Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / dist / uts / common / fs / zfs / arc.c
blobf49b256e23cb49c8425e6d3cf8ab6c183030edc0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * DVA-based Adjustable Replacement Cache
29 * While much of the theory of operation used here is
30 * based on the self-tuning, low overhead replacement cache
31 * presented by Megiddo and Modha at FAST 2003, there are some
32 * significant differences:
34 * 1. The Megiddo and Modha model assumes any page is evictable.
35 * Pages in its cache cannot be "locked" into memory. This makes
36 * the eviction algorithm simple: evict the last page in the list.
37 * This also make the performance characteristics easy to reason
38 * about. Our cache is not so simple. At any given moment, some
39 * subset of the blocks in the cache are un-evictable because we
40 * have handed out a reference to them. Blocks are only evictable
41 * when there are no external references active. This makes
42 * eviction far more problematic: we choose to evict the evictable
43 * blocks that are the "lowest" in the list.
45 * There are times when it is not possible to evict the requested
46 * space. In these circumstances we are unable to adjust the cache
47 * size. To prevent the cache growing unbounded at these times we
48 * implement a "cache throttle" that slows the flow of new data
49 * into the cache until we can make space available.
51 * 2. The Megiddo and Modha model assumes a fixed cache size.
52 * Pages are evicted when the cache is full and there is a cache
53 * miss. Our model has a variable sized cache. It grows with
54 * high use, but also tries to react to memory pressure from the
55 * operating system: decreasing its size when system memory is
56 * tight.
58 * 3. The Megiddo and Modha model assumes a fixed page size. All
59 * elements of the cache are therefor exactly the same size. So
60 * when adjusting the cache size following a cache miss, its simply
61 * a matter of choosing a single page to evict. In our model, we
62 * have variable sized cache blocks (rangeing from 512 bytes to
63 * 128K bytes). We therefor choose a set of blocks to evict to make
64 * space for a cache miss that approximates as closely as possible
65 * the space used by the new block.
67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68 * by N. Megiddo & D. Modha, FAST 2003
72 * The locking model:
74 * A new reference to a cache buffer can be obtained in two
75 * ways: 1) via a hash table lookup using the DVA as a key,
76 * or 2) via one of the ARC lists. The arc_read() interface
77 * uses method 1, while the internal arc algorithms for
78 * adjusting the cache use method 2. We therefor provide two
79 * types of locks: 1) the hash table lock array, and 2) the
80 * arc list locks.
82 * Buffers do not have their own mutexs, rather they rely on the
83 * hash table mutexs for the bulk of their protection (i.e. most
84 * fields in the arc_buf_hdr_t are protected by these mutexs).
86 * buf_hash_find() returns the appropriate mutex (held) when it
87 * locates the requested buffer in the hash table. It returns
88 * NULL for the mutex if the buffer was not in the table.
90 * buf_hash_remove() expects the appropriate hash mutex to be
91 * already held before it is invoked.
93 * Each arc state also has a mutex which is used to protect the
94 * buffer list associated with the state. When attempting to
95 * obtain a hash table lock while holding an arc list lock you
96 * must use: mutex_tryenter() to avoid deadlock. Also note that
97 * the active state mutex must be held before the ghost state mutex.
99 * Arc buffers may have an associated eviction callback function.
100 * This function will be invoked prior to removing the buffer (e.g.
101 * in arc_do_user_evicts()). Note however that the data associated
102 * with the buffer may be evicted prior to the callback. The callback
103 * must be made with *no locks held* (to prevent deadlock). Additionally,
104 * the users of callbacks must ensure that their private data is
105 * protected from simultaneous callbacks from arc_buf_evict()
106 * and arc_do_user_evicts().
108 * Note that the majority of the performance stats are manipulated
109 * with atomic operations.
111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113 * - L2ARC buflist creation
114 * - L2ARC buflist eviction
115 * - L2ARC write completion, which walks L2ARC buflists
116 * - ARC header destruction, as it removes from L2ARC buflists
117 * - ARC header release, as it removes from L2ARC buflists
120 #include <sys/spa.h>
121 #include <sys/zio.h>
122 #include <sys/zio_checksum.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #ifdef _KERNEL
128 #include <sys/vmsystm.h>
129 #include <vm/anon.h>
130 #include <sys/fs/swapnode.h>
131 #include <sys/dnlc.h>
132 #endif
133 #include <sys/callb.h>
134 #include <sys/kstat.h>
136 #ifdef __NetBSD__
137 #include <uvm/uvm.h>
138 #ifndef btop
139 #define btop(x) ((x) / PAGE_SIZE)
140 #endif
141 #define needfree (uvmexp.free < uvmexp.freetarg ? uvmexp.freetarg : 0)
142 #define buf_init arc_buf_init
143 #define freemem uvmexp.free
144 #define minfree uvmexp.freemin
145 #define desfree uvmexp.freetarg
146 #define lotsfree (desfree * 2)
147 #define availrmem desfree
148 #define swapfs_minfree 0
149 #define swapfs_reserve 0
150 #undef curproc
151 #define curproc curlwp
152 #define proc_pageout uvm.pagedaemon_lwp
154 #define heap_arena kernel_map
155 #define VMEM_ALLOC 1
156 #define VMEM_FREE 2
157 static inline size_t
158 vmem_size(struct vm_map *map, int flag)
160 switch (flag) {
161 case VMEM_ALLOC:
162 return map->size;
163 case VMEM_FREE:
164 return vm_map_max(map) - vm_map_min(map) - map->size;
165 case VMEM_FREE|VMEM_ALLOC:
166 return vm_map_max(map) - vm_map_min(map);
167 default:
168 panic("vmem_size");
171 static void *zio_arena;
173 #include <sys/callback.h>
174 /* Structures used for memory and kva space reclaim. */
175 static struct callback_entry arc_kva_reclaim_entry;
176 static struct uvm_reclaim_hook arc_hook;
178 #endif /* __NetBSD__ */
180 static kmutex_t arc_reclaim_thr_lock;
181 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
182 static uint8_t arc_thread_exit;
184 extern int zfs_write_limit_shift;
185 extern uint64_t zfs_write_limit_max;
186 extern kmutex_t zfs_write_limit_lock;
188 #define ARC_REDUCE_DNLC_PERCENT 3
189 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
191 typedef enum arc_reclaim_strategy {
192 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
193 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
194 } arc_reclaim_strategy_t;
196 /* number of seconds before growing cache again */
197 static int arc_grow_retry = 60;
200 * minimum lifespan of a prefetch block in clock ticks
201 * (initialized in arc_init())
203 static int arc_min_prefetch_lifespan;
205 static int arc_dead;
208 * The arc has filled available memory and has now warmed up.
210 static boolean_t arc_warm;
213 * These tunables are for performance analysis.
215 uint64_t zfs_arc_max;
216 uint64_t zfs_arc_min;
217 uint64_t zfs_arc_meta_limit = 0;
218 int zfs_mdcomp_disable = 0;
221 * Note that buffers can be in one of 6 states:
222 * ARC_anon - anonymous (discussed below)
223 * ARC_mru - recently used, currently cached
224 * ARC_mru_ghost - recentely used, no longer in cache
225 * ARC_mfu - frequently used, currently cached
226 * ARC_mfu_ghost - frequently used, no longer in cache
227 * ARC_l2c_only - exists in L2ARC but not other states
228 * When there are no active references to the buffer, they are
229 * are linked onto a list in one of these arc states. These are
230 * the only buffers that can be evicted or deleted. Within each
231 * state there are multiple lists, one for meta-data and one for
232 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
233 * etc.) is tracked separately so that it can be managed more
234 * explicitly: favored over data, limited explicitly.
236 * Anonymous buffers are buffers that are not associated with
237 * a DVA. These are buffers that hold dirty block copies
238 * before they are written to stable storage. By definition,
239 * they are "ref'd" and are considered part of arc_mru
240 * that cannot be freed. Generally, they will aquire a DVA
241 * as they are written and migrate onto the arc_mru list.
243 * The ARC_l2c_only state is for buffers that are in the second
244 * level ARC but no longer in any of the ARC_m* lists. The second
245 * level ARC itself may also contain buffers that are in any of
246 * the ARC_m* states - meaning that a buffer can exist in two
247 * places. The reason for the ARC_l2c_only state is to keep the
248 * buffer header in the hash table, so that reads that hit the
249 * second level ARC benefit from these fast lookups.
252 typedef struct arc_state {
253 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
254 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
255 uint64_t arcs_size; /* total amount of data in this state */
256 kmutex_t arcs_mtx;
257 } arc_state_t;
259 /* The 6 states: */
260 static arc_state_t ARC_anon;
261 static arc_state_t ARC_mru;
262 static arc_state_t ARC_mru_ghost;
263 static arc_state_t ARC_mfu;
264 static arc_state_t ARC_mfu_ghost;
265 static arc_state_t ARC_l2c_only;
267 typedef struct arc_stats {
268 kstat_named_t arcstat_hits;
269 kstat_named_t arcstat_misses;
270 kstat_named_t arcstat_demand_data_hits;
271 kstat_named_t arcstat_demand_data_misses;
272 kstat_named_t arcstat_demand_metadata_hits;
273 kstat_named_t arcstat_demand_metadata_misses;
274 kstat_named_t arcstat_prefetch_data_hits;
275 kstat_named_t arcstat_prefetch_data_misses;
276 kstat_named_t arcstat_prefetch_metadata_hits;
277 kstat_named_t arcstat_prefetch_metadata_misses;
278 kstat_named_t arcstat_mru_hits;
279 kstat_named_t arcstat_mru_ghost_hits;
280 kstat_named_t arcstat_mfu_hits;
281 kstat_named_t arcstat_mfu_ghost_hits;
282 kstat_named_t arcstat_deleted;
283 kstat_named_t arcstat_recycle_miss;
284 kstat_named_t arcstat_mutex_miss;
285 kstat_named_t arcstat_evict_skip;
286 kstat_named_t arcstat_hash_elements;
287 kstat_named_t arcstat_hash_elements_max;
288 kstat_named_t arcstat_hash_collisions;
289 kstat_named_t arcstat_hash_chains;
290 kstat_named_t arcstat_hash_chain_max;
291 kstat_named_t arcstat_p;
292 kstat_named_t arcstat_c;
293 kstat_named_t arcstat_c_min;
294 kstat_named_t arcstat_c_max;
295 kstat_named_t arcstat_size;
296 kstat_named_t arcstat_hdr_size;
297 kstat_named_t arcstat_l2_hits;
298 kstat_named_t arcstat_l2_misses;
299 kstat_named_t arcstat_l2_feeds;
300 kstat_named_t arcstat_l2_rw_clash;
301 kstat_named_t arcstat_l2_writes_sent;
302 kstat_named_t arcstat_l2_writes_done;
303 kstat_named_t arcstat_l2_writes_error;
304 kstat_named_t arcstat_l2_writes_hdr_miss;
305 kstat_named_t arcstat_l2_evict_lock_retry;
306 kstat_named_t arcstat_l2_evict_reading;
307 kstat_named_t arcstat_l2_free_on_write;
308 kstat_named_t arcstat_l2_abort_lowmem;
309 kstat_named_t arcstat_l2_cksum_bad;
310 kstat_named_t arcstat_l2_io_error;
311 kstat_named_t arcstat_l2_size;
312 kstat_named_t arcstat_l2_hdr_size;
313 kstat_named_t arcstat_memory_throttle_count;
314 } arc_stats_t;
316 static arc_stats_t arc_stats = {
317 { "hits", KSTAT_DATA_UINT64 },
318 { "misses", KSTAT_DATA_UINT64 },
319 { "demand_data_hits", KSTAT_DATA_UINT64 },
320 { "demand_data_misses", KSTAT_DATA_UINT64 },
321 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
322 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
323 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
324 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
325 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
326 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
327 { "mru_hits", KSTAT_DATA_UINT64 },
328 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
329 { "mfu_hits", KSTAT_DATA_UINT64 },
330 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
331 { "deleted", KSTAT_DATA_UINT64 },
332 { "recycle_miss", KSTAT_DATA_UINT64 },
333 { "mutex_miss", KSTAT_DATA_UINT64 },
334 { "evict_skip", KSTAT_DATA_UINT64 },
335 { "hash_elements", KSTAT_DATA_UINT64 },
336 { "hash_elements_max", KSTAT_DATA_UINT64 },
337 { "hash_collisions", KSTAT_DATA_UINT64 },
338 { "hash_chains", KSTAT_DATA_UINT64 },
339 { "hash_chain_max", KSTAT_DATA_UINT64 },
340 { "p", KSTAT_DATA_UINT64 },
341 { "c", KSTAT_DATA_UINT64 },
342 { "c_min", KSTAT_DATA_UINT64 },
343 { "c_max", KSTAT_DATA_UINT64 },
344 { "size", KSTAT_DATA_UINT64 },
345 { "hdr_size", KSTAT_DATA_UINT64 },
346 { "l2_hits", KSTAT_DATA_UINT64 },
347 { "l2_misses", KSTAT_DATA_UINT64 },
348 { "l2_feeds", KSTAT_DATA_UINT64 },
349 { "l2_rw_clash", KSTAT_DATA_UINT64 },
350 { "l2_writes_sent", KSTAT_DATA_UINT64 },
351 { "l2_writes_done", KSTAT_DATA_UINT64 },
352 { "l2_writes_error", KSTAT_DATA_UINT64 },
353 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
354 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
355 { "l2_evict_reading", KSTAT_DATA_UINT64 },
356 { "l2_free_on_write", KSTAT_DATA_UINT64 },
357 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
358 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
359 { "l2_io_error", KSTAT_DATA_UINT64 },
360 { "l2_size", KSTAT_DATA_UINT64 },
361 { "l2_hdr_size", KSTAT_DATA_UINT64 },
362 { "memory_throttle_count", KSTAT_DATA_UINT64 }
365 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
367 #define ARCSTAT_INCR(stat, val) \
368 atomic_add_64(&arc_stats.stat.value.ui64, (val));
370 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
371 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
373 #define ARCSTAT_MAX(stat, val) { \
374 uint64_t m; \
375 while ((val) > (m = arc_stats.stat.value.ui64) && \
376 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
377 continue; \
380 #define ARCSTAT_MAXSTAT(stat) \
381 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
384 * We define a macro to allow ARC hits/misses to be easily broken down by
385 * two separate conditions, giving a total of four different subtypes for
386 * each of hits and misses (so eight statistics total).
388 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
389 if (cond1) { \
390 if (cond2) { \
391 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
392 } else { \
393 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
395 } else { \
396 if (cond2) { \
397 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
398 } else { \
399 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
403 kstat_t *arc_ksp;
404 static arc_state_t *arc_anon;
405 static arc_state_t *arc_mru;
406 static arc_state_t *arc_mru_ghost;
407 static arc_state_t *arc_mfu;
408 static arc_state_t *arc_mfu_ghost;
409 static arc_state_t *arc_l2c_only;
412 * There are several ARC variables that are critical to export as kstats --
413 * but we don't want to have to grovel around in the kstat whenever we wish to
414 * manipulate them. For these variables, we therefore define them to be in
415 * terms of the statistic variable. This assures that we are not introducing
416 * the possibility of inconsistency by having shadow copies of the variables,
417 * while still allowing the code to be readable.
419 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
420 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
421 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
422 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
423 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
425 static int arc_no_grow; /* Don't try to grow cache size */
426 static uint64_t arc_tempreserve;
427 static uint64_t arc_meta_used;
428 static uint64_t arc_meta_limit;
429 static uint64_t arc_meta_max = 0;
431 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
433 typedef struct arc_callback arc_callback_t;
435 struct arc_callback {
436 void *acb_private;
437 arc_done_func_t *acb_done;
438 arc_buf_t *acb_buf;
439 zio_t *acb_zio_dummy;
440 arc_callback_t *acb_next;
443 typedef struct arc_write_callback arc_write_callback_t;
445 struct arc_write_callback {
446 void *awcb_private;
447 arc_done_func_t *awcb_ready;
448 arc_done_func_t *awcb_done;
449 arc_buf_t *awcb_buf;
452 struct arc_buf_hdr {
453 /* protected by hash lock */
454 dva_t b_dva;
455 uint64_t b_birth;
456 uint64_t b_cksum0;
458 kmutex_t b_freeze_lock;
459 zio_cksum_t *b_freeze_cksum;
461 arc_buf_hdr_t *b_hash_next;
462 arc_buf_t *b_buf;
463 uint32_t b_flags;
464 uint32_t b_datacnt;
466 arc_callback_t *b_acb;
467 kcondvar_t b_cv;
469 /* immutable */
470 arc_buf_contents_t b_type;
471 uint64_t b_size;
472 spa_t *b_spa;
474 /* protected by arc state mutex */
475 arc_state_t *b_state;
476 list_node_t b_arc_node;
478 /* updated atomically */
479 clock_t b_arc_access;
481 /* self protecting */
482 refcount_t b_refcnt;
484 l2arc_buf_hdr_t *b_l2hdr;
485 list_node_t b_l2node;
488 static arc_buf_t *arc_eviction_list;
489 static kmutex_t arc_eviction_mtx;
490 static arc_buf_hdr_t arc_eviction_hdr;
491 static void arc_get_data_buf(arc_buf_t *buf);
492 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
493 static int arc_evict_needed(arc_buf_contents_t type);
494 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
496 #define GHOST_STATE(state) \
497 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
498 (state) == arc_l2c_only)
501 * Private ARC flags. These flags are private ARC only flags that will show up
502 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
503 * be passed in as arc_flags in things like arc_read. However, these flags
504 * should never be passed and should only be set by ARC code. When adding new
505 * public flags, make sure not to smash the private ones.
