4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #pragma ident "%Z%%M% %I% %E% SMI"
29 * The 512-byte leaf is broken into 32 16-byte chunks.
30 * chunk number n means l_chunk[n], even though the header precedes it.
31 * the names are stored null-terminated.
34 #include <sys/zfs_context.h>
36 #include <sys/zap_impl.h>
37 #include <sys/zap_leaf.h>
41 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t
*l
, uint16_t entry
);
43 #define CHAIN_END 0xffff /* end of the chunk chain */
45 /* half the (current) minimum block size */
46 #define MAX_ARRAY_BYTES (8<<10)
48 #define LEAF_HASH(l, h) \
49 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
50 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len)))
52 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
56 zap_memset(void *a
, int c
, size_t n
)
66 stv(int len
, void *addr
, uint64_t value
)
70 *(uint8_t *)addr
= value
;
73 *(uint16_t *)addr
= value
;
76 *(uint32_t *)addr
= value
;
79 *(uint64_t *)addr
= value
;
82 ASSERT(!"bad int len");
86 ldv(int len
, const void *addr
)
90 return (*(uint8_t *)addr
);
92 return (*(uint16_t *)addr
);
94 return (*(uint32_t *)addr
);
96 return (*(uint64_t *)addr
);
98 ASSERT(!"bad int len");
99 return (0xFEEDFACEDEADBEEFULL
);
103 zap_leaf_byteswap(zap_leaf_phys_t
*buf
, int size
)
107 l
.l_bs
= highbit(size
)-1;
110 buf
->l_hdr
.lh_block_type
= BSWAP_64(buf
->l_hdr
.lh_block_type
);
111 buf
->l_hdr
.lh_prefix
= BSWAP_64(buf
->l_hdr
.lh_prefix
);
112 buf
->l_hdr
.lh_magic
= BSWAP_32(buf
->l_hdr
.lh_magic
);
113 buf
->l_hdr
.lh_nfree
= BSWAP_16(buf
->l_hdr
.lh_nfree
);
114 buf
->l_hdr
.lh_nentries
= BSWAP_16(buf
->l_hdr
.lh_nentries
);
115 buf
->l_hdr
.lh_prefix_len
= BSWAP_16(buf
->l_hdr
.lh_prefix_len
);
116 buf
->l_hdr
.lh_freelist
= BSWAP_16(buf
->l_hdr
.lh_freelist
);
118 for (i
= 0; i
< ZAP_LEAF_HASH_NUMENTRIES(&l
); i
++)
119 buf
->l_hash
[i
] = BSWAP_16(buf
->l_hash
[i
]);
121 for (i
= 0; i
< ZAP_LEAF_NUMCHUNKS(&l
); i
++) {
122 zap_leaf_chunk_t
*lc
= &ZAP_LEAF_CHUNK(&l
, i
);
123 struct zap_leaf_entry
*le
;
125 switch (lc
->l_free
.lf_type
) {
126 case ZAP_CHUNK_ENTRY
:
129 le
->le_type
= BSWAP_8(le
->le_type
);
130 le
->le_int_size
= BSWAP_8(le
->le_int_size
);
131 le
->le_next
= BSWAP_16(le
->le_next
);
132 le
->le_name_chunk
= BSWAP_16(le
->le_name_chunk
);
133 le
->le_name_length
= BSWAP_16(le
->le_name_length
);
134 le
->le_value_chunk
= BSWAP_16(le
->le_value_chunk
);
135 le
->le_value_length
= BSWAP_16(le
->le_value_length
);
136 le
->le_cd
= BSWAP_32(le
->le_cd
);
137 le
->le_hash
= BSWAP_64(le
->le_hash
);
140 lc
->l_free
.lf_type
= BSWAP_8(lc
->l_free
.lf_type
);
141 lc
->l_free
.lf_next
= BSWAP_16(lc
->l_free
.lf_next
);
143 case ZAP_CHUNK_ARRAY
:
144 lc
->l_array
.la_type
= BSWAP_8(lc
->l_array
.la_type
);
145 lc
->l_array
.la_next
= BSWAP_16(lc
->l_array
.la_next
);
