txg_how == TXG_NOWAIT);
1974 dmu_tx_wait(tx);
1975 } else {
1976 ztest_record_enospc("dmu write parallel");
1978 dmu_tx_abort(tx);
1979 return;
1981 txg = dmu_tx_get_txg(tx);
1983 lp = &ztest_shared->zs_sync_lock[b];
1984 (void) mutex_lock(lp);
1986 wbt->bt_objset = dmu_objset_id(os);
1987 wbt->bt_object = ZTEST_DIROBJ;
1988 wbt->bt_offset = off;
1989 wbt->bt_txg = txg;
1990 wbt->bt_thread = za->za_instance;
1991 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */
1994 * Occasionally, write an all-zero block to test the behavior
1995 * of blocks that compress into holes.
1997 if (off != -1ULL && ztest_random(8) == 0)
1998 bzero(wbt, btsize);
2000 if (off == -1ULL) {
2001 dmu_object_info_t *doi = &za->za_doi;
2002 char *dboff;
2004 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0);
2005 za->za_dbuf = db;
2006 dmu_object_info_from_db(db, doi);
2007 ASSERT3U(doi->doi_bonus_size, <=, db->db_size);
2008 ASSERT3U(doi->doi_bonus_size, >=, btsize);
2009 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0);
2010 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize;
2011 bcopy(dboff, rbt, btsize);
2012 if (rbt->bt_objset != 0) {
2013 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2014 ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2015 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2016 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg);
2018 if (ztest_random(10) == 0) {
2019 int newsize = (ztest_random(db->db_size /
2020 btsize) + 1) * btsize;
2022 ASSERT3U(newsize, >=, btsize);
2023 ASSERT3U(newsize, <=, db->db_size);
2024 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0);
2025 dboff = (char *)db->db_data + newsize - btsize;
2027 dmu_buf_will_dirty(db, tx);
2028 bcopy(wbt, dboff, btsize);
2029 dmu_buf_rele(db, FTAG);
2030 za->za_dbuf = NULL;
2031 } else if (do_free) {
2032 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0);
2033 } else {
2034 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx);
2037 (void) mutex_unlock(lp);
2039 if (ztest_random(1000) == 0)
2040 (void) poll(NULL, 0, 1); /* open dn_notxholds window */
2042 dmu_tx_commit(tx);
2044 if (ztest_random(10000) == 0)
2045 txg_wait_synced(dmu_objset_pool(os), txg);
2047 if (off == -1ULL || do_free)
2048 return;
2050 if (ztest_random(2) != 0)
2051 return;
2054 * dmu_sync() the block we just wrote.
2056 (void) mutex_lock(lp);
2058 blkoff = P2ALIGN_TYPED(off, bs, uint64_t);
2059 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db);
2060 za->za_dbuf = db;
2061 if (error) {
2062 dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n",
2063 osname, ZTEST_DIROBJ, blkoff, error);
2064 (void) mutex_unlock(lp);
2065 return;
2067 blkoff = off - blkoff;
2068 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL);
2069 dmu_buf_rele(db, FTAG);
2070 za->za_dbuf = NULL;
2072 (void) mutex_unlock(lp);
2074 if (error) {
2075 dprintf("dmu_sync(%s, %d, %llx) = %d\n",
2076 osname, ZTEST_DIROBJ, off, error);
2077 return;
2080 if (blk.blk_birth == 0) /* concurrent free */
2081 return;
2083 txg_suspend(dmu_objset_pool(os));
2085 ASSERT(blk.blk_fill == 1);
2086 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER);
2087 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0);
2088 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs);
2091 * Read the block that dmu_sync() returned to make sure its contents
2092 * match what we wrote. We do this while still txg_suspend()ed
2093 * to ensure that the block can't be reused before we read it.
2095 zb.zb_objset = dmu_objset_id(os);
2096 zb.zb_object = ZTEST_DIROBJ;
2097 zb.zb_level = 0;
2098 zb.zb_blkid = off / bs;
2099 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs,
2100 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb));
2101 ASSERT3U(error, ==, 0);
2103 txg_resume(dmu_objset_pool(os));
2105 bcopy(&iobuf[blkoff], rbt, btsize);
2107 if (rbt->bt_objset == 0) /* concurrent free */
2108 return;
2110 if (wbt->bt_objset == 0) /* all-zero overwrite */
2111 return;
2113 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset);
2114 ASSERT3U(rbt->bt_object, ==, wbt->bt_object);
2115 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset);
2118 * The semantic of dmu_sync() is that we always push the most recent
2119 * version of the data, so in the face of concurrent updates we may
2120 * see a newer version of the block. That's OK.
2122 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg);
2123 if (rbt->bt_thread == wbt->bt_thread)
2124 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq);
2125 else
2126 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq);
2130 * Verify that zap_{create,destroy,add,remove,update} work as expected.
2132 #define ZTEST_ZAP_MIN_INTS 1
2133 #define ZTEST_ZAP_MAX_INTS 4
2134 #define ZTEST_ZAP_MAX_PROPS 1000
2136 void
2137 ztest_zap(ztest_args_t *za)
2139 objset_t *os = za->za_os;
2140 uint64_t object;
2141 uint64_t txg, last_txg;
2142 uint64_t value[ZTEST_ZAP_MAX_INTS];
2143 uint64_t zl_ints, zl_intsize, prop;
2144 int i, ints;
2145 dmu_tx_t *tx;
2146 char propname[100], txgname[100];
2147 int error;
2148 char osname[MAXNAMELEN];
2149 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
2151 dmu_objset_name(os, osname);
2154 * Create a new object if necessary, and record it in the directory.
