Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / dist / uts / common / fs / zfs / vdev.c
blobdf1c48f964425fcd9b15e3f7a5221a268b3d6c00
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
44 * Virtual device management.
47 static vdev_ops_t *vdev_ops_table[] = {
48 &vdev_root_ops,
49 &vdev_raidz_ops,
50 &vdev_mirror_ops,
51 &vdev_replacing_ops,
52 &vdev_spare_ops,
53 &vdev_disk_ops,
54 &vdev_file_ops,
55 &vdev_missing_ops,
56 NULL
59 /* maximum scrub/resilver I/O queue per leaf vdev */
60 int zfs_scrub_limit = 10;
63 * Given a vdev type, return the appropriate ops vector.
65 static vdev_ops_t *
66 vdev_getops(const char *type)
68 vdev_ops_t *ops, **opspp;
70 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
71 if (strcmp(ops->vdev_op_type, type) == 0)
72 break;
74 return (ops);
78 * Default asize function: return the MAX of psize with the asize of
79 * all children. This is what's used by anything other than RAID-Z.
81 uint64_t
82 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
85 uint64_t csize;
86 uint64_t c;
88 for (c = 0; c < vd->vdev_children; c++) {
89 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90 asize = MAX(asize, csize);
93 return (asize);
97 * Get the replaceable or attachable device size.
98 * If the parent is a mirror or raidz, the replaceable size is the minimum
99 * psize of all its children. For the rest, just return our own psize.
101 * e.g.
102 * psize rsize
103 * root - -
104 * mirror/raidz - -
105 * disk1 20g 20g
106 * disk2 40g 20g
107 * disk3 80g 80g
109 uint64_t
110 vdev_get_rsize(vdev_t *vd)
112 vdev_t *pvd, *cvd;
113 uint64_t c, rsize;
115 pvd = vd->vdev_parent;
118 * If our parent is NULL or the root, just return our own psize.
120 if (pvd == NULL || pvd->vdev_parent == NULL)
121 return (vd->vdev_psize);
123 rsize = 0;
125 for (c = 0; c < pvd->vdev_children; c++) {
126 cvd = pvd->vdev_child[c];
127 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
130 return (rsize);
133 vdev_t *
134 vdev_lookup_top(spa_t *spa, uint64_t vdev)
136 vdev_t *rvd = spa->spa_root_vdev;
138 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
140 if (vdev < rvd->vdev_children) {
141 ASSERT(rvd->vdev_child[vdev] != NULL);
142 return (rvd->vdev_child[vdev]);
145 return (NULL);
148 vdev_t *
149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
151 int c;
152 vdev_t *mvd;
154 if (vd->vdev_guid == guid)
155 return (vd);
157 for (c = 0; c < vd->vdev_children; c++)
158 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
159 NULL)
160 return (mvd);
162 return (NULL);
165 void
166 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
168 size_t oldsize, newsize;
169 uint64_t id = cvd->vdev_id;
170 vdev_t **newchild;
172 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
173 ASSERT(cvd->vdev_parent == NULL);
175 cvd->vdev_parent = pvd;
177 if (pvd == NULL)
178 return;
180 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
182 oldsize = pvd->vdev_children * sizeof (vdev_t *);
183 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
184 newsize = pvd->vdev_children * sizeof (vdev_t *);
186 newchild = kmem_zalloc(newsize, KM_SLEEP);
187 if (pvd->vdev_child != NULL) {
188 bcopy(pvd->vdev_child, newchild, oldsize);
189 kmem_free(pvd->vdev_child, oldsize);
192 pvd->vdev_child = newchild;
193 pvd->vdev_child[id] = cvd;
195 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
196 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
199 * Walk up all ancestors to update guid sum.
201 for (; pvd != NULL; pvd = pvd->vdev_parent)
202 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
204 if (cvd->vdev_ops->vdev_op_leaf)
205 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
208 void
209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
211 int c;
212 uint_t id = cvd->vdev_id;
214 ASSERT(cvd->vdev_parent == pvd);
216 if (pvd == NULL)
217 return;
219 ASSERT(id < pvd->vdev_children);
220 ASSERT(pvd->vdev_child[id] == cvd);
222 pvd->vdev_child[id] = NULL;
223 cvd->vdev_parent = NULL;
225 for (c = 0; c < pvd->vdev_children; c++)
226 if (pvd->vdev_child[c])
227 break;
229 if (c == pvd->vdev_children) {
230 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
231 pvd->vdev_child = NULL;
232 pvd->vdev_children = 0;
236 * Walk up all ancestors to update guid sum.
238 for (; pvd != NULL; pvd = pvd->vdev_parent)
239 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
241 if (cvd->vdev_ops->vdev_op_leaf)
242 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
246 * Remove any holes in the child array.
248 void
249 vdev_compact_children(vdev_t *pvd)
251 vdev_t **newchild, *cvd;
252 int oldc = pvd->vdev_children;
253 int newc, c;
255 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
257 for (c = newc = 0; c < oldc; c++)
258 if (pvd->vdev_child[c])
259 newc++;
261 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
263 for (c = newc = 0; c < oldc; c++) {
264 if ((cvd = pvd->vdev_child[c]) != NULL) {
265 newchild[newc] = cvd;
266 cvd->vdev_id = newc++;
270 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
271 pvd->vdev_child = newchild;
272 pvd->vdev_children = newc;
276 * Allocate and minimally initialize a vdev_t.
278 static vdev_t *
279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
281 vdev_t *vd;
283 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
285 if (spa->spa_root_vdev == NULL) {
286 ASSERT(ops == &vdev_root_ops);
287 spa->spa_root_vdev = vd;
290 if (guid == 0) {
291 if (spa->spa_root_vdev == vd) {
293 * The root vdev's guid will also be the pool guid,
294 * which must be unique among all pools.
296 while (guid == 0 || spa_guid_exists(guid, 0))
297 guid = spa_get_random(-1ULL);
298 } else {
300 * Any other vdev's guid must be unique within the pool.
302 while (guid == 0 ||
303 spa_guid_exists(spa_guid(spa), guid))
304 guid = spa_get_random(-1ULL);
306 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
309 vd->vdev_spa = spa;
310 vd->vdev_id = id;
311 vd->vdev_guid = guid;
312 vd->vdev_guid_sum = guid;
313 vd->vdev_ops = ops;
314 vd->vdev_state = VDEV_STATE_CLOSED;
316 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
317 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
318 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
319 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
320 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
321 txg_list_create(&vd->vdev_ms_list,
322 offsetof(struct metaslab, ms_txg_node));
323 txg_list_create(&vd->vdev_dtl_list,
324 offsetof(struct vdev, vdev_dtl_node));
325 vd->vdev_stat.vs_timestamp = gethrtime();
326 vdev_queue_init(vd);
327 vdev_cache_init(vd);
329 return (vd);
333 * Allocate a new vdev. The 'alloctype' is used to control whether we are
334 * creating a new vdev or loading an existing one - the behavior is slightly
335 * different for each case.
338 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
339 int alloctype)
341 vdev_ops_t *ops;
342 char *type;
343 uint64_t guid = 0, islog, nparity;
344 vdev_t *vd;
346 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
348 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
349 return (EINVAL);
351 if ((ops = vdev_getops(type)) == NULL)
352 return (EINVAL);
355 * If this is a load, get the vdev guid from the nvlist.
356 * Otherwise, vdev_alloc_common() will generate one for us.
358 if (alloctype == VDEV_ALLOC_LOAD) {
359 uint64_t label_id;
361 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
362 label_id != id)
363 return (EINVAL);
365 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
366 return (EINVAL);
367 } else if (alloctype == VDEV_ALLOC_SPARE) {
368 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
369 return (EINVAL);
370 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372 return (EINVAL);
376 * The first allocated vdev must be of type 'root'.
378 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
379 return (EINVAL);
382 * Determine whether we're a log vdev.
