Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / dist / uts / common / fs / zfs / zfs_ctldir.c
blob208fc36295d077f33619d2f9fe2c24eb9059a940
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #pragma ident "%Z%%M% %I% %E% SMI"
29 * ZFS control directory (a.k.a. ".zfs")
31 * This directory provides a common location for all ZFS meta-objects.
32 * Currently, this is only the 'snapshot' directory, but this may expand in the
33 * future. The elements are built using the GFS primitives, as the hierarchy
34 * does not actually exist on disk.
36 * For 'snapshot', we don't want to have all snapshots always mounted, because
37 * this would take up a huge amount of space in /etc/mnttab. We have three
38 * types of objects:
40 * ctldir ------> snapshotdir -------> snapshot
41 * |
42 * |
43 * V
44 * mounted fs
46 * The 'snapshot' node contains just enough information to lookup '..' and act
47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
48 * perform an automount of the underlying filesystem and return the
49 * corresponding vnode.
51 * All mounts are handled automatically by the kernel, but unmounts are
52 * (currently) handled from user land. The main reason is that there is no
53 * reliable way to auto-unmount the filesystem when it's "no longer in use".
54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which
55 * unmounts any snapshots within the snapshot directory.
57 * The '.zfs', '.zfs/snapshot', and all directories created under
58 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
59 * share the same vfs_t as the head filesystem (what '.zfs' lives under).
61 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
62 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
63 * However, vnodes within these mounted on file systems have their v_vfsp
64 * fields set to the head filesystem to make NFS happy (see
65 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
66 * so that it cannot be freed until all snapshots have been unmounted.
69 #include <fs/fs_subr.h>
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_ioctl.h>
72 #include <sys/zfs_vfsops.h>
73 #include <sys/vfs_opreg.h>
74 #include <sys/gfs.h>
75 #include <sys/stat.h>
76 #include <sys/dmu.h>
77 #include <sys/dsl_deleg.h>
78 #include <sys/mount.h>
79 #include <sys/sunddi.h>
81 #include "zfs_namecheck.h"
83 typedef struct zfsctl_node {
84 gfs_dir_t zc_gfs_private;
85 uint64_t zc_id;
86 timestruc_t zc_cmtime; /* ctime and mtime, always the same */
87 } zfsctl_node_t;
89 typedef struct zfsctl_snapdir {
90 zfsctl_node_t sd_node;
91 kmutex_t sd_lock;
92 avl_tree_t sd_snaps;
93 } zfsctl_snapdir_t;
95 typedef struct {
96 char *se_name;
97 vnode_t *se_root;
98 avl_node_t se_node;
99 } zfs_snapentry_t;
101 static int
102 snapentry_compare(const void *a, const void *b)
104 const zfs_snapentry_t *sa = a;
105 const zfs_snapentry_t *sb = b;
106 int ret = strcmp(sa->se_name, sb->se_name);
108 if (ret < 0)
109 return (-1);
110 else if (ret > 0)
111 return (1);
112 else
113 return (0);
116 vnodeops_t *zfsctl_ops_root;
117 vnodeops_t *zfsctl_ops_snapdir;
118 vnodeops_t *zfsctl_ops_snapshot;
120 static const fs_operation_def_t zfsctl_tops_root[];
121 static const fs_operation_def_t zfsctl_tops_snapdir[];
122 static const fs_operation_def_t zfsctl_tops_snapshot[];
124 static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
125 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
126 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *);
128 static gfs_opsvec_t zfsctl_opsvec[] = {
129 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
130 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
131 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
132 { NULL }
136 * Root directory elements. We have only a single static entry, 'snapshot'.
138 static gfs_dirent_t zfsctl_root_entries[] = {
139 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
140 { NULL }
143 /* include . and .. in the calculation */
144 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \
145 sizeof (gfs_dirent_t)) + 1)
149 * Initialize the various GFS pieces we'll need to create and manipulate .zfs
150 * directories. This is called from the ZFS init routine, and initializes the
151 * vnode ops vectors that we'll be using.