2156 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff,
2157 sizeof (uint64_t), &object));
2159 if (object == 0) {
2160 tx = dmu_tx_create(os);
2161 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff,
2162 sizeof (uint64_t));
2163 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL);
2164 error = dmu_tx_assign(tx, TXG_WAIT);
2165 if (error) {
2166 ztest_record_enospc("create zap test obj");
2167 dmu_tx_abort(tx);
2168 return;
2170 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx);
2171 if (error) {
2172 fatal(0, "zap_create('%s', %llu) = %d",
2173 osname, object, error);
2175 ASSERT(object != 0);
2176 dmu_write(os, ZTEST_DIROBJ, za->za_diroff,
2177 sizeof (uint64_t), &object, tx);
2179 * Generate a known hash collision, and verify that
2180 * we can lookup and remove both entries.
2182 for (i = 0; i < 2; i++) {
2183 value[i] = i;
2184 error = zap_add(os, object, hc[i], sizeof (uint64_t),
2185 1, &value[i], tx);
2186 ASSERT3U(error, ==, 0);
2188 for (i = 0; i < 2; i++) {
2189 error = zap_add(os, object, hc[i], sizeof (uint64_t),
2190 1, &value[i], tx);
2191 ASSERT3U(error, ==, EEXIST);
2192 error = zap_length(os, object, hc[i],
2193 &zl_intsize, &zl_ints);
2194 ASSERT3U(error, ==, 0);
2195 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2196 ASSERT3U(zl_ints, ==, 1);
2198 for (i = 0; i < 2; i++) {
2199 error = zap_remove(os, object, hc[i], tx);
2200 ASSERT3U(error, ==, 0);
2203 dmu_tx_commit(tx);
2206 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
2208 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2209 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2210 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2211 bzero(value, sizeof (value));
2212 last_txg = 0;
2215 * If these zap entries already exist, validate their contents.
2217 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2218 if (error == 0) {
2219 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2220 ASSERT3U(zl_ints, ==, 1);
2222 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
2223 zl_ints, &last_txg) == 0);
2225 VERIFY(zap_length(os, object, propname, &zl_intsize,
2226 &zl_ints) == 0);
2228 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
2229 ASSERT3U(zl_ints, ==, ints);
2231 VERIFY(zap_lookup(os, object, propname, zl_intsize,
2232 zl_ints, value) == 0);
2234 for (i = 0; i < ints; i++) {
2235 ASSERT3U(value[i], ==, last_txg + object + i);
2237 } else {
2238 ASSERT3U(error, ==, ENOENT);
2242 * Atomically update two entries in our zap object.
2243 * The first is named txg_%llu, and contains the txg
2244 * in which the property was last updated. The second
2245 * is named prop_%llu, and the nth element of its value
2246 * should be txg + object + n.
2248 tx = dmu_tx_create(os);
2249 dmu_tx_hold_zap(tx, object, TRUE, NULL);
2250 error = dmu_tx_assign(tx, TXG_WAIT);
2251 if (error) {
2252 ztest_record_enospc("create zap entry");
2253 dmu_tx_abort(tx);
2254 return;
2256 txg = dmu_tx_get_txg(tx);
2258 if (last_txg > txg)
2259 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
2261 for (i = 0; i < ints; i++)
2262 value[i] = txg + object + i;
2264 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx);
2265 if (error)
2266 fatal(0, "zap_update('%s', %llu, '%s') = %d",
2267 osname, object, txgname, error);
2269 error = zap_update(os, object, propname, sizeof (uint64_t),
2270 ints, value, tx);
2271 if (error)
2272 fatal(0, "zap_update('%s', %llu, '%s') = %d",
2273 osname, object, propname, error);
2275 dmu_tx_commit(tx);
2278 * Remove a random pair of entries.
2280 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
2281 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
2282 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
2284 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
2286 if (error == ENOENT)
2287 return;
2289 ASSERT3U(error, ==, 0);
2291 tx = dmu_tx_create(os);
2292 dmu_tx_hold_zap(tx, object, TRUE, NULL);
2293 error = dmu_tx_assign(tx, TXG_WAIT);
2294 if (error) {
2295 ztest_record_enospc("remove zap entry");
2296 dmu_tx_abort(tx);
2297 return;
2299 error = zap_remove(os, object, txgname, tx);
2300 if (error)
2301 fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2302 osname, object, txgname, error);
2304 error = zap_remove(os, object, propname, tx);
2305 if (error)
2306 fatal(0, "zap_remove('%s', %llu, '%s') = %d",
2307 osname, object, propname, error);
2309 dmu_tx_commit(tx);
2312 * Once in a while, destroy the object.
2314 if (ztest_random(1000) != 0)
2315 return;
2317 tx = dmu_tx_create(os);
2318 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t));
2319 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2320 error = dmu_tx_assign(tx, TXG_WAIT);
2321 if (error) {
2322 ztest_record_enospc("destroy zap object");
2323 dmu_tx_abort(tx);
2324 return;
2326 error = zap_destroy(os, object, tx);
2327 if (error)
2328 fatal(0, "zap_destroy('%s', %llu) = %d",
2329 osname, object, error);
2330 object = 0;
2331 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t),
2332 &object, tx);
2333 dmu_tx_commit(tx);
2336 void
2337 ztest_zap_parallel(ztest_args_t *za)
2339 objset_t *os = za->za_os;
2340 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
2341 dmu_tx_t *tx;
2342 int i, namelen, error;
2343 char name[20], string_value[20];
2344 void *data;
2347 * Generate a random name of the form 'xxx.....' where each
2348 * x is a random printable character and the dots are dots.