384 islog = 0;
385 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
386 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
387 return (ENOTSUP);
390 * Set the nparity property for RAID-Z vdevs.
392 nparity = -1ULL;
393 if (ops == &vdev_raidz_ops) {
394 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
395 &nparity) == 0) {
397 * Currently, we can only support 2 parity devices.
399 if (nparity == 0 || nparity > 2)
400 return (EINVAL);
402 * Older versions can only support 1 parity device.
404 if (nparity == 2 &&
405 spa_version(spa) < SPA_VERSION_RAID6)
406 return (ENOTSUP);
407 } else {
409 * We require the parity to be specified for SPAs that
410 * support multiple parity levels.
412 if (spa_version(spa) >= SPA_VERSION_RAID6)
413 return (EINVAL);
415 * Otherwise, we default to 1 parity device for RAID-Z.
417 nparity = 1;
419 } else {
420 nparity = 0;
422 ASSERT(nparity != -1ULL);
424 vd = vdev_alloc_common(spa, id, guid, ops);
426 vd->vdev_islog = islog;
427 vd->vdev_nparity = nparity;
429 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
430 vd->vdev_path = spa_strdup(vd->vdev_path);
431 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
432 vd->vdev_devid = spa_strdup(vd->vdev_devid);
433 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
434 &vd->vdev_physpath) == 0)
435 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
438 * Set the whole_disk property. If it's not specified, leave the value
439 * as -1.
441 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
442 &vd->vdev_wholedisk) != 0)
443 vd->vdev_wholedisk = -1ULL;
446 * Look for the 'not present' flag. This will only be set if the device
447 * was not present at the time of import.
449 if (!spa->spa_import_faulted)
450 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
451 &vd->vdev_not_present);
454 * Get the alignment requirement.
456 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
459 * If we're a top-level vdev, try to load the allocation parameters.
461 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
463 &vd->vdev_ms_array);
464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
465 &vd->vdev_ms_shift);
466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
467 &vd->vdev_asize);
471 * If we're a leaf vdev, try to load the DTL object and other state.
473 if (vd->vdev_ops->vdev_op_leaf &&
474 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
475 if (alloctype == VDEV_ALLOC_LOAD) {
476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
477 &vd->vdev_dtl.smo_object);
478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
479 &vd->vdev_unspare);
481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
482 &vd->vdev_offline);
485 * When importing a pool, we want to ignore the persistent fault
486 * state, as the diagnosis made on another system may not be
487 * valid in the current context.
489 if (spa->spa_load_state == SPA_LOAD_OPEN) {
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
491 &vd->vdev_faulted);
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
493 &vd->vdev_degraded);
494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
495 &vd->vdev_removed);
500 * Add ourselves to the parent's list of children.
502 vdev_add_child(parent, vd);
504 *vdp = vd;
506 return (0);
509 void
510 vdev_free(vdev_t *vd)
512 int c;
513 spa_t *spa = vd->vdev_spa;
516 * vdev_free() implies closing the vdev first. This is simpler than
517 * trying to ensure complicated semantics for all callers.
519 vdev_close(vd);
521 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
524 * Free all children.
526 for (c = 0; c < vd->vdev_children; c++)
527 vdev_free(vd->vdev_child[c]);
529 ASSERT(vd->vdev_child == NULL);
530 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
533 * Discard allocation state.
535 if (vd == vd->vdev_top)
536 vdev_metaslab_fini(vd);
538 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
539 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
540 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
543 * Remove this vdev from its parent's child list.
545 vdev_remove_child(vd->vdev_parent, vd);
547 ASSERT(vd->vdev_parent == NULL);
550 * Clean up vdev structure.
552 vdev_queue_fini(vd);
553 vdev_cache_fini(vd);
555 if (vd->vdev_path)
556 spa_strfree(vd->vdev_path);
557 if (vd->vdev_devid)
558 spa_strfree(vd->vdev_devid);
559 if (vd->vdev_physpath)
560 spa_strfree(vd->vdev_physpath);
562 if (vd->vdev_isspare)
563 spa_spare_remove(vd);
564 if (vd->vdev_isl2cache)
565 spa_l2cache_remove(vd);
567 txg_list_destroy(&vd->vdev_ms_list);
568 txg_list_destroy(&vd->vdev_dtl_list);
569 mutex_enter(&vd->vdev_dtl_lock);
570 space_map_unload(&vd->vdev_dtl_map);
571 space_map_destroy(&vd->vdev_dtl_map);
572 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
573 space_map_destroy(&vd->vdev_dtl_scrub);
574 mutex_exit(&vd->vdev_dtl_lock);
575 mutex_destroy(&vd->vdev_dtl_lock);
576 mutex_destroy(&vd->vdev_stat_lock);
577 mutex_destroy(&vd->vdev_probe_lock);
579 if (vd == spa->spa_root_vdev)
580 spa->spa_root_vdev = NULL;
582 kmem_free(vd, sizeof (vdev_t));
586 * Transfer top-level vdev state from svd to tvd.
588 static void
589 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
591 spa_t *spa = svd->vdev_spa;
592 metaslab_t *msp;
593 vdev_t *vd;
594 int t;
596 ASSERT(tvd == tvd->vdev_top);
598 tvd->vdev_ms_array = svd->vdev_ms_array;
599 tvd->vdev_ms_shift = svd->vdev_ms_shift;
600 tvd->vdev_ms_count = svd->vdev_ms_count;
602 svd->vdev_ms_array = 0;
603 svd->vdev_ms_shift = 0;
604 svd->vdev_ms_count = 0;
606 tvd->vdev_mg = svd->vdev_mg;
607 tvd->vdev_ms = svd->vdev_ms;
609 svd->vdev_mg = NULL;
610 svd->vdev_ms = NULL;
612 if (tvd->vdev_mg != NULL)
613 tvd->vdev_mg->mg_vd = tvd;
615 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
616 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
617 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
619 svd->vdev_stat.vs_alloc = 0;
620 svd->vdev_stat.vs_space = 0;
621 svd->vdev_stat.vs_dspace = 0;
623 for (t = 0; t < TXG_SIZE; t++) {
624 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
625 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
626 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
627 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
628 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
629 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
632 if (list_link_active(&svd->vdev_config_dirty_node)) {
633 vdev_config_clean(svd);
634 vdev_config_dirty(tvd);
637 if (list_link_active(&svd->vdev_state_dirty_node)) {
638 vdev_state_clean(svd);
639 vdev_state_dirty(tvd);
642 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
643 svd->vdev_deflate_ratio = 0;
645 tvd->vdev_islog = svd->vdev_islog;
646 svd->vdev_islog = 0;
649 static void
650 vdev_top_update(vdev_t *tvd, vdev_t *vd)
652 int c;
654 if (vd == NULL)
655 return;
657 vd->vdev_top = tvd;
659 for (c = 0; c < vd->vdev_children; c++)
660 vdev_top_update(tvd, vd->vdev_child[c]);
664 * Add a mirror/replacing vdev above an existing vdev.
666 vdev_t *
667 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
669 spa_t *spa = cvd->vdev_spa;
670 vdev_t *pvd = cvd->vdev_parent;
671 vdev_t *mvd;
673 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
675 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
677 mvd->vdev_asize = cvd->vdev_asize;
678 mvd->vdev_ashift = cvd->vdev_ashift;
679 mvd->vdev_state = cvd->vdev_state;
681 vdev_remove_child(pvd, cvd);
682 vdev_add_child(pvd, mvd);
683 cvd->vdev_id = mvd->vdev_children;
684 vdev_add_child(mvd, cvd);
685 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
687 if (mvd == mvd->vdev_top)
688 vdev_top_transfer(cvd, mvd);
690 return (mvd);
694 * Remove a 1-way mirror/replacing vdev from the tree.