146 /* la_array doesn't need swapping */
149 ASSERT(!"bad leaf type");
155 zap_leaf_init(zap_leaf_t
*l
, boolean_t sort
)
159 l
->l_bs
= highbit(l
->l_dbuf
->db_size
)-1;
160 zap_memset(&l
->l_phys
->l_hdr
, 0, sizeof (struct zap_leaf_header
));
161 zap_memset(l
->l_phys
->l_hash
, CHAIN_END
, 2*ZAP_LEAF_HASH_NUMENTRIES(l
));
162 for (i
= 0; i
< ZAP_LEAF_NUMCHUNKS(l
); i
++) {
163 ZAP_LEAF_CHUNK(l
, i
).l_free
.lf_type
= ZAP_CHUNK_FREE
;
164 ZAP_LEAF_CHUNK(l
, i
).l_free
.lf_next
= i
+1;
166 ZAP_LEAF_CHUNK(l
, ZAP_LEAF_NUMCHUNKS(l
)-1).l_free
.lf_next
= CHAIN_END
;
167 l
->l_phys
->l_hdr
.lh_block_type
= ZBT_LEAF
;
168 l
->l_phys
->l_hdr
.lh_magic
= ZAP_LEAF_MAGIC
;
169 l
->l_phys
->l_hdr
.lh_nfree
= ZAP_LEAF_NUMCHUNKS(l
);
171 l
->l_phys
->l_hdr
.lh_flags
|= ZLF_ENTRIES_CDSORTED
;
175 * Routines which manipulate leaf chunks (l_chunk[]).
179 zap_leaf_chunk_alloc(zap_leaf_t
*l
)
183 ASSERT(l
->l_phys
->l_hdr
.lh_nfree
> 0);
185 chunk
= l
->l_phys
->l_hdr
.lh_freelist
;
186 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
187 ASSERT3U(ZAP_LEAF_CHUNK(l
, chunk
).l_free
.lf_type
, ==, ZAP_CHUNK_FREE
);
189 l
->l_phys
->l_hdr
.lh_freelist
= ZAP_LEAF_CHUNK(l
, chunk
).l_free
.lf_next
;
191 l
->l_phys
->l_hdr
.lh_nfree
--;
197 zap_leaf_chunk_free(zap_leaf_t
*l
, uint16_t chunk
)
199 struct zap_leaf_free
*zlf
= &ZAP_LEAF_CHUNK(l
, chunk
).l_free
;
200 ASSERT3U(l
->l_phys
->l_hdr
.lh_nfree
, <, ZAP_LEAF_NUMCHUNKS(l
));
201 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
202 ASSERT(zlf
->lf_type
!= ZAP_CHUNK_FREE
);
204 zlf
->lf_type
= ZAP_CHUNK_FREE
;
205 zlf
->lf_next
= l
->l_phys
->l_hdr
.lh_freelist
;
206 bzero(zlf
->lf_pad
, sizeof (zlf
->lf_pad
)); /* help it to compress */
207 l
->l_phys
->l_hdr
.lh_freelist
= chunk
;
209 l
->l_phys
->l_hdr
.lh_nfree
++;
213 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
217 zap_leaf_array_create(zap_leaf_t
*l
, const char *buf
,
218 int integer_size
, int num_integers
)
221 uint16_t *chunkp
= &chunk_head
;
224 int shift
= (integer_size
-1)*8;
225 int len
= num_integers
;
227 ASSERT3U(num_integers
* integer_size
, <, MAX_ARRAY_BYTES
);
230 uint16_t chunk
= zap_leaf_chunk_alloc(l
);
231 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
234 la
->la_type
= ZAP_CHUNK_ARRAY
;
235 for (i
= 0; i
< ZAP_LEAF_ARRAY_BYTES
; i
++) {
237 value
= ldv(integer_size
, buf
);
238 la
->la_array
[i
] = value
>> shift
;
240 if (++byten
== integer_size
) {
249 chunkp
= &la
->la_next
;
257 zap_leaf_array_free(zap_leaf_t
*l
, uint16_t *chunkp
)
259 uint16_t chunk
= *chunkp
;
263 while (chunk
!= CHAIN_END
) {
264 int nextchunk
= ZAP_LEAF_CHUNK(l
, chunk
).l_array
.la_next
;
265 ASSERT3U(ZAP_LEAF_CHUNK(l
, chunk
).l_array
.la_type
, ==,
267 zap_leaf_chunk_free(l
, chunk
);
272 /* array_len and buf_len are in integers, not bytes */
274 zap_leaf_array_read(zap_leaf_t
*l
, uint16_t chunk