2349 * There are 94 such characters, and the name length goes from
2350 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
2352 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
2354 for (i = 0; i < 3; i++)
2355 name[i] = '!' + ztest_random('~' - '!' + 1);
2356 for (; i < namelen - 1; i++)
2357 name[i] = '.';
2358 name[i] = '\0';
2360 if (ztest_random(2) == 0)
2361 object = ZTEST_MICROZAP_OBJ;
2362 else
2363 object = ZTEST_FATZAP_OBJ;
2365 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) {
2366 wsize = sizeof (txg);
2367 wc = 1;
2368 data = &txg;
2369 } else {
2370 wsize = 1;
2371 wc = namelen;
2372 data = string_value;
2375 count = -1ULL;
2376 VERIFY(zap_count(os, object, &count) == 0);
2377 ASSERT(count != -1ULL);
2380 * Select an operation: length, lookup, add, update, remove.
2382 i = ztest_random(5);
2384 if (i >= 2) {
2385 tx = dmu_tx_create(os);
2386 dmu_tx_hold_zap(tx, object, TRUE, NULL);
2387 error = dmu_tx_assign(tx, TXG_WAIT);
2388 if (error) {
2389 ztest_record_enospc("zap parallel");
2390 dmu_tx_abort(tx);
2391 return;
2393 txg = dmu_tx_get_txg(tx);
2394 bcopy(name, string_value, namelen);
2395 } else {
2396 tx = NULL;
2397 txg = 0;
2398 bzero(string_value, namelen);
2401 switch (i) {
2403 case 0:
2404 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
2405 if (error == 0) {
2406 ASSERT3U(wsize, ==, zl_wsize);
2407 ASSERT3U(wc, ==, zl_wc);
2408 } else {
2409 ASSERT3U(error, ==, ENOENT);
2411 break;
2413 case 1:
2414 error = zap_lookup(os, object, name, wsize, wc, data);
2415 if (error == 0) {
2416 if (data == string_value &&
2417 bcmp(name, data, namelen) != 0)
2418 fatal(0, "name '%s' != val '%s' len %d",
2419 name, data, namelen);
2420 } else {
2421 ASSERT3U(error, ==, ENOENT);
2423 break;
2425 case 2:
2426 error = zap_add(os, object, name, wsize, wc, data, tx);
2427 ASSERT(error == 0 || error == EEXIST);
2428 break;
2430 case 3:
2431 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
2432 break;
2434 case 4:
2435 error = zap_remove(os, object, name, tx);
2436 ASSERT(error == 0 || error == ENOENT);
2437 break;
2440 if (tx != NULL)
2441 dmu_tx_commit(tx);
2444 void
2445 ztest_dsl_prop_get_set(ztest_args_t *za)
2447 objset_t *os = za->za_os;
2448 int i, inherit;
2449 uint64_t value;
2450 const char *prop, *valname;
2451 char setpoint[MAXPATHLEN];
2452 char osname[MAXNAMELEN];
2453 int error;
2455 (void) rw_rdlock(&ztest_shared->zs_name_lock);
2457 dmu_objset_name(os, osname);
2459 for (i = 0; i < 2; i++) {
2460 if (i == 0) {
2461 prop = "checksum";
2462 value = ztest_random_checksum();
2463 inherit = (value == ZIO_CHECKSUM_INHERIT);
2464 } else {
2465 prop = "compression";
2466 value = ztest_random_compress();
2467 inherit = (value == ZIO_COMPRESS_INHERIT);
2470 error = dsl_prop_set(osname, prop, sizeof (value),
2471 !inherit, &value);
2473 if (error == ENOSPC) {
2474 ztest_record_enospc("dsl_prop_set");
2475 break;
2478 ASSERT3U(error, ==, 0);
2480 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value),
2481 1, &value, setpoint), ==, 0);
2483 if (i == 0)
2484 valname = zio_checksum_table[value].ci_name;
2485 else
2486 valname = zio_compress_table[value].ci_name;
2488 if (zopt_verbose >= 6) {
2489 (void) printf("%s %s = %s for '%s'\n",
2490 osname, prop, valname, setpoint);
2494 (void) rw_unlock(&ztest_shared->zs_name_lock);
2498 * Inject random faults into the on-disk data.
2500 void
2501 ztest_fault_inject(ztest_args_t *za)
2503 int fd;
2504 uint64_t offset;
2505 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz;
2506 uint64_t bad = 0x1990c0ffeedecade;
2507 uint64_t top, leaf;
2508 char path0[MAXPATHLEN];
2509 char pathrand[MAXPATHLEN];
2510 size_t fsize;
2511 spa_t *spa = za->za_spa;
2512 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
2513 int iters = 1000;
2514 int maxfaults = zopt_maxfaults;
2515 vdev_t *vd0 = NULL;
2516 uint64_t guid0 = 0;
2518 ASSERT(leaves >= 1);
2521 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
2523 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
2525 if (ztest_random(2) == 0) {
2527 * Inject errors on a normal data device.