153 void
154 zfsctl_init(void)
156 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
159 void
160 zfsctl_fini(void)
163 * Remove vfsctl vnode ops
165 if (zfsctl_ops_root)
166 vn_freevnodeops(zfsctl_ops_root);
167 if (zfsctl_ops_snapdir)
168 vn_freevnodeops(zfsctl_ops_snapdir);
169 if (zfsctl_ops_snapshot)
170 vn_freevnodeops(zfsctl_ops_snapshot);
172 zfsctl_ops_root = NULL;
173 zfsctl_ops_snapdir = NULL;
174 zfsctl_ops_snapshot = NULL;
178 * Return the inode number associated with the 'snapshot' directory.
180 /* ARGSUSED */
181 static ino64_t
182 zfsctl_root_inode_cb(vnode_t *vp, int index)
184 ASSERT(index == 0);
185 return (ZFSCTL_INO_SNAPDIR);
189 * Create the '.zfs' directory. This directory is cached as part of the VFS
190 * structure. This results in a hold on the vfs_t. The code in zfs_umount()
191 * therefore checks against a vfs_count of 2 instead of 1. This reference
192 * is removed when the ctldir is destroyed in the unmount.
194 void
195 zfsctl_create(zfsvfs_t *zfsvfs)
197 vnode_t *vp, *rvp;
198 zfsctl_node_t *zcp;
200 ASSERT(zfsvfs->z_ctldir == NULL);
202 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
203 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
204 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
205 zcp = vp->v_data;
206 zcp->zc_id = ZFSCTL_INO_ROOT;
208 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0);
209 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime);
210 VN_RELE(rvp);
213 * We're only faking the fact that we have a root of a filesystem for
214 * the sake of the GFS interfaces. Undo the flag manipulation it did
215 * for us.
217 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT);
219 zfsvfs->z_ctldir = vp;
223 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted.
224 * There might still be more references if we were force unmounted, but only
225 * new zfs_inactive() calls can occur and they don't reference .zfs
227 void
228 zfsctl_destroy(zfsvfs_t *zfsvfs)
230 VN_RELE(zfsvfs->z_ctldir);
231 zfsvfs->z_ctldir = NULL;
235 * Given a root znode, retrieve the associated .zfs directory.
236 * Add a hold to the vnode and return it.
238 vnode_t *
239 zfsctl_root(znode_t *zp)
241 ASSERT(zfs_has_ctldir(zp));
242 VN_HOLD(zp->z_zfsvfs->z_ctldir);
243 return (zp->z_zfsvfs->z_ctldir);
247 * Common open routine. Disallow any write access.
249 /* ARGSUSED */
250 static int
251 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
253 if (flags & FWRITE)
254 return (EACCES);
256 return (0);
260 * Common close routine. Nothing to do here.
262 /* ARGSUSED */
263 static int
264 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off,
265 cred_t *cr, caller_context_t *ct)
267 return (0);
271 * Common access routine. Disallow writes.
273 /* ARGSUSED */
274 static int
275 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr,
276 caller_context_t *ct)
278 if (mode & VWRITE)
279 return (EACCES);
281 return (0);
285 * Common getattr function. Fill in basic information.
287 static void
288 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
290 zfsctl_node_t *zcp = vp->v_data;
291 timestruc_t now;
293 vap->va_uid = 0;
294 vap->va_gid = 0;
295 vap->va_rdev = 0;
297 * We are a purly virtual object, so we have no
298 * blocksize or allocated blocks.
300 vap->va_blksize = 0;
301 vap->va_nblocks = 0;
302 vap->va_seq = 0;
303 vap->va_fsid = vp->v_vfsp->vfs_dev;
304 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
305 S_IROTH | S_IXOTH;
306 vap->va_type = VDIR;
308 * We live in the now (for atime).
310 gethrestime(&now);
311 vap->va_atime = now;
312 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
315 /*ARGSUSED*/
316 static int
317 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
319 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
320 zfsctl_node_t *zcp = vp->v_data;
321 uint64_t object = zcp->zc_id;
322 zfid_short_t *zfid;
323 int i;
325 ZFS_ENTER(zfsvfs);
327 if (fidp->fid_len < SHORT_FID_LEN) {
328 fidp->fid_len = SHORT_FID_LEN;
329 ZFS_EXIT(zfsvfs);
330 return (ENOSPC);
333 zfid = (zfid_short_t *)fidp;
335 zfid->zf_len = SHORT_FID_LEN;
337 for (i = 0; i < sizeof (zfid->zf_object); i++)
338 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
340 /* .zfs znodes always have a generation number of 0 */
341 for (i = 0; i < sizeof (zfid->zf_gen); i++)
342 zfid->zf_gen[i] = 0;
344 ZFS_EXIT(zfsvfs);
345 return (0);
349 * .zfs inode namespace
351 * We need to generate unique inode numbers for all files and directories
352 * within the .zfs pseudo-filesystem. We use the following scheme:
354 * ENTRY ZFSCTL_INODE
355 * .zfs 1
356 * .zfs/snapshot 2
357 * .zfs/snapshot/<snap> objectid(snap)
360 #define ZFSCTL_INO_SNAP(id) (id)
363 * Get root directory attributes.
