4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
32 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
53 * There are four basic locks for managing spa_t structures:
55 * spa_namespace_lock (global mutex)
57 * This lock must be acquired to do any of the following:
59 * - Lookup a spa_t by name
60 * - Add or remove a spa_t from the namespace
61 * - Increase spa_refcount from non-zero
62 * - Check if spa_refcount is zero
64 * - add/remove/attach/detach devices
65 * - Held for the duration of create/destroy/import/export
67 * It does not need to handle recursion. A create or destroy may
68 * reference objects (files or zvols) in other pools, but by
69 * definition they must have an existing reference, and will never need
70 * to lookup a spa_t by name.
72 * spa_refcount (per-spa refcount_t protected by mutex)
74 * This reference count keep track of any active users of the spa_t. The
75 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
76 * the refcount is never really 'zero' - opening a pool implicitly keeps
77 * some references in the DMU. Internally we check against spa_minref, but
78 * present the image of a zero/non-zero value to consumers.
80 * spa_config_lock[] (per-spa array of rwlocks)
82 * This protects the spa_t from config changes, and must be held in
83 * the following circumstances:
85 * - RW_READER to perform I/O to the spa
86 * - RW_WRITER to change the vdev config
88 * The locking order is fairly straightforward:
90 * spa_namespace_lock -> spa_refcount
92 * The namespace lock must be acquired to increase the refcount from 0
93 * or to check if it is zero.
95 * spa_refcount -> spa_config_lock[]
97 * There must be at least one valid reference on the spa_t to acquire
100 * spa_namespace_lock -> spa_config_lock[]
102 * The namespace lock must always be taken before the config lock.
105 * The spa_namespace_lock can be acquired directly and is globally visible.
107 * The namespace is manipulated using the following functions, all of which
108 * require the spa_namespace_lock to be held.
110 * spa_lookup() Lookup a spa_t by name.
112 * spa_add() Create a new spa_t in the namespace.
114 * spa_remove() Remove a spa_t from the namespace. This also
115 * frees up any memory associated with the spa_t.
117 * spa_next() Returns the next spa_t in the system, or the
118 * first if NULL is passed.
120 * spa_evict_all() Shutdown and remove all spa_t structures in
123 * spa_guid_exists() Determine whether a pool/device guid exists.
125 * The spa_refcount is manipulated using the following functions:
127 * spa_open_ref() Adds a reference to the given spa_t. Must be
128 * called with spa_namespace_lock held if the
129 * refcount is currently zero.
131 * spa_close() Remove a reference from the spa_t. This will
132 * not free the spa_t or remove it from the
133 * namespace. No locking is required.
135 * spa_refcount_zero() Returns true if the refcount is currently
136 * zero. Must be called with spa_namespace_lock
139 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
143 * To read the configuration, it suffices to hold one of these locks as reader.
144 * To modify the configuration, you must hold all locks as writer. To modify
145 * vdev state without altering the vdev tree's topology (e.g. online/offline),
146 * you must hold SCL_STATE and SCL_ZIO as writer.
148 * We use these distinct config locks to avoid recursive lock entry.
149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150 * block allocations (SCL_ALLOC), which may require reading space maps
151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
153 * The spa config locks cannot be normal rwlocks because we need the
154 * ability to hand off ownership. For example, SCL_ZIO is acquired
155 * by the issuing thread and later released by an interrupt thread.
156 * They do, however, obey the usual write-wanted semantics to prevent
157 * writer (i.e. system administrator) starvation.
159 * The lock acquisition rules are as follows:
162 * Protects changes to the vdev tree topology, such as vdev
163 * add/remove/attach/detach. Protects the dirty config list
164 * (spa_config_dirty_list) and the set of spares and l2arc devices.
167 * Protects changes to pool state and vdev state, such as vdev
168 * online/offline/fault/degrade/clear. Protects the dirty state list
169 * (spa_state_dirty_list) and global pool state (spa_state).
172 * Protects changes to metaslab groups and classes.
173 * Held as reader by metaslab_alloc() and metaslab_claim().
176 * Held by bp-level zios (those which have no io_vd upon entry)
177 * to prevent changes to the vdev tree. The bp-level zio implicitly
178 * protects all of its vdev child zios, which do not hold SCL_ZIO.
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_free(). SCL_FREE is distinct from
183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184 * blocks in zio_done() while another i/o that holds either
185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
188 * Held as reader to prevent changes to the vdev tree during trivial
189 * inquiries such as bp_get_dasize(). SCL_VDEV is distinct from the
190 * other locks, and lower than all of them, to ensure that it's safe
191 * to acquire regardless of caller context.