2529 top = ztest_random(spa->spa_root_vdev->vdev_children);
2530 leaf = ztest_random(leaves);
2533 * Generate paths to the first leaf in this top-level vdev,
2534 * and to the random leaf we selected. We'll induce transient
2535 * write failures and random online/offline activity on leaf 0,
2536 * and we'll write random garbage to the randomly chosen leaf.
2538 (void) snprintf(path0, sizeof (path0), ztest_dev_template,
2539 zopt_dir, zopt_pool, top * leaves + 0);
2540 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
2541 zopt_dir, zopt_pool, top * leaves + leaf);
2543 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
2544 if (vd0 != NULL && maxfaults != 1) {
2546 * Make vd0 explicitly claim to be unreadable,
2547 * or unwriteable, or reach behind its back
2548 * and close the underlying fd. We can do this if
2549 * maxfaults == 0 because we'll fail and reexecute,
2550 * and we can do it if maxfaults >= 2 because we'll
2551 * have enough redundancy. If maxfaults == 1, the
2552 * combination of this with injection of random data
2553 * corruption below exceeds the pool's fault tolerance.
2555 vdev_file_t *vf = vd0->vdev_tsd;
2557 if (vf != NULL && ztest_random(3) == 0) {
2558 (void) close(vf->vf_vnode->v_fd);
2559 vf->vf_vnode->v_fd = -1;
2560 } else if (ztest_random(2) == 0) {
2561 vd0->vdev_cant_read = B_TRUE;
2562 } else {
2563 vd0->vdev_cant_write = B_TRUE;
2565 guid0 = vd0->vdev_guid;
2567 } else {
2569 * Inject errors on an l2cache device.
2571 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2573 if (sav->sav_count == 0) {
2574 spa_config_exit(spa, SCL_STATE, FTAG);
2575 return;
2577 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
2578 guid0 = vd0->vdev_guid;
2579 (void) strcpy(path0, vd0->vdev_path);
2580 (void) strcpy(pathrand, vd0->vdev_path);
2582 leaf = 0;
2583 leaves = 1;
2584 maxfaults = INT_MAX; /* no limit on cache devices */
2587 dprintf("damaging %s and %s\n", path0, pathrand);
2589 spa_config_exit(spa, SCL_STATE, FTAG);
2591 if (maxfaults == 0)
2592 return;
2595 * If we can tolerate two or more faults, randomly online/offline vd0.
2597 if (maxfaults >= 2 && guid0 != 0) {
2598 if (ztest_random(10) < 6)
2599 (void) vdev_offline(spa, guid0, B_TRUE);
2600 else
2601 (void) vdev_online(spa, guid0, B_FALSE, NULL);
2605 * We have at least single-fault tolerance, so inject data corruption.
2607 fd = open(pathrand, O_RDWR);
2609 if (fd == -1) /* we hit a gap in the device namespace */
2610 return;
2612 fsize = lseek(fd, 0, SEEK_END);
2614 while (--iters != 0) {
2615 offset = ztest_random(fsize / (leaves << bshift)) *
2616 (leaves << bshift) + (leaf << bshift) +
2617 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
2619 if (offset >= fsize)
2620 continue;
2622 if (zopt_verbose >= 6)
2623 (void) printf("injecting bad word into %s,"
2624 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
2626 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
2627 fatal(1, "can't inject bad word at 0x%llx in %s",
2628 offset, pathrand);
2631 (void) close(fd);
2635 * Scrub the pool.
2637 void
2638 ztest_scrub(ztest_args_t *za)
2640 spa_t *spa = za->za_spa;
2642 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2643 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */
2644 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING);
2648 * Rename the pool to a different name and then rename it back.
2650 void
2651 ztest_spa_rename(ztest_args_t *za)
2653 char *oldname, *newname;
2654 int error;
2655 spa_t *spa;
2657 (void) rw_wrlock(&ztest_shared->zs_name_lock);
2659 oldname = za->za_pool;
2660 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
2661 (void) strcpy(newname, oldname);
2662 (void) strcat(newname, "_tmp");
2665 * Do the rename
2667 error = spa_rename(oldname, newname);
2668 if (error)
2669 fatal(0, "spa_rename('%s', '%s') = %d", oldname,
2670 newname, error);
2673 * Try to open it under the old name, which shouldn't exist
2675 error = spa_open(oldname, &spa, FTAG);
2676 if (error != ENOENT)
2677 fatal(0, "spa_open('%s') = %d", oldname, error);
2680 * Open it under the new name and make sure it's still the same spa_t.
2682 error = spa_open(newname, &spa, FTAG);
2683 if (error != 0)
2684 fatal(0, "spa_open('%s') = %d", newname, error);
2686 ASSERT(spa == za->za_spa);
2687 spa_close(spa, FTAG);
2690 * Rename it back to the original
2692 error = spa_rename(newname, oldname);
2693 if (error)
2694 fatal(0, "spa_rename('%s', '%s') = %d", newname,
2695 oldname, error);
2698 * Make sure it can still be opened
2700 error = spa_open(oldname, &spa, FTAG);
2701 if (error != 0)
2702 fatal(0, "spa_open('%s') = %d", oldname, error);
2704 ASSERT(spa == za->za_spa);
2705 spa_close(spa, FTAG);
2707 umem_free(newname, strlen(newname) + 1);
2709 (void) rw_unlock(&ztest_shared->zs_name_lock);
2714 * Completely obliterate one disk.