365 /* ARGSUSED */
366 static int
367 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
368 caller_context_t *ct)
370 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
372 ZFS_ENTER(zfsvfs);
373 vap->va_nodeid = ZFSCTL_INO_ROOT;
374 vap->va_nlink = vap->va_size = NROOT_ENTRIES;
376 zfsctl_common_getattr(vp, vap);
377 ZFS_EXIT(zfsvfs);
379 return (0);
383 * Special case the handling of "..".
385 /* ARGSUSED */
387 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
388 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
389 int *direntflags, pathname_t *realpnp)
391 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
392 int err;
395 * No extended attributes allowed under .zfs
397 if (flags & LOOKUP_XATTR)
398 return (EINVAL);
400 ZFS_ENTER(zfsvfs);
402 if (strcmp(nm, "..") == 0) {
403 err = VFS_ROOT(dvp->v_vfsp, vpp);
404 } else {
405 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir,
406 cr, ct, direntflags, realpnp);
409 ZFS_EXIT(zfsvfs);
411 return (err);
414 static const fs_operation_def_t zfsctl_tops_root[] = {
415 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } },
416 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } },
417 { VOPNAME_IOCTL, { .error = fs_inval } },
418 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } },
419 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } },
420 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } },
421 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } },
422 { VOPNAME_SEEK, { .vop_seek = fs_seek } },
423 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } },
424 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } },
425 { NULL }
428 static int
429 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
431 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
433 if (snapshot_namecheck(name, NULL, NULL) != 0)
434 return (EILSEQ);
435 dmu_objset_name(os, zname);
436 if (strlen(zname) + 1 + strlen(name) >= len)
437 return (ENAMETOOLONG);
438 (void) strcat(zname, "@");
439 (void) strcat(zname, name);
440 return (0);
443 static int
444 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
446 vnode_t *svp = sep->se_root;
447 int error;
449 ASSERT(vn_ismntpt(svp));
451 /* this will be dropped by dounmount() */
452 if ((error = vn_vfswlock(svp)) != 0)
453 return (error);
455 VN_HOLD(svp);
456 error = dounmount(vn_mountedvfs(svp), fflags, cr);
457 if (error) {
458 VN_RELE(svp);
459 return (error);
461 VFS_RELE(svp->v_vfsp);
463 * We can't use VN_RELE(), as that will try to invoke
464 * zfsctl_snapdir_inactive(), which would cause us to destroy
465 * the sd_lock mutex held by our caller.
467 ASSERT(svp->v_count == 1);
468 gfs_vop_inactive(svp, cr, NULL);
470 kmem_free(sep->se_name, strlen(sep->se_name) + 1);
471 kmem_free(sep, sizeof (zfs_snapentry_t));
473 return (0);
476 static void
477 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
479 avl_index_t where;
480 vfs_t *vfsp;
481 refstr_t *pathref;
482 char newpath[MAXNAMELEN];
483 char *tail;
485 ASSERT(MUTEX_HELD(&sdp->sd_lock));
486 ASSERT(sep != NULL);
488 vfsp = vn_mountedvfs(sep->se_root);
489 ASSERT(vfsp != NULL);
491 vfs_lock_wait(vfsp);
494 * Change the name in the AVL tree.