696 void
697 vdev_remove_parent(vdev_t *cvd)
699 vdev_t *mvd = cvd->vdev_parent;
700 vdev_t *pvd = mvd->vdev_parent;
702 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
704 ASSERT(mvd->vdev_children == 1);
705 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
706 mvd->vdev_ops == &vdev_replacing_ops ||
707 mvd->vdev_ops == &vdev_spare_ops);
708 cvd->vdev_ashift = mvd->vdev_ashift;
710 vdev_remove_child(mvd, cvd);
711 vdev_remove_child(pvd, mvd);
713 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
714 * Otherwise, we could have detached an offline device, and when we
715 * go to import the pool we'll think we have two top-level vdevs,
716 * instead of a different version of the same top-level vdev.
718 if (mvd->vdev_top == mvd)
719 cvd->vdev_guid = cvd->vdev_guid_sum = mvd->vdev_guid;
720 cvd->vdev_id = mvd->vdev_id;
721 vdev_add_child(pvd, cvd);
722 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
724 if (cvd == cvd->vdev_top)
725 vdev_top_transfer(mvd, cvd);
727 ASSERT(mvd->vdev_children == 0);
728 vdev_free(mvd);
732 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
734 spa_t *spa = vd->vdev_spa;
735 objset_t *mos = spa->spa_meta_objset;
736 metaslab_class_t *mc;
737 uint64_t m;
738 uint64_t oldc = vd->vdev_ms_count;
739 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
740 metaslab_t **mspp;
741 int error;
743 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */
744 return (0);
746 ASSERT(oldc <= newc);
748 if (vd->vdev_islog)
749 mc = spa->spa_log_class;
750 else
751 mc = spa->spa_normal_class;
753 if (vd->vdev_mg == NULL)
754 vd->vdev_mg = metaslab_group_create(mc, vd);
756 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
758 if (oldc != 0) {
759 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
760 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
763 vd->vdev_ms = mspp;
764 vd->vdev_ms_count = newc;
766 for (m = oldc; m < newc; m++) {
767 space_map_obj_t smo = { 0, 0, 0 };
768 if (txg == 0) {
769 uint64_t object = 0;
770 error = dmu_read(mos, vd->vdev_ms_array,
771 m * sizeof (uint64_t), sizeof (uint64_t), &object);
772 if (error)
773 return (error);
774 if (object != 0) {
775 dmu_buf_t *db;
776 error = dmu_bonus_hold(mos, object, FTAG, &db);
777 if (error)
778 return (error);
779 ASSERT3U(db->db_size, >=, sizeof (smo));
780 bcopy(db->db_data, &smo, sizeof (smo));
781 ASSERT3U(smo.smo_object, ==, object);
782 dmu_buf_rele(db, FTAG);
785 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
786 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
789 return (0);
792 void
793 vdev_metaslab_fini(vdev_t *vd)
795 uint64_t m;
796 uint64_t count = vd->vdev_ms_count;
798 if (vd->vdev_ms != NULL) {
799 for (m = 0; m < count; m++)
800 if (vd->vdev_ms[m] != NULL)
801 metaslab_fini(vd->vdev_ms[m]);
802 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
803 vd->vdev_ms = NULL;
807 typedef struct vdev_probe_stats {
808 boolean_t vps_readable;
809 boolean_t vps_writeable;
810 int vps_flags;
811 zio_t *vps_root;
812 vdev_t *vps_vd;
813 } vdev_probe_stats_t;
815 static void
816 vdev_probe_done(zio_t *zio)
818 vdev_probe_stats_t *vps = zio->io_private;
819 vdev_t *vd = vps->vps_vd;
821 if (zio->io_type == ZIO_TYPE_READ) {
822 ASSERT(zio->io_vd == vd);
823 if (zio->io_error == 0)
824 vps->vps_readable = 1;
825 if (zio->io_error == 0 && (spa_mode & FWRITE)) {
826 zio_nowait(zio_write_phys(vps->vps_root, vd,
827 zio->io_offset, zio->io_size, zio->io_data,
828 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
829 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
830 } else {
831 zio_buf_free(zio->io_data, zio->io_size);
833 } else if (zio->io_type == ZIO_TYPE_WRITE) {
834 ASSERT(zio->io_vd == vd);
835 if (zio->io_error == 0)
836 vps->vps_writeable = 1;
837 zio_buf_free(zio->io_data, zio->io_size);
838 } else if (zio->io_type == ZIO_TYPE_NULL) {
839 ASSERT(zio->io_vd == NULL);
840 ASSERT(zio == vps->vps_root);
842 vd->vdev_cant_read |= !vps->vps_readable;
843 vd->vdev_cant_write |= !vps->vps_writeable;
845 if (vdev_readable(vd) &&
846 (vdev_writeable(vd) || !(spa_mode & FWRITE))) {
847 zio->io_error = 0;
848 } else {
849 ASSERT(zio->io_error != 0);
850 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
851 zio->io_spa, vd, NULL, 0, 0);
852 zio->io_error = ENXIO;
854 kmem_free(vps, sizeof (*vps));
859 * Determine whether this device is accessible by reading and writing
860 * to several known locations: the pad regions of each vdev label
861 * but the first (which we leave alone in case it contains a VTOC).
863 zio_t *
864 vdev_probe(vdev_t *vd, zio_t *pio)
866 spa_t *spa = vd->vdev_spa;
867 vdev_probe_stats_t *vps;
868 zio_t *zio;
870 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
872 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
873 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_DONT_RETRY;
875 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
877 * vdev_cant_read and vdev_cant_write can only transition
878 * from TRUE to FALSE when we have the SCL_ZIO lock as writer;
879 * otherwise they can only transition from FALSE to TRUE.
880 * This ensures that any zio looking at these values can
881 * assume that failures persist for the life of the I/O.
882 * That's important because when a device has intermittent
883 * connectivity problems, we want to ensure that they're
884 * ascribed to the device (ENXIO) and not the zio (EIO).
886 * Since we hold SCL_ZIO as writer here, clear both values
887 * so the probe can reevaluate from first principles.
889 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
890 vd->vdev_cant_read = B_FALSE;
891 vd->vdev_cant_write = B_FALSE;
894 ASSERT(vd->vdev_ops->vdev_op_leaf);
896 zio = zio_null(pio, spa, vdev_probe_done, vps, vps->vps_flags);
898 vps->vps_root = zio;
899 vps->vps_vd = vd;
901 for (int l = 1; l < VDEV_LABELS; l++) {
902 zio_nowait(zio_read_phys(zio, vd,
903 vdev_label_offset(vd->vdev_psize, l,
904 offsetof(vdev_label_t, vl_pad)),
905 VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
906 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
907 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
910 return (zio);
914 * Prepare a virtual device for access.
917 vdev_open(vdev_t *vd)
919 int error;
920 int c;
921 uint64_t osize = 0;
922 uint64_t asize, psize;
923 uint64_t ashift = 0;
925 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
926 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
927 vd->vdev_state == VDEV_STATE_OFFLINE);
929 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
931 if (!vd->vdev_removed && vd->vdev_faulted) {
932 ASSERT(vd->vdev_children == 0);
933 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
934 VDEV_AUX_ERR_EXCEEDED);
935 return (ENXIO);
936 } else if (vd->vdev_offline) {
937 ASSERT(vd->vdev_children == 0);
938 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
939 return (ENXIO);
942 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
943 dprintf("vdev_op_open size" PRIu64" %d \n", osize, zio_injection_enabled);
944 if (zio_injection_enabled && error == 0)
945 error = zio_handle_device_injection(vd, ENXIO);
947 if (error) {
948 if (vd->vdev_removed &&
949 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
950 vd->vdev_removed = B_FALSE;
952 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
953 vd->vdev_stat.vs_aux);
954 return (error);
957 vd->vdev_removed = B_FALSE;
959 if (vd->vdev_degraded) {
960 ASSERT(vd->vdev_children == 0);
961 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
962 VDEV_AUX_ERR_EXCEEDED);
963 } else {
964 vd->vdev_state = VDEV_STATE_HEALTHY;
967 for (c = 0; c < vd->vdev_children; c++)
968 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
969 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
970 VDEV_AUX_NONE);
971 break;
974 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
976 if (vd->vdev_children == 0) {
977 if (osize < SPA_MINDEVSIZE) {
978 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
979 VDEV_AUX_TOO_SMALL);
980 return (EOVERFLOW);
982 psize = osize;
983 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
984 } else {
985 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
986 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
987 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
988 VDEV_AUX_TOO_SMALL);
989 return (EOVERFLOW);
991 psize = 0;
992 asize = osize;
995 vd->vdev_psize = psize;
997 if (vd->vdev_asize == 0) {
999 * This is the first-ever open, so use the computed values.
