Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / dist / uts / common / fs / zfs / vdev_label.c
blob9c56d66364d56cb34f71a4e8c43322e5de371d1c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Virtual Device Labels
28 * ---------------------
30 * The vdev label serves several distinct purposes:
32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
33 * identity within the pool.
35 * 2. Verify that all the devices given in a configuration are present
36 * within the pool.
38 * 3. Determine the uberblock for the pool.
40 * 4. In case of an import operation, determine the configuration of the
41 * toplevel vdev of which it is a part.
43 * 5. If an import operation cannot find all the devices in the pool,
44 * provide enough information to the administrator to determine which
45 * devices are missing.
47 * It is important to note that while the kernel is responsible for writing the
48 * label, it only consumes the information in the first three cases. The
49 * latter information is only consumed in userland when determining the
50 * configuration to import a pool.
53 * Label Organization
54 * ------------------
56 * Before describing the contents of the label, it's important to understand how
57 * the labels are written and updated with respect to the uberblock.
59 * When the pool configuration is altered, either because it was newly created
60 * or a device was added, we want to update all the labels such that we can deal
61 * with fatal failure at any point. To this end, each disk has two labels which
62 * are updated before and after the uberblock is synced. Assuming we have
63 * labels and an uberblock with the following transaction groups:
65 * L1 UB L2
66 * +------+ +------+ +------+
67 * | | | | | |
68 * | t10 | | t10 | | t10 |
69 * | | | | | |
70 * +------+ +------+ +------+
72 * In this stable state, the labels and the uberblock were all updated within
73 * the same transaction group (10). Each label is mirrored and checksummed, so
74 * that we can detect when we fail partway through writing the label.
76 * In order to identify which labels are valid, the labels are written in the
77 * following manner:
79 * 1. For each vdev, update 'L1' to the new label
80 * 2. Update the uberblock
81 * 3. For each vdev, update 'L2' to the new label
83 * Given arbitrary failure, we can determine the correct label to use based on
84 * the transaction group. If we fail after updating L1 but before updating the
85 * UB, we will notice that L1's transaction group is greater than the uberblock,
86 * so L2 must be valid. If we fail after writing the uberblock but before
87 * writing L2, we will notice that L2's transaction group is less than L1, and
88 * therefore L1 is valid.
90 * Another added complexity is that not every label is updated when the config
91 * is synced. If we add a single device, we do not want to have to re-write
92 * every label for every device in the pool. This means that both L1 and L2 may
93 * be older than the pool uberblock, because the necessary information is stored
94 * on another vdev.
97 * On-disk Format
98 * --------------
100 * The vdev label consists of two distinct parts, and is wrapped within the
101 * vdev_label_t structure. The label includes 8k of padding to permit legacy
102 * VTOC disk labels, but is otherwise ignored.
104 * The first half of the label is a packed nvlist which contains pool wide
105 * properties, per-vdev properties, and configuration information. It is
106 * described in more detail below.
108 * The latter half of the label consists of a redundant array of uberblocks.
109 * These uberblocks are updated whenever a transaction group is committed,
110 * or when the configuration is updated. When a pool is loaded, we scan each
111 * vdev for the 'best' uberblock.
114 * Configuration Information
115 * -------------------------
117 * The nvlist describing the pool and vdev contains the following elements:
119 * version ZFS on-disk version
120 * name Pool name
121 * state Pool state
122 * txg Transaction group in which this label was written
123 * pool_guid Unique identifier for this pool
124 * vdev_tree An nvlist describing vdev tree.
126 * Each leaf device label also contains the following:
128 * top_guid Unique ID for top-level vdev in which this is contained
129 * guid Unique ID for the leaf vdev
131 * The 'vs' configuration follows the format described in 'spa_config.c'.
134 #include <sys/zfs_context.h>
135 #include <sys/spa.h>
136 #include <sys/spa_impl.h>
137 #include <sys/dmu.h>
138 #include <sys/zap.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
143 #include <sys/zio.h>
144 #include <sys/fs/zfs.h>
147 * Basic routines to read and write from a vdev label.