,
275 int array_int_len
, int array_len
, int buf_int_len
, uint64_t buf_len
,
278 int len
= MIN(array_len
, buf_len
);
282 ASSERT3U(array_int_len
, <=, buf_int_len
);
284 /* Fast path for one 8-byte integer */
285 if (array_int_len
== 8 && buf_int_len
== 8 && len
== 1) {
286 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
287 uint8_t *ip
= la
->la_array
;
288 uint64_t *buf64
= (uint64_t *)buf
;
290 *buf64
= (uint64_t)ip
[0] << 56 | (uint64_t)ip
[1] << 48 |
291 (uint64_t)ip
[2] << 40 | (uint64_t)ip
[3] << 32 |
292 (uint64_t)ip
[4] << 24 | (uint64_t)ip
[5] << 16 |
293 (uint64_t)ip
[6] << 8 | (uint64_t)ip
[7];
297 /* Fast path for an array of 1-byte integers (eg. the entry name) */
298 if (array_int_len
== 1 && buf_int_len
== 1 &&
299 buf_len
> array_len
+ ZAP_LEAF_ARRAY_BYTES
) {
300 while (chunk
!= CHAIN_END
) {
301 struct zap_leaf_array
*la
=
302 &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
303 bcopy(la
->la_array
, buf
, ZAP_LEAF_ARRAY_BYTES
);
304 buf
+= ZAP_LEAF_ARRAY_BYTES
;
311 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
314 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
315 for (i
= 0; i
< ZAP_LEAF_ARRAY_BYTES
&& len
> 0; i
++) {
316 value
= (value
<< 8) | la
->la_array
[i
];
318 if (byten
== array_int_len
) {
319 stv(buf_int_len
, buf
, value
);
332 * Only to be used on 8-bit arrays.
333 * array_len is actual len in bytes (not encoded le_value_length).
334 * namenorm is null-terminated.
337 zap_leaf_array_match(zap_leaf_t
*l
, zap_name_t
*zn
, int chunk
, int array_len
)
341 if (zn
->zn_matchtype
== MT_FIRST
) {
342 char *thisname
= kmem_alloc(array_len
, KM_SLEEP
);
345 zap_leaf_array_read(l
, chunk
, 1, array_len
, 1,
346 array_len
, thisname
);
347 match
= zap_match(zn
, thisname
);
348 kmem_free(thisname
, array_len
);
352 /* Fast path for exact matching */
353 while (bseen
< array_len
) {
354 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
355 int toread
= MIN(array_len
- bseen
, ZAP_LEAF_ARRAY_BYTES
);
356 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
357 if (bcmp(la
->la_array
, zn
->zn_name_orij
+ bseen
, toread
))
362 return (bseen
== array_len
);
366 * Routines which manipulate leaf entries.
370 zap_leaf_lookup(zap_leaf_t
*l
, zap_name_t
*zn
, zap_entry_handle_t
*zeh
)
373 struct zap_leaf_entry
*le
;
375 ASSERT3U(l
->l_phys
->l_hdr
.lh_magic
, ==, ZAP_LEAF_MAGIC
);
378 for (chunkp
= LEAF_HASH_ENTPTR(l
, zn
->zn_hash
);
379 *chunkp
!= CHAIN_END
; chunkp
= &le
->le_next
) {
380 uint16_t chunk
= *chunkp
;
381 le
= ZAP_LEAF_ENTRY(l
, chunk
);
383 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
384 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
386 if (le
->le_hash
!= zn
->zn_hash
)
390 * NB: the entry chain is always sorted by cd on
391 * normalized zap objects, so this will find the
392 * lowest-cd match for MT_FIRST.