1000 * For testing purposes, a higher ashift can be requested.
1002 vd->vdev_asize = asize;
1003 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1004 } else {
1006 * Make sure the alignment requirement hasn't increased.
1008 if (ashift > vd->vdev_top->vdev_ashift) {
1009 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1010 VDEV_AUX_BAD_LABEL);
1011 return (EINVAL);
1015 * Make sure the device hasn't shrunk.
1017 if (asize < vd->vdev_asize) {
1018 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1019 VDEV_AUX_BAD_LABEL);
1020 return (EINVAL);
1024 * If all children are healthy and the asize has increased,
1025 * then we've experienced dynamic LUN growth.
1027 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1028 asize > vd->vdev_asize) {
1029 vd->vdev_asize = asize;
1034 * Ensure we can issue some IO before declaring the
1035 * vdev open for business.
1037 if (vd->vdev_ops->vdev_op_leaf &&
1038 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1039 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1040 VDEV_AUX_IO_FAILURE);
1041 return (error);
1045 * If this is a top-level vdev, compute the raidz-deflation
1046 * ratio. Note, we hard-code in 128k (1<<17) because it is the
1047 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE
1048 * changes, this algorithm must never change, or we will
1049 * inconsistently account for existing bp's.
1051 if (vd->vdev_top == vd) {
1052 vd->vdev_deflate_ratio = (1<<17) /
1053 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1057 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1058 * resilver. But don't do this if we are doing a reopen for a
1059 * scrub, since this would just restart the scrub we are already
1060 * doing.
1062 if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
1063 mutex_enter(&vd->vdev_dtl_lock);
1064 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
1065 spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
1066 mutex_exit(&vd->vdev_dtl_lock);
1069 return (0);
1073 * Called once the vdevs are all opened, this routine validates the label
1074 * contents. This needs to be done before vdev_load() so that we don't
1075 * inadvertently do repair I/Os to the wrong device.
1077 * This function will only return failure if one of the vdevs indicates that it
1078 * has since been destroyed or exported. This is only possible if
1079 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1080 * will be updated but the function will return 0.
1083 vdev_validate(vdev_t *vd)
1085 spa_t *spa = vd->vdev_spa;
1086 int c;
1087 nvlist_t *label;
1088 uint64_t guid, top_guid;
1089 uint64_t state;
1091 for (c = 0; c < vd->vdev_children; c++)
1092 if (vdev_validate(vd->vdev_child[c]) != 0)
1093 return (EBADF);
1096 * If the device has already failed, or was marked offline, don't do
1097 * any further validation. Otherwise, label I/O will fail and we will
1098 * overwrite the previous state.
1100 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1102 if ((label = vdev_label_read_config(vd)) == NULL) {
1103 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1104 VDEV_AUX_BAD_LABEL);
1105 return (0);
1108 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1109 &guid) != 0 || guid != spa_guid(spa)) {
1110 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1111 VDEV_AUX_CORRUPT_DATA);
1112 nvlist_free(label);
1113 return (0);
1117 * If this vdev just became a top-level vdev because its
1118 * sibling was detached, it will have adopted the parent's
1119 * vdev guid -- but the label may or may not be on disk yet.
1120 * Fortunately, either version of the label will have the
1121 * same top guid, so if we're a top-level vdev, we can
1122 * safely compare to that instead.
1124 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1125 &guid) != 0 ||
1126 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1127 &top_guid) != 0 ||
1128 (vd->vdev_guid != guid &&
1129 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1130 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1131 VDEV_AUX_CORRUPT_DATA);
1132 nvlist_free(label);
1133 return (0);
1136 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1137 &state) != 0) {
1138 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1139 VDEV_AUX_CORRUPT_DATA);
1140 nvlist_free(label);
1141 return (0);
1144 nvlist_free(label);
1146 if (spa->spa_load_state == SPA_LOAD_OPEN &&
1147 state != POOL_STATE_ACTIVE)
1148 return (EBADF);
1151 * If we were able to open and validate a vdev that was
1152 * previously marked permanently unavailable, clear that state
1153 * now.
1155 if (vd->vdev_not_present)
1156 vd->vdev_not_present = 0;
1159 return (0);
1163 * Close a virtual device.
1165 void
1166 vdev_close(vdev_t *vd)
1168 vd->vdev_ops->vdev_op_close(vd);
1170 vdev_cache_purge(vd);
1173 * We record the previous state before we close it, so that if we are
1174 * doing a reopen(), we don't generate FMA ereports if we notice that
1175 * it's still faulted.
1177 vd->vdev_prevstate = vd->vdev_state;
1179 if (vd->vdev_offline)
1180 vd->vdev_state = VDEV_STATE_OFFLINE;
1181 else
1182 vd->vdev_state = VDEV_STATE_CLOSED;
1183 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1186 void
1187 vdev_reopen(vdev_t *vd)
1189 spa_t *spa = vd->vdev_spa;
1191 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1193 vdev_close(vd);
1194 (void) vdev_open(vd);
1197 * Call vdev_validate() here to make sure we have the same device.
1198 * Otherwise, a device with an invalid label could be successfully
1199 * opened in response to vdev_reopen().
1201 if (vd->vdev_aux) {
1202 (void) vdev_validate_aux(vd);
1203 if (vdev_readable(vd) && vdev_writeable(vd) &&
1204 !l2arc_vdev_present(vd)) {
1205 uint64_t size = vdev_get_rsize(vd);
1206 l2arc_add_vdev(spa, vd,
1207 VDEV_LABEL_START_SIZE,
1208 size - VDEV_LABEL_START_SIZE);
1210 } else {
1211 (void) vdev_validate(vd);
1215 * Reassess parent vdev's health.
1217 vdev_propagate_state(vd);
1221 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1223 int error;
1226 * Normally, partial opens (e.g. of a mirror) are allowed.
1227 * For a create, however, we want to fail the request if
1228 * there are any components we can't open.
1230 error = vdev_open(vd);
1232 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1233 vdev_close(vd);
1234 return (error ? error : ENXIO);
1238 * Recursively initialize all labels.
1240 if ((error = vdev_label_init(vd, txg, isreplacing ?
1241 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1242 vdev_close(vd);
1243 return (error);
1246 return (0);
1250 * The is the latter half of vdev_create(). It is distinct because it
1251 * involves initiating transactions in order to do metaslab creation.
1252 * For creation, we want to try to create all vdevs at once and then undo it
1253 * if anything fails; this is much harder if we have pending transactions.
1255 void
1256 vdev_init(vdev_t *vd, uint64_t txg)
1259 * Aim for roughly 200 metaslabs per vdev.
1261 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1262 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1265 * Initialize the vdev's metaslabs. This can't fail because
1266 * there's nothing to read when creating all new metaslabs.