148 * Used throughout the rest of this file.
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
153 ASSERT(offset < sizeof (vdev_label_t));
154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
161 * Returns back the vdev label associated with the passed in offset.
164 vdev_label_number(uint64_t psize, uint64_t offset)
166 int l;
168 if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 offset -= psize - VDEV_LABEL_END_SIZE;
170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
172 l = offset / sizeof (vdev_label_t);
173 return (l < VDEV_LABELS ? l : -1);
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 uint64_t size, zio_done_func_t *done, void *private, int flags)
180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 SCL_STATE_ALL);
182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
184 zio_nowait(zio_read_phys(zio, vd,
185 vdev_label_offset(vd->vdev_psize, l, offset),
186 size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 uint64_t size, zio_done_func_t *done, void *private, int flags)
194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 (SCL_CONFIG | SCL_STATE) &&
197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
200 zio_nowait(zio_write_phys(zio, vd,
201 vdev_label_offset(vd->vdev_psize, l, offset),
202 size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
207 * Generate the nvlist representing this vdev's config.
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211 boolean_t isspare, boolean_t isl2cache)
213 nvlist_t *nv = NULL;
215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 vd->vdev_ops->vdev_op_type) == 0);
219 if (!isspare && !isl2cache)
220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 == 0);
222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
224 if (vd->vdev_path != NULL)
225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 vd->vdev_path) == 0);
228 if (vd->vdev_devid != NULL)
229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 vd->vdev_devid) == 0);
232 if (vd->vdev_physpath != NULL)
233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 vd->vdev_physpath) == 0);
236 if (vd->vdev_nparity != 0) {
237 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
238 VDEV_TYPE_RAIDZ) == 0);
241 * Make sure someone hasn't managed to sneak a fancy new vdev
242 * into a crufty old storage pool.
244 ASSERT(vd->vdev_nparity == 1 ||
245 (vd->vdev_nparity == 2 &&
246 spa_version(spa) >= SPA_VERSION_RAID6));
249 * Note that we'll add the nparity tag even on storage pools
250 * that only support a single parity device -- older software
251 * will just ignore it.
253 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
254 vd->vdev_nparity) == 0);
257 if (vd->vdev_wholedisk != -1ULL)
258 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
259 vd->vdev_wholedisk) == 0);
261 if (vd->vdev_not_present)
262 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
264 if (vd->vdev_isspare)
265 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
267 if (!isspare && !isl2cache && vd == vd->vdev_top) {
268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
269 vd->vdev_ms_array) == 0);
270 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
271 vd->vdev_ms_shift) == 0);
272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
273 vd->vdev_ashift) == 0);
274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
275 vd->vdev_asize) == 0);
276 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
277 vd->vdev_islog) == 0);
280 if (vd->vdev_dtl.smo_object != 0)
281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
282 vd->vdev_dtl.smo_object) == 0);
284 if (getstats) {
285 vdev_stat_t vs;
286 vdev_get_stats(vd, &vs);
287 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
288 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
291 if (!vd->vdev_ops->vdev_op_leaf) {
292 nvlist_t **child;
293 int c;
295 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
296 KM_SLEEP);
298 for (c = 0; c < vd->vdev_children; c++)
299 child[c] = vdev_config_generate(spa, vd->vdev_child[c],
300 getstats, isspare, isl2cache);
302 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
303 child, vd->vdev_children) == 0);
305 for (c = 0; c < vd->vdev_children; c++)
306 nvlist_free(child[c]);
308 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
310 } else {
311 if (vd->vdev_offline && !vd->vdev_tmpoffline)
312 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
313 B_TRUE) == 0);
314 if (vd->vdev_faulted)
315 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
316 B_TRUE) == 0);
317 if (vd->vdev_degraded)
318 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
319 B_TRUE) == 0);
320 if (vd->vdev_removed)
321 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
322 B_TRUE) == 0);
323 if (vd->vdev_unspare)
324 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
325 B_TRUE) == 0);
328 return (nv);
331 nvlist_t *
332 vdev_label_read_config(vdev_t *vd)
334 spa_t *spa = vd->vdev_spa;
335 nvlist_t *config = NULL;
336 vdev_phys_t *vp;
337 zio_t *zio;
338 int flags =
339 ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
341 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
343 if (!vdev_readable(vd))
344 return (NULL);
346 vp = zio_buf_alloc(sizeof (vdev_phys_t));
348 for (int l = 0; l < VDEV_LABELS; l++) {
350 zio = zio_root(spa, NULL, NULL, flags);
352 vdev_label_read(zio, vd, l, vp,
353 offsetof(vdev_label_t, vl_vdev_phys),
354 sizeof (vdev_phys_t), NULL, NULL, flags);
356 if (zio_wait(zio) == 0 &&
357 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
358 &config, 0) == 0)
359 break;
361 if (config != NULL) {
362 nvlist_free(config);
363 config = NULL;
367 zio_buf_free(vp, sizeof (vdev_phys_t));
369 return (config);
373 * Determine if a device is in use. The 'spare_guid' parameter will be filled
374 * in with the device guid if this spare is active elsewhere on the system.