193 * In addition, the following rules apply:
195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
196 * The lock ordering is SCL_CONFIG > spa_props_lock.
198 * (b) I/O operations on leaf vdevs. For any zio operation that takes
199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200 * or zio_write_phys() -- the caller must ensure that the config cannot
201 * cannot change in the interim, and that the vdev cannot be reopened.
202 * SCL_STATE as reader suffices for both.
204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
206 * spa_vdev_enter() Acquire the namespace lock and the config lock
209 * spa_vdev_exit() Release the config lock, wait for all I/O
210 * to complete, sync the updated configs to the
211 * cache, and release the namespace lock.
213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
217 * spa_rename() is also implemented within this file since is requires
218 * manipulation of the namespace.
221 static avl_tree_t spa_namespace_avl
;
222 kmutex_t spa_namespace_lock
;
223 static kcondvar_t spa_namespace_cv
;
224 static int spa_active_count
;
225 int spa_max_replication_override
= SPA_DVAS_PER_BP
;
227 static kmutex_t spa_spare_lock
;
228 static avl_tree_t spa_spare_avl
;
229 static kmutex_t spa_l2cache_lock
;
230 static avl_tree_t spa_l2cache_avl
;
232 kmem_cache_t
*spa_buffer_pool
;
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags
= ~ZFS_DEBUG_DPRINTF
;
243 * zfs_recover can be set to nonzero to attempt to recover from
244 * otherwise-fatal errors, typically caused by on-disk corruption. When
245 * set, calls to zfs_panic_recover() will turn into warning messages.
251 * ==========================================================================
253 * ==========================================================================
256 spa_config_lock_init(spa_t
*spa
)
258 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
259 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
260 mutex_init(&scl
->scl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
261 cv_init(&scl
->scl_cv
, NULL
, CV_DEFAULT
, NULL
);
262 refcount_create(&scl
->scl_count
);
263 scl
->scl_writer
= NULL
;
264 scl
->scl_write_wanted
= 0;
269 spa_config_lock_destroy(spa_t
*spa
)
271 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
272 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
273 mutex_destroy(&scl
->scl_lock
);
274 cv_destroy(&scl
->scl_cv
);
275 refcount_destroy(&scl
->scl_count
);
276 ASSERT(scl
->scl_writer
== NULL
);
277 ASSERT(scl
->scl_write_wanted
== 0);
282 spa_config_tryenter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
284 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
285 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
286 if (!(locks
& (1 << i
)))
288 mutex_enter(&scl
->scl_lock
);
289 if (rw
== RW_READER
) {
290 if (scl
->scl_writer
|| scl
->scl_write_wanted
) {
291 mutex_exit(&scl
->scl_lock
);
292 spa_config_exit(spa
, locks
^ (1 << i
), tag
);
296 ASSERT(scl
->scl_writer
!= curthread
);
297 if (!refcount_is_zero(&scl
->scl_count
)) {
298 mutex_exit(&scl
->scl_lock
);
299 spa_config_exit(spa
, locks
^ (1 << i
), tag
);
302 scl
->scl_writer
= curthread
;
304 (void) refcount_add(&scl
->scl_count
, tag
);
305 mutex_exit(&scl
->scl_lock
);
311 spa_config_enter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
313 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
314 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
315 if (!(locks
& (1 << i
)))
317 mutex_enter(&scl
->scl_lock
);
318 if (rw
== RW_READER
) {
319 while (scl
->scl_writer
|| scl
->scl_write_wanted
) {
320 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
323 ASSERT(scl
->scl_writer
!= curthread
);
324 while (!refcount_is_zero(&scl
->scl_count
)) {
325 scl
->scl_write_wanted
++;
326 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
327 scl
->scl_write_wanted
--;
329 scl
->scl_writer
= curthread
;
331 (void) refcount_add(&scl
->scl_count
, tag
);
332 mutex_exit(&scl
->scl_lock
);
337 spa_config_exit(spa_t
*spa
, int locks
, void *tag
)
339 for (int i
= SCL_LOCKS
- 1; i
>= 0; i
--) {
340 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
341 if (!(locks
& (1 << i
)))
343 mutex_enter(&scl
->scl_lock
);
344 ASSERT(!refcount_is_zero(&scl
->scl_count
));
345 if (refcount_remove(&scl
->scl_count
, tag
) == 0) {
346 ASSERT(scl
->scl_writer
== NULL
||
347 scl
->scl_writer
== curthread
);
348 scl
->scl_writer
= NULL
; /* OK in either case */
349 cv_broadcast(&scl
->scl_cv
);
351 mutex_exit(&scl
->scl_lock
);
356 spa_config_held(spa_t
*spa
, int locks
, krw_t rw
)
360 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
361 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
362 if (!(locks
& (1 << i
)))
364 if ((rw
== RW_READER
&& !refcount_is_zero(&scl
->scl_count
)) ||
365 (rw
== RW_WRITER
&& scl
->scl_writer
== curthread
))
366 locks_held
|= 1 << i
;
373 * ==========================================================================
374 * SPA namespace functions
375 * ==========================================================================
379 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
380 * Returns NULL if no matching spa_t is found.