394 ASSERT(zn
->zn_matchtype
== MT_EXACT
||
395 (l
->l_phys
->l_hdr
.lh_flags
& ZLF_ENTRIES_CDSORTED
));
396 if (zap_leaf_array_match(l
, zn
, le
->le_name_chunk
,
397 le
->le_name_length
)) {
398 zeh
->zeh_num_integers
= le
->le_value_length
;
399 zeh
->zeh_integer_size
= le
->le_int_size
;
400 zeh
->zeh_cd
= le
->le_cd
;
401 zeh
->zeh_hash
= le
->le_hash
;
402 zeh
->zeh_chunkp
= chunkp
;
409 * NB: we could of course do this in one pass, but that would be
410 * a pain. We'll see if MT_BEST is even used much.
412 if (zn
->zn_matchtype
== MT_BEST
) {
413 zn
->zn_matchtype
= MT_FIRST
;
420 /* Return (h1,cd1 >= h2,cd2) */
421 #define HCD_GTEQ(h1, cd1, h2, cd2) \
422 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
425 zap_leaf_lookup_closest(zap_leaf_t
*l
,
426 uint64_t h
, uint32_t cd
, zap_entry_handle_t
*zeh
)
429 uint64_t besth
= -1ULL;
430 uint32_t bestcd
= ZAP_MAXCD
;
431 uint16_t bestlh
= ZAP_LEAF_HASH_NUMENTRIES(l
)-1;
433 struct zap_leaf_entry
*le
;
435 ASSERT3U(l
->l_phys
->l_hdr
.lh_magic
, ==, ZAP_LEAF_MAGIC
);
437 for (lh
= LEAF_HASH(l
, h
); lh
<= bestlh
; lh
++) {
438 for (chunk
= l
->l_phys
->l_hash
[lh
];
439 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
440 le
= ZAP_LEAF_ENTRY(l
, chunk
);
442 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
443 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
445 if (HCD_GTEQ(le
->le_hash
, le
->le_cd
, h
, cd
) &&
446 HCD_GTEQ(besth
, bestcd
, le
->le_hash
, le
->le_cd
)) {
447 ASSERT3U(bestlh
, >=, lh
);
452 zeh
->zeh_num_integers
= le
->le_value_length
;
453 zeh
->zeh_integer_size
= le
->le_int_size
;
454 zeh
->zeh_cd
= le
->le_cd
;
455 zeh
->zeh_hash
= le
->le_hash
;
456 zeh
->zeh_fakechunk
= chunk
;
457 zeh
->zeh_chunkp
= &zeh
->zeh_fakechunk
;
463 return (bestcd
== ZAP_MAXCD
? ENOENT
: 0);
467 zap_entry_read(const zap_entry_handle_t
*zeh
,
468 uint8_t integer_size
, uint64_t num_integers
, void *buf
)
470 struct zap_leaf_entry
*le
=
471 ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, *zeh
->zeh_chunkp
);
472 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
474 if (le
->le_int_size
> integer_size
)
477 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_value_chunk
, le
->le_int_size
,
478 le
->le_value_length
, integer_size
, num_integers
, buf
);
480 if (zeh
->zeh_num_integers
> num_integers
)
487 zap_entry_read_name(const zap_entry_handle_t
*zeh
, uint16_t buflen
, char *buf
)
489 struct zap_leaf_entry
*le
=
490 ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, *zeh
->zeh_chunkp
);
491 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
493 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_name_chunk
, 1,
494 le
->le_name_length
, 1, buflen
, buf
);
495 if (le
->le_name_length
> buflen
)
501 zap_entry_update(zap_entry_handle_t
*zeh
,
502 uint8_t integer_size
, uint64_t num_integers
, const void *buf
)
505 zap_leaf_t
*l
= zeh
->zeh_leaf
;
506 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, *zeh
->zeh_chunkp
);
508 delta_chunks
= ZAP_LEAF_ARRAY_NCHUNKS(num_integers
* integer_size
) -
509 ZAP_LEAF_ARRAY_NCHUNKS(le
->le_value_length
* le
->le_int_size
);
511 if ((int)l
->l_phys
->l_hdr
.lh_nfree
< delta_chunks