496 avl_remove(&sdp->sd_snaps, sep);
497 kmem_free(sep->se_name, strlen(sep->se_name) + 1);
498 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
499 (void) strcpy(sep->se_name, nm);
500 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
501 avl_insert(&sdp->sd_snaps, sep, where);
504 * Change the current mountpoint info:
505 * - update the tail of the mntpoint path
506 * - update the tail of the resource path
508 pathref = vfs_getmntpoint(vfsp);
509 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
510 VERIFY((tail = strrchr(newpath, '/')) != NULL);
511 *(tail+1) = '\0';
512 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
513 (void) strcat(newpath, nm);
514 refstr_rele(pathref);
515 vfs_setmntpoint(vfsp, newpath);
517 pathref = vfs_getresource(vfsp);
518 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
519 VERIFY((tail = strrchr(newpath, '@')) != NULL);
520 *(tail+1) = '\0';
521 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
522 (void) strcat(newpath, nm);
523 refstr_rele(pathref);
524 vfs_setresource(vfsp, newpath);
526 vfs_unlock(vfsp);
529 /*ARGSUSED*/
530 static int
531 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
532 cred_t *cr, caller_context_t *ct, int flags)
534 zfsctl_snapdir_t *sdp = sdvp->v_data;
535 zfs_snapentry_t search, *sep;
536 zfsvfs_t *zfsvfs;
537 avl_index_t where;
538 char from[MAXNAMELEN], to[MAXNAMELEN];
539 char real[MAXNAMELEN];
540 int err;
542 zfsvfs = sdvp->v_vfsp->vfs_data;
543 ZFS_ENTER(zfsvfs);
545 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
546 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
547 MAXNAMELEN, NULL);
548 if (err == 0) {
549 snm = real;
550 } else if (err != ENOTSUP) {
551 ZFS_EXIT(zfsvfs);
552 return (err);
556 ZFS_EXIT(zfsvfs);
558 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
559 if (!err)
560 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
561 if (!err)
562 err = zfs_secpolicy_rename_perms(from, to, cr);
563 if (err)
564 return (err);
567 * Cannot move snapshots out of the snapdir.
569 if (sdvp != tdvp)
570 return (EINVAL);
572 if (strcmp(snm, tnm) == 0)
573 return (0);
575 mutex_enter(&sdp->sd_lock);
577 search.se_name = (char *)snm;
578 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
579 mutex_exit(&sdp->sd_lock);
580 return (ENOENT);
583 err = dmu_objset_rename(from, to, B_FALSE);
584 if (err == 0)
585 zfsctl_rename_snap(sdp, sep, tnm);
587 mutex_exit(&sdp->sd_lock);
589 return (err);
592 /* ARGSUSED */
593 static int
594 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
595 caller_context_t *ct, int flags)
597 zfsctl_snapdir_t *sdp = dvp->v_data;
598 zfs_snapentry_t *sep;
599 zfs_snapentry_t search;
600 zfsvfs_t *zfsvfs;
601 char snapname[MAXNAMELEN];
602 char real[MAXNAMELEN];
603 int err;
605 zfsvfs = dvp->v_vfsp->vfs_data;
606 ZFS_ENTER(zfsvfs);
608 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
610 err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
611 MAXNAMELEN, NULL);
612 if (err == 0) {
613 name = real;
614 } else if (err != ENOTSUP) {
615 ZFS_EXIT(zfsvfs);
616 return (err);
620 ZFS_EXIT(zfsvfs);
622 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
623 if (!err)
624 err = zfs_secpolicy_destroy_perms(snapname, cr);
625 if (err)
626 return (err);
628 mutex_enter(&sdp->sd_lock);
630 search.se_name = name;
631 sep = avl_find(&sdp->sd_snaps, &search, NULL);
632 if (sep) {
633 avl_remove(&sdp->sd_snaps, sep);
634 err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
635 if (err)
636 avl_add(&sdp->sd_snaps, sep);
637 else
638 err = dmu_objset_destroy(snapname);
639 } else {
640 err = ENOENT;
643 mutex_exit(&sdp->sd_lock);
645 return (err);
649 * This creates a snapshot under '.zfs/snapshot'.
651 /* ARGSUSED */
652 static int
653 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp,
654 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
656 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
657 char name[MAXNAMELEN];
658 int err;
659 static enum symfollow follow = NO_FOLLOW;
660 static enum uio_seg seg = UIO_SYSSPACE;
662 if (snapshot_namecheck(dirname, NULL, NULL) != 0)
663 return (EILSEQ);
665 dmu_objset_name(zfsvfs->z_os, name);
667 *vpp = NULL;
669 err = zfs_secpolicy_snapshot_perms(name, cr);
670 if (err)
671 return (err);
673 if (err == 0) {
674 err = dmu_objset_snapshot(name, dirname, B_FALSE);
675 if (err)
676 return (err);
677 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
680 return (err);
684 * Lookup entry point for the 'snapshot' directory. Try to open the
685 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
686 * Perform a mount of the associated dataset on top of the vnode.