508 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
509 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
510 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
511 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
512 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
513 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */
514 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
515 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
516 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
517 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
518 #define ARC_STORED (1 << 19) /* has been store()d to */
520 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
521 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
522 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
523 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
524 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
525 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
526 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
527 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
528 (hdr)->b_l2hdr != NULL)
529 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
530 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
531 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
534 * Other sizes
537 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
538 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
541 * Hash table routines
544 #define HT_LOCK_PAD 64
546 struct ht_lock {
547 kmutex_t ht_lock;
548 #ifdef _KERNEL
549 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
550 #endif
553 #define BUF_LOCKS 256
554 typedef struct buf_hash_table {
555 uint64_t ht_mask;
556 arc_buf_hdr_t **ht_table;
557 struct ht_lock ht_locks[BUF_LOCKS];
558 } buf_hash_table_t;
560 static buf_hash_table_t buf_hash_table;
562 #define BUF_HASH_INDEX(spa, dva, birth) \
563 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
564 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
565 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
566 #define HDR_LOCK(buf) \
567 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
569 uint64_t zfs_crc64_table[256];
572 * Level 2 ARC
575 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
576 #define L2ARC_HEADROOM 4 /* num of writes */
577 #define L2ARC_FEED_SECS 1 /* caching interval */
579 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
580 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
583 * L2ARC Performance Tunables
585 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
586 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
587 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
588 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
589 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
592 * L2ARC Internals
594 typedef struct l2arc_dev {
595 vdev_t *l2ad_vdev; /* vdev */
596 spa_t *l2ad_spa; /* spa */
597 uint64_t l2ad_hand; /* next write location */
598 uint64_t l2ad_write; /* desired write size, bytes */
599 uint64_t l2ad_boost; /* warmup write boost, bytes */
600 uint64_t l2ad_start; /* first addr on device */
601 uint64_t l2ad_end; /* last addr on device */
602 uint64_t l2ad_evict; /* last addr eviction reached */
603 boolean_t l2ad_first; /* first sweep through */
604 list_t *l2ad_buflist; /* buffer list */
605 list_node_t l2ad_node; /* device list node */
606 } l2arc_dev_t;
608 static list_t L2ARC_dev_list; /* device list */
609 static list_t *l2arc_dev_list; /* device list pointer */
610 static kmutex_t l2arc_dev_mtx; /* device list mutex */
611 static l2arc_dev_t *l2arc_dev_last; /* last device used */
612 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
613 static list_t L2ARC_free_on_write; /* free after write buf list */
614 static list_t *l2arc_free_on_write; /* free after write list ptr */
615 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
616 static uint64_t l2arc_ndev; /* number of devices */
618 typedef struct l2arc_read_callback {
619 arc_buf_t *l2rcb_buf; /* read buffer */
620 spa_t *l2rcb_spa; /* spa */
621 blkptr_t l2rcb_bp; /* original blkptr */
622 zbookmark_t l2rcb_zb; /* original bookmark */
623 int l2rcb_flags; /* original flags */
624 } l2arc_read_callback_t;
626 typedef struct l2arc_write_callback {
627 l2arc_dev_t *l2wcb_dev; /* device info */
628 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
629 } l2arc_write_callback_t;
631 struct l2arc_buf_hdr {
632 /* protected by arc_buf_hdr mutex */
633 l2arc_dev_t *b_dev; /* L2ARC device */
634 daddr_t b_daddr; /* disk address, offset byte */
637 typedef struct l2arc_data_free {
638 /* protected by l2arc_free_on_write_mtx */
639 void *l2df_data;
640 size_t l2df_size;
641 void (*l2df_func)(void *, size_t);
642 list_node_t l2df_list_node;
643 } l2arc_data_free_t;
645 static kmutex_t l2arc_feed_thr_lock;
646 static kcondvar_t l2arc_feed_thr_cv;
647 static uint8_t l2arc_thread_exit;
649 static void l2arc_read_done(zio_t *zio);
650 static void l2arc_hdr_stat_add(void);
651 static void l2arc_hdr_stat_remove(void);
653 static uint64_t
654 buf_hash(spa_t *spa, const dva_t *dva, uint64_t birth)
656 uintptr_t spav = (uintptr_t)spa;
657 uint8_t *vdva = (uint8_t *)dva;
658 uint64_t crc = -1ULL;
659 int i;
661 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
663 for (i = 0; i < sizeof (dva_t); i++)
664 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
666 crc ^= (spav>>8) ^ birth;
668 return (crc);
671 #define BUF_EMPTY(buf) \
672 ((buf)->b_dva.dva_word[0] == 0 && \
673 (buf)->b_dva.dva_word[1] == 0 && \
674 (buf)->b_birth == 0)
676 #define BUF_EQUAL(spa, dva, birth, buf) \
677 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
678 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
679 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
681 static arc_buf_hdr_t *
682 buf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
684 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
685 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
686 arc_buf_hdr_t *buf;
688 mutex_enter(hash_lock);
689 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
690 buf = buf->b_hash_next) {
691 if (BUF_EQUAL(spa, dva, birth, buf)) {
692 *lockp = hash_lock;
693 return (buf);
696 mutex_exit(hash_lock);
697 *lockp = NULL;
698 return (NULL);
702 * Insert an entry into the hash table. If there is already an element
703 * equal to elem in the hash table, then the already existing element
704 * will be returned and the new element will not be inserted.
705 * Otherwise returns NULL.
707 static arc_buf_hdr_t *
708 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
710 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
711 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
712 arc_buf_hdr_t *fbuf;
713 uint32_t i;
715 ASSERT(!HDR_IN_HASH_TABLE(buf));
716 *lockp = hash_lock;
717 mutex_enter(hash_lock);
718 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
719 fbuf = fbuf->b_hash_next, i++) {
720 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
721 return (fbuf);
724 buf->b_hash_next = buf_hash_table.ht_table[idx];
725 buf_hash_table.ht_table[idx] = buf;
726 buf->b_flags |= ARC_IN_HASH_TABLE;
728 /* collect some hash table performance data */
729 if (i > 0) {
730 ARCSTAT_BUMP(arcstat_hash_collisions);
731 if (i == 1)
732 ARCSTAT_BUMP(arcstat_hash_chains);
734 ARCSTAT_MAX(arcstat_hash_chain_max, i);
737 ARCSTAT_BUMP(arcstat_hash_elements);
738 ARCSTAT_MAXSTAT(arcstat_hash_elements);
740 return (NULL);
743 static void
744 buf_hash_remove(arc_buf_hdr_t *buf)
746 arc_buf_hdr_t *fbuf, **bufp;
747 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
749 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
750 ASSERT(HDR_IN_HASH_TABLE(buf));
752 bufp = &buf_hash_table.ht_table[idx];
753 while ((fbuf = *bufp) != buf) {
754 ASSERT(fbuf != NULL);
755 bufp = &fbuf->b_hash_next;
757 *bufp = buf->b_hash_next;
758 buf->b_hash_next = NULL;
759 buf->b_flags &= ~ARC_IN_HASH_TABLE;
761 /* collect some hash table performance data */
762 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
764 if (buf_hash_table.ht_table[idx] &&
765 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
766 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
770 * Global data structures and functions for the buf kmem cache.
772 static kmem_cache_t *hdr_cache;
773 static kmem_cache_t *buf_cache;
775 static void
776 buf_fini(void)
778 int i;
780 kmem_free(buf_hash_table.ht_table,
781 (buf_hash_table.ht_mask + 1) * sizeof (void *));
782 for (i = 0; i < BUF_LOCKS; i++)
783 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
784 kmem_cache_destroy(hdr_cache);
785 kmem_cache_destroy(buf_cache);
789 * Constructor callback - called when the cache is empty
790 * and a new buf is requested.
792 /* ARGSUSED */
793 static int
794 hdr_cons(void *vbuf, void *unused, int kmflag)
796 arc_buf_hdr_t *buf = unused;
798 bzero(buf, sizeof (arc_buf_hdr_t));
799 refcount_create(&buf->b_refcnt);
800 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
801 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
803 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
804 return (0);
807 /* ARGSUSED */
808 static int
809 buf_cons(void *vbuf, void *unused, int kmflag)
811 arc_buf_t *buf = unused;
813 bzero(buf, sizeof (arc_buf_t));
814 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
815 return (0);
819 * Destructor callback - called when a cached buf is
820 * no longer required.
822 /* ARGSUSED */
823 static void
824 hdr_dest(void *vbuf, void *unused)
826 arc_buf_hdr_t *buf = unused;
828 refcount_destroy(&buf->b_refcnt);
829 cv_destroy(&buf->b_cv);
830 mutex_destroy(&buf->b_freeze_lock);
832 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
835 /* ARGSUSED */
836 static void
837 buf_dest(void *vbuf, void *unused)
839 arc_buf_t *buf = unused;
841 rw_destroy(&buf->b_lock);
845 * Reclaim callback -- invoked when memory is low.
847 /* ARGSUSED */
848 static void
849 hdr_recl(void *unused)
851 dprintf("hdr_recl called\n");
853 * umem calls the reclaim func when we destroy the buf cache,
854 * which is after we do arc_fini().
856 if (!arc_dead)
857 cv_signal(&arc_reclaim_thr_cv);
860 static void
861 buf_init(void)
863 uint64_t *ct;
864 uint64_t hsize = 1ULL << 12;
865 int i, j;
868 * The hash table is big enough to fill all of physical memory
869 * with an average 64K block size. The table will take up
870 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
872 while (hsize * 65536 < (uint64_t)physmem * PAGESIZE)
873 hsize <<= 1;
874 retry:
875 buf_hash_table.ht_mask = hsize - 1;
876 buf_hash_table.ht_table =
877 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
878 if (buf_hash_table.ht_table == NULL) {
879 ASSERT(hsize > (1ULL << 8));
880 hsize >>= 1;
881 goto retry;
884 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
885 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
886 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
887 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
889 for (i = 0; i < 256; i++)
890 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
891 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
893 for (i = 0; i < BUF_LOCKS; i++) {
894 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
895 NULL, MUTEX_DEFAULT, NULL);
899 #define ARC_MINTIME (hz>>4) /* 62 ms */
901 static void
902 arc_cksum_verify(arc_buf_t *buf)
904 zio_cksum_t zc;
906 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
907 return;
909 mutex_enter(&buf->b_hdr->b_freeze_lock);
910 if (buf->b_hdr->b_freeze_cksum == NULL ||
911 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
912 mutex_exit(&buf->b_hdr->b_freeze_lock);
913 return;
915 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
916 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
917 panic("buffer modified while frozen!");
918 mutex_exit(&buf->b_hdr->b_freeze_lock);
921 static int
922 arc_cksum_equal(arc_buf_t *buf)
924 zio_cksum_t zc;
925 int equal;
927 mutex_enter(&buf->b_hdr->b_freeze_lock);
928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
929 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
930 mutex_exit(&buf->b_hdr->b_freeze_lock);
932 return (equal);
935 static void
936 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
938 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
939 return;
941 mutex_enter(&buf->b_hdr->b_freeze_lock);
942 if (buf->b_hdr->b_freeze_cksum != NULL) {
943 mutex_exit(&buf->b_hdr->b_freeze_lock);
944 return;
946 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
947 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
948 buf->b_hdr->b_freeze_cksum);
949 mutex_exit(&buf->b_hdr->b_freeze_lock);
952 void
953 arc_buf_thaw(arc_buf_t *buf)
955 if (zfs_flags & ZFS_DEBUG_MODIFY) {
956 if (buf->b_hdr->b_state != arc_anon)
957 panic("modifying non-anon buffer!");
958 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
959 panic("modifying buffer while i/o in progress!");
960 arc_cksum_verify(buf);
963 mutex_enter(&buf->b_hdr->b_freeze_lock);
964 if (buf->b_hdr->b_freeze_cksum != NULL) {
965 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
966 buf->b_hdr->b_freeze_cksum = NULL;
968 mutex_exit(&buf->b_hdr->b_freeze_lock);
971 void
972 arc_buf_freeze(arc_buf_t *buf)
974 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
975 return;
977 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
978 buf->b_hdr->b_state == arc_anon);
979 arc_cksum_compute(buf, B_FALSE);
982 static void
983 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
985 ASSERT(MUTEX_HELD(hash_lock));
987 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
988 (ab->b_state != arc_anon)) {
989 uint64_t delta = ab->b_size * ab->b_datacnt;
990 list_t *list = &ab->b_state->arcs_list[ab->b_type];
991 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
993 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
994 mutex_enter(&ab->b_state->arcs_mtx);
995 ASSERT(list_link_active(&ab->b_arc_node));
996 list_remove(list, ab);
997 if (GHOST_STATE(ab->b_state)) {
998 ASSERT3U(ab->b_datacnt, ==, 0);
999 ASSERT3P(ab->b_buf, ==, NULL);
1000 delta = ab->b_size;
1002 ASSERT(delta > 0);
1003 ASSERT3U(*size, >=, delta);
1004 atomic_add_64(size, -delta);
1005 mutex_exit(&ab->b_state->arcs_mtx);
1006 /* remove the prefetch flag if we get a reference */
1007 if (ab->b_flags & ARC_PREFETCH)
1008 ab->b_flags &= ~ARC_PREFETCH;
1012 static int
1013 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1015 int cnt;
1016 arc_state_t *state = ab->b_state;
1018 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1019 ASSERT(!GHOST_STATE(state));
1021 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1022 (state != arc_anon)) {
1023 uint64_t *size = &state->arcs_lsize[ab->b_type];
1025 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1026 mutex_enter(&state->arcs_mtx);
1027 ASSERT(!list_link_active(&ab->b_arc_node));
1028 list_insert_head(&state->arcs_list[ab->b_type], ab);
1029 ASSERT(ab->b_datacnt > 0);
1030 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1031 mutex_exit(&state->arcs_mtx);
1033 return (cnt);
1037 * Move the supplied buffer to the indicated state. The mutex
1038 * for the buffer must be held by the caller.
1040 static void
1041 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1043 arc_state_t *old_state = ab->b_state;
1044 int64_t refcnt = refcount_count(&ab->b_refcnt);
1045 uint64_t from_delta, to_delta;
1047 ASSERT(MUTEX_HELD(hash_lock));
1048 ASSERT(new_state != old_state);
1049 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1050 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1052 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1055 * If this buffer is evictable, transfer it from the
1056 * old state list to the new state list.
1058 if (refcnt == 0) {
1059 if (old_state != arc_anon) {
1060 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1061 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1063 if (use_mutex)
1064 mutex_enter(&old_state->arcs_mtx);
1066 ASSERT(list_link_active(&ab->b_arc_node));
1067 list_remove(&old_state->arcs_list[ab->b_type], ab);
1070 * If prefetching out of the ghost cache,
1071 * we will have a non-null datacnt.