376 static boolean_t
377 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
378 uint64_t *spare_guid, uint64_t *l2cache_guid)
380 spa_t *spa = vd->vdev_spa;
381 uint64_t state, pool_guid, device_guid, txg, spare_pool;
382 uint64_t vdtxg = 0;
383 nvlist_t *label;
385 if (spare_guid)
386 *spare_guid = 0ULL;
387 if (l2cache_guid)
388 *l2cache_guid = 0ULL;
391 * Read the label, if any, and perform some basic sanity checks.
393 if ((label = vdev_label_read_config(vd)) == NULL)
394 return (B_FALSE);
396 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
397 &vdtxg);
399 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
400 &state) != 0 ||
401 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
402 &device_guid) != 0) {
403 nvlist_free(label);
404 return (B_FALSE);
407 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
408 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
409 &pool_guid) != 0 ||
410 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
411 &txg) != 0)) {
412 nvlist_free(label);
413 return (B_FALSE);
416 nvlist_free(label);
419 * Check to see if this device indeed belongs to the pool it claims to
420 * be a part of. The only way this is allowed is if the device is a hot
421 * spare (which we check for later on).
423 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
424 !spa_guid_exists(pool_guid, device_guid) &&
425 !spa_spare_exists(device_guid, NULL, NULL) &&
426 !spa_l2cache_exists(device_guid, NULL))
427 return (B_FALSE);
430 * If the transaction group is zero, then this an initialized (but
431 * unused) label. This is only an error if the create transaction
432 * on-disk is the same as the one we're using now, in which case the
433 * user has attempted to add the same vdev multiple times in the same
434 * transaction.
436 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
437 txg == 0 && vdtxg == crtxg)
438 return (B_TRUE);
441 * Check to see if this is a spare device. We do an explicit check for
442 * spa_has_spare() here because it may be on our pending list of spares
443 * to add. We also check if it is an l2cache device.
445 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
446 spa_has_spare(spa, device_guid)) {
447 if (spare_guid)
448 *spare_guid = device_guid;
450 switch (reason) {
451 case VDEV_LABEL_CREATE:
452 case VDEV_LABEL_L2CACHE:
453 return (B_TRUE);
455 case VDEV_LABEL_REPLACE:
456 return (!spa_has_spare(spa, device_guid) ||
457 spare_pool != 0ULL);
459 case VDEV_LABEL_SPARE:
460 return (spa_has_spare(spa, device_guid));
465 * Check to see if this is an l2cache device.
467 if (spa_l2cache_exists(device_guid, NULL))
468 return (B_TRUE);
471 * If the device is marked ACTIVE, then this device is in use by another
472 * pool on the system.
474 return (state == POOL_STATE_ACTIVE);
478 * Initialize a vdev label. We check to make sure each leaf device is not in
479 * use, and writable. We put down an initial label which we will later
480 * overwrite with a complete label. Note that it's important to do this
481 * sequentially, not in parallel, so that we catch cases of multiple use of the
482 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
483 * itself.