688 /* ARGSUSED */
689 static int
690 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
691 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
692 int *direntflags, pathname_t *realpnp)
694 zfsctl_snapdir_t *sdp = dvp->v_data;
695 objset_t *snap;
696 char snapname[MAXNAMELEN];
697 char real[MAXNAMELEN];
698 char *mountpoint;
699 zfs_snapentry_t *sep, search;
700 struct mounta margs;
701 vfs_t *vfsp;
702 size_t mountpoint_len;
703 avl_index_t where;
704 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
705 int err;
708 * No extended attributes allowed under .zfs
710 if (flags & LOOKUP_XATTR)
711 return (EINVAL);
713 ASSERT(dvp->v_type == VDIR);
715 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0)
716 return (0);
719 * If we get a recursive call, that means we got called
720 * from the domount() code while it was trying to look up the
721 * spec (which looks like a local path for zfs). We need to
722 * add some flag to domount() to tell it not to do this lookup.
724 if (MUTEX_HELD(&sdp->sd_lock))
725 return (ENOENT);
727 ZFS_ENTER(zfsvfs);
729 if (flags & FIGNORECASE) {
730 boolean_t conflict = B_FALSE;
732 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
733 MAXNAMELEN, &conflict);
734 if (err == 0) {
735 nm = real;
736 } else if (err != ENOTSUP) {
737 ZFS_EXIT(zfsvfs);
738 return (err);
740 if (realpnp)
741 (void) strlcpy(realpnp->pn_buf, nm,
742 realpnp->pn_bufsize);
743 if (conflict && direntflags)
744 *direntflags = ED_CASE_CONFLICT;
747 mutex_enter(&sdp->sd_lock);
748 search.se_name = (char *)nm;
749 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
750 *vpp = sep->se_root;
751 VN_HOLD(*vpp);
752 err = traverse(vpp);
753 if (err) {
754 VN_RELE(*vpp);
755 *vpp = NULL;
756 } else if (*vpp == sep->se_root) {
758 * The snapshot was unmounted behind our backs,
759 * try to remount it.
761 goto domount;
762 } else {
764 * VROOT was set during the traverse call. We need
765 * to clear it since we're pretending to be part
766 * of our parent's vfs.
768 (*vpp)->v_flag &= ~VROOT;
770 mutex_exit(&sdp->sd_lock);
771 ZFS_EXIT(zfsvfs);
772 return (err);
776 * The requested snapshot is not currently mounted, look it up.
778 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
779 if (err) {
780 mutex_exit(&sdp->sd_lock);
781 ZFS_EXIT(zfsvfs);
783 * handle "ls *" or "?" in a graceful manner,
784 * forcing EILSEQ to ENOENT.
785 * Since shell ultimately passes "*" or "?" as name to lookup
787 return (err == EILSEQ ? ENOENT : err);
789 if (dmu_objset_open(snapname, DMU_OST_ZFS,
790 DS_MODE_USER | DS_MODE_READONLY, &snap) != 0) {
791 mutex_exit(&sdp->sd_lock);
792 ZFS_EXIT(zfsvfs);
793 return (ENOENT);
796 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
797 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
798 (void) strcpy(sep->se_name, nm);
799 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
800 avl_insert(&sdp->sd_snaps, sep, where);
802 dmu_objset_close(snap);
803 domount:
804 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
805 strlen("/.zfs/snapshot/") + strlen(nm) + 1;
806 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
807 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
808 refstr_value(dvp->v_vfsp->vfs_mntpt), nm);
810 margs.spec = snapname;
811 margs.dir = mountpoint;
812 margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
813 margs.fstype = "zfs";
814 margs.dataptr = NULL;
815 margs.datalen = 0;
816 margs.optptr = NULL;
817 margs.optlen = 0;
819 err = domount("zfs", &margs, *vpp, kcred, &vfsp);
820 kmem_free(mountpoint, mountpoint_len);
822 if (err == 0) {
824 * Return the mounted root rather than the covered mount point.
825 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
826 * the ZFS vnode mounted on top of the GFS node. This ZFS
827 * vnode is the root the newly created vfsp.