2716 static void
2717 ztest_obliterate_one_disk(uint64_t vdev)
2719 int fd;
2720 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN];
2721 size_t fsize;
2723 if (zopt_maxfaults < 2)
2724 return;
2726 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2727 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name);
2729 fd = open(dev_name, O_RDWR);
2731 if (fd == -1)
2732 fatal(1, "can't open %s", dev_name);
2735 * Determine the size.
2737 fsize = lseek(fd, 0, SEEK_END);
2739 (void) close(fd);
2742 * Rename the old device to dev_name.old (useful for debugging).
2744 VERIFY(rename(dev_name, copy_name) == 0);
2747 * Create a new one.
2749 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0);
2750 VERIFY(ftruncate(fd, fsize) == 0);
2751 (void) close(fd);
2754 static void
2755 ztest_replace_one_disk(spa_t *spa, uint64_t vdev)
2757 char dev_name[MAXPATHLEN];
2758 nvlist_t *root;
2759 int error;
2760 uint64_t guid;
2761 vdev_t *vd;
2763 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev);
2766 * Build the nvlist describing dev_name.
2768 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1);
2770 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2771 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL)
2772 guid = 0;
2773 else
2774 guid = vd->vdev_guid;
2775 spa_config_exit(spa, SCL_VDEV, FTAG);
2776 error = spa_vdev_attach(spa, guid, root, B_TRUE);
2777 if (error != 0 &&
2778 error != EBUSY &&
2779 error != ENOTSUP &&
2780 error != ENODEV &&
2781 error != EDOM)
2782 fatal(0, "spa_vdev_attach(in-place) = %d", error);
2784 nvlist_free(root);
2787 static void
2788 ztest_verify_blocks(char *pool)
2790 int status;
2791 char zdb[MAXPATHLEN + MAXNAMELEN + 20];
2792 char zbuf[1024];
2793 char *bin;
2794 char *ztest;
2795 char *isa;
2796 int isalen;
2797 FILE *fp;
2799 (void) realpath(getexecname(), zdb);
2801 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
2802 bin = strstr(zdb, "/usr/bin/");
2803 ztest = strstr(bin, "/ztest");
2804 isa = bin + 8;
2805 isalen = ztest - isa;
2806 isa = strdup(isa);
2807 /* LINTED */
2808 (void) sprintf(bin,
2809 "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache %s",
2810 isalen,
2811 isa,
2812 zopt_verbose >= 3 ? "s" : "",
2813 zopt_verbose >= 4 ? "v" : "",
2814 pool);
2815 free(isa);
2817 if (zopt_verbose >= 5)
2818 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
2820 fp = popen(zdb, "r");
2822 while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
2823 if (zopt_verbose >= 3)
2824 (void) printf("%s", zbuf);
2826 status = pclose(fp);
2828 if (status == 0)
2829 return;
2831 ztest_dump_core = 0;
2832 if (WIFEXITED(status))
2833 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
2834 else
2835 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
2838 static void
2839 ztest_walk_pool_directory(char *header)
2841 spa_t *spa = NULL;
2843 if (zopt_verbose >= 6)
2844 (void) printf("%s\n", header);
2846 mutex_enter(&spa_namespace_lock);
2847 while ((spa = spa_next(spa)) != NULL)
2848 if (zopt_verbose >= 6)
2849 (void) printf("\t%s\n", spa_name(spa));
2850 mutex_exit(&spa_namespace_lock);
2853 static void
2854 ztest_spa_import_export(char *oldname, char *newname)
2856 nvlist_t *config;
2857 uint64_t pool_guid;
2858 spa_t *spa;
2859 int error;
2861 if (zopt_verbose >= 4) {
2862 (void) printf("import/export: old = %s, new = %s\n",
2863 oldname, newname);
2867 * Clean up from previous runs.
2869 (void) spa_destroy(newname);
2872 * Get the pool's configuration and guid.
2874 error = spa_open(oldname, &spa, FTAG);
2875 if (error)
2876 fatal(0, "spa_open('%s') = %d", oldname, error);
2878 pool_guid = spa_guid(spa);
2879 spa_close(spa, FTAG);
2881 ztest_walk_pool_directory("pools before export");
2884 * Export it.
2886 error = spa_export(oldname, &config, B_FALSE);
2887 if (error)
2888 fatal(0, "spa_export('%s') = %d", oldname, error);
2890 ztest_walk_pool_directory("pools after export");
2893 * Import it under the new name.
2895 error = spa_import(newname, config, NULL);
2896 if (error)
2897 fatal(0, "spa_import('%s') = %d", newname, error);
2899 ztest_walk_pool_directory("pools after import");
2902 * Try to import it again -- should fail with EEXIST.
2904 error = spa_import(newname, config, NULL);
2905 if (error != EEXIST)
2906 fatal(0, "spa_import('%s') twice", newname);
2909 * Try to import it under a different name -- should fail with EEXIST.
2911 error = spa_import(oldname, config, NULL);
2912 if (error != EEXIST)
2913 fatal(0, "spa_import('%s') under multiple names", newname);
2916 * Verify that the pool is no longer visible under the old name.
2918 error = spa_open(oldname, &spa, FTAG);
2919 if (error != ENOENT)
2920 fatal(0, "spa_open('%s') = %d", newname, error);
2923 * Verify that we can open and close the pool using the new name.