486 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
488 spa_t *spa = vd->vdev_spa;
489 nvlist_t *label;
490 vdev_phys_t *vp;
491 vdev_boot_header_t *vb;
492 uberblock_t *ub;
493 zio_t *zio;
494 char *buf;
495 size_t buflen;
496 int error;
497 uint64_t spare_guid, l2cache_guid;
498 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
500 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
502 for (int c = 0; c < vd->vdev_children; c++)
503 if ((error = vdev_label_init(vd->vdev_child[c],
504 crtxg, reason)) != 0)
505 return (error);
507 if (!vd->vdev_ops->vdev_op_leaf)
508 return (0);
511 * Dead vdevs cannot be initialized.
513 if (vdev_is_dead(vd))
514 return (EIO);
517 * Determine if the vdev is in use.
519 if (reason != VDEV_LABEL_REMOVE &&
520 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
521 return (EBUSY);
524 * If this is a request to add or replace a spare or l2cache device
525 * that is in use elsewhere on the system, then we must update the
526 * guid (which was initialized to a random value) to reflect the
527 * actual GUID (which is shared between multiple pools).
529 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
530 spare_guid != 0ULL) {
531 uint64_t guid_delta = spare_guid - vd->vdev_guid;
533 vd->vdev_guid += guid_delta;
535 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
536 pvd->vdev_guid_sum += guid_delta;
539 * If this is a replacement, then we want to fallthrough to the
540 * rest of the code. If we're adding a spare, then it's already
541 * labeled appropriately and we can just return.
543 if (reason == VDEV_LABEL_SPARE)
544 return (0);
545 ASSERT(reason == VDEV_LABEL_REPLACE);
548 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
549 l2cache_guid != 0ULL) {
550 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
552 vd->vdev_guid += guid_delta;
554 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
555 pvd->vdev_guid_sum += guid_delta;
558 * If this is a replacement, then we want to fallthrough to the
559 * rest of the code. If we're adding an l2cache, then it's
560 * already labeled appropriately and we can just return.
562 if (reason == VDEV_LABEL_L2CACHE)
563 return (0);
564 ASSERT(reason == VDEV_LABEL_REPLACE);
568 * Initialize its label.
570 vp = zio_buf_alloc(sizeof (vdev_phys_t));
571 bzero(vp, sizeof (vdev_phys_t));
574 * Generate a label describing the pool and our top-level vdev.
575 * We mark it as being from txg 0 to indicate that it's not
576 * really part of an active pool just yet. The labels will
577 * be written again with a meaningful txg by spa_sync().
579 if (reason == VDEV_LABEL_SPARE ||
580 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
582 * For inactive hot spares, we generate a special label that
583 * identifies as a mutually shared hot spare. We write the
584 * label if we are adding a hot spare, or if we are removing an
585 * active hot spare (in which case we want to revert the
586 * labels).
588 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
590 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
591 spa_version(spa)) == 0);
592 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
593 POOL_STATE_SPARE) == 0);
594 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
595 vd->vdev_guid) == 0);
596 } else if (reason == VDEV_LABEL_L2CACHE ||
597 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
599 * For level 2 ARC devices, add a special label.
601 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
603 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
604 spa_version(spa)) == 0);
605 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
606 POOL_STATE_L2CACHE) == 0);
607 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
608 vd->vdev_guid) == 0);
609 } else {
610 label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
613 * Add our creation time. This allows us to detect multiple
614 * vdev uses as described above, and automatically expires if we
615 * fail.
617 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
618 crtxg) == 0);
621 buf = vp->vp_nvlist;
622 buflen = sizeof (vp->vp_nvlist);
624 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
625 if (error != 0) {
626 nvlist_free(label);
627 zio_buf_free(vp, sizeof (vdev_phys_t));
628 /* EFAULT means nvlist_pack ran out of room */
629 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
633 * Initialize boot block header.