383 spa_lookup(const char *name
)
385 static spa_t search
; /* spa_t is large; don't allocate on stack */
391 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
394 * If it's a full dataset name, figure out the pool name and
397 cp
= strpbrk(name
, "/@");
403 (void) strlcpy(search
.spa_name
, name
, sizeof (search
.spa_name
));
404 spa
= avl_find(&spa_namespace_avl
, &search
, &where
);
413 * Create an uninitialized spa_t with the given name. Requires
414 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
415 * exist by calling spa_lookup() first.
418 spa_add(const char *name
, const char *altroot
)
421 spa_config_dirent_t
*dp
;
423 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
425 spa
= kmem_zalloc(sizeof (spa_t
), KM_SLEEP
);
427 mutex_init(&spa
->spa_async_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
428 mutex_init(&spa
->spa_async_root_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
429 mutex_init(&spa
->spa_scrub_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
430 mutex_init(&spa
->spa_errlog_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
431 mutex_init(&spa
->spa_errlist_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
432 mutex_init(&spa
->spa_sync_bplist
.bpl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
433 mutex_init(&spa
->spa_history_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
434 mutex_init(&spa
->spa_props_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
436 cv_init(&spa
->spa_async_cv
, NULL
, CV_DEFAULT
, NULL
);
437 cv_init(&spa
->spa_async_root_cv
, NULL
, CV_DEFAULT
, NULL
);
438 cv_init(&spa
->spa_scrub_io_cv
, NULL
, CV_DEFAULT
, NULL
);
439 cv_init(&spa
->spa_suspend_cv
, NULL
, CV_DEFAULT
, NULL
);
441 (void) strlcpy(spa
->spa_name
, name
, sizeof (spa
->spa_name
));
442 spa
->spa_state
= POOL_STATE_UNINITIALIZED
;
443 spa
->spa_freeze_txg
= UINT64_MAX
;
444 spa
->spa_final_txg
= UINT64_MAX
;
446 refcount_create(&spa
->spa_refcount
);
447 spa_config_lock_init(spa
);
449 avl_add(&spa_namespace_avl
, spa
);
451 mutex_init(&spa
->spa_suspend_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
454 * Set the alternate root, if there is one.
457 spa
->spa_root
= spa_strdup(altroot
);
462 * Every pool starts with the default cachefile
464 list_create(&spa
->spa_config_list
, sizeof (spa_config_dirent_t
),
465 offsetof(spa_config_dirent_t
, scd_link
));
467 dp
= kmem_zalloc(sizeof (spa_config_dirent_t
), KM_SLEEP
);
468 dp
->scd_path
= spa_strdup(spa_config_path
);
469 list_insert_head(&spa
->spa_config_list
, dp
);
475 * Removes a spa_t from the namespace, freeing up any memory used. Requires
476 * spa_namespace_lock. This is called only after the spa_t has been closed and
480 spa_remove(spa_t
*spa
)
482 spa_config_dirent_t
*dp
;
484 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
485 ASSERT(spa
->spa_state
== POOL_STATE_UNINITIALIZED
);
487 avl_remove(&spa_namespace_avl
, spa
);
488 cv_broadcast(&spa_namespace_cv
);
491 spa_strfree(spa
->spa_root
);
495 while ((dp
= list_head(&spa
->spa_config_list
)) != NULL
) {
496 list_remove(&spa
->spa_config_list
, dp
);
497 if (dp
->scd_path
!= NULL
)
498 spa_strfree(dp
->scd_path
);
499 kmem_free(dp
, sizeof (spa_config_dirent_t
));
502 list_destroy(&spa
->spa_config_list
);
504 spa_config_set(spa
, NULL
);
506 refcount_destroy(&spa
->spa_refcount
);
508 spa_config_lock_destroy(spa
);
510 cv_destroy(&spa
->spa_async_cv
);
511 cv_destroy(&spa
->spa_async_root_cv
);
512 cv_destroy(&spa
->spa_scrub_io_cv
);
513 cv_destroy(&spa
->spa_suspend_cv
);
515 mutex_destroy(&spa
->spa_async_lock
);
516 mutex_destroy(&spa
->spa_async_root_lock
);
517 mutex_destroy(&spa
->spa_scrub_lock
);
518 mutex_destroy(&spa
->spa_errlog_lock
);
519 mutex_destroy(&spa
->spa_errlist_lock
);
520 mutex_destroy(&spa
->spa_sync_bplist
.bpl_lock
);
521 mutex_destroy(&spa
->spa_history_lock
);
522 mutex_destroy(&spa
->spa_props_lock
);
523 mutex_destroy(&spa
->spa_suspend_lock
);
525 kmem_free(spa
, sizeof (spa_t
));
529 * Given a pool, return the next pool in the namespace, or NULL if there is
530 * none. If 'prev' is NULL, return the first pool.