2925 error = spa_open(newname, &spa, FTAG);
2926 if (error)
2927 fatal(0, "spa_open('%s') = %d", newname, error);
2928 ASSERT(pool_guid == spa_guid(spa));
2929 spa_close(spa, FTAG);
2931 nvlist_free(config);
2934 static void *
2935 ztest_resume(void *arg)
2937 spa_t *spa = arg;
2939 while (!ztest_exiting) {
2940 (void) poll(NULL, 0, 1000);
2942 if (!spa_suspended(spa))
2943 continue;
2945 spa_vdev_state_enter(spa);
2946 vdev_clear(spa, NULL);
2947 (void) spa_vdev_state_exit(spa, NULL, 0);
2949 zio_resume(spa);
2951 return (NULL);
2954 static void *
2955 ztest_thread(void *arg)
2957 ztest_args_t *za = arg;
2958 ztest_shared_t *zs = ztest_shared;
2959 hrtime_t now, functime;
2960 ztest_info_t *zi;
2961 int f, i;
2963 while ((now = gethrtime()) < za->za_stop) {
2965 * See if it's time to force a crash.
2967 if (now > za->za_kill) {
2968 zs->zs_alloc = spa_get_alloc(za->za_spa);
2969 zs->zs_space = spa_get_space(za->za_spa);
2970 (void) kill(getpid(), SIGKILL);
2974 * Pick a random function.
2976 f = ztest_random(ZTEST_FUNCS);
2977 zi = &zs->zs_info[f];
2980 * Decide whether to call it, based on the requested frequency.
2982 if (zi->zi_call_target == 0 ||
2983 (double)zi->zi_call_total / zi->zi_call_target >
2984 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC))
2985 continue;
2987 atomic_add_64(&zi->zi_calls, 1);
2988 atomic_add_64(&zi->zi_call_total, 1);
2990 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) *
2991 ZTEST_DIRSIZE;
2992 za->za_diroff_shared = (1ULL << 63);
2994 for (i = 0; i < zi->zi_iters; i++)
2995 zi->zi_func(za);
2997 functime = gethrtime() - now;
2999 atomic_add_64(&zi->zi_call_time, functime);
3001 if (zopt_verbose >= 4) {
3002 Dl_info dli;
3003 (void) dladdr((void *)zi->zi_func, &dli);
3004 (void) printf("%6.2f sec in %s\n",
3005 (double)functime / NANOSEC, dli.dli_sname);
3009 * If we're getting ENOSPC with some regularity, stop.
3011 if (zs->zs_enospc_count > 10)
3012 break;
3015 return (NULL);
3019 * Kick off threads to run tests on all datasets in parallel.
3021 static void
3022 ztest_run(char *pool)
3024 int t, d, error;
3025 ztest_shared_t *zs = ztest_shared;
3026 ztest_args_t *za;
3027 spa_t *spa;
3028 char name[100];
3029 thread_t resume_tid;
3031 ztest_exiting = B_FALSE;
3033 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL);
3034 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL);
3036 for (t = 0; t < ZTEST_SYNC_LOCKS; t++)
3037 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL);
3040 * Destroy one disk before we even start.
3041 * It's mirrored, so everything should work just fine.
3042 * This makes us exercise fault handling very early in spa_load().
3044 ztest_obliterate_one_disk(0);
3047 * Verify that the sum of the sizes of all blocks in the pool
3048 * equals the SPA's allocated space total.
3050 ztest_verify_blocks(pool);
3053 * Kick off a replacement of the disk we just obliterated.
3055 kernel_init(FREAD | FWRITE);
3056 VERIFY(spa_open(pool, &spa, FTAG) == 0);
3057 ztest_replace_one_disk(spa, 0);
3058 if (zopt_verbose >= 5)
3059 show_pool_stats(spa);
3060 spa_close(spa, FTAG);
3061 kernel_fini();
3063 kernel_init(FREAD | FWRITE);
3066 * Verify that we can export the pool and reimport it under a
3067 * different name.
3069 if (ztest_random(2) == 0) {
3070 (void) snprintf(name, 100, "%s_import", pool);
3071 ztest_spa_import_export(pool, name);
3072 ztest_spa_import_export(name, pool);
3076 * Verify that we can loop over all pools.
3078 mutex_enter(&spa_namespace_lock);
3079 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) {
3080 if (zopt_verbose > 3) {
3081 (void) printf("spa_next: found %s\n", spa_name(spa));
3084 mutex_exit(&spa_namespace_lock);
3087 * Open our pool.
3089 VERIFY(spa_open(pool, &spa, FTAG) == 0);
3092 * Create a thread to periodically resume suspended I/O.
3094 VERIFY(thr_create(0, 0, ztest_resume, spa, THR_BOUND,
3095 &resume_tid) == 0);
3098 * Verify that we can safely inquire about about any object,
3099 * whether it's allocated or not. To make it interesting,
3100 * we probe a 5-wide window around each power of two.
3101 * This hits all edge cases, including zero and the max.
3103 for (t = 0; t < 64; t++) {
3104 for (d = -5; d <= 5; d++) {
3105 error = dmu_object_info(spa->spa_meta_objset,
3106 (1ULL << t) + d, NULL);
3107 ASSERT(error == 0 || error == ENOENT ||
3108 error == EINVAL);
3113 * Now kick off all the tests that run in parallel.