635 vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
636 bzero(vb, sizeof (vdev_boot_header_t));
637 vb->vb_magic = VDEV_BOOT_MAGIC;
638 vb->vb_version = VDEV_BOOT_VERSION;
639 vb->vb_offset = VDEV_BOOT_OFFSET;
640 vb->vb_size = VDEV_BOOT_SIZE;
643 * Initialize uberblock template.
645 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
646 bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
647 *ub = spa->spa_uberblock;
648 ub->ub_txg = 0;
651 * Write everything in parallel.
653 zio = zio_root(spa, NULL, NULL, flags);
655 for (int l = 0; l < VDEV_LABELS; l++) {
657 vdev_label_write(zio, vd, l, vp,
658 offsetof(vdev_label_t, vl_vdev_phys),
659 sizeof (vdev_phys_t), NULL, NULL, flags);
661 vdev_label_write(zio, vd, l, vb,
662 offsetof(vdev_label_t, vl_boot_header),
663 sizeof (vdev_boot_header_t), NULL, NULL, flags);
665 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
666 vdev_label_write(zio, vd, l, ub,
667 VDEV_UBERBLOCK_OFFSET(vd, n),
668 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags);
672 error = zio_wait(zio);
674 nvlist_free(label);
675 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
676 zio_buf_free(vb, sizeof (vdev_boot_header_t));
677 zio_buf_free(vp, sizeof (vdev_phys_t));
680 * If this vdev hasn't been previously identified as a spare, then we
681 * mark it as such only if a) we are labeling it as a spare, or b) it
682 * exists as a spare elsewhere in the system. Do the same for
683 * level 2 ARC devices.
685 if (error == 0 && !vd->vdev_isspare &&
686 (reason == VDEV_LABEL_SPARE ||
687 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
688 spa_spare_add(vd);
690 if (error == 0 && !vd->vdev_isl2cache &&
691 (reason == VDEV_LABEL_L2CACHE ||
692 spa_l2cache_exists(vd->vdev_guid, NULL)))
693 spa_l2cache_add(vd);
695 return (error);
699 * ==========================================================================
700 * uberblock load/sync
701 * ==========================================================================
705 * Consider the following situation: txg is safely synced to disk. We've
706 * written the first uberblock for txg + 1, and then we lose power. When we
707 * come back up, we fail to see the uberblock for txg + 1 because, say,
708 * it was on a mirrored device and the replica to which we wrote txg + 1
709 * is now offline. If we then make some changes and sync txg + 1, and then
710 * the missing replica comes back, then for a new seconds we'll have two
711 * conflicting uberblocks on disk with the same txg. The solution is simple:
712 * among uberblocks with equal txg, choose the one with the latest timestamp.
714 static int
715 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
717 if (ub1->ub_txg < ub2->ub_txg)
718 return (-1);
719 if (ub1->ub_txg > ub2->ub_txg)
720 return (1);
722 if (ub1->ub_timestamp < ub2->ub_timestamp)
723 return (-1);
724 if (ub1->ub_timestamp > ub2->ub_timestamp)
725 return (1);
727 return (0);
730 static void
731 vdev_uberblock_load_done(zio_t *zio)
733 zio_t *rio = zio->io_private;
734 uberblock_t *ub = zio->io_data;
735 uberblock_t *ubbest = rio->io_private;
737 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
739 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
740 mutex_enter(&rio->io_lock);
741 if (vdev_uberblock_compare(ub, ubbest) > 0)
742 *ubbest = *ub;
743 mutex_exit(&rio->io_lock);
746 zio_buf_free(zio->io_data, zio->io_size);
749 void
750 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
752 spa_t *spa = vd->vdev_spa;
753 vdev_t *rvd = spa->spa_root_vdev;
754 int flags =
755 ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
757 if (vd == rvd) {
758 ASSERT(zio == NULL);
759 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
760 zio = zio_root(spa, NULL, ubbest, flags);
761 bzero(ubbest, sizeof (uberblock_t));
764 ASSERT(zio != NULL);
766 for (int c = 0; c < vd->vdev_children; c++)
767 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
769 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
770 for (int l = 0; l < VDEV_LABELS; l++) {
771 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
772 vdev_label_read(zio, vd, l,
773 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
774 VDEV_UBERBLOCK_OFFSET(vd, n),
775 VDEV_UBERBLOCK_SIZE(vd),
776 vdev_uberblock_load_done, zio, flags);
781 if (vd == rvd) {
782 (void) zio_wait(zio);
783 spa_config_exit(spa, SCL_ALL, FTAG);
788 * On success, increment root zio's count of good writes.