1268 VERIFY(vdev_metaslab_init(vd, txg) == 0);
1271 void
1272 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1274 ASSERT(vd == vd->vdev_top);
1275 ASSERT(ISP2(flags));
1277 if (flags & VDD_METASLAB)
1278 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1280 if (flags & VDD_DTL)
1281 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1283 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1286 void
1287 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1289 mutex_enter(sm->sm_lock);
1290 if (!space_map_contains(sm, txg, size))
1291 space_map_add(sm, txg, size);
1292 mutex_exit(sm->sm_lock);
1296 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1298 int dirty;
1301 * Quick test without the lock -- covers the common case that
1302 * there are no dirty time segments.
1304 if (sm->sm_space == 0)
1305 return (0);
1307 mutex_enter(sm->sm_lock);
1308 dirty = space_map_contains(sm, txg, size);
1309 mutex_exit(sm->sm_lock);
1311 return (dirty);
1315 * Reassess DTLs after a config change or scrub completion.
1317 void
1318 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1320 spa_t *spa = vd->vdev_spa;
1321 int c;
1323 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1325 if (vd->vdev_children == 0) {
1326 mutex_enter(&vd->vdev_dtl_lock);
1327 if (scrub_txg != 0 &&
1328 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1329 /* XXX should check scrub_done? */
1331 * We completed a scrub up to scrub_txg. If we
1332 * did it without rebooting, then the scrub dtl
1333 * will be valid, so excise the old region and
1334 * fold in the scrub dtl. Otherwise, leave the
1335 * dtl as-is if there was an error.
1337 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1338 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1340 if (scrub_done)
1341 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1342 mutex_exit(&vd->vdev_dtl_lock);
1344 if (txg != 0)
1345 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1346 return;
1350 * Make sure the DTLs are always correct under the scrub lock.
1352 if (vd == spa->spa_root_vdev)
1353 mutex_enter(&spa->spa_scrub_lock);
1355 mutex_enter(&vd->vdev_dtl_lock);
1356 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1357 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1358 mutex_exit(&vd->vdev_dtl_lock);
1360 for (c = 0; c < vd->vdev_children; c++) {
1361 vdev_t *cvd = vd->vdev_child[c];
1362 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1363 mutex_enter(&vd->vdev_dtl_lock);
1364 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1365 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1366 mutex_exit(&vd->vdev_dtl_lock);
1369 if (vd == spa->spa_root_vdev)
1370 mutex_exit(&spa->spa_scrub_lock);
1373 static int
1374 vdev_dtl_load(vdev_t *vd)
1376 spa_t *spa = vd->vdev_spa;
1377 space_map_obj_t *smo = &vd->vdev_dtl;
1378 objset_t *mos = spa->spa_meta_objset;
1379 dmu_buf_t *db;
1380 int error;
1382 ASSERT(vd->vdev_children == 0);
1384 if (smo->smo_object == 0)
1385 return (0);
1387 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1388 return (error);
1390 ASSERT3U(db->db_size, >=, sizeof (*smo));
1391 bcopy(db->db_data, smo, sizeof (*smo));
1392 dmu_buf_rele(db, FTAG);
1394 mutex_enter(&vd->vdev_dtl_lock);
1395 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1396 mutex_exit(&vd->vdev_dtl_lock);
1398 return (error);
1401 void
1402 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1404 spa_t *spa = vd->vdev_spa;
1405 space_map_obj_t *smo = &vd->vdev_dtl;
1406 space_map_t *sm = &vd->vdev_dtl_map;
1407 objset_t *mos = spa->spa_meta_objset;
1408 space_map_t smsync;
1409 kmutex_t smlock;
1410 dmu_buf_t *db;
1411 dmu_tx_t *tx;
1413 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1415 if (vd->vdev_detached) {
1416 if (smo->smo_object != 0) {
1417 int err = dmu_object_free(mos, smo->smo_object, tx);
1418 ASSERT3U(err, ==, 0);
1419 smo->smo_object = 0;
1421 dmu_tx_commit(tx);
1422 return;
1425 if (smo->smo_object == 0) {
1426 ASSERT(smo->smo_objsize == 0);
1427 ASSERT(smo->smo_alloc == 0);
1428 smo->smo_object = dmu_object_alloc(mos,
1429 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1430 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1431 ASSERT(smo->smo_object != 0);
1432 vdev_config_dirty(vd->vdev_top);
1435 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1437 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1438 &smlock);
1440 mutex_enter(&smlock);
1442 mutex_enter(&vd->vdev_dtl_lock);
1443 space_map_walk(sm, space_map_add, &smsync);
1444 mutex_exit(&vd->vdev_dtl_lock);
1446 space_map_truncate(smo, mos, tx);
1447 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1449 space_map_destroy(&smsync);
1451 mutex_exit(&smlock);
1452 mutex_destroy(&smlock);
1454 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1455 dmu_buf_will_dirty(db, tx);
1456 ASSERT3U(db->db_size, >=, sizeof (*smo));
1457 bcopy(smo, db->db_data, sizeof (*smo));
1458 dmu_buf_rele(db, FTAG);
1460 dmu_tx_commit(tx);
1464 * Determine if resilver is needed, and if so the txg range.
1466 boolean_t
1467 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1469 boolean_t needed = B_FALSE;
1470 uint64_t thismin = UINT64_MAX;
1471 uint64_t thismax = 0;
1473 if (vd->vdev_children == 0) {
1474 mutex_enter(&vd->vdev_dtl_lock);
1475 if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
1476 space_seg_t *ss;
1478 ss = avl_first(&vd->vdev_dtl_map.sm_root);
1479 thismin = ss->ss_start - 1;
1480 ss = avl_last(&vd->vdev_dtl_map.sm_root);
1481 thismax = ss->ss_end;
1482 needed = B_TRUE;
1484 mutex_exit(&vd->vdev_dtl_lock);
1485 } else {
1486 int c;
1487 for (c = 0; c < vd->vdev_children; c++) {
1488 vdev_t *cvd = vd->vdev_child[c];
1489 uint64_t cmin, cmax;
1491 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1492 thismin = MIN(thismin, cmin);
1493 thismax = MAX(thismax, cmax);
1494 needed = B_TRUE;
1499 if (needed && minp) {
1500 *minp = thismin;
1501 *maxp = thismax;
1503 return (needed);
1506 void
1507 vdev_load(vdev_t *vd)
1509 int c;
1512 * Recursively load all children.
1514 for (c = 0; c < vd->vdev_children; c++)
1515 vdev_load(vd->vdev_child[c]);
1518 * If this is a top-level vdev, initialize its metaslabs.
1520 if (vd == vd->vdev_top &&
1521 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1522 vdev_metaslab_init(vd, 0) != 0))
1523 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1524 VDEV_AUX_CORRUPT_DATA);
1527 * If this is a leaf vdev, load its DTL.
1529 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1530 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1531 VDEV_AUX_CORRUPT_DATA);
1535 * The special vdev case is used for hot spares and l2cache devices. Its
1536 * sole purpose it to set the vdev state for the associated vdev. To do this,
1537 * we make sure that we can open the underlying device, then try to read the
1538 * label, and make sure that the label is sane and that it hasn't been
1539 * repurposed to another pool.
1542 vdev_validate_aux(vdev_t *vd)
1544 nvlist_t *label;
1545 uint64_t guid, version;
1546 uint64_t state;
1548 if (!vdev_readable(vd))
1549 return (0);
1551 if ((label = vdev_label_read_config(vd)) == NULL) {
1552 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1553 VDEV_AUX_CORRUPT_DATA);
1554 return (-1);
1557 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1558 version > SPA_VERSION ||
1559 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1560 guid != vd->vdev_guid ||
1561 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1562 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1563 VDEV_AUX_CORRUPT_DATA);
1564 nvlist_free(label);
1565 return (-1);
1569 * We don't actually check the pool state here. If it's in fact in
1570 * use by another pool, we update this fact on the fly when requested.