3115 zs->zs_enospc_count = 0;
3117 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL);
3119 if (zopt_verbose >= 4)
3120 (void) printf("starting main threads...\n");
3122 za[0].za_start = gethrtime();
3123 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC;
3124 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time);
3125 za[0].za_kill = za[0].za_stop;
3126 if (ztest_random(100) < zopt_killrate)
3127 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC);
3129 for (t = 0; t < zopt_threads; t++) {
3130 d = t % zopt_datasets;
3132 (void) strcpy(za[t].za_pool, pool);
3133 za[t].za_os = za[d].za_os;
3134 za[t].za_spa = spa;
3135 za[t].za_zilog = za[d].za_zilog;
3136 za[t].za_instance = t;
3137 za[t].za_random = ztest_random(-1ULL);
3138 za[t].za_start = za[0].za_start;
3139 za[t].za_stop = za[0].za_stop;
3140 za[t].za_kill = za[0].za_kill;
3142 if (t < zopt_datasets) {
3143 ztest_replay_t zr;
3144 int test_future = FALSE;
3145 (void) rw_rdlock(&ztest_shared->zs_name_lock);
3146 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3147 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0,
3148 ztest_create_cb, NULL);
3149 if (error == EEXIST) {
3150 test_future = TRUE;
3151 } else if (error == ENOSPC) {
3152 zs->zs_enospc_count++;
3153 (void) rw_unlock(&ztest_shared->zs_name_lock);
3154 break;
3155 } else if (error != 0) {
3156 fatal(0, "dmu_objset_create(%s) = %d",
3157 name, error);
3159 error = dmu_objset_open(name, DMU_OST_OTHER,
3160 DS_MODE_USER, &za[d].za_os);
3161 if (error)
3162 fatal(0, "dmu_objset_open('%s') = %d",
3163 name, error);
3164 (void) rw_unlock(&ztest_shared->zs_name_lock);
3165 if (test_future)
3166 ztest_dmu_check_future_leak(&za[t]);
3167 zr.zr_os = za[d].za_os;
3168 zil_replay(zr.zr_os, &zr, &zr.zr_assign,
3169 ztest_replay_vector, NULL);
3170 za[d].za_zilog = zil_open(za[d].za_os, NULL);
3173 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND,
3174 &za[t].za_thread) == 0);
3177 while (--t >= 0) {
3178 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0);
3179 if (t < zopt_datasets) {
3180 zil_close(za[t].za_zilog);
3181 dmu_objset_close(za[t].za_os);
3185 if (zopt_verbose >= 3)
3186 show_pool_stats(spa);
3188 txg_wait_synced(spa_get_dsl(spa), 0);
3190 zs->zs_alloc = spa_get_alloc(spa);
3191 zs->zs_space = spa_get_space(spa);
3194 * If we had out-of-space errors, destroy a random objset.
3196 if (zs->zs_enospc_count != 0) {
3197 (void) rw_rdlock(&ztest_shared->zs_name_lock);
3198 d = (int)ztest_random(zopt_datasets);
3199 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d);
3200 if (zopt_verbose >= 3)
3201 (void) printf("Destroying %s to free up space\n", name);
3202 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d],
3203 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
3204 (void) rw_unlock(&ztest_shared->zs_name_lock);
3207 txg_wait_synced(spa_get_dsl(spa), 0);
3209 umem_free(za, zopt_threads * sizeof (ztest_args_t));
3211 /* Kill the resume thread */
3212 ztest_exiting = B_TRUE;
3213 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
3216 * Right before closing the pool, kick off a bunch of async I/O;
3217 * spa_close() should wait for it to complete.
3219 for (t = 1; t < 50; t++)
3220 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15);
3222 spa_close(spa, FTAG);
3224 kernel_fini();
3227 void
3228 print_time(hrtime_t t, char *timebuf)
3230 hrtime_t s = t / NANOSEC;
3231 hrtime_t m = s / 60;
3232 hrtime_t h = m / 60;
3233 hrtime_t d = h / 24;
3235 s -= m * 60;
3236 m -= h * 60;
3237 h -= d * 24;
3239 timebuf[0] = '\0';
3241 if (d)
3242 (void) sprintf(timebuf,
3243 "%llud%02lluh%02llum%02llus", d, h, m, s);
3244 else if (h)
3245 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
3246 else if (m)
3247 (void) sprintf(timebuf, "%llum%02llus", m, s);
3248 else
3249 (void) sprintf(timebuf, "%llus", s);
3253 * Create a storage pool with the given name and initial vdev size.
3254 * Then create the specified number of datasets in the pool.
3256 static void
3257 ztest_init(char *pool)
3259 spa_t *spa;
3260 int error;
3261 nvlist_t *nvroot;
3263 kernel_init(FREAD | FWRITE);
3266 * Create the storage pool.