533 spa_next(spa_t
*prev
)
535 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
538 return (AVL_NEXT(&spa_namespace_avl
, prev
));
540 return (avl_first(&spa_namespace_avl
));
544 * ==========================================================================
545 * SPA refcount functions
546 * ==========================================================================
550 * Add a reference to the given spa_t. Must have at least one reference, or
551 * have the namespace lock held.
554 spa_open_ref(spa_t
*spa
, void *tag
)
556 ASSERT(refcount_count(&spa
->spa_refcount
) >= spa
->spa_minref
||
557 MUTEX_HELD(&spa_namespace_lock
));
558 (void) refcount_add(&spa
->spa_refcount
, tag
);
562 * Remove a reference to the given spa_t. Must have at least one reference, or
563 * have the namespace lock held.
566 spa_close(spa_t
*spa
, void *tag
)
568 ASSERT(refcount_count(&spa
->spa_refcount
) > spa
->spa_minref
||
569 MUTEX_HELD(&spa_namespace_lock
));
570 (void) refcount_remove(&spa
->spa_refcount
, tag
);
574 * Check to see if the spa refcount is zero. Must be called with
575 * spa_namespace_lock held. We really compare against spa_minref, which is the
576 * number of references acquired when opening a pool
579 spa_refcount_zero(spa_t
*spa
)
581 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
583 return (refcount_count(&spa
->spa_refcount
) == spa
->spa_minref
);
587 * ==========================================================================
588 * SPA spare and l2cache tracking
589 * ==========================================================================
593 * Hot spares and cache devices are tracked using the same code below,
594 * for 'auxiliary' devices.
597 typedef struct spa_aux
{
605 spa_aux_compare(const void *a
, const void *b
)
607 const spa_aux_t
*sa
= a
;
608 const spa_aux_t
*sb
= b
;
610 if (sa
->aux_guid
< sb
->aux_guid
)
612 else if (sa
->aux_guid
> sb
->aux_guid
)
619 spa_aux_add(vdev_t
*vd
, avl_tree_t
*avl
)
625 search
.aux_guid
= vd
->vdev_guid
;
626 if ((aux
= avl_find(avl
, &search
, &where
)) != NULL
) {
629 aux
= kmem_zalloc(sizeof (spa_aux_t
), KM_SLEEP
);
630 aux
->aux_guid
= vd
->vdev_guid
;
632 avl_insert(avl
, aux
, where
);
637 spa_aux_remove(vdev_t
*vd
, avl_tree_t
*avl
)
643 search
.aux_guid
= vd
->vdev_guid
;
644 aux
= avl_find(avl
, &search
, &where
);
648 if (--aux
->aux_count
== 0) {
649 avl_remove(avl
, aux
);
650 kmem_free(aux
, sizeof (spa_aux_t
));
651 } else if (aux
->aux_pool
== spa_guid(vd
->vdev_spa
)) {
652 aux
->aux_pool
= 0ULL;
657 spa_aux_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
, avl_tree_t
*avl
)
659 spa_aux_t search
, *found
;
661 search
.aux_guid
= guid
;
662 found
= avl_find(avl
, &search
, NULL
);
666 *pool
= found
->aux_pool
;
673 *refcnt
= found
->aux_count
;
678 return (found
!= NULL
);
682 spa_aux_activate(vdev_t
*vd
, avl_tree_t
*avl
)
684 spa_aux_t search
, *found
;
687 search
.aux_guid
= vd
->vdev_guid
;
688 found
= avl_find(avl
, &search
, &where
);
689 ASSERT(found
!= NULL
);
690 ASSERT(found
->aux_pool
== 0ULL);
692 found
->aux_pool
= spa_guid(vd
->vdev_spa
);
696 * Spares are tracked globally due to the following constraints:
698 * - A spare may be part of multiple pools.