1572 nvlist_free(label);
1573 return (0);
1576 void
1577 vdev_sync_done(vdev_t *vd, uint64_t txg)
1579 metaslab_t *msp;
1581 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1582 metaslab_sync_done(msp, txg);
1585 void
1586 vdev_sync(vdev_t *vd, uint64_t txg)
1588 spa_t *spa = vd->vdev_spa;
1589 vdev_t *lvd;
1590 metaslab_t *msp;
1591 dmu_tx_t *tx;
1593 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1594 ASSERT(vd == vd->vdev_top);
1595 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1596 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1597 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1598 ASSERT(vd->vdev_ms_array != 0);
1599 vdev_config_dirty(vd);
1600 dmu_tx_commit(tx);
1603 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1604 metaslab_sync(msp, txg);
1605 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1608 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1609 vdev_dtl_sync(lvd, txg);
1611 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1614 uint64_t
1615 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1617 return (vd->vdev_ops->vdev_op_asize(vd, psize));
1621 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
1622 * not be opened, and no I/O is attempted.
1625 vdev_fault(spa_t *spa, uint64_t guid)
1627 vdev_t *vd;
1629 spa_vdev_state_enter(spa);
1631 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1632 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1634 if (!vd->vdev_ops->vdev_op_leaf)
1635 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1638 * Faulted state takes precedence over degraded.
1640 vd->vdev_faulted = 1ULL;
1641 vd->vdev_degraded = 0ULL;
1642 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1645 * If marking the vdev as faulted cause the top-level vdev to become
1646 * unavailable, then back off and simply mark the vdev as degraded
1647 * instead.
1649 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1650 vd->vdev_degraded = 1ULL;
1651 vd->vdev_faulted = 0ULL;
1654 * If we reopen the device and it's not dead, only then do we
1655 * mark it degraded.
1657 vdev_reopen(vd);
1659 if (vdev_readable(vd)) {
1660 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1661 VDEV_AUX_ERR_EXCEEDED);
1665 return (spa_vdev_state_exit(spa, vd, 0));
1669 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
1670 * user that something is wrong. The vdev continues to operate as normal as far
1671 * as I/O is concerned.
1674 vdev_degrade(spa_t *spa, uint64_t guid)
1676 vdev_t *vd;
1678 spa_vdev_state_enter(spa);
1680 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1681 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1683 if (!vd->vdev_ops->vdev_op_leaf)
1684 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1687 * If the vdev is already faulted, then don't do anything.
1689 if (vd->vdev_faulted || vd->vdev_degraded)
1690 return (spa_vdev_state_exit(spa, NULL, 0));
1692 vd->vdev_degraded = 1ULL;
1693 if (!vdev_is_dead(vd))
1694 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1695 VDEV_AUX_ERR_EXCEEDED);
1697 return (spa_vdev_state_exit(spa, vd, 0));
1701 * Online the given vdev. If 'unspare' is set, it implies two things. First,
1702 * any attached spare device should be detached when the device finishes
1703 * resilvering. Second, the online should be treated like a 'test' online case,
1704 * so no FMA events are generated if the device fails to open.
1707 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1709 vdev_t *vd;
1711 spa_vdev_state_enter(spa);
1713 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1714 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1716 if (!vd->vdev_ops->vdev_op_leaf)
1717 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1719 vd->vdev_offline = B_FALSE;
1720 vd->vdev_tmpoffline = B_FALSE;
1721 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1722 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1723 vdev_reopen(vd->vdev_top);
1724 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1726 if (newstate)
1727 *newstate = vd->vdev_state;
1728 if ((flags & ZFS_ONLINE_UNSPARE) &&
1729 !vdev_is_dead(vd) && vd->vdev_parent &&
1730 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1731 vd->vdev_parent->vdev_child[0] == vd)
1732 vd->vdev_unspare = B_TRUE;
1734 (void) spa_vdev_state_exit(spa, vd, 0);
1736 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
1738 return (0);
1742 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1744 vdev_t *vd;
1746 spa_vdev_state_enter(spa);
1748 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1749 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1751 if (!vd->vdev_ops->vdev_op_leaf)
1752 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1755 * If the device isn't already offline, try to offline it.
1757 if (!vd->vdev_offline) {
1759 * If this device's top-level vdev has a non-empty DTL,
1760 * don't allow the device to be offlined.
1762 * XXX -- make this more precise by allowing the offline
1763 * as long as the remaining devices don't have any DTL holes.
1765 if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1766 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1769 * Offline this device and reopen its top-level vdev.
1770 * If this action results in the top-level vdev becoming
1771 * unusable, undo it and fail the request.
1773 vd->vdev_offline = B_TRUE;
1774 vdev_reopen(vd->vdev_top);
1775 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1776 vd->vdev_offline = B_FALSE;
1777 vdev_reopen(vd->vdev_top);
1778 return (spa_vdev_state_exit(spa, NULL, EBUSY));
1782 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1784 return (spa_vdev_state_exit(spa, vd, 0));
1788 * Clear the error counts associated with this vdev. Unlike vdev_online() and
1789 * vdev_offline(), we assume the spa config is locked. We also clear all
1790 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
1792 void
1793 vdev_clear(spa_t *spa, vdev_t *vd)
1795 vdev_t *rvd = spa->spa_root_vdev;
1797 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1799 if (vd == NULL)
1800 vd = rvd;
1802 vd->vdev_stat.vs_read_errors = 0;
1803 vd->vdev_stat.vs_write_errors = 0;
1804 vd->vdev_stat.vs_checksum_errors = 0;
1806 for (int c = 0; c < vd->vdev_children; c++)
1807 vdev_clear(spa, vd->vdev_child[c]);
1810 * If we're in the FAULTED state or have experienced failed I/O, then
1811 * clear the persistent state and attempt to reopen the device. We
1812 * also mark the vdev config dirty, so that the new faulted state is
1813 * written out to disk.
1815 if (vd->vdev_faulted || vd->vdev_degraded ||
1816 !vdev_readable(vd) || !vdev_writeable(vd)) {
1818 vd->vdev_faulted = vd->vdev_degraded = 0;
1819 vd->vdev_cant_read = B_FALSE;
1820 vd->vdev_cant_write = B_FALSE;
1822 vdev_reopen(vd);
1824 if (vd != rvd)
1825 vdev_state_dirty(vd->vdev_top);
1827 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
1828 spa_async_request(spa, SPA_ASYNC_RESILVER);
1830 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1834 boolean_t
1835 vdev_is_dead(vdev_t *vd)
1837 return (vd->vdev_state < VDEV_STATE_DEGRADED);
1840 boolean_t
1841 vdev_readable(vdev_t *vd)
1843 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
1846 boolean_t
1847 vdev_writeable(vdev_t *vd)
1849 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
1852 boolean_t
1853 vdev_allocatable(vdev_t *vd)
1856 * We currently allow allocations from vdevs which maybe in the
1857 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
1858 * fails to reopen then we'll catch it later when we're holding
1859 * the proper locks.
1861 return (!(vdev_is_dead(vd) && vd->vdev_state != VDEV_STATE_CLOSED) &&
1862 !vd->vdev_cant_write);
1865 boolean_t
1866 vdev_accessible(vdev_t *vd, zio_t *zio)
1868 ASSERT(zio->io_vd == vd);
1870 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
1871 return (B_FALSE);
1873 if (zio->io_type == ZIO_TYPE_READ)
1874 return (!vd->vdev_cant_read);
1876 if (zio->io_type == ZIO_TYPE_WRITE)
1877 return (!vd->vdev_cant_write);
1879 return (B_TRUE);
1883 * Get statistics for the given vdev.
1885 void
1886 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1888 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1890 mutex_enter(&vd->vdev_stat_lock);
1891 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1892 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
1893 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1894 vs->vs_state = vd->vdev_state;
1895 vs->vs_rsize = vdev_get_rsize(vd);
1896 mutex_exit(&vd->vdev_stat_lock);
1899 * If we're getting stats on the root vdev, aggregate the I/O counts
1900 * over all top-level vdevs (i.e. the direct children of the root).