3268 (void) spa_destroy(pool);
3269 ztest_shared->zs_vdev_primaries = 0;
3270 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
3271 0, zopt_raidz, zopt_mirrors, 1);
3272 error = spa_create(pool, nvroot, NULL, NULL, NULL);
3273 nvlist_free(nvroot);
3275 if (error)
3276 fatal(0, "spa_create() = %d", error);
3277 error = spa_open(pool, &spa, FTAG);
3278 if (error)
3279 fatal(0, "spa_open() = %d", error);
3281 if (zopt_verbose >= 3)
3282 show_pool_stats(spa);
3284 spa_close(spa, FTAG);
3286 kernel_fini();
3290 main(int argc, char **argv)
3292 int kills = 0;
3293 int iters = 0;
3294 int i, f;
3295 ztest_shared_t *zs;
3296 ztest_info_t *zi;
3297 char timebuf[100];
3298 char numbuf[6];
3300 (void) setvbuf(stdout, NULL, _IOLBF, 0);
3302 /* Override location of zpool.cache */
3303 spa_config_path = "/tmp/zpool.cache";
3305 ztest_random_fd = open("/dev/urandom", O_RDONLY);
3307 process_options(argc, argv);
3309 argc -= optind;
3310 argv += optind;
3312 dprintf_setup(&argc, argv);
3315 * Blow away any existing copy of zpool.cache
3317 if (zopt_init != 0)
3318 (void) remove("/tmp/zpool.cache");
3320 zs = ztest_shared = (void *)mmap(0,
3321 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()),
3322 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
3324 if (zopt_verbose >= 1) {
3325 (void) printf("%llu vdevs, %d datasets, %d threads,"
3326 " %llu seconds...\n",
3327 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
3328 (u_longlong_t)zopt_time);
3332 * Create and initialize our storage pool.
3334 for (i = 1; i <= zopt_init; i++) {
3335 bzero(zs, sizeof (ztest_shared_t));
3336 if (zopt_verbose >= 3 && zopt_init != 1)
3337 (void) printf("ztest_init(), pass %d\n", i);
3338 ztest_init(zopt_pool);
3342 * Initialize the call targets for each function.
3344 for (f = 0; f < ZTEST_FUNCS; f++) {
3345 zi = &zs->zs_info[f];
3347 *zi = ztest_info[f];
3349 if (*zi->zi_interval == 0)
3350 zi->zi_call_target = UINT64_MAX;
3351 else
3352 zi->zi_call_target = zopt_time / *zi->zi_interval;
3355 zs->zs_start_time = gethrtime();
3356 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC;
3359 * Run the tests in a loop. These tests include fault injection
3360 * to verify that self-healing data works, and forced crashes
3361 * to verify that we never lose on-disk consistency.
3363 while (gethrtime() < zs->zs_stop_time) {
3364 int status;
3365 pid_t pid;
3366 char *tmp;
3369 * Initialize the workload counters for each function.
3371 for (f = 0; f < ZTEST_FUNCS; f++) {
3372 zi = &zs->zs_info[f];
3373 zi->zi_calls = 0;
3374 zi->zi_call_time = 0;
3377 pid = fork();
3379 if (pid == -1)
3380 fatal(1, "fork failed");
3382 if (pid == 0) { /* child */
3383 struct rlimit rl = { 1024, 1024 };
3384 (void) setrlimit(RLIMIT_NOFILE, &rl);
3385 (void) enable_extended_FILE_stdio(-1, -1);
3386 ztest_run(zopt_pool);
3387 exit(0);
3390 while (waitpid(pid, &status, 0) != pid)
3391 continue;
3393 if (WIFEXITED(status)) {
3394 if (WEXITSTATUS(status) != 0) {
3395 (void) fprintf(stderr,
3396 "child exited with code %d\n",
3397 WEXITSTATUS(status));
3398 exit(2);
3400 } else if (WIFSIGNALED(status)) {
3401 if (WTERMSIG(status) != SIGKILL) {
3402 (void) fprintf(stderr,
3403 "child died with signal %d\n",
3404 WTERMSIG(status));
3405 exit(3);
3407 kills++;
3408 } else {
3409 (void) fprintf(stderr, "something strange happened "
3410 "to child\n");
3411 exit(4);
3414 iters++;
3416 if (zopt_verbose >= 1) {
3417 hrtime_t now = gethrtime();
3419 now = MIN(now, zs->zs_stop_time);
3420 print_time(zs->zs_stop_time - now, timebuf);
3421 nicenum(zs->zs_space, numbuf);
3423 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
3424 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
3425 iters,
3426 WIFEXITED(status) ? "Complete" : "SIGKILL",
3427 (u_longlong_t)zs->zs_enospc_count,
3428 100.0 * zs->zs_alloc / zs->zs_space,
3429 numbuf,
3430 100.0 * (now - zs->zs_start_time) /
3431 (zopt_time * NANOSEC), timebuf);
3434 if (zopt_verbose >= 2) {
3435 (void) printf("\nWorkload summary:\n\n");
3436 (void) printf("%7s %9s %s\n",
3437 "Calls", "Time", "Function");
3438 (void) printf("%7s %9s %s\n",
3439 "-----", "----", "--------");
3440 for (f = 0; f < ZTEST_FUNCS; f++) {
3441 Dl_info dli;
3443 zi = &zs->zs_info[f];
3444 print_time(zi->zi_call_time, timebuf);
3445 (void) dladdr((void *)zi->zi_func, &dli);
3446 (void) printf("%7llu %9s %s\n",
3447 (u_longlong_t)zi->zi_calls, timebuf,
3448 dli.dli_sname);
3450 (void) printf("\n");
3454 * It's possible that we killed a child during a rename test, in
3455 * which case we'll have a 'ztest_tmp' pool lying around instead
3456 * of 'ztest'. Do a blind rename in case this happened.
3458 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL);
3459 (void) strcpy(tmp, zopt_pool);
3460 (void) strcat(tmp, "_tmp");
3461 kernel_init(FREAD | FWRITE);
3462 (void) spa_rename(tmp, zopt_pool);
3463 kernel_fini();
3464 umem_free(tmp, strlen(tmp) + 1);
3467 ztest_verify_blocks(zopt_pool);
3469 if (zopt_verbose >= 1) {
3470 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
3471 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
3474 return (0);