789 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
791 static void
792 vdev_uberblock_sync_done(zio_t *zio)
794 uint64_t *good_writes = zio->io_private;
796 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
797 atomic_add_64(good_writes, 1);
801 * Write the uberblock to all labels of all leaves of the specified vdev.
803 static void
804 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
806 uberblock_t *ubbuf;
807 int n;
809 for (int c = 0; c < vd->vdev_children; c++)
810 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
812 if (!vd->vdev_ops->vdev_op_leaf)
813 return;
815 if (!vdev_writeable(vd))
816 return;
818 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
820 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
821 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
822 *ubbuf = *ub;
824 for (int l = 0; l < VDEV_LABELS; l++)
825 vdev_label_write(zio, vd, l, ubbuf,
826 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
827 vdev_uberblock_sync_done, zio->io_private,
828 flags | ZIO_FLAG_DONT_PROPAGATE);
830 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
834 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
836 spa_t *spa = svd[0]->vdev_spa;
837 zio_t *zio;
838 uint64_t good_writes = 0;
840 zio = zio_root(spa, NULL, &good_writes, flags);
842 for (int v = 0; v < svdcount; v++)
843 vdev_uberblock_sync(zio, ub, svd[v], flags);
845 (void) zio_wait(zio);
848 * Flush the uberblocks to disk. This ensures that the odd labels
849 * are no longer needed (because the new uberblocks and the even
850 * labels are safely on disk), so it is safe to overwrite them.
852 zio = zio_root(spa, NULL, NULL, flags);
854 for (int v = 0; v < svdcount; v++)
855 zio_flush(zio, svd[v]);
857 (void) zio_wait(zio);
859 return (good_writes >= 1 ? 0 : EIO);
863 * On success, increment the count of good writes for our top-level vdev.
865 static void
866 vdev_label_sync_done(zio_t *zio)
868 uint64_t *good_writes = zio->io_private;
870 if (zio->io_error == 0)
871 atomic_add_64(good_writes, 1);
875 * If there weren't enough good writes, indicate failure to the parent.
877 static void
878 vdev_label_sync_top_done(zio_t *zio)
880 uint64_t *good_writes = zio->io_private;
882 if (*good_writes == 0)
883 zio->io_error = EIO;
885 kmem_free(good_writes, sizeof (uint64_t));
889 * We ignore errors for log and cache devices, simply free the private data.
891 static void
892 vdev_label_sync_ignore_done(zio_t *zio)
894 kmem_free(zio->io_private, sizeof (uint64_t));
898 * Write all even or odd labels to all leaves of the specified vdev.
900 static void
901 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
903 nvlist_t *label;
904 vdev_phys_t *vp;
905 char *buf;
906 size_t buflen;
908 for (int c = 0; c < vd->vdev_children; c++)
909 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
911 if (!vd->vdev_ops->vdev_op_leaf)
912 return;
914 if (!vdev_writeable(vd))
915 return;
918 * Generate a label describing the top-level config to which we belong.
920 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
922 vp = zio_buf_alloc(sizeof (vdev_phys_t));
923 bzero(vp, sizeof (vdev_phys_t));
925 buf = vp->vp_nvlist;
926 buflen = sizeof (vp->vp_nvlist);
928 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
929 for (; l < VDEV_LABELS; l += 2) {
930 vdev_label_write(zio, vd, l, vp,
931 offsetof(vdev_label_t, vl_vdev_phys),
932 sizeof (vdev_phys_t),
933 vdev_label_sync_done, zio->io_private,
934 flags | ZIO_FLAG_DONT_PROPAGATE);
938 zio_buf_free(vp, sizeof (vdev_phys_t));
939 nvlist_free(label);
943 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
945 list_t *dl = &spa->spa_config_dirty_list;
946 vdev_t *vd;
947 zio_t *zio;
948 int error;
951 * Write the new labels to disk.