)
515 * We should search other chained leaves (via
516 * zap_entry_remove,create?) otherwise returning EAGAIN will
517 * just send us into an infinite loop if we have to chain
518 * another leaf block, rather than being able to split this
522 zap_leaf_array_free(l
, &le
->le_value_chunk
);
524 zap_leaf_array_create(l
, buf
, integer_size
, num_integers
);
525 le
->le_value_length
= num_integers
;
526 le
->le_int_size
= integer_size
;
531 zap_entry_remove(zap_entry_handle_t
*zeh
)
533 uint16_t entry_chunk
;
534 struct zap_leaf_entry
*le
;
535 zap_leaf_t
*l
= zeh
->zeh_leaf
;
537 ASSERT3P(zeh
->zeh_chunkp
, !=, &zeh
->zeh_fakechunk
);
539 entry_chunk
= *zeh
->zeh_chunkp
;
540 le
= ZAP_LEAF_ENTRY(l
, entry_chunk
);
541 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
543 zap_leaf_array_free(l
, &le
->le_name_chunk
);
544 zap_leaf_array_free(l
, &le
->le_value_chunk
);
546 *zeh
->zeh_chunkp
= le
->le_next
;
547 zap_leaf_chunk_free(l
, entry_chunk
);
549 l
->l_phys
->l_hdr
.lh_nentries
--;
553 zap_entry_create(zap_leaf_t
*l
, const char *name
, uint64_t h
, uint32_t cd
,
554 uint8_t integer_size
, uint64_t num_integers
, const void *buf
,
555 zap_entry_handle_t
*zeh
)
559 struct zap_leaf_entry
*le
;
560 uint64_t namelen
, valuelen
;
563 valuelen
= integer_size
* num_integers
;
564 namelen
= strlen(name
) + 1;
565 ASSERT(namelen
>= 2);
567 numchunks
= 1 + ZAP_LEAF_ARRAY_NCHUNKS(namelen
) +
568 ZAP_LEAF_ARRAY_NCHUNKS(valuelen
);
569 if (numchunks
> ZAP_LEAF_NUMCHUNKS(l
))
572 if (cd
== ZAP_MAXCD
) {
573 /* find the lowest unused cd */
574 if (l
->l_phys
->l_hdr
.lh_flags
& ZLF_ENTRIES_CDSORTED
) {
577 for (chunk
= *LEAF_HASH_ENTPTR(l
, h
);
578 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
579 le
= ZAP_LEAF_ENTRY(l
, chunk
);
582 if (le
->le_hash
== h
) {
583 ASSERT3U(cd
, ==, le
->le_cd
);
588 /* old unsorted format; do it the O(n^2) way */
589 for (cd
= 0; cd
< ZAP_MAXCD
; cd
++) {
590 for (chunk
= *LEAF_HASH_ENTPTR(l
, h
);
591 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
592 le
= ZAP_LEAF_ENTRY(l
, chunk
);
593 if (le
->le_hash
== h
&&
598 /* If this cd is not in use, we are good. */
599 if (chunk
== CHAIN_END
)
604 * we would run out of space in a block before we could
605 * have ZAP_MAXCD entries
607 ASSERT3U(cd
, <, ZAP_MAXCD
);
610 if (l
->l_phys
->l_hdr
.lh_nfree
< numchunks
)
614 chunk
= zap_leaf_chunk_alloc(l
);
615 le
= ZAP_LEAF_ENTRY(l
, chunk
);
616 le
->le_type
= ZAP_CHUNK_ENTRY
;
617 le
->le_name_chunk
= zap_leaf_array_create(l
, name
, 1, namelen
);
618 le
->le_name_length
= namelen
;
620 zap_leaf_array_create(l
, buf
, integer_size
, num_integers
);
621 le
->le_value_length
= num_integers
;
622 le
->le_int_size
= integer_size
;
626 /* link it into the hash chain */
627 /* XXX if we did the search above, we could just use that */
628 chunkp
= zap_leaf_rehash_entry(l
, chunk
);
630 l
->l_phys
->l_hdr
.lh_nentries
++;
633 zeh
->zeh_num_integers
= num_integers
;
634 zeh
->zeh_integer_size
= le
->le_int_size
;
635 zeh
->zeh_cd
= le
->le_cd
;
636 zeh
->zeh_hash
= le
->le_hash
;
637 zeh
->zeh_chunkp
= chunkp
;
643 * Determine if there is another entry with the same normalized form.