1073 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1074 /* ghost elements have a ghost size */
1075 ASSERT(ab->b_buf == NULL);
1076 from_delta = ab->b_size;
1078 ASSERT3U(*size, >=, from_delta);
1079 atomic_add_64(size, -from_delta);
1081 if (use_mutex)
1082 mutex_exit(&old_state->arcs_mtx);
1084 if (new_state != arc_anon) {
1085 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1086 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1088 if (use_mutex)
1089 mutex_enter(&new_state->arcs_mtx);
1091 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1093 /* ghost elements have a ghost size */
1094 if (GHOST_STATE(new_state)) {
1095 ASSERT(ab->b_datacnt == 0);
1096 ASSERT(ab->b_buf == NULL);
1097 to_delta = ab->b_size;
1099 atomic_add_64(size, to_delta);
1101 if (use_mutex)
1102 mutex_exit(&new_state->arcs_mtx);
1106 ASSERT(!BUF_EMPTY(ab));
1107 if (new_state == arc_anon) {
1108 buf_hash_remove(ab);
1111 /* adjust state sizes */
1112 if (to_delta)
1113 atomic_add_64(&new_state->arcs_size, to_delta);
1114 if (from_delta) {
1115 ASSERT3U(old_state->arcs_size, >=, from_delta);
1116 atomic_add_64(&old_state->arcs_size, -from_delta);
1118 ab->b_state = new_state;
1120 /* adjust l2arc hdr stats */
1121 if (new_state == arc_l2c_only)
1122 l2arc_hdr_stat_add();
1123 else if (old_state == arc_l2c_only)
1124 l2arc_hdr_stat_remove();
1127 void
1128 arc_space_consume(uint64_t space)
1130 atomic_add_64(&arc_meta_used, space);
1131 atomic_add_64(&arc_size, space);
1134 void
1135 arc_space_return(uint64_t space)
1137 ASSERT(arc_meta_used >= space);
1138 if (arc_meta_max < arc_meta_used)
1139 arc_meta_max = arc_meta_used;
1140 atomic_add_64(&arc_meta_used, -space);
1141 ASSERT(arc_size >= space);
1142 atomic_add_64(&arc_size, -space);
1145 void *
1146 arc_data_buf_alloc(uint64_t size)
1148 if (arc_evict_needed(ARC_BUFC_DATA))
1149 cv_signal(&arc_reclaim_thr_cv);
1150 atomic_add_64(&arc_size, size);
1151 return (zio_data_buf_alloc(size));
1154 void
1155 arc_data_buf_free(void *buf, uint64_t size)
1157 zio_data_buf_free(buf, size);
1158 ASSERT(arc_size >= size);
1159 atomic_add_64(&arc_size, -size);
1162 arc_buf_t *
1163 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1165 arc_buf_hdr_t *hdr;
1166 arc_buf_t *buf;
1168 ASSERT3U(size, >, 0);
1169 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1170 ASSERT(BUF_EMPTY(hdr));
1171 hdr->b_size = size;
1172 hdr->b_type = type;
1173 hdr->b_spa = spa;
1174 hdr->b_state = arc_anon;
1175 hdr->b_arc_access = 0;
1176 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1177 buf->b_hdr = hdr;
1178 buf->b_data = NULL;
1179 buf->b_efunc = NULL;
1180 buf->b_private = NULL;
1181 buf->b_next = NULL;
1182 hdr->b_buf = buf;
1183 arc_get_data_buf(buf);
1184 hdr->b_datacnt = 1;
1185 hdr->b_flags = 0;
1186 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1187 (void) refcount_add(&hdr->b_refcnt, tag);
1189 return (buf);
1192 static arc_buf_t *
1193 arc_buf_clone(arc_buf_t *from)
1195 arc_buf_t *buf;
1196 arc_buf_hdr_t *hdr = from->b_hdr;
1197 uint64_t size = hdr->b_size;
1199 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1200 buf->b_hdr = hdr;
1201 buf->b_data = NULL;
1202 buf->b_efunc = NULL;
1203 buf->b_private = NULL;
1204 buf->b_next = hdr->b_buf;
1205 hdr->b_buf = buf;
1206 arc_get_data_buf(buf);
1207 bcopy(from->b_data, buf->b_data, size);
1208 hdr->b_datacnt += 1;
1209 return (buf);
1212 void
1213 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1215 arc_buf_hdr_t *hdr;
1216 kmutex_t *hash_lock;
1219 * Check to see if this buffer is evicted. Callers
1220 * must verify b_data != NULL to know if the add_ref
1221 * was successful.
1223 rw_enter(&buf->b_lock, RW_READER);
1224 if (buf->b_data == NULL) {
1225 rw_exit(&buf->b_lock);
1226 return;
1228 hdr = buf->b_hdr;
1229 ASSERT(hdr != NULL);
1230 hash_lock = HDR_LOCK(hdr);
1231 mutex_enter(hash_lock);
1232 rw_exit(&buf->b_lock);
1234 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1235 add_reference(hdr, hash_lock, tag);
1236 arc_access(hdr, hash_lock);
1237 mutex_exit(hash_lock);
1238 ARCSTAT_BUMP(arcstat_hits);
1239 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1240 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1241 data, metadata, hits);
1245 * Free the arc data buffer. If it is an l2arc write in progress,
1246 * the buffer is placed on l2arc_free_on_write to be freed later.
1248 static void
1249 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1250 void *data, size_t size)
1252 if (HDR_L2_WRITING(hdr)) {
1253 l2arc_data_free_t *df;
1254 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1255 df->l2df_data = data;
1256 df->l2df_size = size;
1257 df->l2df_func = free_func;
1258 mutex_enter(&l2arc_free_on_write_mtx);
1259 list_insert_head(l2arc_free_on_write, df);
1260 mutex_exit(&l2arc_free_on_write_mtx);
1261 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1262 } else {
1263 free_func(data, size);
1267 static void
1268 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1270 arc_buf_t **bufp;
1272 /* free up data associated with the buf */
1273 if (buf->b_data) {
1274 arc_state_t *state = buf->b_hdr->b_state;
1275 uint64_t size = buf->b_hdr->b_size;
1276 arc_buf_contents_t type = buf->b_hdr->b_type;
1278 arc_cksum_verify(buf);
1279 if (!recycle) {
1280 if (type == ARC_BUFC_METADATA) {
1281 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1282 buf->b_data, size);
1283 arc_space_return(size);
1284 } else {
1285 ASSERT(type == ARC_BUFC_DATA);
1286 arc_buf_data_free(buf->b_hdr,
1287 zio_data_buf_free, buf->b_data, size);
1288 atomic_add_64(&arc_size, -size);
1291 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1292 uint64_t *cnt = &state->arcs_lsize[type];
1294 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1295 ASSERT(state != arc_anon);
1297 ASSERT3U(*cnt, >=, size);
1298 atomic_add_64(cnt, -size);
1300 ASSERT3U(state->arcs_size, >=, size);
1301 atomic_add_64(&state->arcs_size, -size);
1302 buf->b_data = NULL;
1303 ASSERT(buf->b_hdr->b_datacnt > 0);
1304 buf->b_hdr->b_datacnt -= 1;
1307 /* only remove the buf if requested */
1308 if (!all)
1309 return;
1311 /* remove the buf from the hdr list */
1312 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1313 continue;
1314 *bufp = buf->b_next;
1316 ASSERT(buf->b_efunc == NULL);
1318 /* clean up the buf */
1319 buf->b_hdr = NULL;
1320 kmem_cache_free(buf_cache, buf);
1323 static void
1324 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1326 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1327 ASSERT3P(hdr->b_state, ==, arc_anon);
1328 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1329 ASSERT(!(hdr->b_flags & ARC_STORED));
1331 if (hdr->b_l2hdr != NULL) {
1332 if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1334 * To prevent arc_free() and l2arc_evict() from
1335 * attempting to free the same buffer at the same time,
1336 * a FREE_IN_PROGRESS flag is given to arc_free() to
1337 * give it priority. l2arc_evict() can't destroy this
1338 * header while we are waiting on l2arc_buflist_mtx.
1340 * The hdr may be removed from l2ad_buflist before we
1341 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1343 mutex_enter(&l2arc_buflist_mtx);
1344 if (hdr->b_l2hdr != NULL) {
1345 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist,
1346 hdr);
1348 mutex_exit(&l2arc_buflist_mtx);
1349 } else {
1350 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1352 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1353 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1354 if (hdr->b_state == arc_l2c_only)
1355 l2arc_hdr_stat_remove();
1356 hdr->b_l2hdr = NULL;
1359 if (!BUF_EMPTY(hdr)) {
1360 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1361 bzero(&hdr->b_dva, sizeof (dva_t));
1362 hdr->b_birth = 0;
1363 hdr->b_cksum0 = 0;
1365 while (hdr->b_buf) {
1366 arc_buf_t *buf = hdr->b_buf;
1368 if (buf->b_efunc) {
1369 mutex_enter(&arc_eviction_mtx);
1370 rw_enter(&buf->b_lock, RW_WRITER);
1371 ASSERT(buf->b_hdr != NULL);
1372 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1373 hdr->b_buf = buf->b_next;
1374 buf->b_hdr = &arc_eviction_hdr;
1375 buf->b_next = arc_eviction_list;
1376 arc_eviction_list = buf;
1377 rw_exit(&buf->b_lock);
1378 mutex_exit(&arc_eviction_mtx);
1379 } else {
1380 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1383 if (hdr->b_freeze_cksum != NULL) {
1384 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1385 hdr->b_freeze_cksum = NULL;
1388 ASSERT(!list_link_active(&hdr->b_arc_node));
1389 ASSERT3P(hdr->b_hash_next, ==, NULL);
1390 ASSERT3P(hdr->b_acb, ==, NULL);
1391 kmem_cache_free(hdr_cache, hdr);
1394 void
1395 arc_buf_free(arc_buf_t *buf, void *tag)
1397 arc_buf_hdr_t *hdr = buf->b_hdr;
1398 int hashed = hdr->b_state != arc_anon;
1400 ASSERT(buf->b_efunc == NULL);
1401 ASSERT(buf->b_data != NULL);
1403 if (hashed) {
1404 kmutex_t *hash_lock = HDR_LOCK(hdr);
1406 mutex_enter(hash_lock);
1407 (void) remove_reference(hdr, hash_lock, tag);
1408 if (hdr->b_datacnt > 1)
1409 arc_buf_destroy(buf, FALSE, TRUE);
1410 else
1411 hdr->b_flags |= ARC_BUF_AVAILABLE;
1412 mutex_exit(hash_lock);
1413 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1414 int destroy_hdr;
1416 * We are in the middle of an async write. Don't destroy
1417 * this buffer unless the write completes before we finish
1418 * decrementing the reference count.
1420 mutex_enter(&arc_eviction_mtx);
1421 (void) remove_reference(hdr, NULL, tag);
1422 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1423 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1424 mutex_exit(&arc_eviction_mtx);
1425 if (destroy_hdr)
1426 arc_hdr_destroy(hdr);
1427 } else {
1428 if (remove_reference(hdr, NULL, tag) > 0) {
1429 ASSERT(HDR_IO_ERROR(hdr));
1430 arc_buf_destroy(buf, FALSE, TRUE);
1431 } else {
1432 arc_hdr_destroy(hdr);
1438 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1440 arc_buf_hdr_t *hdr = buf->b_hdr;
1441 kmutex_t *hash_lock = HDR_LOCK(hdr);
1442 int no_callback = (buf->b_efunc == NULL);
1444 if (hdr->b_state == arc_anon) {
1445 arc_buf_free(buf, tag);
1446 return (no_callback);
1449 mutex_enter(hash_lock);
1450 ASSERT(hdr->b_state != arc_anon);
1451 ASSERT(buf->b_data != NULL);
1453 (void) remove_reference(hdr, hash_lock, tag);
1454 if (hdr->b_datacnt > 1) {
1455 if (no_callback)
1456 arc_buf_destroy(buf, FALSE, TRUE);
1457 } else if (no_callback) {
1458 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1459 hdr->b_flags |= ARC_BUF_AVAILABLE;
1461 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1462 refcount_is_zero(&hdr->b_refcnt));
1463 mutex_exit(hash_lock);
1464 return (no_callback);
1468 arc_buf_size(arc_buf_t *buf)
1470 return (buf->b_hdr->b_size);
1474 * Evict buffers from list until we've removed the specified number of
1475 * bytes. Move the removed buffers to the appropriate evict state.
1476 * If the recycle flag is set, then attempt to "recycle" a buffer:
1477 * - look for a buffer to evict that is `bytes' long.
1478 * - return the data block from this buffer rather than freeing it.
1479 * This flag is used by callers that are trying to make space for a
1480 * new buffer in a full arc cache.
1482 * This function makes a "best effort". It skips over any buffers
1483 * it can't get a hash_lock on, and so may not catch all candidates.
1484 * It may also return without evicting as much space as requested.
1486 static void *
1487 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1488 arc_buf_contents_t type)
1490 arc_state_t *evicted_state;
1491 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1492 arc_buf_hdr_t *ab, *ab_prev = NULL;
1493 list_t *list = &state->arcs_list[type];
1494 kmutex_t *hash_lock;
1495 boolean_t have_lock;
1496 void *stolen = NULL;
1498 ASSERT(state == arc_mru || state == arc_mfu);
1500 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1502 mutex_enter(&state->arcs_mtx);
1503 mutex_enter(&evicted_state->arcs_mtx);
1505 for (ab = list_tail(list); ab; ab = ab_prev) {
1506 ab_prev = list_prev(list, ab);
1507 /* prefetch buffers have a minimum lifespan */
1508 if (HDR_IO_IN_PROGRESS(ab) ||
1509 (spa && ab->b_spa != spa) ||
1510 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1511 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1512 skipped++;
1513 continue;
1515 /* "lookahead" for better eviction candidate */
1516 if (recycle && ab->b_size != bytes &&
1517 ab_prev && ab_prev->b_size == bytes)
1518 continue;
1519 hash_lock = HDR_LOCK(ab);
1520 have_lock = MUTEX_HELD(hash_lock);
1521 if (have_lock || mutex_tryenter(hash_lock)) {
1522 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1523 ASSERT(ab->b_datacnt > 0);
1524 while (ab->b_buf) {
1525 arc_buf_t *buf = ab->b_buf;
1526 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1527 missed += 1;
1528 break;
1530 if (buf->b_data) {
1531 bytes_evicted += ab->b_size;
1532 if (recycle && ab->b_type == type &&
1533 ab->b_size == bytes &&
1534 !HDR_L2_WRITING(ab)) {
1535 stolen = buf->b_data;
1536 recycle = FALSE;
1539 if (buf->b_efunc) {
1540 mutex_enter(&arc_eviction_mtx);
1541 arc_buf_destroy(buf,
1542 buf->b_data == stolen, FALSE);
1543 ab->b_buf = buf->b_next;
1544 buf->b_hdr = &arc_eviction_hdr;
1545 buf->b_next = arc_eviction_list;
1546 arc_eviction_list = buf;
1547 mutex_exit(&arc_eviction_mtx);
1548 rw_exit(&buf->b_lock);
1549 } else {
1550 rw_exit(&buf->b_lock);
1551 arc_buf_destroy(buf,
1552 buf->b_data == stolen, TRUE);
1555 if (ab->b_datacnt == 0) {
1556 arc_change_state(evicted_state, ab, hash_lock);
1557 ASSERT(HDR_IN_HASH_TABLE(ab));
1558 ab->b_flags |= ARC_IN_HASH_TABLE;
1559 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1560 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1562 if (!have_lock)
1563 mutex_exit(hash_lock);
1564 if (bytes >= 0 && bytes_evicted >= bytes)
1565 break;
1566 } else {
1567 missed += 1;
1571 mutex_exit(&evicted_state->arcs_mtx);
1572 mutex_exit(&state->arcs_mtx);
1574 if (bytes_evicted < bytes)
1575 dprintf("only evicted %lld bytes from %x",
1576 (longlong_t)bytes_evicted, state);
1578 if (skipped)
1579 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1581 if (missed)
1582 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1585 * We have just evicted some date into the ghost state, make
1586 * sure we also adjust the ghost state size if necessary.
1588 if (arc_no_grow &&
1589 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1590 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1591 arc_mru_ghost->arcs_size - arc_c;
1593 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1594 int64_t todelete =
1595 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1596 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1597 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1598 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1599 arc_mru_ghost->arcs_size +
1600 arc_mfu_ghost->arcs_size - arc_c);
1601 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1605 return (stolen);
1609 * Remove buffers from list until we've removed the specified number of
1610 * bytes. Destroy the buffers that are removed.
1612 static void
1613 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1615 arc_buf_hdr_t *ab, *ab_prev;
1616 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1617 kmutex_t *hash_lock;
1618 uint64_t bytes_deleted = 0;
1619 uint64_t bufs_skipped = 0;
1621 ASSERT(GHOST_STATE(state));
1622 top:
1623 mutex_enter(&state->arcs_mtx);
1624 for (ab = list_tail(list); ab; ab = ab_prev) {
1625 ab_prev = list_prev(list, ab);
1626 if (spa && ab->b_spa != spa)
1627 continue;
1628 hash_lock = HDR_LOCK(ab);
1629 if (mutex_tryenter(hash_lock)) {
1630 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1631 ASSERT(ab->b_buf == NULL);
1632 ARCSTAT_BUMP(arcstat_deleted);
1633 bytes_deleted += ab->b_size;
1635 if (ab->b_l2hdr != NULL) {
1637 * This buffer is cached on the 2nd Level ARC;
1638 * don't destroy the header.