1902 if (vd == rvd) {
1903 for (int c = 0; c < rvd->vdev_children; c++) {
1904 vdev_t *cvd = rvd->vdev_child[c];
1905 vdev_stat_t *cvs = &cvd->vdev_stat;
1907 mutex_enter(&vd->vdev_stat_lock);
1908 for (int t = 0; t < ZIO_TYPES; t++) {
1909 vs->vs_ops[t] += cvs->vs_ops[t];
1910 vs->vs_bytes[t] += cvs->vs_bytes[t];
1912 vs->vs_scrub_examined += cvs->vs_scrub_examined;
1913 mutex_exit(&vd->vdev_stat_lock);
1918 void
1919 vdev_clear_stats(vdev_t *vd)
1921 mutex_enter(&vd->vdev_stat_lock);
1922 vd->vdev_stat.vs_space = 0;
1923 vd->vdev_stat.vs_dspace = 0;
1924 vd->vdev_stat.vs_alloc = 0;
1925 mutex_exit(&vd->vdev_stat_lock);
1928 void
1929 vdev_stat_update(zio_t *zio, uint64_t psize)
1931 vdev_t *rvd = zio->io_spa->spa_root_vdev;
1932 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
1933 vdev_t *pvd;
1934 uint64_t txg = zio->io_txg;
1935 vdev_stat_t *vs = &vd->vdev_stat;
1936 zio_type_t type = zio->io_type;
1937 int flags = zio->io_flags;
1940 * If this i/o is a gang leader, it didn't do any actual work.
1942 if (zio->io_gang_tree)
1943 return;
1945 if (zio->io_error == 0) {
1947 * If this is a root i/o, don't count it -- we've already
1948 * counted the top-level vdevs, and vdev_get_stats() will
1949 * aggregate them when asked. This reduces contention on
1950 * the root vdev_stat_lock and implicitly handles blocks
1951 * that compress away to holes, for which there is no i/o.
1952 * (Holes never create vdev children, so all the counters
1953 * remain zero, which is what we want.)
1955 * Note: this only applies to successful i/o (io_error == 0)
1956 * because unlike i/o counts, errors are not additive.
1957 * When reading a ditto block, for example, failure of
1958 * one top-level vdev does not imply a root-level error.
1960 if (vd == rvd)
1961 return;
1963 ASSERT(vd == zio->io_vd);
1964 if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1965 mutex_enter(&vd->vdev_stat_lock);
1966 vs->vs_ops[type]++;
1967 vs->vs_bytes[type] += psize;
1968 mutex_exit(&vd->vdev_stat_lock);
1970 if (flags & ZIO_FLAG_IO_REPAIR) {
1971 ASSERT(zio->io_delegate_list == NULL);
1972 mutex_enter(&vd->vdev_stat_lock);
1973 if (flags & ZIO_FLAG_SCRUB_THREAD)
1974 vs->vs_scrub_repaired += psize;
1975 else
1976 vs->vs_self_healed += psize;
1977 mutex_exit(&vd->vdev_stat_lock);
1979 return;
1982 if (flags & ZIO_FLAG_SPECULATIVE)
1983 return;
1985 mutex_enter(&vd->vdev_stat_lock);
1986 if (type == ZIO_TYPE_READ) {
1987 if (zio->io_error == ECKSUM)
1988 vs->vs_checksum_errors++;
1989 else
1990 vs->vs_read_errors++;
1992 if (type == ZIO_TYPE_WRITE)
1993 vs->vs_write_errors++;
1994 mutex_exit(&vd->vdev_stat_lock);
1996 if (type == ZIO_TYPE_WRITE && txg != 0 && vd->vdev_children == 0) {
1997 if (flags & ZIO_FLAG_SCRUB_THREAD) {
1998 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1999 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
2000 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
2002 if (!(flags & ZIO_FLAG_IO_REPAIR)) {
2003 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
2004 return;
2005 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2006 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
2007 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
2012 void
2013 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2015 int c;
2016 vdev_stat_t *vs = &vd->vdev_stat;
2018 for (c = 0; c < vd->vdev_children; c++)
2019 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2021 mutex_enter(&vd->vdev_stat_lock);
2023 if (type == POOL_SCRUB_NONE) {
2025 * Update completion and end time. Leave everything else alone
2026 * so we can report what happened during the previous scrub.
2028 vs->vs_scrub_complete = complete;
2029 vs->vs_scrub_end = gethrestime_sec();
2030 } else {
2031 vs->vs_scrub_type = type;
2032 vs->vs_scrub_complete = 0;
2033 vs->vs_scrub_examined = 0;
2034 vs->vs_scrub_repaired = 0;
2035 vs->vs_scrub_start = gethrestime_sec();
2036 vs->vs_scrub_end = 0;
2039 mutex_exit(&vd->vdev_stat_lock);
2043 * Update the in-core space usage stats for this vdev and the root vdev.
2045 void
2046 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2047 boolean_t update_root)
2049 int64_t dspace_delta = space_delta;
2050 spa_t *spa = vd->vdev_spa;
2051 vdev_t *rvd = spa->spa_root_vdev;
2053 ASSERT(vd == vd->vdev_top);
2056 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2057 * factor. We must calculate this here and not at the root vdev
2058 * because the root vdev's psize-to-asize is simply the max of its
2059 * childrens', thus not accurate enough for us.
2061 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2062 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2063 vd->vdev_deflate_ratio;
2065 mutex_enter(&vd->vdev_stat_lock);
2066 vd->vdev_stat.vs_space += space_delta;
2067 vd->vdev_stat.vs_alloc += alloc_delta;
2068 vd->vdev_stat.vs_dspace += dspace_delta;
2069 mutex_exit(&vd->vdev_stat_lock);
2071 if (update_root) {
2072 ASSERT(rvd == vd->vdev_parent);
2073 ASSERT(vd->vdev_ms_count != 0);
2076 * Don't count non-normal (e.g. intent log) space as part of
2077 * the pool's capacity.
2079 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2080 return;
2082 mutex_enter(&rvd->vdev_stat_lock);
2083 rvd->vdev_stat.vs_space += space_delta;
2084 rvd->vdev_stat.vs_alloc += alloc_delta;
2085 rvd->vdev_stat.vs_dspace += dspace_delta;
2086 mutex_exit(&rvd->vdev_stat_lock);
2091 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2092 * so that it will be written out next time the vdev configuration is synced.
2093 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2095 void
2096 vdev_config_dirty(vdev_t *vd)
2098 spa_t *spa = vd->vdev_spa;
2099 vdev_t *rvd = spa->spa_root_vdev;
2100 int c;
2103 * If this is an aux vdev (as with l2cache devices), then we update the
2104 * vdev config manually and set the sync flag.
2106 if (vd->vdev_aux != NULL) {
2107 spa_aux_vdev_t *sav = vd->vdev_aux;
2108 nvlist_t **aux;
2109 uint_t naux;
2111 for (c = 0; c < sav->sav_count; c++) {
2112 if (sav->sav_vdevs[c] == vd)
2113 break;
2116 if (c == sav->sav_count) {
2118 * We're being removed. There's nothing more to do.
2120 ASSERT(sav->sav_sync == B_TRUE);
2121 return;
2124 sav->sav_sync = B_TRUE;
2126 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2127 ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2129 ASSERT(c < naux);
2132 * Setting the nvlist in the middle if the array is a little
2133 * sketchy, but it will work.
2135 nvlist_free(aux[c]);
2136 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2138 return;
2142 * The dirty list is protected by the SCL_CONFIG lock. The caller
2143 * must either hold SCL_CONFIG as writer, or must be the sync thread
2144 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2145 * so this is sufficient to ensure mutual exclusion.