829 VFS_RELE(vfsp);
830 err = traverse(vpp);
833 if (err == 0) {
835 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
837 * This is where we lie about our v_vfsp in order to
838 * make .zfs/snapshot/<snapname> accessible over NFS
839 * without requiring manual mounts of <snapname>.
841 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
842 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
843 (*vpp)->v_vfsp = zfsvfs->z_vfs;
844 (*vpp)->v_flag &= ~VROOT;
846 mutex_exit(&sdp->sd_lock);
847 ZFS_EXIT(zfsvfs);
850 * If we had an error, drop our hold on the vnode and
851 * zfsctl_snapshot_inactive() will clean up.
853 if (err) {
854 VN_RELE(*vpp);
855 *vpp = NULL;
857 return (err);
860 /* ARGSUSED */
861 static int
862 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
863 offset_t *offp, offset_t *nextp, void *data, int flags)
865 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
866 char snapname[MAXNAMELEN];
867 uint64_t id, cookie;
868 boolean_t case_conflict;
869 int error;
871 ZFS_ENTER(zfsvfs);
873 cookie = *offp;
874 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
875 &cookie, &case_conflict);
876 if (error) {
877 ZFS_EXIT(zfsvfs);
878 if (error == ENOENT) {
879 *eofp = 1;
880 return (0);
882 return (error);
885 if (flags & V_RDDIR_ENTFLAGS) {
886 edirent_t *eodp = dp;
888 (void) strcpy(eodp->ed_name, snapname);
889 eodp->ed_ino = ZFSCTL_INO_SNAP(id);
890 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
891 } else {
892 struct dirent64 *odp = dp;
894 (void) strcpy(odp->d_name, snapname);
895 odp->d_ino = ZFSCTL_INO_SNAP(id);
897 *nextp = cookie;
899 ZFS_EXIT(zfsvfs);
901 return (0);
905 * pvp is the '.zfs' directory (zfsctl_node_t).
906 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
908 * This function is the callback to create a GFS vnode for '.zfs/snapshot'
909 * when a lookup is performed on .zfs for "snapshot".
911 vnode_t *
912 zfsctl_mknode_snapdir(vnode_t *pvp)
914 vnode_t *vp;
915 zfsctl_snapdir_t *sdp;
917 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
918 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
919 zfsctl_snapdir_readdir_cb, NULL);
920 sdp = vp->v_data;
921 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
922 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
923 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
924 avl_create(&sdp->sd_snaps, snapentry_compare,
925 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
926 return (vp);
929 /* ARGSUSED */
930 static int
931 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
932 caller_context_t *ct)
934 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
935 zfsctl_snapdir_t *sdp = vp->v_data;
937 ZFS_ENTER(zfsvfs);
938 zfsctl_common_getattr(vp, vap);
939 vap->va_nodeid = gfs_file_inode(vp);
940 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
941 ZFS_EXIT(zfsvfs);
943 return (0);
946 /* ARGSUSED */
947 static void
948 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
950 zfsctl_snapdir_t *sdp = vp->v_data;
951 void *private;
953 private = gfs_dir_inactive(vp);
954 if (private != NULL) {
955 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
956 mutex_destroy(&sdp->sd_lock);
957 avl_destroy(&sdp->sd_snaps);
958 kmem_free(private, sizeof (zfsctl_snapdir_t));
962 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
963 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } },
964 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } },
965 { VOPNAME_IOCTL, { .error = fs_inval } },
966 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } },
967 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } },
968 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } },
969 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } },
970 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } },
971 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } },
972 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } },
973 { VOPNAME_SEEK, { .vop_seek = fs_seek } },
974 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } },
975 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } },
976 { NULL }
980 * pvp is the GFS vnode '.zfs/snapshot'.
982 * This creates a GFS node under '.zfs/snapshot' representing each
983 * snapshot. This newly created GFS node is what we mount snapshot
984 * vfs_t's ontop of.