699 * - A spare may be added to a pool even if it's actively in use within
701 * - A spare in use in any pool can only be the source of a replacement if
702 * the target is a spare in the same pool.
704 * We keep track of all spares on the system through the use of a reference
705 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
706 * spare, then we bump the reference count in the AVL tree. In addition, we set
707 * the 'vdev_isspare' member to indicate that the device is a spare (active or
708 * inactive). When a spare is made active (used to replace a device in the
709 * pool), we also keep track of which pool its been made a part of.
711 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
712 * called under the spa_namespace lock as part of vdev reconfiguration. The
713 * separate spare lock exists for the status query path, which does not need to
714 * be completely consistent with respect to other vdev configuration changes.
718 spa_spare_compare(const void *a
, const void *b
)
720 return (spa_aux_compare(a
, b
));
724 spa_spare_add(vdev_t
*vd
)
726 mutex_enter(&spa_spare_lock
);
727 ASSERT(!vd
->vdev_isspare
);
728 spa_aux_add(vd
, &spa_spare_avl
);
729 vd
->vdev_isspare
= B_TRUE
;
730 mutex_exit(&spa_spare_lock
);
734 spa_spare_remove(vdev_t
*vd
)
736 mutex_enter(&spa_spare_lock
);
737 ASSERT(vd
->vdev_isspare
);
738 spa_aux_remove(vd
, &spa_spare_avl
);
739 vd
->vdev_isspare
= B_FALSE
;
740 mutex_exit(&spa_spare_lock
);
744 spa_spare_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
)
748 mutex_enter(&spa_spare_lock
);
749 found
= spa_aux_exists(guid
, pool
, refcnt
, &spa_spare_avl
);
750 mutex_exit(&spa_spare_lock
);
756 spa_spare_activate(vdev_t
*vd
)
758 mutex_enter(&spa_spare_lock
);
759 ASSERT(vd
->vdev_isspare
);
760 spa_aux_activate(vd
, &spa_spare_avl
);
761 mutex_exit(&spa_spare_lock
);
765 * Level 2 ARC devices are tracked globally for the same reasons as spares.
766 * Cache devices currently only support one pool per cache device, and so
767 * for these devices the aux reference count is currently unused beyond 1.
771 spa_l2cache_compare(const void *a
, const void *b
)
773 return (spa_aux_compare(a
, b
));
777 spa_l2cache_add(vdev_t
*vd
)
779 mutex_enter(&spa_l2cache_lock
);
780 ASSERT(!vd
->vdev_isl2cache
);
781 spa_aux_add(vd
, &spa_l2cache_avl
);
782 vd
->vdev_isl2cache
= B_TRUE
;
783 mutex_exit(&spa_l2cache_lock
);
787 spa_l2cache_remove(vdev_t
*vd
)
789 mutex_enter(&spa_l2cache_lock
);
790 ASSERT(vd
->vdev_isl2cache
);
791 spa_aux_remove(vd
, &spa_l2cache_avl
);
792 vd
->vdev_isl2cache
= B_FALSE
;
793 mutex_exit(&spa_l2cache_lock
);
797 spa_l2cache_exists(uint64_t guid
, uint64_t *pool
)
801 mutex_enter(&spa_l2cache_lock
);
802 found
= spa_aux_exists(guid
, pool
, NULL
, &spa_l2cache_avl
);
803 mutex_exit(&spa_l2cache_lock
);
809 spa_l2cache_activate(vdev_t
*vd
)
811 mutex_enter(&spa_l2cache_lock
);
812 ASSERT(vd
->vdev_isl2cache
);
813 spa_aux_activate(vd
, &spa_l2cache_avl
);
814 mutex_exit(&spa_l2cache_lock
);
818 spa_l2cache_space_update(vdev_t
*vd
, int64_t space
, int64_t alloc
)
820 vdev_space_update(vd
, space
, alloc
, B_FALSE
);
824 * ==========================================================================
826 * ==========================================================================
830 * Lock the given spa_t for the purpose of adding or removing a vdev.
831 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
832 * It returns the next transaction group for the spa_t.