1640 arc_change_state(arc_l2c_only, ab, hash_lock);
1641 mutex_exit(hash_lock);
1642 } else {
1643 arc_change_state(arc_anon, ab, hash_lock);
1644 mutex_exit(hash_lock);
1645 arc_hdr_destroy(ab);
1648 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1649 if (bytes >= 0 && bytes_deleted >= bytes)
1650 break;
1651 } else {
1652 if (bytes < 0) {
1653 mutex_exit(&state->arcs_mtx);
1654 mutex_enter(hash_lock);
1655 mutex_exit(hash_lock);
1656 goto top;
1658 bufs_skipped += 1;
1661 mutex_exit(&state->arcs_mtx);
1663 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1664 (bytes < 0 || bytes_deleted < bytes)) {
1665 list = &state->arcs_list[ARC_BUFC_METADATA];
1666 goto top;
1669 if (bufs_skipped) {
1670 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1671 ASSERT(bytes >= 0);
1674 if (bytes_deleted < bytes)
1675 dprintf("only deleted %lld bytes from %p",
1676 (longlong_t)bytes_deleted, state);
1679 static void
1680 arc_adjust(void)
1682 int64_t top_sz, mru_over, arc_over, todelete;
1684 top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1686 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1687 int64_t toevict =
1688 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1689 (void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1690 top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1693 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1694 int64_t toevict =
1695 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1696 (void) arc_evict(arc_mru, NULL, toevict, FALSE,
1697 ARC_BUFC_METADATA);
1698 top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1701 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1703 if (mru_over > 0) {
1704 if (arc_mru_ghost->arcs_size > 0) {
1705 todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1706 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1710 if ((arc_over = arc_size - arc_c) > 0) {
1711 int64_t tbl_over;
1713 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1714 int64_t toevict =
1715 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1716 (void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1717 ARC_BUFC_DATA);
1718 arc_over = arc_size - arc_c;
1721 if (arc_over > 0 &&
1722 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1723 int64_t toevict =
1724 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1725 arc_over);
1726 (void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1727 ARC_BUFC_METADATA);
1730 tbl_over = arc_size + arc_mru_ghost->arcs_size +
1731 arc_mfu_ghost->arcs_size - arc_c * 2;
1733 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1734 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1735 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1740 static void
1741 arc_do_user_evicts(void)
1743 mutex_enter(&arc_eviction_mtx);
1744 while (arc_eviction_list != NULL) {
1745 arc_buf_t *buf = arc_eviction_list;
1746 arc_eviction_list = buf->b_next;
1747 rw_enter(&buf->b_lock, RW_WRITER);
1748 buf->b_hdr = NULL;
1749 rw_exit(&buf->b_lock);
1750 mutex_exit(&arc_eviction_mtx);
1752 if (buf->b_efunc != NULL)
1753 VERIFY(buf->b_efunc(buf) == 0);
1755 buf->b_efunc = NULL;
1756 buf->b_private = NULL;
1757 kmem_cache_free(buf_cache, buf);
1758 mutex_enter(&arc_eviction_mtx);
1760 mutex_exit(&arc_eviction_mtx);
1764 * Flush all *evictable* data from the cache for the given spa.
1765 * NOTE: this will not touch "active" (i.e. referenced) data.
1767 void
1768 arc_flush(spa_t *spa)
1770 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1771 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1772 if (spa)
1773 break;
1775 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1776 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1777 if (spa)
1778 break;
1780 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1781 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1782 if (spa)
1783 break;
1785 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1786 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1787 if (spa)
1788 break;
1791 arc_evict_ghost(arc_mru_ghost, spa, -1);
1792 arc_evict_ghost(arc_mfu_ghost, spa, -1);
1794 mutex_enter(&arc_reclaim_thr_lock);
1795 arc_do_user_evicts();
1796 mutex_exit(&arc_reclaim_thr_lock);
1797 ASSERT(spa || arc_eviction_list == NULL);
1800 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */
1802 void
1803 arc_shrink(void)
1805 if (arc_c > arc_c_min) {
1806 uint64_t to_free;
1808 #ifdef _KERNEL
1809 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1810 #else
1811 to_free = arc_c >> arc_shrink_shift;
1812 #endif
1813 if (arc_c > arc_c_min + to_free)
1814 atomic_add_64(&arc_c, -to_free);
1815 else
1816 arc_c = arc_c_min;
1818 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1819 if (arc_c > arc_size)
1820 arc_c = MAX(arc_size, arc_c_min);
1821 if (arc_p > arc_c)
1822 arc_p = (arc_c >> 1);
1823 ASSERT(arc_c >= arc_c_min);
1824 ASSERT((int64_t)arc_p >= 0);
1827 if (arc_size > arc_c)
1828 arc_adjust();
1831 static int
1832 arc_reclaim_needed(void)
1834 uint64_t extra;
1836 #ifdef _KERNEL
1838 if (needfree)
1839 return (1);
1842 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1844 extra = desfree;
1847 * check that we're out of range of the pageout scanner. It starts to
1848 * schedule paging if freemem is less than lotsfree and needfree.
1849 * lotsfree is the high-water mark for pageout, and needfree is the
1850 * number of needed free pages. We add extra pages here to make sure
1851 * the scanner doesn't start up while we're freeing memory.
1853 if (freemem < lotsfree + needfree + extra)
1854 return (1);
1857 * check to make sure that swapfs has enough space so that anon
1858 * reservations can still succeed. anon_resvmem() checks that the
1859 * availrmem is greater than swapfs_minfree, and the number of reserved
1860 * swap pages. We also add a bit of extra here just to prevent
1861 * circumstances from getting really dire.
1863 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1864 return (1);
1866 #if defined(__i386)
1868 * If we're on an i386 platform, it's possible that we'll exhaust the
1869 * kernel heap space before we ever run out of available physical
1870 * memory. Most checks of the size of the heap_area compare against
1871 * tune.t_minarmem, which is the minimum available real memory that we
1872 * can have in the system. However, this is generally fixed at 25 pages
1873 * which is so low that it's useless. In this comparison, we seek to
1874 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1875 * heap is allocated. (Or, in the calculation, if less than 1/4th is
1876 * free)
1878 if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1879 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1880 return (1);
1881 #endif
1883 #else
1884 if (spa_get_random(100) == 0)
1885 return (1);
1886 #endif
1887 return (0);
1890 static void
1891 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1893 size_t i;
1894 kmem_cache_t *prev_cache = NULL;
1895 kmem_cache_t *prev_data_cache = NULL;
1896 extern kmem_cache_t *zio_buf_cache[];
1897 extern kmem_cache_t *zio_data_buf_cache[];
1899 #ifdef _KERNEL
1900 if (arc_meta_used >= arc_meta_limit) {
1902 * We are exceeding our meta-data cache limit.
1903 * Purge some DNLC entries to release holds on meta-data.
1905 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1907 #if defined(__i386)
1909 * Reclaim unused memory from all kmem caches.
1911 kmem_reap();
1912 #endif
1913 #endif
1916 * An aggressive reclamation will shrink the cache size as well as
1917 * reap free buffers from the arc kmem caches.
1919 if (strat == ARC_RECLAIM_AGGR)
1920 arc_shrink();
1922 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1923 if (zio_buf_cache[i] != prev_cache) {
1924 prev_cache = zio_buf_cache[i];
1925 kmem_cache_reap_now(zio_buf_cache[i]);
1927 if (zio_data_buf_cache[i] != prev_data_cache) {
1928 prev_data_cache = zio_data_buf_cache[i];
1929 kmem_cache_reap_now(zio_data_buf_cache[i]);
1932 kmem_cache_reap_now(buf_cache);
1933 kmem_cache_reap_now(hdr_cache);
1936 static void
1937 arc_reclaim_thread(void)
1939 clock_t growtime = 0;
1940 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
1941 callb_cpr_t cpr;
1943 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1945 mutex_enter(&arc_reclaim_thr_lock);
1946 while (arc_thread_exit == 0) {
1947 if (arc_reclaim_needed()) {
1949 if (arc_no_grow) {
1950 if (last_reclaim == ARC_RECLAIM_CONS) {
1951 last_reclaim = ARC_RECLAIM_AGGR;
1952 } else {
1953 last_reclaim = ARC_RECLAIM_CONS;
1955 } else {
1956 arc_no_grow = TRUE;
1957 last_reclaim = ARC_RECLAIM_AGGR;
1958 membar_producer();
1961 /* reset the growth delay for every reclaim */
1962 growtime = lbolt + (arc_grow_retry * hz);
1964 arc_kmem_reap_now(last_reclaim);
1965 arc_warm = B_TRUE;
1967 } else if (arc_no_grow && lbolt >= growtime) {
1968 arc_no_grow = FALSE;
1971 if (2 * arc_c < arc_size +
1972 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1973 arc_adjust();
1975 if (arc_eviction_list != NULL)
1976 arc_do_user_evicts();
1978 /* block until needed, or one second, whichever is shorter */
1979 CALLB_CPR_SAFE_BEGIN(&cpr);
1980 (void) cv_timedwait(&arc_reclaim_thr_cv,
1981 &arc_reclaim_thr_lock, (hz));
1982 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1985 arc_thread_exit = 0;
1986 cv_broadcast(&arc_reclaim_thr_cv);
1987 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
1988 thread_exit();
1992 * Adapt arc info given the number of bytes we are trying to add and
1993 * the state that we are comming from. This function is only called
1994 * when we are adding new content to the cache.
1996 static void
1997 arc_adapt(int bytes, arc_state_t *state)
1999 int mult;
2001 if (state == arc_l2c_only)
2002 return;
2004 ASSERT(bytes > 0);
2006 * Adapt the target size of the MRU list:
2007 * - if we just hit in the MRU ghost list, then increase
2008 * the target size of the MRU list.
2009 * - if we just hit in the MFU ghost list, then increase
2010 * the target size of the MFU list by decreasing the
2011 * target size of the MRU list.
2013 if (state == arc_mru_ghost) {
2014 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2015 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2017 arc_p = MIN(arc_c, arc_p + bytes * mult);
2018 } else if (state == arc_mfu_ghost) {
2019 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2020 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2022 arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
2024 ASSERT((int64_t)arc_p >= 0);
2026 if (arc_reclaim_needed()) {
2027 cv_signal(&arc_reclaim_thr_cv);
2028 return;
2031 if (arc_no_grow)
2032 return;
2034 if (arc_c >= arc_c_max)
2035 return;
2038 * If we're within (2 * maxblocksize) bytes of the target
2039 * cache size, increment the target cache size
2041 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2042 atomic_add_64(&arc_c, (int64_t)bytes);
2043 if (arc_c > arc_c_max)
2044 arc_c = arc_c_max;
2045 else if (state == arc_anon)
2046 atomic_add_64(&arc_p, (int64_t)bytes);
2047 if (arc_p > arc_c)
2048 arc_p = arc_c;
2050 ASSERT((int64_t)arc_p >= 0);
2054 * Check if the cache has reached its limits and eviction is required
2055 * prior to insert.
2057 static int
2058 arc_evict_needed(arc_buf_contents_t type)
2060 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2061 return (1);
2063 #ifdef _KERNEL
2065 * If zio data pages are being allocated out of a separate heap segment,
2066 * then enforce that the size of available vmem for this area remains
2067 * above about 1/32nd free.
2069 if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2070 vmem_size(zio_arena, VMEM_FREE) <
2071 (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2072 return (1);
2073 #endif
2075 if (arc_reclaim_needed())
2076 return (1);
2078 return (arc_size > arc_c);
2082 * The buffer, supplied as the first argument, needs a data block.
2083 * So, if we are at cache max, determine which cache should be victimized.
2084 * We have the following cases:
2086 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2087 * In this situation if we're out of space, but the resident size of the MFU is
2088 * under the limit, victimize the MFU cache to satisfy this insertion request.
2090 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2091 * Here, we've used up all of the available space for the MRU, so we need to
2092 * evict from our own cache instead. Evict from the set of resident MRU
2093 * entries.
2095 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2096 * c minus p represents the MFU space in the cache, since p is the size of the
2097 * cache that is dedicated to the MRU. In this situation there's still space on
2098 * the MFU side, so the MRU side needs to be victimized.
2100 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2101 * MFU's resident set is consuming more space than it has been allotted. In
2102 * this situation, we must victimize our own cache, the MFU, for this insertion.
2104 static void
2105 arc_get_data_buf(arc_buf_t *buf)
2107 arc_state_t *state = buf->b_hdr->b_state;
2108 uint64_t size = buf->b_hdr->b_size;
2109 arc_buf_contents_t type = buf->b_hdr->b_type;
2111 arc_adapt(size, state);
2114 * We have not yet reached cache maximum size,
2115 * just allocate a new buffer.
2117 if (!arc_evict_needed(type)) {
2118 if (type == ARC_BUFC_METADATA) {
2119 buf->b_data = zio_buf_alloc(size);
2120 arc_space_consume(size);
2121 } else {
2122 ASSERT(type == ARC_BUFC_DATA);
2123 buf->b_data = zio_data_buf_alloc(size);
2124 atomic_add_64(&arc_size, size);
2126 goto out;
2130 * If we are prefetching from the mfu ghost list, this buffer
2131 * will end up on the mru list; so steal space from there.
2133 if (state == arc_mfu_ghost)
2134 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2135 else if (state == arc_mru_ghost)
2136 state = arc_mru;
2138 if (state == arc_mru || state == arc_anon) {
2139 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2140 state = (arc_mfu->arcs_lsize[type] > 0 &&
2141 arc_p > mru_used) ? arc_mfu : arc_mru;
2142 } else {
2143 /* MFU cases */
2144 uint64_t mfu_space = arc_c - arc_p;
2145 state = (arc_mru->arcs_lsize[type] > 0 &&
2146 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2148 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2149 if (type == ARC_BUFC_METADATA) {
2150 buf->b_data = zio_buf_alloc(size);
2151 arc_space_consume(size);
2152 } else {
2153 ASSERT(type == ARC_BUFC_DATA);
2154 buf->b_data = zio_data_buf_alloc(size);
2155 atomic_add_64(&arc_size, size);
2157 ARCSTAT_BUMP(arcstat_recycle_miss);
2159 ASSERT(buf->b_data != NULL);
2160 out:
2162 * Update the state size. Note that ghost states have a
2163 * "ghost size" and so don't need to be updated.
2165 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2166 arc_buf_hdr_t *hdr = buf->b_hdr;
2168 atomic_add_64(&hdr->b_state->arcs_size, size);
2169 if (list_link_active(&hdr->b_arc_node)) {
2170 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2171 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2174 * If we are growing the cache, and we are adding anonymous
2175 * data, and we have outgrown arc_p, update arc_p
2177 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2178 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2179 arc_p = MIN(arc_c, arc_p + size);
2184 * This routine is called whenever a buffer is accessed.
2185 * NOTE: the hash lock is dropped in this function.
2187 static void
2188 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2190 ASSERT(MUTEX_HELD(hash_lock));
2192 if (buf->b_state == arc_anon) {
2194 * This buffer is not in the cache, and does not
2195 * appear in our "ghost" list. Add the new buffer
2196 * to the MRU state.
2199 ASSERT(buf->b_arc_access == 0);
2200 buf->b_arc_access = lbolt;
2201 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2202 arc_change_state(arc_mru, buf, hash_lock);
2204 } else if (buf->b_state == arc_mru) {
2206 * If this buffer is here because of a prefetch, then either:
2207 * - clear the flag if this is a "referencing" read
2208 * (any subsequent access will bump this into the MFU state).
2209 * or
2210 * - move the buffer to the head of the list if this is
2211 * another prefetch (to make it less likely to be evicted).
2213 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2214 if (refcount_count(&buf->b_refcnt) == 0) {
2215 ASSERT(list_link_active(&buf->b_arc_node));
2216 } else {
2217 buf->b_flags &= ~ARC_PREFETCH;
2218 ARCSTAT_BUMP(arcstat_mru_hits);
2220 buf->b_arc_access = lbolt;
2221 return;
2225 * This buffer has been "accessed" only once so far,
2226 * but it is still in the cache. Move it to the MFU
2227 * state.
2229 if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2231 * More than 125ms have passed since we
2232 * instantiated this buffer. Move it to the
2233 * most frequently used state.
2235 buf->b_arc_access = lbolt;
2236 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2237 arc_change_state(arc_mfu, buf, hash_lock);
2239 ARCSTAT_BUMP(arcstat_mru_hits);
2240 } else if (buf->b_state == arc_mru_ghost) {
2241 arc_state_t *new_state;
2243 * This buffer has been "accessed" recently, but
2244 * was evicted from the cache. Move it to the
2245 * MFU state.
2248 if (buf->b_flags & ARC_PREFETCH) {
2249 new_state = arc_mru;
2250 if (refcount_count(&buf->b_refcnt) > 0)
2251 buf->b_flags &= ~ARC_PREFETCH;
2252 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2253 } else {
2254 new_state = arc_mfu;
2255 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2258 buf->b_arc_access = lbolt;
2259 arc_change_state(new_state, buf, hash_lock);
2261 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2262 } else if (buf->b_state == arc_mfu) {
2264 * This buffer has been accessed more than once and is
2265 * still in the cache. Keep it in the MFU state.