986 static vnode_t *
987 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
989 vnode_t *vp;
990 zfsctl_node_t *zcp;
992 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
993 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
994 zcp = vp->v_data;
995 zcp->zc_id = objset;
996 VFS_HOLD(vp->v_vfsp);
998 return (vp);
1001 static void
1002 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1004 zfsctl_snapdir_t *sdp;
1005 zfs_snapentry_t *sep, *next;
1006 vnode_t *dvp;
1008 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1009 sdp = dvp->v_data;
1011 mutex_enter(&sdp->sd_lock);
1013 if (vp->v_count > 1) {
1014 mutex_exit(&sdp->sd_lock);
1015 return;
1017 ASSERT(!vn_ismntpt(vp));
1019 sep = avl_first(&sdp->sd_snaps);
1020 while (sep != NULL) {
1021 next = AVL_NEXT(&sdp->sd_snaps, sep);
1023 if (sep->se_root == vp) {
1024 avl_remove(&sdp->sd_snaps, sep);
1025 kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1026 kmem_free(sep, sizeof (zfs_snapentry_t));
1027 break;
1029 sep = next;
1031 ASSERT(sep != NULL);
1033 mutex_exit(&sdp->sd_lock);
1034 VN_RELE(dvp);
1035 VFS_RELE(vp->v_vfsp);
1038 * Dispose of the vnode for the snapshot mount point.
1039 * This is safe to do because once this entry has been removed
1040 * from the AVL tree, it can't be found again, so cannot become
1041 * "active". If we lookup the same name again we will end up
1042 * creating a new vnode.
1044 gfs_vop_inactive(vp, cr, ct);
1049 * These VP's should never see the light of day. They should always
1050 * be covered.
1052 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1053 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive },
1054 NULL, NULL
1058 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1060 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1061 vnode_t *dvp, *vp;
1062 zfsctl_snapdir_t *sdp;
1063 zfsctl_node_t *zcp;
1064 zfs_snapentry_t *sep;
1065 int error;
1067 ASSERT(zfsvfs->z_ctldir != NULL);
1068 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1069 NULL, 0, NULL, kcred, NULL, NULL, NULL);
1070 if (error != 0)
1071 return (error);
1072 sdp = dvp->v_data;
1074 mutex_enter(&sdp->sd_lock);
1075 sep = avl_first(&sdp->sd_snaps);
1076 while (sep != NULL) {
1077 vp = sep->se_root;
1078 zcp = vp->v_data;
1079 if (zcp->zc_id == objsetid)
1080 break;
1082 sep = AVL_NEXT(&sdp->sd_snaps, sep);
1085 if (sep != NULL) {
1086 VN_HOLD(vp);
1088 * Return the mounted root rather than the covered mount point.
1089 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1090 * and returns the ZFS vnode mounted on top of the GFS node.
1091 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
1093 error = traverse(&vp);
1094 if (error == 0) {
1095 if (vp == sep->se_root)
1096 error = EINVAL;
1097 else
1098 *zfsvfsp = VTOZ(vp)->z_zfsvfs;
1100 mutex_exit(&sdp->sd_lock);
1101 VN_RELE(vp);
1102 } else {
1103 error = EINVAL;
1104 mutex_exit(&sdp->sd_lock);
1107 VN_RELE(dvp);
1109 return (error);
1113 * Unmount any snapshots for the given filesystem. This is called from
1114 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1115 * snapshots.
1118 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1120 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1121 vnode_t *dvp;
1122 zfsctl_snapdir_t *sdp;
1123 zfs_snapentry_t *sep, *next;
1124 int error;
1126 ASSERT(zfsvfs->z_ctldir != NULL);
1127 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1128 NULL, 0, NULL, cr, NULL, NULL, NULL);
1129 if (error != 0)
1130 return (error);
1131 sdp = dvp->v_data;
1133 mutex_enter(&sdp->sd_lock);
1135 sep = avl_first(&sdp->sd_snaps);
1136 while (sep != NULL) {
1137 next = AVL_NEXT(&sdp->sd_snaps, sep);
1140 * If this snapshot is not mounted, then it must
1141 * have just been unmounted by somebody else, and
1142 * will be cleaned up by zfsctl_snapdir_inactive().
1144 if (vn_ismntpt(sep->se_root)) {
1145 avl_remove(&sdp->sd_snaps, sep);
1146 error = zfsctl_unmount_snap(sep, fflags, cr);
1147 if (error) {
1148 avl_add(&sdp->sd_snaps, sep);
1149 break;
1152 sep = next;
1155 mutex_exit(&sdp->sd_lock);
1156 VN_RELE(dvp);
1158 return (error);