953 zio = zio_root(spa, NULL, NULL, flags);
955 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
956 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
957 KM_SLEEP);
958 zio_t *vio = zio_null(zio, spa,
959 (vd->vdev_islog || vd->vdev_aux != NULL) ?
960 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
961 good_writes, flags);
962 vdev_label_sync(vio, vd, l, txg, flags);
963 zio_nowait(vio);
966 error = zio_wait(zio);
969 * Flush the new labels to disk.
971 zio = zio_root(spa, NULL, NULL, flags);
973 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
974 zio_flush(zio, vd);
976 (void) zio_wait(zio);
978 return (error);
982 * Sync the uberblock and any changes to the vdev configuration.
984 * The order of operations is carefully crafted to ensure that
985 * if the system panics or loses power at any time, the state on disk
986 * is still transactionally consistent. The in-line comments below
987 * describe the failure semantics at each stage.
989 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
990 * at any time, you can just call it again, and it will resume its work.
993 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
995 spa_t *spa = svd[0]->vdev_spa;
996 uberblock_t *ub = &spa->spa_uberblock;
997 vdev_t *vd;
998 zio_t *zio;
999 int error;
1000 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1002 ASSERT(ub->ub_txg <= txg);
1005 * If this isn't a resync due to I/O errors,
1006 * and nothing changed in this transaction group,
1007 * and the vdev configuration hasn't changed,
1008 * then there's nothing to do.
1010 if (ub->ub_txg < txg &&
1011 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1012 list_is_empty(&spa->spa_config_dirty_list))
1013 return (0);
1015 if (txg > spa_freeze_txg(spa))
1016 return (0);
1018 ASSERT(txg <= spa->spa_final_txg);
1021 * Flush the write cache of every disk that's been written to
1022 * in this transaction group. This ensures that all blocks
1023 * written in this txg will be committed to stable storage
1024 * before any uberblock that references them.
1026 zio = zio_root(spa, NULL, NULL, flags);
1028 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1029 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1030 zio_flush(zio, vd);
1032 (void) zio_wait(zio);
1035 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1036 * system dies in the middle of this process, that's OK: all of the
1037 * even labels that made it to disk will be newer than any uberblock,
1038 * and will therefore be considered invalid. The odd labels (L1, L3),
1039 * which have not yet been touched, will still be valid. We flush
1040 * the new labels to disk to ensure that all even-label updates
1041 * are committed to stable storage before the uberblock update.
1043 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1044 return (error);
1047 * Sync the uberblocks to all vdevs in svd[].
1048 * If the system dies in the middle of this step, there are two cases
1049 * to consider, and the on-disk state is consistent either way:
1051 * (1) If none of the new uberblocks made it to disk, then the
1052 * previous uberblock will be the newest, and the odd labels
1053 * (which had not yet been touched) will be valid with respect
1054 * to that uberblock.
1056 * (2) If one or more new uberblocks made it to disk, then they
1057 * will be the newest, and the even labels (which had all
1058 * been successfully committed) will be valid with respect
1059 * to the new uberblocks.
1061 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1062 return (error);
1065 * Sync out odd labels for every dirty vdev. If the system dies
1066 * in the middle of this process, the even labels and the new
1067 * uberblocks will suffice to open the pool. The next time
1068 * the pool is opened, the first thing we'll do -- before any
1069 * user data is modified -- is mark every vdev dirty so that
1070 * all labels will be brought up to date. We flush the new labels
1071 * to disk to ensure that all odd-label updates are committed to
1072 * stable storage before the next transaction group begins.
1074 return (vdev_label_sync_list(spa, 1, txg, flags));