644 * For performance purposes, either zn or name must be provided (the
645 * other can be NULL). Note, there usually won't be any hash
646 * conflicts, in which case we don't need the concatenated/normalized
647 * form of the name. But all callers have one of these on hand anyway,
648 * so might as well take advantage. A cleaner but slower interface
649 * would accept neither argument, and compute the normalized name as
650 * needed (using zap_name_alloc(zap_entry_read_name(zeh))).
653 zap_entry_normalization_conflict(zap_entry_handle_t
*zeh
, zap_name_t
*zn
,
654 const char *name
, zap_t
*zap
)
657 struct zap_leaf_entry
*le
;
658 boolean_t allocdzn
= B_FALSE
;
660 if (zap
->zap_normflags
== 0)
663 for (chunk
= *LEAF_HASH_ENTPTR(zeh
->zeh_leaf
, zeh
->zeh_hash
);
664 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
665 le
= ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, chunk
);
666 if (le
->le_hash
!= zeh
->zeh_hash
)
668 if (le
->le_cd
== zeh
->zeh_cd
)
672 zn
= zap_name_alloc(zap
, name
, MT_FIRST
);
675 if (zap_leaf_array_match(zeh
->zeh_leaf
, zn
,
676 le
->le_name_chunk
, le
->le_name_length
)) {
688 * Routines for transferring entries between leafs.
692 zap_leaf_rehash_entry(zap_leaf_t
*l
, uint16_t entry
)
694 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, entry
);
695 struct zap_leaf_entry
*le2
;
699 * keep the entry chain sorted by cd
700 * NB: this will not cause problems for unsorted leafs, though
701 * it is unnecessary there.
703 for (chunkp
= LEAF_HASH_ENTPTR(l
, le
->le_hash
);
704 *chunkp
!= CHAIN_END
; chunkp
= &le2
->le_next
) {
705 le2
= ZAP_LEAF_ENTRY(l
, *chunkp
);
706 if (le2
->le_cd
> le
->le_cd
)
710 le
->le_next
= *chunkp
;
716 zap_leaf_transfer_array(zap_leaf_t
*l
, uint16_t chunk
, zap_leaf_t
*nl
)
719 uint16_t *nchunkp
= &new_chunk
;
721 while (chunk
!= CHAIN_END
) {
722 uint16_t nchunk
= zap_leaf_chunk_alloc(nl
);
723 struct zap_leaf_array
*nla
=
724 &ZAP_LEAF_CHUNK(nl
, nchunk
).l_array
;
725 struct zap_leaf_array
*la
=
726 &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
727 int nextchunk
= la
->la_next
;
729 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
730 ASSERT3U(nchunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
732 *nla
= *la
; /* structure assignment */
734 zap_leaf_chunk_free(l
, chunk
);
737 nchunkp
= &nla
->la_next
;
739 *nchunkp
= CHAIN_END
;
744 zap_leaf_transfer_entry(zap_leaf_t
*l
, int entry
, zap_leaf_t
*nl
)
746 struct zap_leaf_entry
*le
, *nle
;
749 le
= ZAP_LEAF_ENTRY(l
, entry
);
750 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
752 chunk
= zap_leaf_chunk_alloc(nl
);
753 nle
= ZAP_LEAF_ENTRY(nl
, chunk
);
754 *nle
= *le
; /* structure assignment */
756 (void) zap_leaf_rehash_entry(nl