2267 * NOTE: an add_reference() that occurred when we did
2268 * the arc_read() will have kicked this off the list.
2269 * If it was a prefetch, we will explicitly move it to
2270 * the head of the list now.
2272 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2273 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2274 ASSERT(list_link_active(&buf->b_arc_node));
2276 ARCSTAT_BUMP(arcstat_mfu_hits);
2277 buf->b_arc_access = lbolt;
2278 } else if (buf->b_state == arc_mfu_ghost) {
2279 arc_state_t *new_state = arc_mfu;
2281 * This buffer has been accessed more than once but has
2282 * been evicted from the cache. Move it back to the
2283 * MFU state.
2286 if (buf->b_flags & ARC_PREFETCH) {
2288 * This is a prefetch access...
2289 * move this block back to the MRU state.
2291 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2292 new_state = arc_mru;
2295 buf->b_arc_access = lbolt;
2296 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2297 arc_change_state(new_state, buf, hash_lock);
2299 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2300 } else if (buf->b_state == arc_l2c_only) {
2302 * This buffer is on the 2nd Level ARC.
2305 buf->b_arc_access = lbolt;
2306 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2307 arc_change_state(arc_mfu, buf, hash_lock);
2308 } else {
2309 ASSERT(!"invalid arc state");
2313 /* a generic arc_done_func_t which you can use */
2314 /* ARGSUSED */
2315 void
2316 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2318 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2319 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2322 /* a generic arc_done_func_t */
2323 void
2324 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2326 arc_buf_t **bufp = arg;
2327 if (zio && zio->io_error) {
2328 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2329 *bufp = NULL;
2330 } else {
2331 *bufp = buf;
2335 static void
2336 arc_read_done(zio_t *zio)
2338 arc_buf_hdr_t *hdr, *found;
2339 arc_buf_t *buf;
2340 arc_buf_t *abuf; /* buffer we're assigning to callback */
2341 kmutex_t *hash_lock;
2342 arc_callback_t *callback_list, *acb;
2343 int freeable = FALSE;
2345 buf = zio->io_private;
2346 hdr = buf->b_hdr;
2349 * The hdr was inserted into hash-table and removed from lists
2350 * prior to starting I/O. We should find this header, since
2351 * it's in the hash table, and it should be legit since it's
2352 * not possible to evict it during the I/O. The only possible
2353 * reason for it not to be found is if we were freed during the
2354 * read.
2356 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2357 &hash_lock);
2359 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2360 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2361 (found == hdr && HDR_L2_READING(hdr)));
2363 hdr->b_flags &= ~ARC_L2_EVICTED;
2364 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2365 hdr->b_flags &= ~ARC_L2CACHE;
2367 /* byteswap if necessary */
2368 callback_list = hdr->b_acb;
2369 ASSERT(callback_list != NULL);
2370 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
2371 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2372 byteswap_uint64_array :
2373 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2374 func(buf->b_data, hdr->b_size);
2377 arc_cksum_compute(buf, B_FALSE);
2379 /* create copies of the data buffer for the callers */
2380 abuf = buf;
2381 for (acb = callback_list; acb; acb = acb->acb_next) {
2382 if (acb->acb_done) {
2383 if (abuf == NULL)
2384 abuf = arc_buf_clone(buf);
2385 acb->acb_buf = abuf;
2386 abuf = NULL;
2389 hdr->b_acb = NULL;
2390 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2391 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2392 if (abuf == buf)
2393 hdr->b_flags |= ARC_BUF_AVAILABLE;
2395 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2397 if (zio->io_error != 0) {
2398 hdr->b_flags |= ARC_IO_ERROR;
2399 if (hdr->b_state != arc_anon)
2400 arc_change_state(arc_anon, hdr, hash_lock);
2401 if (HDR_IN_HASH_TABLE(hdr))
2402 buf_hash_remove(hdr);
2403 freeable = refcount_is_zero(&hdr->b_refcnt);
2407 * Broadcast before we drop the hash_lock to avoid the possibility
2408 * that the hdr (and hence the cv) might be freed before we get to
2409 * the cv_broadcast().
2411 cv_broadcast(&hdr->b_cv);
2413 if (hash_lock) {
2415 * Only call arc_access on anonymous buffers. This is because
2416 * if we've issued an I/O for an evicted buffer, we've already
2417 * called arc_access (to prevent any simultaneous readers from
2418 * getting confused).
2420 if (zio->io_error == 0 && hdr->b_state == arc_anon)
2421 arc_access(hdr, hash_lock);
2422 mutex_exit(hash_lock);
2423 } else {
2425 * This block was freed while we waited for the read to
2426 * complete. It has been removed from the hash table and
2427 * moved to the anonymous state (so that it won't show up
2428 * in the cache).
2430 ASSERT3P(hdr->b_state, ==, arc_anon);
2431 freeable = refcount_is_zero(&hdr->b_refcnt);
2434 /* execute each callback and free its structure */
2435 while ((acb = callback_list) != NULL) {
2436 if (acb->acb_done)
2437 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2439 if (acb->acb_zio_dummy != NULL) {
2440 acb->acb_zio_dummy->io_error = zio->io_error;
2441 zio_nowait(acb->acb_zio_dummy);
2444 callback_list = acb->acb_next;
2445 kmem_free(acb, sizeof (arc_callback_t));
2448 if (freeable)
2449 arc_hdr_destroy(hdr);
2453 * "Read" the block block at the specified DVA (in bp) via the
2454 * cache. If the block is found in the cache, invoke the provided
2455 * callback immediately and return. Note that the `zio' parameter
2456 * in the callback will be NULL in this case, since no IO was
2457 * required. If the block is not in the cache pass the read request
2458 * on to the spa with a substitute callback function, so that the
2459 * requested block will be added to the cache.
2461 * If a read request arrives for a block that has a read in-progress,
2462 * either wait for the in-progress read to complete (and return the
2463 * results); or, if this is a read with a "done" func, add a record
2464 * to the read to invoke the "done" func when the read completes,
2465 * and return; or just return.
2467 * arc_read_done() will invoke all the requested "done" functions
2468 * for readers of this block.
2470 * Normal callers should use arc_read and pass the arc buffer and offset
2471 * for the bp. But if you know you don't need locking, you can use
2472 * arc_read_nolock. Callers cannot use a "done" function in a prefetch
2473 * call (i.e., with ARC_NOWAIT set).
2476 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf,
2477 arc_done_func_t *done, void *private, int priority, int zio_flags,
2478 uint32_t *arc_flags, const zbookmark_t *zb)
2480 int err;
2481 arc_buf_hdr_t *hdr = pbuf->b_hdr;
2483 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2484 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2485 rw_enter(&pbuf->b_lock, RW_READER);
2487 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2488 zio_flags, arc_flags, zb);
2490 ASSERT3P(hdr, ==, pbuf->b_hdr);
2491 rw_exit(&pbuf->b_lock);
2492 return (err);
2496 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp,
2497 arc_done_func_t *done, void *private, int priority, int zio_flags,
2498 uint32_t *arc_flags, const zbookmark_t *zb)
2500 arc_buf_hdr_t *hdr;
2501 arc_buf_t *buf;
2502 kmutex_t *hash_lock;
2503 zio_t *rzio;
2505 top:
2506 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2507 if (hdr && hdr->b_datacnt > 0) {
2509 *arc_flags |= ARC_CACHED;
2511 if (HDR_IO_IN_PROGRESS(hdr)) {
2513 if (*arc_flags & ARC_WAIT) {
2514 cv_wait(&hdr->b_cv, hash_lock);
2515 mutex_exit(hash_lock);
2516 goto top;
2518 ASSERT(*arc_flags & ARC_NOWAIT);
2520 if (done) {
2521 arc_callback_t *acb = NULL;
2523 acb = kmem_zalloc(sizeof (arc_callback_t),
2524 KM_SLEEP);
2525 acb->acb_done = done;
2526 acb->acb_private = private;
2527 if (pio != NULL)
2528 acb->acb_zio_dummy = zio_null(pio,
2529 spa, NULL, NULL, zio_flags);
2531 ASSERT(acb->acb_done != NULL);
2532 acb->acb_next = hdr->b_acb;
2533 hdr->b_acb = acb;
2534 add_reference(hdr, hash_lock, private);
2535 mutex_exit(hash_lock);
2536 return (0);
2538 mutex_exit(hash_lock);
2539 return (0);
2542 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2544 if (done) {
2545 add_reference(hdr, hash_lock, private);
2547 * If this block is already in use, create a new
2548 * copy of the data so that we will be guaranteed
2549 * that arc_release() will always succeed.
2551 buf = hdr->b_buf;
2552 ASSERT(buf);
2553 ASSERT(buf->b_data);
2554 if (HDR_BUF_AVAILABLE(hdr)) {
2555 ASSERT(buf->b_efunc == NULL);
2556 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2557 } else {
2558 buf = arc_buf_clone(buf);
2560 } else if (*arc_flags & ARC_PREFETCH &&
2561 refcount_count(&hdr->b_refcnt) == 0) {
2562 hdr->b_flags |= ARC_PREFETCH;
2564 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2565 arc_access(hdr, hash_lock);
2566 if (*arc_flags & ARC_L2CACHE)
2567 hdr->b_flags |= ARC_L2CACHE;
2568 mutex_exit(hash_lock);
2569 ARCSTAT_BUMP(arcstat_hits);
2570 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2571 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2572 data, metadata, hits);
2574 if (done)
2575 done(NULL, buf, private);
2576 } else {
2577 uint64_t size = BP_GET_LSIZE(bp);
2578 arc_callback_t *acb;
2579 vdev_t *vd = NULL;
2580 daddr_t addr;
2582 if (hdr == NULL) {
2583 /* this block is not in the cache */
2584 arc_buf_hdr_t *exists;
2585 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2586 buf = arc_buf_alloc(spa, size, private, type);
2587 hdr = buf->b_hdr;
2588 hdr->b_dva = *BP_IDENTITY(bp);
2589 hdr->b_birth = bp->blk_birth;
2590 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2591 exists = buf_hash_insert(hdr, &hash_lock);
2592 if (exists) {
2593 /* somebody beat us to the hash insert */
2594 mutex_exit(hash_lock);
2595 bzero(&hdr->b_dva, sizeof (dva_t));
2596 hdr->b_birth = 0;
2597 hdr->b_cksum0 = 0;
2598 (void) arc_buf_remove_ref(buf, private);
2599 goto top; /* restart the IO request */
2601 /* if this is a prefetch, we don't have a reference */
2602 if (*arc_flags & ARC_PREFETCH) {
2603 (void) remove_reference(hdr, hash_lock,
2604 private);
2605 hdr->b_flags |= ARC_PREFETCH;
2607 if (*arc_flags & ARC_L2CACHE)
2608 hdr->b_flags |= ARC_L2CACHE;
2609 if (BP_GET_LEVEL(bp) > 0)
2610 hdr->b_flags |= ARC_INDIRECT;
2611 } else {
2612 /* this block is in the ghost cache */
2613 ASSERT(GHOST_STATE(hdr->b_state));
2614 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2615 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2616 ASSERT(hdr->b_buf == NULL);
2618 /* if this is a prefetch, we don't have a reference */
2619 if (*arc_flags & ARC_PREFETCH)
2620 hdr->b_flags |= ARC_PREFETCH;
2621 else
2622 add_reference(hdr, hash_lock, private);
2623 if (*arc_flags & ARC_L2CACHE)
2624 hdr->b_flags |= ARC_L2CACHE;
2625 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2626 buf->b_hdr = hdr;
2627 buf->b_data = NULL;
2628 buf->b_efunc = NULL;
2629 buf->b_private = NULL;
2630 buf->b_next = NULL;
2631 hdr->b_buf = buf;
2632 arc_get_data_buf(buf);
2633 ASSERT(hdr->b_datacnt == 0);
2634 hdr->b_datacnt = 1;
2638 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2639 acb->acb_done = done;
2640 acb->acb_private = private;
2642 ASSERT(hdr->b_acb == NULL);
2643 hdr->b_acb = acb;
2644 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2647 * If the buffer has been evicted, migrate it to a present state
2648 * before issuing the I/O. Once we drop the hash-table lock,
2649 * the header will be marked as I/O in progress and have an
2650 * attached buffer. At this point, anybody who finds this
2651 * buffer ought to notice that it's legit but has a pending I/O.
2654 if (GHOST_STATE(hdr->b_state))
2655 arc_access(hdr, hash_lock);
2657 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2658 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2659 addr = hdr->b_l2hdr->b_daddr;
2661 * Lock out device removal.
2663 if (vdev_is_dead(vd) ||
2664 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2665 vd = NULL;
2668 mutex_exit(hash_lock);
2670 ASSERT3U(hdr->b_size, ==, size);
2671 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2672 zbookmark_t *, zb);
2673 ARCSTAT_BUMP(arcstat_misses);
2674 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2675 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2676 data, metadata, misses);
2678 if (vd != NULL) {
2680 * Read from the L2ARC if the following are true:
2681 * 1. The L2ARC vdev was previously cached.
2682 * 2. This buffer still has L2ARC metadata.
2683 * 3. This buffer isn't currently writing to the L2ARC.
2684 * 4. The L2ARC entry wasn't evicted, which may
2685 * also have invalidated the vdev.
2687 if (hdr->b_l2hdr != NULL &&
2688 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
2689 l2arc_read_callback_t *cb;
2691 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2692 ARCSTAT_BUMP(arcstat_l2_hits);
2694 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2695 KM_SLEEP);
2696 cb->l2rcb_buf = buf;
2697 cb->l2rcb_spa = spa;
2698 cb->l2rcb_bp = *bp;
2699 cb->l2rcb_zb = *zb;
2700 cb->l2rcb_flags = zio_flags;
2703 * l2arc read. The SCL_L2ARC lock will be
2704 * released by l2arc_read_done().
2706 rzio = zio_read_phys(pio, vd, addr, size,
2707 buf->b_data, ZIO_CHECKSUM_OFF,
2708 l2arc_read_done, cb, priority, zio_flags |
2709 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2710 ZIO_FLAG_DONT_PROPAGATE |
2711 ZIO_FLAG_DONT_RETRY, B_FALSE);
2712 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2713 zio_t *, rzio);
2715 if (*arc_flags & ARC_NOWAIT) {
2716 zio_nowait(rzio);
2717 return (0);
2720 ASSERT(*arc_flags & ARC_WAIT);
2721 if (zio_wait(rzio) == 0)
2722 return (0);
2724 /* l2arc read error; goto zio_read() */
2725 } else {
2726 DTRACE_PROBE1(l2arc__miss,
2727 arc_buf_hdr_t *, hdr);
2728 ARCSTAT_BUMP(arcstat_l2_misses);
2729 if (HDR_L2_WRITING(hdr))
2730 ARCSTAT_BUMP(arcstat_l2_rw_clash);
2731 spa_config_exit(spa, SCL_L2ARC, vd);
2735 rzio = zio_read(pio, spa, bp, buf->b_data, size,
2736 arc_read_done, buf, priority, zio_flags, zb);
2738 if (*arc_flags & ARC_WAIT)
2739 return (zio_wait(rzio));
2741 ASSERT(*arc_flags & ARC_NOWAIT);
2742 zio_nowait(rzio);
2744 return (0);
2748 * arc_read() variant to support pool traversal. If the block is already
2749 * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2750 * The idea is that we don't want pool traversal filling up memory, but
2751 * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2754 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2756 arc_buf_hdr_t *hdr;
2757 kmutex_t *hash_mtx;
2758 int rc = 0;
2760 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2762 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2763 arc_buf_t *buf = hdr->b_buf;
2765 ASSERT(buf);
2766 while (buf->b_data == NULL) {
2767 buf = buf->b_next;
2768 ASSERT(buf);
2770 bcopy(buf->b_data, data, hdr->b_size);
2771 } else {
2772 rc = ENOENT;
2775 if (hash_mtx)
2776 mutex_exit(hash_mtx);
2778 return (rc);
2781 void
2782 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2784 ASSERT(buf->b_hdr != NULL);
2785 ASSERT(buf->b_hdr->b_state != arc_anon);
2786 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2787 buf->b_efunc = func;
2788 buf->b_private = private;
2792 * This is used by the DMU to let the ARC know that a buffer is
2793 * being evicted, so the ARC should clean up. If this arc buf
2794 * is not yet in the evicted state, it will be put there.