835 spa_vdev_enter(spa_t
*spa
)
837 mutex_enter(&spa_namespace_lock
);
839 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
841 return (spa_last_synced_txg(spa
) + 1);
845 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
846 * locking of spa_vdev_enter(), we also want make sure the transactions have
847 * synced to disk, and then update the global configuration cache with the new
851 spa_vdev_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
)
853 int config_changed
= B_FALSE
;
855 ASSERT(txg
> spa_last_synced_txg(spa
));
857 spa
->spa_pending_vdev
= NULL
;
862 vdev_dtl_reassess(spa
->spa_root_vdev
, 0, 0, B_FALSE
);
865 * If the config changed, notify the scrub thread that it must restart.
867 if (error
== 0 && !list_is_empty(&spa
->spa_config_dirty_list
)) {
868 dsl_pool_scrub_restart(spa
->spa_dsl_pool
);
869 config_changed
= B_TRUE
;
872 spa_config_exit(spa
, SCL_ALL
, spa
);
875 * Note: this txg_wait_synced() is important because it ensures
876 * that there won't be more than one config change per txg.
877 * This allows us to use the txg as the generation number.
880 txg_wait_synced(spa
->spa_dsl_pool
, txg
);
883 ASSERT(!vd
->vdev_detached
|| vd
->vdev_dtl
.smo_object
== 0);
888 * If the config changed, update the config cache.
891 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
893 mutex_exit(&spa_namespace_lock
);
899 * Lock the given spa_t for the purpose of changing vdev state.
902 spa_vdev_state_enter(spa_t
*spa
)
904 spa_config_enter(spa
, SCL_STATE_ALL
, spa
, RW_WRITER
);
908 spa_vdev_state_exit(spa_t
*spa
, vdev_t
*vd
, int error
)
911 vdev_state_dirty(vd
->vdev_top
);
913 spa_config_exit(spa
, SCL_STATE_ALL
, spa
);
919 * ==========================================================================
920 * Miscellaneous functions
921 * ==========================================================================
928 spa_rename(const char *name
, const char *newname
)
934 * Lookup the spa_t and grab the config lock for writing. We need to
935 * actually open the pool so that we can sync out the necessary labels.
936 * It's OK to call spa_open() with the namespace lock held because we
937 * allow recursive calls for other reasons.
939 mutex_enter(&spa_namespace_lock
);
940 if ((err
= spa_open(name
, &spa
, FTAG
)) != 0) {
941 mutex_exit(&spa_namespace_lock
);
945 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
947 avl_remove(&spa_namespace_avl
, spa
);
948 (void) strlcpy(spa
->spa_name
, newname
, sizeof (spa
->spa_name
));
949 avl_add(&spa_namespace_avl
, spa
);
952 * Sync all labels to disk with the new names by marking the root vdev
953 * dirty and waiting for it to sync. It will pick up the new pool name
956 vdev_config_dirty(spa
->spa_root_vdev
);
958 spa_config_exit(spa
, SCL_ALL
, FTAG
);
960 txg_wait_synced(spa
->spa_dsl_pool
, 0);
963 * Sync the updated config cache.
965 spa_config_sync(spa
, B_FALSE
, B_TRUE
);
967 spa_close(spa
, FTAG
);
969 mutex_exit(&spa_namespace_lock
);
976 * Determine whether a pool with given pool_guid exists. If device_guid is
977 * non-zero, determine whether the pool exists *and* contains a device with the
978 * specified device_guid.
981 spa_guid_exists(uint64_t pool_guid
, uint64_t device_guid
)
984 avl_tree_t
*t
= &spa_namespace_avl
;
986 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
988 for (spa
= avl_first(t
); spa
!= NULL
; spa
= AVL_NEXT(t
, spa
)) {
989 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
991 if (spa
->spa_root_vdev
== NULL
)
993 if (spa_guid(spa
) == pool_guid
) {
994 if (device_guid
== 0)
997 if (vdev_lookup_by_guid(spa
->spa_root_vdev
,
998 device_guid
) != NULL
)
1002 * Check any devices we may be in the process of adding.