2147 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2148 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2149 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2151 if (vd == rvd) {
2152 for (c = 0; c < rvd->vdev_children; c++)
2153 vdev_config_dirty(rvd->vdev_child[c]);
2154 } else {
2155 ASSERT(vd == vd->vdev_top);
2157 if (!list_link_active(&vd->vdev_config_dirty_node))
2158 list_insert_head(&spa->spa_config_dirty_list, vd);
2162 void
2163 vdev_config_clean(vdev_t *vd)
2165 spa_t *spa = vd->vdev_spa;
2167 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2168 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2169 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2171 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2172 list_remove(&spa->spa_config_dirty_list, vd);
2176 * Mark a top-level vdev's state as dirty, so that the next pass of
2177 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2178 * the state changes from larger config changes because they require
2179 * much less locking, and are often needed for administrative actions.
2181 void
2182 vdev_state_dirty(vdev_t *vd)
2184 spa_t *spa = vd->vdev_spa;
2186 ASSERT(vd == vd->vdev_top);
2189 * The state list is protected by the SCL_STATE lock. The caller
2190 * must either hold SCL_STATE as writer, or must be the sync thread
2191 * (which holds SCL_STATE as reader). There's only one sync thread,
2192 * so this is sufficient to ensure mutual exclusion.
2194 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2195 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2196 spa_config_held(spa, SCL_STATE, RW_READER)));
2198 if (!list_link_active(&vd->vdev_state_dirty_node))
2199 list_insert_head(&spa->spa_state_dirty_list, vd);
2202 void
2203 vdev_state_clean(vdev_t *vd)
2205 spa_t *spa = vd->vdev_spa;
2207 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2208 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2209 spa_config_held(spa, SCL_STATE, RW_READER)));
2211 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2212 list_remove(&spa->spa_state_dirty_list, vd);
2216 * Propagate vdev state up from children to parent.
2218 void
2219 vdev_propagate_state(vdev_t *vd)
2221 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2222 int degraded = 0, faulted = 0;
2223 int corrupted = 0;
2224 int c;
2225 vdev_t *child;
2227 if (vd->vdev_children > 0) {
2228 for (c = 0; c < vd->vdev_children; c++) {
2229 child = vd->vdev_child[c];
2231 if (!vdev_readable(child) ||
2232 (!vdev_writeable(child) && (spa_mode & FWRITE))) {
2234 * Root special: if there is a top-level log
2235 * device, treat the root vdev as if it were
2236 * degraded.
2238 if (child->vdev_islog && vd == rvd)
2239 degraded++;
2240 else
2241 faulted++;
2242 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2243 degraded++;
2246 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2247 corrupted++;
2250 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2253 * Root special: if there is a top-level vdev that cannot be
2254 * opened due to corrupted metadata, then propagate the root
2255 * vdev's aux state as 'corrupt' rather than 'insufficient
2256 * replicas'.
2258 if (corrupted && vd == rvd &&
2259 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2260 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2261 VDEV_AUX_CORRUPT_DATA);
2264 if (vd->vdev_parent)
2265 vdev_propagate_state(vd->vdev_parent);
2269 * Set a vdev's state. If this is during an open, we don't update the parent
2270 * state, because we're in the process of opening children depth-first.
2271 * Otherwise, we propagate the change to the parent.
2273 * If this routine places a device in a faulted state, an appropriate ereport is
2274 * generated.
2276 void
2277 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2279 uint64_t save_state;
2280 spa_t *spa = vd->vdev_spa;
2282 if (state == vd->vdev_state) {
2283 vd->vdev_stat.vs_aux = aux;
2284 return;
2287 save_state = vd->vdev_state;
2289 vd->vdev_state = state;
2290 vd->vdev_stat.vs_aux = aux;
2293 * If we are setting the vdev state to anything but an open state, then
2294 * always close the underlying device. Otherwise, we keep accessible
2295 * but invalid devices open forever. We don't call vdev_close() itself,
2296 * because that implies some extra checks (offline, etc) that we don't
2297 * want here. This is limited to leaf devices, because otherwise
2298 * closing the device will affect other children.
2300 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2301 vd->vdev_ops->vdev_op_close(vd);
2303 if (vd->vdev_removed &&
2304 state == VDEV_STATE_CANT_OPEN &&
2305 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2307 * If the previous state is set to VDEV_STATE_REMOVED, then this
2308 * device was previously marked removed and someone attempted to
2309 * reopen it. If this failed due to a nonexistent device, then
2310 * keep the device in the REMOVED state. We also let this be if
2311 * it is one of our special test online cases, which is only
2312 * attempting to online the device and shouldn't generate an FMA
2313 * fault.
2315 vd->vdev_state = VDEV_STATE_REMOVED;
2316 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2317 } else if (state == VDEV_STATE_REMOVED) {
2319 * Indicate to the ZFS DE that this device has been removed, and
2320 * any recent errors should be ignored.
2322 zfs_post_remove(spa, vd);
2323 vd->vdev_removed = B_TRUE;
2324 } else if (state == VDEV_STATE_CANT_OPEN) {
2326 * If we fail to open a vdev during an import, we mark it as
2327 * "not available", which signifies that it was never there to
2328 * begin with. Failure to open such a device is not considered
2329 * an error.
2331 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2332 !spa->spa_import_faulted &&
2333 vd->vdev_ops->vdev_op_leaf)
2334 vd->vdev_not_present = 1;
2337 * Post the appropriate ereport. If the 'prevstate' field is
2338 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2339 * that this is part of a vdev_reopen(). In this case, we don't
2340 * want to post the ereport if the device was already in the
2341 * CANT_OPEN state beforehand.
2343 * If the 'checkremove' flag is set, then this is an attempt to
2344 * online the device in response to an insertion event. If we
2345 * hit this case, then we have detected an insertion event for a
2346 * faulted or offline device that wasn't in the removed state.
2347 * In this scenario, we don't post an ereport because we are
2348 * about to replace the device, or attempt an online with
2349 * vdev_forcefault, which will generate the fault for us.
2351 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2352 !vd->vdev_not_present && !vd->vdev_checkremove &&
2353 vd != spa->spa_root_vdev) {
2354 const char *class;
2356 switch (aux) {
2357 case VDEV_AUX_OPEN_FAILED:
2358 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2359 break;
2360 case VDEV_AUX_CORRUPT_DATA:
2361 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2362 break;
2363 case VDEV_AUX_NO_REPLICAS:
2364 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2365 break;
2366 case VDEV_AUX_BAD_GUID_SUM:
2367 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2368 break;
2369 case VDEV_AUX_TOO_SMALL:
2370 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2371 break;
2372 case VDEV_AUX_BAD_LABEL:
2373 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2374 break;
2375 case VDEV_AUX_IO_FAILURE:
2376 class = FM_EREPORT_ZFS_IO_FAILURE;
2377 break;
2378 default:
2379 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2382 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2385 /* Erase any notion of persistent removed state */
2386 vd->vdev_removed = B_FALSE;
2387 } else {
2388 vd->vdev_removed = B_FALSE;
2391 if (!isopen)
2392 vdev_propagate_state(vd);
2396 * Check the vdev configuration to ensure that it's capable of supporting
2397 * a root pool. Currently, we do not support RAID-Z or partial configuration.
2398 * In addition, only a single top-level vdev is allowed and none of the leaves
2399 * can be wholedisks.
2401 boolean_t
2402 vdev_is_bootable(vdev_t *vd)
2404 int c;
2406 if (!vd->vdev_ops->vdev_op_leaf) {
2407 char *vdev_type = vd->vdev_ops->vdev_op_type;
2409 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2410 vd->vdev_children > 1) {
2411 return (B_FALSE);
2412 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2413 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2414 return (B_FALSE);
2416 } else if (vd->vdev_wholedisk == 1) {
2417 return (B_FALSE);
2420 for (c = 0; c < vd->vdev_children; c++) {
2421 if (!vdev_is_bootable(vd->vdev_child[c]))
2422 return (B_FALSE);
2424 return (B_TRUE);