2797 arc_buf_evict(arc_buf_t *buf)
2799 arc_buf_hdr_t *hdr;
2800 kmutex_t *hash_lock;
2801 arc_buf_t **bufp;
2803 rw_enter(&buf->b_lock, RW_WRITER);
2804 hdr = buf->b_hdr;
2805 if (hdr == NULL) {
2807 * We are in arc_do_user_evicts().
2809 ASSERT(buf->b_data == NULL);
2810 rw_exit(&buf->b_lock);
2811 return (0);
2812 } else if (buf->b_data == NULL) {
2813 arc_buf_t copy = *buf; /* structure assignment */
2815 * We are on the eviction list; process this buffer now
2816 * but let arc_do_user_evicts() do the reaping.
2818 buf->b_efunc = NULL;
2819 rw_exit(&buf->b_lock);
2820 VERIFY(copy.b_efunc(&copy) == 0);
2821 return (1);
2823 hash_lock = HDR_LOCK(hdr);
2824 mutex_enter(hash_lock);
2826 ASSERT(buf->b_hdr == hdr);
2827 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2828 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2831 * Pull this buffer off of the hdr
2833 bufp = &hdr->b_buf;
2834 while (*bufp != buf)
2835 bufp = &(*bufp)->b_next;
2836 *bufp = buf->b_next;
2838 ASSERT(buf->b_data != NULL);
2839 arc_buf_destroy(buf, FALSE, FALSE);
2841 if (hdr->b_datacnt == 0) {
2842 arc_state_t *old_state = hdr->b_state;
2843 arc_state_t *evicted_state;
2845 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2847 evicted_state =
2848 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2850 mutex_enter(&old_state->arcs_mtx);
2851 mutex_enter(&evicted_state->arcs_mtx);
2853 arc_change_state(evicted_state, hdr, hash_lock);
2854 ASSERT(HDR_IN_HASH_TABLE(hdr));
2855 hdr->b_flags |= ARC_IN_HASH_TABLE;
2856 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2858 mutex_exit(&evicted_state->arcs_mtx);
2859 mutex_exit(&old_state->arcs_mtx);
2861 mutex_exit(hash_lock);
2862 rw_exit(&buf->b_lock);
2864 VERIFY(buf->b_efunc(buf) == 0);
2865 buf->b_efunc = NULL;
2866 buf->b_private = NULL;
2867 buf->b_hdr = NULL;
2868 kmem_cache_free(buf_cache, buf);
2869 return (1);
2873 * Release this buffer from the cache. This must be done
2874 * after a read and prior to modifying the buffer contents.
2875 * If the buffer has more than one reference, we must make
2876 * a new hdr for the buffer.
2878 void
2879 arc_release(arc_buf_t *buf, void *tag)
2881 arc_buf_hdr_t *hdr;
2882 kmutex_t *hash_lock;
2883 l2arc_buf_hdr_t *l2hdr;
2884 uint64_t buf_size;
2886 rw_enter(&buf->b_lock, RW_WRITER);
2887 hdr = buf->b_hdr;
2889 /* this buffer is not on any list */
2890 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2891 ASSERT(!(hdr->b_flags & ARC_STORED));
2893 if (hdr->b_state == arc_anon) {
2894 /* this buffer is already released */
2895 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2896 ASSERT(BUF_EMPTY(hdr));
2897 ASSERT(buf->b_efunc == NULL);
2898 arc_buf_thaw(buf);
2899 rw_exit(&buf->b_lock);
2900 return;
2903 hash_lock = HDR_LOCK(hdr);
2904 mutex_enter(hash_lock);
2906 l2hdr = hdr->b_l2hdr;
2907 if (l2hdr) {
2908 mutex_enter(&l2arc_buflist_mtx);
2909 hdr->b_l2hdr = NULL;
2910 buf_size = hdr->b_size;
2914 * Do we have more than one buf?
2916 if (hdr->b_datacnt > 1) {
2917 arc_buf_hdr_t *nhdr;
2918 arc_buf_t **bufp;
2919 uint64_t blksz = hdr->b_size;
2920 spa_t *spa = hdr->b_spa;
2921 arc_buf_contents_t type = hdr->b_type;
2922 uint32_t flags = hdr->b_flags;
2924 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
2926 * Pull the data off of this buf and attach it to
2927 * a new anonymous buf.
2929 (void) remove_reference(hdr, hash_lock, tag);
2930 bufp = &hdr->b_buf;
2931 while (*bufp != buf)
2932 bufp = &(*bufp)->b_next;
2933 *bufp = (*bufp)->b_next;
2934 buf->b_next = NULL;
2936 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2937 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2938 if (refcount_is_zero(&hdr->b_refcnt)) {
2939 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2940 ASSERT3U(*size, >=, hdr->b_size);
2941 atomic_add_64(size, -hdr->b_size);
2943 hdr->b_datacnt -= 1;
2944 arc_cksum_verify(buf);
2946 mutex_exit(hash_lock);
2948 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
2949 nhdr->b_size = blksz;
2950 nhdr->b_spa = spa;
2951 nhdr->b_type = type;
2952 nhdr->b_buf = buf;
2953 nhdr->b_state = arc_anon;
2954 nhdr->b_arc_access = 0;
2955 nhdr->b_flags = flags & ARC_L2_WRITING;
2956 nhdr->b_l2hdr = NULL;
2957 nhdr->b_datacnt = 1;
2958 nhdr->b_freeze_cksum = NULL;
2959 (void) refcount_add(&nhdr->b_refcnt, tag);
2960 buf->b_hdr = nhdr;
2961 rw_exit(&buf->b_lock);
2962 atomic_add_64(&arc_anon->arcs_size, blksz);
2963 } else {
2964 rw_exit(&buf->b_lock);
2965 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2966 ASSERT(!list_link_active(&hdr->b_arc_node));
2967 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2968 arc_change_state(arc_anon, hdr, hash_lock);
2969 hdr->b_arc_access = 0;
2970 mutex_exit(hash_lock);
2972 bzero(&hdr->b_dva, sizeof (dva_t));
2973 hdr->b_birth = 0;
2974 hdr->b_cksum0 = 0;
2975 arc_buf_thaw(buf);
2977 buf->b_efunc = NULL;
2978 buf->b_private = NULL;
2980 if (l2hdr) {
2981 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2982 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2983 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2984 mutex_exit(&l2arc_buflist_mtx);
2989 arc_released(arc_buf_t *buf)
2991 int released;
2993 rw_enter(&buf->b_lock, RW_READER);
2994 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2995 rw_exit(&buf->b_lock);
2996 return (released);
3000 arc_has_callback(arc_buf_t *buf)
3002 int callback;
3004 rw_enter(&buf->b_lock, RW_READER);
3005 callback = (buf->b_efunc != NULL);
3006 rw_exit(&buf->b_lock);
3007 return (callback);
3010 #ifdef ZFS_DEBUG
3012 arc_referenced(arc_buf_t *buf)
3014 int referenced;
3016 rw_enter(&buf->b_lock, RW_READER);
3017 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3018 rw_exit(&buf->b_lock);
3019 return (referenced);
3021 #endif
3023 static void
3024 arc_write_ready(zio_t *zio)
3026 arc_write_callback_t *callback = zio->io_private;
3027 arc_buf_t *buf = callback->awcb_buf;
3028 arc_buf_hdr_t *hdr = buf->b_hdr;
3030 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3031 callback->awcb_ready(zio, buf, callback->awcb_private);
3034 * If the IO is already in progress, then this is a re-write
3035 * attempt, so we need to thaw and re-compute the cksum.
3036 * It is the responsibility of the callback to handle the
3037 * accounting for any re-write attempt.
3039 if (HDR_IO_IN_PROGRESS(hdr)) {
3040 mutex_enter(&hdr->b_freeze_lock);
3041 if (hdr->b_freeze_cksum != NULL) {
3042 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3043 hdr->b_freeze_cksum = NULL;
3045 mutex_exit(&hdr->b_freeze_lock);
3047 arc_cksum_compute(buf, B_FALSE);
3048 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3051 static void
3052 arc_write_done(zio_t *zio)
3054 arc_write_callback_t *callback = zio->io_private;
3055 arc_buf_t *buf = callback->awcb_buf;
3056 arc_buf_hdr_t *hdr = buf->b_hdr;
3058 hdr->b_acb = NULL;
3060 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3061 hdr->b_birth = zio->io_bp->blk_birth;
3062 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3064 * If the block to be written was all-zero, we may have
3065 * compressed it away. In this case no write was performed
3066 * so there will be no dva/birth-date/checksum. The buffer
3067 * must therefor remain anonymous (and uncached).
3069 if (!BUF_EMPTY(hdr)) {
3070 arc_buf_hdr_t *exists;
3071 kmutex_t *hash_lock;
3073 arc_cksum_verify(buf);
3075 exists = buf_hash_insert(hdr, &hash_lock);
3076 if (exists) {
3078 * This can only happen if we overwrite for
3079 * sync-to-convergence, because we remove
3080 * buffers from the hash table when we arc_free().
3082 ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE);
3083 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
3084 BP_IDENTITY(zio->io_bp)));
3085 ASSERT3U(zio->io_bp_orig.blk_birth, ==,
3086 zio->io_bp->blk_birth);
3088 ASSERT(refcount_is_zero(&exists->b_refcnt));
3089 arc_change_state(arc_anon, exists, hash_lock);
3090 mutex_exit(hash_lock);
3091 arc_hdr_destroy(exists);
3092 exists = buf_hash_insert(hdr, &hash_lock);
3093 ASSERT3P(exists, ==, NULL);
3095 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3096 /* if it's not anon, we are doing a scrub */
3097 if (hdr->b_state == arc_anon)
3098 arc_access(hdr, hash_lock);
3099 mutex_exit(hash_lock);
3100 } else if (callback->awcb_done == NULL) {
3101 int destroy_hdr;
3103 * This is an anonymous buffer with no user callback,
3104 * destroy it if there are no active references.
3106 mutex_enter(&arc_eviction_mtx);
3107 destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
3108 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3109 mutex_exit(&arc_eviction_mtx);
3110 if (destroy_hdr)
3111 arc_hdr_destroy(hdr);
3112 } else {
3113 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3115 hdr->b_flags &= ~ARC_STORED;
3117 if (callback->awcb_done) {
3118 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3119 callback->awcb_done(zio, buf, callback->awcb_private);
3122 kmem_free(callback, sizeof (arc_write_callback_t));
3125 void
3126 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp)
3128 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata);
3130 /* Determine checksum setting */
3131 if (ismd) {
3133 * Metadata always gets checksummed. If the data
3134 * checksum is multi-bit correctable, and it's not a
3135 * ZBT-style checksum, then it's suitable for metadata
3136 * as well. Otherwise, the metadata checksum defaults
3137 * to fletcher4.
3139 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable &&
3140 !zio_checksum_table[wp->wp_oschecksum].ci_zbt)
3141 zp->zp_checksum = wp->wp_oschecksum;
3142 else
3143 zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4;
3144 } else {
3145 zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum,
3146 wp->wp_oschecksum);
3149 /* Determine compression setting */
3150 if (ismd) {
3152 * XXX -- we should design a compression algorithm
3153 * that specializes in arrays of bps.
3155 zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
3156 ZIO_COMPRESS_LZJB;
3157 } else {
3158 zp->zp_compress = zio_compress_select(wp->wp_dncompress,
3159 wp->wp_oscompress);
3162 zp->zp_type = wp->wp_type;
3163 zp->zp_level = wp->wp_level;
3164 zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa));
3167 zio_t *
3168 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp,
3169 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3170 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3171 int zio_flags, const zbookmark_t *zb)
3173 arc_buf_hdr_t *hdr = buf->b_hdr;
3174 arc_write_callback_t *callback;
3175 zio_t *zio;
3176 zio_prop_t zp;
3178 ASSERT(ready != NULL);
3179 ASSERT(!HDR_IO_ERROR(hdr));
3180 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3181 ASSERT(hdr->b_acb == 0);
3182 if (l2arc)
3183 hdr->b_flags |= ARC_L2CACHE;
3184 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3185 callback->awcb_ready = ready;
3186 callback->awcb_done = done;
3187 callback->awcb_private = private;
3188 callback->awcb_buf = buf;
3190 write_policy(spa, wp, &zp);
3191 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp,
3192 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3194 return (zio);
3198 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3199 zio_done_func_t *done, void *private, uint32_t arc_flags)
3201 arc_buf_hdr_t *ab;
3202 kmutex_t *hash_lock;
3203 zio_t *zio;
3206 * If this buffer is in the cache, release it, so it
3207 * can be re-used.
3209 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3210 if (ab != NULL) {
3212 * The checksum of blocks to free is not always
3213 * preserved (eg. on the deadlist). However, if it is
3214 * nonzero, it should match what we have in the cache.
3216 ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3217 bp->blk_cksum.zc_word[0] == ab->b_cksum0 ||
3218 bp->blk_fill == BLK_FILL_ALREADY_FREED);
3220 if (ab->b_state != arc_anon)
3221 arc_change_state(arc_anon, ab, hash_lock);
3222 if (HDR_IO_IN_PROGRESS(ab)) {
3224 * This should only happen when we prefetch.
3226 ASSERT(ab->b_flags & ARC_PREFETCH);
3227 ASSERT3U(ab->b_datacnt, ==, 1);
3228 ab->b_flags |= ARC_FREED_IN_READ;
3229 if (HDR_IN_HASH_TABLE(ab))
3230 buf_hash_remove(ab);
3231 ab->b_arc_access = 0;
3232 bzero(&ab->b_dva, sizeof (dva_t));
3233 ab->b_birth = 0;
3234 ab->b_cksum0 = 0;
3235 ab->b_buf->b_efunc = NULL;
3236 ab->b_buf->b_private = NULL;
3237 mutex_exit(hash_lock);
3238 } else if (refcount_is_zero(&ab->b_refcnt)) {
3239 ab->b_flags |= ARC_FREE_IN_PROGRESS;
3240 mutex_exit(hash_lock);
3241 arc_hdr_destroy(ab);
3242 ARCSTAT_BUMP(arcstat_deleted);
3243 } else {
3245 * We still have an active reference on this
3246 * buffer. This can happen, e.g., from
3247 * dbuf_unoverride().
3249 ASSERT(!HDR_IN_HASH_TABLE(ab));
3250 ab->b_arc_access = 0;
3251 bzero(&ab->b_dva, sizeof (dva_t));
3252 ab->b_birth = 0;
3253 ab->b_cksum0 = 0;
3254 ab->b_buf->b_efunc = NULL;
3255 ab->b_buf->b_private = NULL;
3256 mutex_exit(hash_lock);
3260 zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED);
3262 if (arc_flags & ARC_WAIT)
3263 return (zio_wait(zio));
3265 ASSERT(arc_flags & ARC_NOWAIT);
3266 zio_nowait(zio);
3268 return (0);
3271 static int
3272 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3274 #ifdef _KERNEL
3275 uint64_t inflight_data = arc_anon->arcs_size;
3276 uint64_t available_memory = ptob(freemem);
3277 static uint64_t page_load = 0;
3278 static uint64_t last_txg = 0;
3280 available_memory =
3281 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3282 if (available_memory >= zfs_write_limit_max)
3283 return (0);
3285 if (txg > last_txg) {
3286 last_txg = txg;
3287 page_load = 0;
3290 * If we are in pageout, we know that memory is already tight,
3291 * the arc is already going to be evicting, so we just want to
3292 * continue to let page writes occur as quickly as possible.
3294 if (curproc == proc_pageout) {
3295 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3296 return (ERESTART);
3297 /* Note: reserve is inflated, so we deflate */
3298 page_load += reserve / 8;
3299 return (0);
3300 } else if (page_load > 0 && arc_reclaim_needed()) {
3301 /* memory is low, delay before restarting */
3302 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3303 return (EAGAIN);
3305 page_load = 0;
3307 if (arc_size > arc_c_min) {
3308 uint64_t evictable_memory =
3309 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3310 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3311 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3312 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3313 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3316 if (inflight_data > available_memory / 4) {
3317 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3318 return (ERESTART);
3320 #endif
3321 return (0);
3324 void
3325 arc_tempreserve_clear(uint64_t reserve)
3327 atomic_add_64(&arc_tempreserve, -reserve);
3328 ASSERT((int64_t)arc_tempreserve >= 0);
3332 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3334 int error;
3336 #ifdef ZFS_DEBUG
3338 * Once in a while, fail for no reason. Everything should cope.
3340 if (spa_get_random(10000) == 0) {
3341 dprintf("forcing random failure\n");
3342 return (ERESTART);
3344 #endif
3345 if (reserve > arc_c/4 && !arc_no_grow)
3346 arc_c = MIN(arc_c_max, reserve * 4);
3347 if (reserve > arc_c)
3348 return (ENOMEM);
3351 * Writes will, almost always, require additional memory allocations
3352 * in order to compress/encrypt/etc the data. We therefor need to
3353 * make sure that there is sufficient available memory for this.