, chunk
);
758 nle
->le_name_chunk
= zap_leaf_transfer_array(l
, le
->le_name_chunk
, nl
);
759 nle
->le_value_chunk
=
760 zap_leaf_transfer_array(l
, le
->le_value_chunk
, nl
);
762 zap_leaf_chunk_free(l
, entry
);
764 l
->l_phys
->l_hdr
.lh_nentries
--;
765 nl
->l_phys
->l_hdr
.lh_nentries
++;
769 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
772 zap_leaf_split(zap_leaf_t
*l
, zap_leaf_t
*nl
, boolean_t sort
)
775 int bit
= 64 - 1 - l
->l_phys
->l_hdr
.lh_prefix_len
;
777 /* set new prefix and prefix_len */
778 l
->l_phys
->l_hdr
.lh_prefix
<<= 1;
779 l
->l_phys
->l_hdr
.lh_prefix_len
++;
780 nl
->l_phys
->l_hdr
.lh_prefix
= l
->l_phys
->l_hdr
.lh_prefix
| 1;
781 nl
->l_phys
->l_hdr
.lh_prefix_len
= l
->l_phys
->l_hdr
.lh_prefix_len
;
783 /* break existing hash chains */
784 zap_memset(l
->l_phys
->l_hash
, CHAIN_END
, 2*ZAP_LEAF_HASH_NUMENTRIES(l
));
787 l
->l_phys
->l_hdr
.lh_flags
|= ZLF_ENTRIES_CDSORTED
;
790 * Transfer entries whose hash bit 'bit' is set to nl; rehash
791 * the remaining entries
793 * NB: We could find entries via the hashtable instead. That
794 * would be O(hashents+numents) rather than O(numblks+numents),
795 * but this accesses memory more sequentially, and when we're
796 * called, the block is usually pretty full.
798 for (i
= 0; i
< ZAP_LEAF_NUMCHUNKS(l
); i
++) {
799 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, i
);
800 if (le
->le_type
!= ZAP_CHUNK_ENTRY
)
803 if (le
->le_hash
& (1ULL << bit
))
804 zap_leaf_transfer_entry(l
, i
, nl
);
806 (void) zap_leaf_rehash_entry(l
, i
);
811 zap_leaf_stats(zap_t
*zap
, zap_leaf_t
*l
, zap_stats_t
*zs
)
815 n
= zap
->zap_f
.zap_phys
->zap_ptrtbl
.zt_shift
-
816 l
->l_phys
->l_hdr
.lh_prefix_len
;
817 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
818 zs
->zs_leafs_with_2n_pointers
[n
]++;
821 n
= l
->l_phys
->l_hdr
.lh_nentries
/5;
822 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
823 zs
->zs_blocks_with_n5_entries
[n
]++;
825 n
= ((1<<FZAP_BLOCK_SHIFT(zap
)) -
826 l
->l_phys
->l_hdr
.lh_nfree
* (ZAP_LEAF_ARRAY_BYTES
+1))*10 /
827 (1<<FZAP_BLOCK_SHIFT(zap
));
828 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
829 zs
->zs_blocks_n_tenths_full
[n
]++;
831 for (i
= 0; i
< ZAP_LEAF_HASH_NUMENTRIES(l
); i
++) {
833 int chunk
= l
->l_phys
->l_hash
[i
];
835 while (chunk
!= CHAIN_END
) {
836 struct zap_leaf_entry
*le
=
837 ZAP_LEAF_ENTRY(l
, chunk
);
839 n
= 1 + ZAP_LEAF_ARRAY_NCHUNKS(le
->le_name_length
) +
840 ZAP_LEAF_ARRAY_NCHUNKS(le
->le_value_length
*
842 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
843 zs
->zs_entries_using_n_chunks
[n
]++;
850 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
851 zs
->zs_buckets_with_n_entries
[n
]++;