1004 if (spa
->spa_pending_vdev
) {
1005 if (vdev_lookup_by_guid(spa
->spa_pending_vdev
,
1006 device_guid
) != NULL
)
1012 return (spa
!= NULL
);
1016 spa_strdup(const char *s
)
1022 new = kmem_alloc(len
+ 1, KM_SLEEP
);
1030 spa_strfree(char *s
)
1032 kmem_free(s
, strlen(s
) + 1);
1036 spa_get_random(uint64_t range
)
1042 (void) random_get_pseudo_bytes((void *)&r
, sizeof (uint64_t));
1048 sprintf_blkptr(char *buf
, int len
, const blkptr_t
*bp
)
1053 (void) snprintf(buf
, len
, "<NULL>");
1057 if (BP_IS_HOLE(bp
)) {
1058 (void) snprintf(buf
, len
, "<hole>");
1062 (void) snprintf(buf
, len
, "[L%llu %s] %llxL/%llxP ",
1063 (u_longlong_t
)BP_GET_LEVEL(bp
),
1064 dmu_ot
[BP_GET_TYPE(bp
)].ot_name
,
1065 (u_longlong_t
)BP_GET_LSIZE(bp
),
1066 (u_longlong_t
)BP_GET_PSIZE(bp
));
1068 for (d
= 0; d
< BP_GET_NDVAS(bp
); d
++) {
1069 const dva_t
*dva
= &bp
->blk_dva
[d
];
1070 (void) snprintf(buf
+ strlen(buf
), len
- strlen(buf
),
1071 "DVA[%d]=<%llu:%llx:%llx> ", d
,
1072 (u_longlong_t
)DVA_GET_VDEV(dva
),
1073 (u_longlong_t
)DVA_GET_OFFSET(dva
),
1074 (u_longlong_t
)DVA_GET_ASIZE(dva
));
1077 (void) snprintf(buf
+ strlen(buf
), len
- strlen(buf
),
1078 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1079 zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_name
,
1080 zio_compress_table
[BP_GET_COMPRESS(bp
)].ci_name
,
1081 BP_GET_BYTEORDER(bp
) == 0 ? "BE" : "LE",
1082 BP_IS_GANG(bp
) ? "gang" : "contiguous",
1083 (u_longlong_t
)bp
->blk_birth
,
1084 (u_longlong_t
)bp
->blk_fill
,
1085 (u_longlong_t
)bp
->blk_cksum
.zc_word
[0],
1086 (u_longlong_t
)bp
->blk_cksum
.zc_word
[1],
1087 (u_longlong_t
)bp
->blk_cksum
.zc_word
[2],
1088 (u_longlong_t
)bp
->blk_cksum
.zc_word
[3]);
1092 spa_freeze(spa_t
*spa
)
1094 uint64_t freeze_txg
= 0;
1096 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1097 if (spa
->spa_freeze_txg
== UINT64_MAX
) {
1098 freeze_txg
= spa_last_synced_txg(spa
) + TXG_SIZE
;
1099 spa
->spa_freeze_txg
= freeze_txg
;
1101 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1102 if (freeze_txg
!= 0)
1103 txg_wait_synced(spa_get_dsl(spa
), freeze_txg
);
1107 zfs_panic_recover(const char *fmt
, ...)
1112 vcmn_err(zfs_recover
? CE_WARN
: CE_PANIC
, fmt
, adx
);
1117 * ==========================================================================
1118 * Accessor functions
1119 * ==========================================================================
1123 spa_shutting_down(spa_t
*spa
)
1125 return (spa
->spa_async_suspended
);
1129 spa_get_dsl(spa_t
*spa
)
1131 return (spa
->spa_dsl_pool
);
1135 spa_get_rootblkptr(spa_t
*spa
)
1137 return (&spa
->spa_ubsync
.ub_rootbp
);
1141 spa_set_rootblkptr(spa_t
*spa
, const blkptr_t
*bp
)
1143 spa
->spa_uberblock
.ub_rootbp
= *bp
;
1147 spa_altroot(spa_t
*spa
, char *buf
, size_t buflen
)
1149 if (spa
->spa_root
== NULL
)
1152 (void) strncpy(buf
, spa
->spa_root
, buflen
);
1156 spa_sync_pass(spa_t
*spa
)
1158 return (spa
->spa_sync_pass
);
1162 spa_name(spa_t
*spa
)
1164 return (spa
->spa_name
);
1168 spa_guid(spa_t
*spa
)
1171 * If we fail to parse the config during spa_load(), we can go through
1172 * the error path (which posts an ereport) and end up here with no root
1173 * vdev. We stash the original pool guid in 'spa_load_guid' to handle
1176 if (spa
->spa_root_vdev
!= NULL
)
1177 return (spa
->spa_root_vdev
->vdev_guid
);
1179 return (spa
->spa_load_guid
);
1183 spa_last_synced_txg(spa_t
*spa
)
1185 return (spa
->spa_ubsync
.ub_txg
);
1189 spa_first_txg(spa_t
*spa
)
1191 return (spa
->spa_first_txg
);
1195 spa_state(spa_t
*spa
)
1197 return (spa
->spa_state
);
1201 spa_freeze_txg(spa_t
*spa
)
1203 return (spa
->spa_freeze_txg
);
1207 * Return how much space is allocated in the pool (ie. sum of all asize)
1210 spa_get_alloc(spa_t
*spa
)
1212 return (spa
->spa_root_vdev
->vdev_stat
.vs_alloc
);
1216 * Return how much (raid-z inflated) space there is in the pool.