3355 if (error = arc_memory_throttle(reserve, txg))
3356 return (error);
3359 * Throttle writes when the amount of dirty data in the cache
3360 * gets too large. We try to keep the cache less than half full
3361 * of dirty blocks so that our sync times don't grow too large.
3362 * Note: if two requests come in concurrently, we might let them
3363 * both succeed, when one of them should fail. Not a huge deal.
3365 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3366 arc_anon->arcs_size > arc_c / 4) {
3367 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3368 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3369 arc_tempreserve>>10,
3370 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3371 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3372 reserve>>10, arc_c>>10);
3373 return (ERESTART);
3375 atomic_add_64(&arc_tempreserve, reserve);
3376 return (0);
3379 #if defined(__NetBSD__) && defined(_KERNEL)
3380 /* Reclaim hook registered to uvm for reclaiming KVM and memory */
3381 static void
3382 arc_uvm_reclaim_hook(void)
3385 if (mutex_tryenter(&arc_reclaim_thr_lock)) {
3386 cv_broadcast(&arc_reclaim_thr_cv);
3387 mutex_exit(&arc_reclaim_thr_lock);
3391 static int
3392 arc_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
3396 if (mutex_tryenter(&arc_reclaim_thr_lock)) {
3397 cv_broadcast(&arc_reclaim_thr_cv);
3398 mutex_exit(&arc_reclaim_thr_lock);
3401 return CALLBACK_CHAIN_CONTINUE;
3404 #endif /* __NetBSD__ */
3406 void
3407 arc_init(void)
3409 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3410 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3412 /* Convert seconds to clock ticks */
3413 arc_min_prefetch_lifespan = 1 * hz;
3415 /* Start out with 1/8 of all memory */
3416 arc_c = physmem * PAGESIZE / 8;
3418 #ifdef _KERNEL
3420 * On architectures where the physical memory can be larger
3421 * than the addressable space (intel in 32-bit mode), we may
3422 * need to limit the cache to 1/8 of VM size.
3424 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3425 #endif
3427 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3428 arc_c_min = MAX(arc_c / 4, 64<<20);
3429 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3430 if (arc_c * 8 >= 1<<30)
3431 arc_c_max = (arc_c * 8) - (1<<30);
3432 else
3433 arc_c_max = arc_c_min;
3434 arc_c_max = MAX(arc_c * 6, arc_c_max);
3437 * Allow the tunables to override our calculations if they are
3438 * reasonable (ie. over 64MB)
3440 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3441 arc_c_max = zfs_arc_max;
3442 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3443 arc_c_min = zfs_arc_min;
3445 arc_c = arc_c_max;
3446 arc_p = (arc_c >> 1);
3448 /* limit meta-data to 1/4 of the arc capacity */
3449 arc_meta_limit = arc_c_max / 4;
3451 /* Allow the tunable to override if it is reasonable */
3452 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3453 arc_meta_limit = zfs_arc_meta_limit;
3455 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3456 arc_c_min = arc_meta_limit / 2;
3458 /* if kmem_flags are set, lets try to use less memory */
3459 if (kmem_debugging())
3460 arc_c = arc_c / 2;
3461 if (arc_c < arc_c_min)
3462 arc_c = arc_c_min;
3464 arc_anon = &ARC_anon;
3465 arc_mru = &ARC_mru;
3466 arc_mru_ghost = &ARC_mru_ghost;
3467 arc_mfu = &ARC_mfu;
3468 arc_mfu_ghost = &ARC_mfu_ghost;
3469 arc_l2c_only = &ARC_l2c_only;
3470 arc_size = 0;
3472 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3473 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3474 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3475 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3476 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3477 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3479 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3480 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3481 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3482 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3483 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3484 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3485 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3486 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3487 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3488 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3489 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3490 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3491 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3492 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3493 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3494 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3495 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3496 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3497 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3498 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3500 buf_init();
3502 arc_thread_exit = 0;
3503 arc_eviction_list = NULL;
3504 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3505 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3507 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3508 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3510 if (arc_ksp != NULL) {
3511 arc_ksp->ks_data = &arc_stats;
3512 kstat_install(arc_ksp);
3515 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3516 TS_RUN, maxclsyspri);
3518 #if defined(__NetBSD__) && defined(_KERNEL)
3519 arc_hook.uvm_reclaim_hook = &arc_uvm_reclaim_hook;
3521 uvm_reclaim_hook_add(&arc_hook);
3522 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
3523 &arc_kva_reclaim_entry, NULL, arc_kva_reclaim_callback);
3525 #endif
3527 arc_dead = FALSE;
3528 arc_warm = B_FALSE;
3530 if (zfs_write_limit_max == 0)
3531 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3532 else
3533 zfs_write_limit_shift = 0;
3534 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3537 void
3538 arc_fini(void)
3540 mutex_enter(&arc_reclaim_thr_lock);
3541 arc_thread_exit = 1;
3542 while (arc_thread_exit != 0)
3543 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3544 mutex_exit(&arc_reclaim_thr_lock);
3546 arc_flush(NULL);
3548 arc_dead = TRUE;
3550 if (arc_ksp != NULL) {
3551 kstat_delete(arc_ksp);
3552 arc_ksp = NULL;
3555 mutex_destroy(&arc_eviction_mtx);
3556 mutex_destroy(&arc_reclaim_thr_lock);
3557 cv_destroy(&arc_reclaim_thr_cv);
3559 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3560 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3561 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3562 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3563 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3564 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3565 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3566 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3568 mutex_destroy(&arc_anon->arcs_mtx);
3569 mutex_destroy(&arc_mru->arcs_mtx);
3570 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3571 mutex_destroy(&arc_mfu->arcs_mtx);
3572 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3573 mutex_destroy(&arc_l2c_only->arcs_mtx);
3575 mutex_destroy(&zfs_write_limit_lock);
3577 #if defined(__NetBSD__) && defined(_KERNEL)
3578 uvm_reclaim_hook_del(&arc_hook);
3579 callback_unregister(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
3580 &arc_kva_reclaim_entry);
3581 #endif
3583 buf_fini();
3587 * Level 2 ARC
3589 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3590 * It uses dedicated storage devices to hold cached data, which are populated
3591 * using large infrequent writes. The main role of this cache is to boost
3592 * the performance of random read workloads. The intended L2ARC devices
3593 * include short-stroked disks, solid state disks, and other media with
3594 * substantially faster read latency than disk.
3596 * +-----------------------+
3597 * | ARC |
3598 * +-----------------------+
3599 * | ^ ^
3600 * | | |
3601 * l2arc_feed_thread() arc_read()
3602 * | | |
3603 * | l2arc read |
3604 * V | |
3605 * +---------------+ |
3606 * | L2ARC | |
3607 * +---------------+ |
3608 * | ^ |
3609 * l2arc_write() | |
3610 * | | |
3611 * V | |
3612 * +-------+ +-------+
3613 * | vdev | | vdev |
3614 * | cache | | cache |
3615 * +-------+ +-------+
3616 * +=========+ .-----.
3617 * : L2ARC : |-_____-|
3618 * : devices : | Disks |
3619 * +=========+ `-_____-'
3621 * Read requests are satisfied from the following sources, in order:
3623 * 1) ARC
3624 * 2) vdev cache of L2ARC devices
3625 * 3) L2ARC devices
3626 * 4) vdev cache of disks
3627 * 5) disks
3629 * Some L2ARC device types exhibit extremely slow write performance.
3630 * To accommodate for this there are some significant differences between
3631 * the L2ARC and traditional cache design:
3633 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3634 * the ARC behave as usual, freeing buffers and placing headers on ghost
3635 * lists. The ARC does not send buffers to the L2ARC during eviction as
3636 * this would add inflated write latencies for all ARC memory pressure.
3638 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3639 * It does this by periodically scanning buffers from the eviction-end of
3640 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3641 * not already there. It scans until a headroom of buffers is satisfied,
3642 * which itself is a buffer for ARC eviction. The thread that does this is
3643 * l2arc_feed_thread(), illustrated below; example sizes are included to
3644 * provide a better sense of ratio than this diagram:
3646 * head --> tail
3647 * +---------------------+----------+
3648 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3649 * +---------------------+----------+ | o L2ARC eligible
3650 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3651 * +---------------------+----------+ |
3652 * 15.9 Gbytes ^ 32 Mbytes |
3653 * headroom |
3654 * l2arc_feed_thread()
3656 * l2arc write hand <--[oooo]--'
3657 * | 8 Mbyte
3658 * | write max
3660 * +==============================+
3661 * L2ARC dev |####|#|###|###| |####| ... |
3662 * +==============================+
3663 * 32 Gbytes
3665 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3666 * evicted, then the L2ARC has cached a buffer much sooner than it probably
3667 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
3668 * safe to say that this is an uncommon case, since buffers at the end of
3669 * the ARC lists have moved there due to inactivity.
3671 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3672 * then the L2ARC simply misses copying some buffers. This serves as a
3673 * pressure valve to prevent heavy read workloads from both stalling the ARC
3674 * with waits and clogging the L2ARC with writes. This also helps prevent
3675 * the potential for the L2ARC to churn if it attempts to cache content too
3676 * quickly, such as during backups of the entire pool.
3678 * 5. After system boot and before the ARC has filled main memory, there are
3679 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3680 * lists can remain mostly static. Instead of searching from tail of these
3681 * lists as pictured, the l2arc_feed_thread() will search from the list heads
3682 * for eligible buffers, greatly increasing its chance of finding them.
3684 * The L2ARC device write speed is also boosted during this time so that
3685 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
3686 * there are no L2ARC reads, and no fear of degrading read performance
3687 * through increased writes.
3689 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3690 * the vdev queue can aggregate them into larger and fewer writes. Each
3691 * device is written to in a rotor fashion, sweeping writes through
3692 * available space then repeating.
3694 * 7. The L2ARC does not store dirty content. It never needs to flush
3695 * write buffers back to disk based storage.
3697 * 8. If an ARC buffer is written (and dirtied) which also exists in the
3698 * L2ARC, the now stale L2ARC buffer is immediately dropped.
3700 * The performance of the L2ARC can be tweaked by a number of tunables, which
3701 * may be necessary for different workloads:
3703 * l2arc_write_max max write bytes per interval
3704 * l2arc_write_boost extra write bytes during device warmup
3705 * l2arc_noprefetch skip caching prefetched buffers
3706 * l2arc_headroom number of max device writes to precache
3707 * l2arc_feed_secs seconds between L2ARC writing
3709 * Tunables may be removed or added as future performance improvements are
3710 * integrated, and also may become zpool properties.
3713 static void
3714 l2arc_hdr_stat_add(void)
3716 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3717 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3720 static void
3721 l2arc_hdr_stat_remove(void)
3723 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3724 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3728 * Cycle through L2ARC devices. This is how L2ARC load balances.
3729 * If a device is returned, this also returns holding the spa config lock.
3731 static l2arc_dev_t *
3732 l2arc_dev_get_next(void)
3734 l2arc_dev_t *first, *next = NULL;
3737 * Lock out the removal of spas (spa_namespace_lock), then removal
3738 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
3739 * both locks will be dropped and a spa config lock held instead.
3741 mutex_enter(&spa_namespace_lock);
3742 mutex_enter(&l2arc_dev_mtx);
3744 /* if there are no vdevs, there is nothing to do */
3745 if (l2arc_ndev == 0)
3746 goto out;
3748 first = NULL;
3749 next = l2arc_dev_last;
3750 do {
3751 /* loop around the list looking for a non-faulted vdev */
3752 if (next == NULL) {
3753 next = list_head(l2arc_dev_list);
3754 } else {
3755 next = list_next(l2arc_dev_list, next);
3756 if (next == NULL)
3757 next = list_head(l2arc_dev_list);
3760 /* if we have come back to the start, bail out */
3761 if (first == NULL)
3762 first = next;
3763 else if (next == first)
3764 break;
3766 } while (vdev_is_dead(next->l2ad_vdev));
3768 /* if we were unable to find any usable vdevs, return NULL */
3769 if (vdev_is_dead(next->l2ad_vdev))
3770 next = NULL;
3772 l2arc_dev_last = next;
3774 out:
3775 mutex_exit(&l2arc_dev_mtx);
3778 * Grab the config lock to prevent the 'next' device from being
3779 * removed while we are writing to it.
3781 if (next != NULL)
3782 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3783 mutex_exit(&spa_namespace_lock);
3785 return (next);
3789 * Free buffers that were tagged for destruction.
3791 static void
3792 l2arc_do_free_on_write()
3794 list_t *buflist;
3795 l2arc_data_free_t *df, *df_prev;
3797 mutex_enter(&l2arc_free_on_write_mtx);
3798 buflist = l2arc_free_on_write;
3800 for (df = list_tail(buflist); df; df = df_prev) {
3801 df_prev = list_prev(buflist, df);
3802 ASSERT(df->l2df_data != NULL);
3803 ASSERT(df->l2df_func != NULL);
3804 df->l2df_func(df->l2df_data, df->l2df_size);
3805 list_remove(buflist, df);
3806 kmem_free(df, sizeof (l2arc_data_free_t));
3809 mutex_exit(&l2arc_free_on_write_mtx);
3813 * A write to a cache device has completed. Update all headers to allow
3814 * reads from these buffers to begin.
3816 static void
3817 l2arc_write_done(zio_t *zio)
3819 l2arc_write_callback_t *cb;
3820 l2arc_dev_t *dev;
3821 list_t *buflist;
3822 arc_buf_hdr_t *head, *ab, *ab_prev;
3823 l2arc_buf_hdr_t *abl2;
3824 kmutex_t *hash_lock;
3826 cb = zio->io_private;
3827 ASSERT(cb != NULL);
3828 dev = cb->l2wcb_dev;
3829 ASSERT(dev != NULL);
3830 head = cb->l2wcb_head;
3831 ASSERT(head != NULL);
3832 buflist = dev->l2ad_buflist;
3833 ASSERT(buflist != NULL);
3834 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3835 l2arc_write_callback_t *, cb);
3837 if (zio->io_error != 0)
3838 ARCSTAT_BUMP(arcstat_l2_writes_error);
3840 mutex_enter(&l2arc_buflist_mtx);
3843 * All writes completed, or an error was hit.
3845 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3846 ab_prev = list_prev(buflist, ab);
3848 hash_lock = HDR_LOCK(ab);
3849 if (!mutex_tryenter(hash_lock)) {
3851 * This buffer misses out. It may be in a stage
3852 * of eviction. Its ARC_L2_WRITING flag will be
3853 * left set, denying reads to this buffer.
3855 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3856 continue;
3859 if (zio->io_error != 0) {
3861 * Error - drop L2ARC entry.
3863 list_remove(buflist, ab);
3864 abl2 = ab->b_l2hdr;
3865 ab->b_l2hdr = NULL;
3866 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3867 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3871 * Allow ARC to begin reads to this L2ARC entry.
3873 ab->b_flags &= ~ARC_L2_WRITING;
3875 mutex_exit(hash_lock);
3878 atomic_inc_64(&l2arc_writes_done);
3879 list_remove(buflist, head);
3880 kmem_cache_free(hdr_cache, head);
3881 mutex_exit(&l2arc_buflist_mtx);
3883 l2arc_do_free_on_write();
3885 kmem_free(cb, sizeof (l2arc_write_callback_t));
3889 * A read to a cache device completed. Validate buffer contents before
3890 * handing over to the regular ARC routines.
3892 static void
3893 l2arc_read_done(zio_t *zio)
3895 l2arc_read_callback_t *cb;
3896 arc_buf_hdr_t *hdr;
3897 arc_buf_t *buf;
3898 kmutex_t *hash_lock;
3899 int equal;
3901 ASSERT(zio->io_vd != NULL);
3902 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3904 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
3906 cb = zio->io_private;
3907 ASSERT(cb != NULL);
3908 buf = cb->l2rcb_buf;
3909 ASSERT(buf != NULL);
3910 hdr = buf->b_hdr;
3911 ASSERT(hdr != NULL);
3913 hash_lock = HDR_LOCK(hdr);
3914 mutex_enter(hash_lock);
3917 * Check this survived the L2ARC journey.
3919 equal = arc_cksum_equal(buf);
3920 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3921 mutex_exit(hash_lock);
3922 zio->io_private = buf;
3923 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
3924 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
3925 arc_read_done(zio);
3926 } else {
3927 mutex_exit(hash_lock);
3929 * Buffer didn't survive caching. Increment stats and
3930 * reissue to the original storage device.
3932 if (zio->io_error != 0) {
3933 ARCSTAT_BUMP(arcstat_l2_io_error);
3934 } else {
3935 zio->io_error = EIO;
3937 if (!equal)
3938 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3941 * If there's no waiter, issue an async i/o to the primary
3942 * storage now. If there *is* a waiter, the caller must
3943 * issue the i/o in a context where it's OK to block.
3945 if (zio->io_waiter == NULL)
3946 zio_nowait(zio_read(zio->io_parent,
3947 cb->l2rcb_spa, &cb->l2rcb_bp,
3948 buf->b_data, zio->io_size, arc_read_done, buf,
3949 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
3952 kmem_free(cb, sizeof (l2arc_read_callback_t));
3956 * This is the list priority from which the L2ARC will search for pages to
3957 * cache. This is used within loops (0..3) to cycle through lists in the
3958 * desired order. This order can have a significant effect on cache
3959 * performance.
3961 * Currently the metadata lists are hit first, MFU then MRU, followed by
3962 * the data lists. This function returns a locked list, and also returns
3963 * the lock pointer.
3965 static list_t *
3966 l2arc_list_locked(int list_num, kmutex_t **lock)
3968 list_t *list;
3970 ASSERT(list_num >= 0 && list_num <= 3);
3972 switch (list_num) {
3973 case 0:
3974 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3975 *lock = &arc_mfu->arcs_mtx;
3976 break;
3977 case 1:
3978 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
3979 *lock = &arc_mru->arcs_mtx;
3980 break;
3981 case 2:
3982 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
3983 *lock = &arc_mfu->arcs_mtx;
3984 break;
3985 case 3:
3986 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
3987 *lock = &arc_mru->arcs_mtx;
3988 break;
3991 ASSERT(!(MUTEX_HELD(*lock)));
3992 mutex_enter(*lock);
3993 return (list);
3997 * Evict buffers from the device write hand to the distance specified in
3998 * bytes. This distance may span populated buffers, it may span nothing.
3999 * This is clearing a region on the L2ARC device ready for writing.
4000 * If the 'all' boolean is set, every buffer is evicted.
4002 static void
4003 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4005 list_t *buflist;
4006 l2arc_buf_hdr_t *abl2;
4007 arc_buf_hdr_t *ab, *ab_prev;
4008 kmutex_t *hash_lock;
4009 uint64_t taddr;
4011 buflist = dev->l2ad_buflist;
4013 if (buflist == NULL)
4014 return;
4016 if (!all && dev->l2ad_first) {
4018 * This is the first sweep through the device. There is
4019 * nothing to evict.
4021 return;
4024 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4026 * When nearing the end of the device, evict to the end
4027 * before the device write hand jumps to the start.
4029 taddr = dev->l2ad_end;
4030 } else {
4031 taddr = dev->l2ad_hand + distance;
4033 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4034 uint64_t, taddr, boolean_t, all);
4036 top:
4037 mutex_enter(&l2arc_buflist_mtx);
4038 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4039 ab_prev = list_prev(buflist, ab);
4041 hash_lock = HDR_LOCK(ab);
4042 if (!mutex_tryenter(hash_lock)) {
4044 * Missed the hash lock. Retry.
4046 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4047 mutex_exit(&l2arc_buflist_mtx);
4048 mutex_enter(hash_lock);
4049 mutex_exit(hash_lock);
4050 goto top;
4053 if (HDR_L2_WRITE_HEAD(ab)) {
4055 * We hit a write head node. Leave it for
4056 * l2arc_write_done().
4058 list_remove(buflist, ab);
4059 mutex_exit(hash_lock);
4060 continue;
4063 if (!all && ab->b_l2hdr != NULL &&
4064 (ab->b_l2hdr->b_daddr > taddr ||
4065 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4067 * We've evicted to the target address,
4068 * or the end of the device.
4070 mutex_exit(hash_lock);
4071 break;
4074 if (HDR_FREE_IN_PROGRESS(ab)) {
4076 * Already on the path to destruction.
4078 mutex_exit(hash_lock);
4079 continue;
4082 if (ab->b_state == arc_l2c_only) {
4083 ASSERT(!HDR_L2_READING(ab));
4085 * This doesn't exist in the ARC. Destroy.
4086 * arc_hdr_destroy() will call list_remove()
4087 * and decrement arcstat_l2_size.
4089 arc_change_state(arc_anon, ab, hash_lock);
4090 arc_hdr_destroy(ab);
4091 } else {
4093 * Invalidate issued or about to be issued
4094 * reads, since we may be about to write
4095 * over this location.
4097 if (HDR_L2_READING(ab)) {
4098 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4099 ab->b_flags |= ARC_L2_EVICTED;
4103 * Tell ARC this no longer exists in L2ARC.
4105 if (ab->b_l2hdr != NULL) {
4106 abl2 = ab->b_l2hdr;
4107 ab->b_l2hdr = NULL;
4108 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4109 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4111 list_remove(buflist, ab);
4114 * This may have been leftover after a
4115 * failed write.
4117 ab->b_flags &= ~ARC_L2_WRITING;
4119 mutex_exit(hash_lock);
4121 mutex_exit(&l2arc_buflist_mtx);
4123 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
4124 dev->l2ad_evict = taddr;
4128 * Find and write ARC buffers to the L2ARC device.
4130 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4131 * for reading until they have completed writing.
4133 static void
4134 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4136 arc_buf_hdr_t *ab, *ab_prev, *head;
4137 l2arc_buf_hdr_t *hdrl2;
4138 list_t *list;
4139 uint64_t passed_sz, write_sz, buf_sz, headroom;
4140 void *buf_data;
4141 kmutex_t *hash_lock, *list_lock;
4142 boolean_t have_lock, full;
4143 l2arc_write_callback_t *cb;
4144 zio_t *pio, *wzio;
4146 ASSERT(dev->l2ad_vdev != NULL);
4148 pio = NULL;
4149 write_sz = 0;
4150 full = B_FALSE;
4151 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4152 head->b_flags |= ARC_L2_WRITE_HEAD;
4155 * Copy buffers for L2ARC writing.
4157 mutex_enter(&l2arc_buflist_mtx);
4158 for (int try = 0; try <= 3; try++) {
4159 list = l2arc_list_locked(try, &list_lock);
4160 passed_sz = 0;
4163 * L2ARC fast warmup.
4165 * Until the ARC is warm and starts to evict, read from the
4166 * head of the ARC lists rather than the tail.
4168 headroom = target_sz * l2arc_headroom;
4169 if (arc_warm == B_FALSE)
4170 ab = list_head(list);
4171 else
4172 ab = list_tail(list);
4174 for (; ab; ab = ab_prev) {
4175 if (arc_warm == B_FALSE)
4176 ab_prev = list_next(list, ab);
4177 else
4178 ab_prev = list_prev(list, ab);
4180 hash_lock = HDR_LOCK(ab);
4181 have_lock = MUTEX_HELD(hash_lock);
4182 if (!have_lock && !mutex_tryenter(hash_lock)) {
4184 * Skip this buffer rather than waiting.
4186 continue;
4189 passed_sz += ab->b_size;
4190 if (passed_sz > headroom) {
4192 * Searched too far.
4194 mutex_exit(hash_lock);
4195 break;
4198 if (ab->b_spa != spa) {
4199 mutex_exit(hash_lock);
4200 continue;
4203 if (ab->b_l2hdr != NULL) {
4205 * Already in L2ARC.
4207 mutex_exit(hash_lock);
4208 continue;
4211 if (HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) {
4212 mutex_exit(hash_lock);
4213 continue;
4216 if ((write_sz + ab->b_size) > target_sz) {
4217 full = B_TRUE;
4218 mutex_exit(hash_lock);
4219 break;
4222 if (ab->b_buf == NULL) {
4223 DTRACE_PROBE1(l2arc__buf__null, void *, ab);
4224 mutex_exit(hash_lock);
4225 continue;
4228 if (pio == NULL) {
4230 * Insert a dummy header on the buflist so
4231 * l2arc_write_done() can find where the
4232 * write buffers begin without searching.
4234 list_insert_head(dev->l2ad_buflist, head);
4236 cb = kmem_alloc(
4237 sizeof (l2arc_write_callback_t), KM_SLEEP);
4238 cb->l2wcb_dev = dev;
4239 cb->l2wcb_head = head;
4240 pio = zio_root(spa, l2arc_write_done, cb,
4241 ZIO_FLAG_CANFAIL);
4245 * Create and add a new L2ARC header.
4247 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4248 hdrl2->b_dev = dev;
4249 hdrl2->b_daddr = dev->l2ad_hand;
4251 ab->b_flags |= ARC_L2_WRITING;
4252 ab->b_l2hdr = hdrl2;
4253 list_insert_head(dev->l2ad_buflist, ab);
4254 buf_data = ab->b_buf->b_data;
4255 buf_sz = ab->b_size;
4258 * Compute and store the buffer cksum before
4259 * writing. On debug the cksum is verified first.
4261 arc_cksum_verify(ab->b_buf);
4262 arc_cksum_compute(ab->b_buf, B_TRUE);
4264 mutex_exit(hash_lock);
4266 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4267 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4268 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4269 ZIO_FLAG_CANFAIL, B_FALSE);
4271 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4272 zio_t *, wzio);
4273 (void) zio_nowait(wzio);
4276 * Keep the clock hand suitably device-aligned.
4278 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4280 write_sz += buf_sz;
4281 dev->l2ad_hand += buf_sz;
4284 mutex_exit(list_lock);
4286 if (full == B_TRUE)
4287 break;
4289 mutex_exit(&l2arc_buflist_mtx);
4291 if (pio == NULL) {
4292 ASSERT3U(write_sz, ==, 0);
4293 kmem_cache_free(hdr_cache, head);
4294 return;
4297 ASSERT3U(write_sz, <=, target_sz);
4298 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4299 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4300 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4303 * Bump device hand to the device start if it is approaching the end.
4304 * l2arc_evict() will already have evicted ahead for this case.
4306 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4307 spa_l2cache_space_update(dev->l2ad_vdev, 0,
4308 dev->l2ad_end - dev->l2ad_hand);
4309 dev->l2ad_hand = dev->l2ad_start;
4310 dev->l2ad_evict = dev->l2ad_start;
4311 dev->l2ad_first = B_FALSE;
4314 (void) zio_wait(pio);
4318 * This thread feeds the L2ARC at regular intervals. This is the beating
4319 * heart of the L2ARC.
4321 static void
4322 l2arc_feed_thread(void)
4324 callb_cpr_t cpr;
4325 l2arc_dev_t *dev;
4326 spa_t *spa;
4327 uint64_t size;
4329 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4331 mutex_enter(&l2arc_feed_thr_lock);
4333 while (l2arc_thread_exit == 0) {
4335 * Pause for l2arc_feed_secs seconds between writes.
4337 CALLB_CPR_SAFE_BEGIN(&cpr);
4338 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4339 (hz * l2arc_feed_secs));
4340 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4343 * Quick check for L2ARC devices.
4345 mutex_enter(&l2arc_dev_mtx);
4346 if (l2arc_ndev == 0) {
4347 mutex_exit(&l2arc_dev_mtx);
4348 continue;
4350 mutex_exit(&l2arc_dev_mtx);
4353 * This selects the next l2arc device to write to, and in
4354 * doing so the next spa to feed from: dev->l2ad_spa. This
4355 * will return NULL if there are now no l2arc devices or if
4356 * they are all faulted.
4358 * If a device is returned, its spa's config lock is also
4359 * held to prevent device removal. l2arc_dev_get_next()
4360 * will grab and release l2arc_dev_mtx.
4362 if ((dev = l2arc_dev_get_next()) == NULL)
4363 continue;
4365 spa = dev->l2ad_spa;
4366 ASSERT(spa != NULL);
4369 * Avoid contributing to memory pressure.
4371 if (arc_reclaim_needed()) {
4372 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4373 spa_config_exit(spa, SCL_L2ARC, dev);
4374 continue;
4377 ARCSTAT_BUMP(arcstat_l2_feeds);
4379 size = dev->l2ad_write;
4380 if (arc_warm == B_FALSE)
4381 size += dev->l2ad_boost;
4384 * Evict L2ARC buffers that will be overwritten.
4386 l2arc_evict(dev, size, B_FALSE);
4389 * Write ARC buffers.
4391 l2arc_write_buffers(spa, dev, size);
4392 spa_config_exit(spa, SCL_L2ARC, dev);
4395 l2arc_thread_exit = 0;
4396 cv_broadcast(&l2arc_feed_thr_cv);
4397 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4398 thread_exit();
4401 boolean_t
4402 l2arc_vdev_present(vdev_t *vd)
4404 l2arc_dev_t *dev;
4406 mutex_enter(&l2arc_dev_mtx);
4407 for (dev = list_head(l2arc_dev_list); dev != NULL;
4408 dev = list_next(l2arc_dev_list, dev)) {
4409 if (dev->l2ad_vdev == vd)
4410 break;
4412 mutex_exit(&l2arc_dev_mtx);
4414 return (dev != NULL);
4418 * Add a vdev for use by the L2ARC. By this point the spa has already
4419 * validated the vdev and opened it.
4421 void
4422 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4424 l2arc_dev_t *adddev;
4426 ASSERT(!l2arc_vdev_present(vd));
4429 * Create a new l2arc device entry.
4431 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4432 adddev->l2ad_spa = spa;
4433 adddev->l2ad_vdev = vd;
4434 adddev->l2ad_write = l2arc_write_max;
4435 adddev->l2ad_boost = l2arc_write_boost;
4436 adddev->l2ad_start = start;
4437 adddev->l2ad_end = end;
4438 adddev->l2ad_hand = adddev->l2ad_start;
4439 adddev->l2ad_evict = adddev->l2ad_start;
4440 adddev->l2ad_first = B_TRUE;
4441 ASSERT3U(adddev->l2ad_write, >, 0);
4444 * This is a list of all ARC buffers that are still valid on the
4445 * device.
4447 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4448 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4449 offsetof(arc_buf_hdr_t, b_l2node));
4451 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4454 * Add device to global list
4456 mutex_enter(&l2arc_dev_mtx);
4457 list_insert_head(l2arc_dev_list, adddev);
4458 atomic_inc_64(&l2arc_ndev);
4459 mutex_exit(&l2arc_dev_mtx);
4463 * Remove a vdev from the L2ARC.
4465 void
4466 l2arc_remove_vdev(vdev_t *vd)
4468 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4471 * Find the device by vdev
4473 mutex_enter(&l2arc_dev_mtx);
4474 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4475 nextdev = list_next(l2arc_dev_list, dev);
4476 if (vd == dev->l2ad_vdev) {
4477 remdev = dev;
4478 break;
4481 ASSERT(remdev != NULL);
4484 * Remove device from global list
4486 list_remove(l2arc_dev_list, remdev);
4487 l2arc_dev_last = NULL; /* may have been invalidated */
4488 atomic_dec_64(&l2arc_ndev);
4489 mutex_exit(&l2arc_dev_mtx);
4492 * Clear all buflists and ARC references. L2ARC device flush.
4494 l2arc_evict(remdev, 0, B_TRUE);
4495 list_destroy(remdev->l2ad_buflist);
4496 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4497 kmem_free(remdev, sizeof (l2arc_dev_t));
4500 void
4501 l2arc_init(void)
4503 l2arc_thread_exit = 0;
4504 l2arc_ndev = 0;
4505 l2arc_writes_sent = 0;
4506 l2arc_writes_done = 0;
4508 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4509 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4510 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4511 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4512 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4514 l2arc_dev_list = &L2ARC_dev_list;
4515 l2arc_free_on_write = &L2ARC_free_on_write;
4516 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4517 offsetof(l2arc_dev_t, l2ad_node));
4518 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4519 offsetof(l2arc_data_free_t, l2df_list_node));
4522 void
4523 l2arc_fini(void)
4526 * This is called from dmu_fini(), which is called from spa_fini();
4527 * Because of this, we can assume that all l2arc devices have
4528 * already been removed when the pools themselves were removed.
4531 l2arc_do_free_on_write();
4533 mutex_destroy(&l2arc_feed_thr_lock);
4534 cv_destroy(&l2arc_feed_thr_cv);
4535 mutex_destroy(&l2arc_dev_mtx);
4536 mutex_destroy(&l2arc_buflist_mtx);
4537 mutex_destroy(&l2arc_free_on_write_mtx);
4539 list_destroy(l2arc_dev_list);
4540 list_destroy(l2arc_free_on_write);
4543 void
4544 l2arc_start(void)
4546 if (!(spa_mode & FWRITE))
4547 return;
4549 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4550 TS_RUN, minclsyspri);
4553 void
4554 l2arc_stop(void)
4556 if (!(spa_mode & FWRITE))
4557 return;
4559 mutex_enter(&l2arc_feed_thr_lock);
4560 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4561 l2arc_thread_exit = 1;
4562 while (l2arc_thread_exit != 0)
4563 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4564 mutex_exit(&l2arc_feed_thr_lock);