1219 spa_get_space(spa_t
*spa
)
1221 return (spa
->spa_root_vdev
->vdev_stat
.vs_space
);
1225 * Return the amount of raid-z-deflated space in the pool.
1228 spa_get_dspace(spa_t
*spa
)
1230 if (spa
->spa_deflate
)
1231 return (spa
->spa_root_vdev
->vdev_stat
.vs_dspace
);
1233 return (spa
->spa_root_vdev
->vdev_stat
.vs_space
);
1238 spa_get_asize(spa_t
*spa
, uint64_t lsize
)
1241 * For now, the worst case is 512-byte RAID-Z blocks, in which
1242 * case the space requirement is exactly 2x; so just assume that.
1243 * Add to this the fact that we can have up to 3 DVAs per bp, and
1244 * we have to multiply by a total of 6x.
1250 * Return the failure mode that has been set to this pool. The default
1251 * behavior will be to block all I/Os when a complete failure occurs.
1254 spa_get_failmode(spa_t
*spa
)
1256 return (spa
->spa_failmode
);
1260 spa_suspended(spa_t
*spa
)
1262 return (spa
->spa_suspended
);
1266 spa_version(spa_t
*spa
)
1268 return (spa
->spa_ubsync
.ub_version
);
1272 spa_max_replication(spa_t
*spa
)
1275 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1276 * handle BPs with more than one DVA allocated. Set our max
1277 * replication level accordingly.
1279 if (spa_version(spa
) < SPA_VERSION_DITTO_BLOCKS
)
1281 return (MIN(SPA_DVAS_PER_BP
, spa_max_replication_override
));
1285 bp_get_dasize(spa_t
*spa
, const blkptr_t
*bp
)
1289 if (!spa
->spa_deflate
)
1290 return (BP_GET_ASIZE(bp
));
1292 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
1293 for (i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
1295 vdev_lookup_top(spa
, DVA_GET_VDEV(&bp
->blk_dva
[i
]));
1297 sz
+= (DVA_GET_ASIZE(&bp
->blk_dva
[i
]) >>
1298 SPA_MINBLOCKSHIFT
) * vd
->vdev_deflate_ratio
;
1300 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
1305 * ==========================================================================
1306 * Initialization and Termination
1307 * ==========================================================================
1311 spa_name_compare(const void *a1
, const void *a2
)
1313 const spa_t
*s1
= a1
;
1314 const spa_t
*s2
= a2
;
1317 s
= strcmp(s1
->spa_name
, s2
->spa_name
);
1328 return (spa_active_count
);
1340 mutex_init(&spa_namespace_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1341 mutex_init(&spa_spare_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1342 mutex_init(&spa_l2cache_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1343 cv_init(&spa_namespace_cv
, NULL
, CV_DEFAULT
, NULL
);
1345 avl_create(&spa_namespace_avl
, spa_name_compare
, sizeof (spa_t
),
1346 offsetof(spa_t
, spa_avl
));
1348 avl_create(&spa_spare_avl
, spa_spare_compare
, sizeof (spa_aux_t
),
1349 offsetof(spa_aux_t
, aux_avl
));
1351 avl_create(&spa_l2cache_avl
, spa_l2cache_compare
, sizeof (spa_aux_t
),
1352 offsetof(spa_aux_t
, aux_avl
));
1361 vdev_cache_stat_init();
1375 vdev_cache_stat_fini();
1382 avl_destroy(&spa_namespace_avl
);
1383 avl_destroy(&spa_spare_avl
);
1384 avl_destroy(&spa_l2cache_avl
);
1386 cv_destroy(&spa_namespace_cv
);
1387 mutex_destroy(&spa_namespace_lock
);
1388 mutex_destroy(&spa_spare_lock
);
1389 mutex_destroy(&spa_l2cache_lock
);
1393 * Return whether this pool has slogs. No locking needed.
1394 * It's not a problem if the wrong answer is returned as it's only for
1395 * performance and not correctness
1398 spa_has_slogs(spa_t
*spa
)
1400 return (spa
->spa_log_class
->mc_rotor
!= NULL
);
1404 * Return whether this pool is the root pool.
1407 spa_is_root(spa_t
*spa
)
1409 return (spa
->spa_is_root
);