Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / dist / uts / common / fs / zfs / zio.c
blobcdcb6d197797ed21d1e268805af9d76804bf17cb
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/txg.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio_impl.h>
33 #include <sys/zio_compress.h>
34 #include <sys/zio_checksum.h>
37 * ==========================================================================
38 * I/O priority table
39 * ==========================================================================
41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
42 0, /* ZIO_PRIORITY_NOW */
43 0, /* ZIO_PRIORITY_SYNC_READ */
44 0, /* ZIO_PRIORITY_SYNC_WRITE */
45 6, /* ZIO_PRIORITY_ASYNC_READ */
46 4, /* ZIO_PRIORITY_ASYNC_WRITE */
47 4, /* ZIO_PRIORITY_FREE */
48 0, /* ZIO_PRIORITY_CACHE_FILL */
49 0, /* ZIO_PRIORITY_LOG_WRITE */
50 10, /* ZIO_PRIORITY_RESILVER */
51 20, /* ZIO_PRIORITY_SCRUB */
55 * ==========================================================================
56 * I/O type descriptions
57 * ==========================================================================
59 char *zio_type_name[ZIO_TYPES] = {
60 "null", "read", "write", "free", "claim", "ioctl" };
62 #define SYNC_PASS_DEFERRED_FREE 1 /* defer frees after this pass */
63 #define SYNC_PASS_DONT_COMPRESS 4 /* don't compress after this pass */
64 #define SYNC_PASS_REWRITE 1 /* rewrite new bps after this pass */
67 * ==========================================================================
68 * I/O kmem caches
69 * ==========================================================================
71 kmem_cache_t *zio_cache;
72 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 #if defined(_KERNEL) && !defined(__NetBSD__)
76 extern vmem_t *zio_alloc_arena;
77 #endif
80 * An allocating zio is one that either currently has the DVA allocate
81 * stage set or will have it later in its lifetime.
83 #define IO_IS_ALLOCATING(zio) \
84 ((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE))
86 void
87 zio_init(void)
89 size_t c;
90 vmem_t *data_alloc_arena = NULL;
92 #if defined(_KERNEL) && !defined(__NetBSD__)
93 data_alloc_arena = zio_alloc_arena;
94 #endif
95 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
96 NULL, NULL, NULL, NULL, NULL, 0);
98 #ifndef __NetBSD__
100 * For small buffers, we want a cache for each multiple of
101 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
102 * for each quarter-power of 2. For large buffers, we want
103 * a cache for each multiple of PAGESIZE.
105 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
106 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
107 size_t p2 = size;
108 size_t align = 0;
110 while (p2 & (p2 - 1))
111 p2 &= p2 - 1;
113 if (size <= 4 * SPA_MINBLOCKSIZE) {
114 align = SPA_MINBLOCKSIZE;
115 } else if (P2PHASE(size, PAGESIZE) == 0) {
116 align = PAGESIZE;
117 } else if (P2PHASE(size, p2 >> 2) == 0) {
118 align = p2 >> 2;
121 if (align != 0) {
122 char name[36];
123 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
124 zio_buf_cache[c] = kmem_cache_create(name, size,
125 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
127 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
128 zio_data_buf_cache[c] = kmem_cache_create(name, size,
129 align, NULL, NULL, NULL, NULL, data_alloc_arena,
130 KMC_NODEBUG);
134 while (--c != 0) {
135 ASSERT(zio_buf_cache[c] != NULL);
136 if (zio_buf_cache[c - 1] == NULL)
137 zio_buf_cache[c - 1] = zio_buf_cache[c];
139 ASSERT(zio_data_buf_cache[c] != NULL);
140 if (zio_data_buf_cache[c - 1] == NULL)
141 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
143 #endif /* __NetBSD__ */
144 zio_inject_init();
147 void
148 zio_fini(void)
150 size_t c;
151 kmem_cache_t *last_cache = NULL;
152 kmem_cache_t *last_data_cache = NULL;
154 #ifndef __NetBSD__
155 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
156 if (zio_buf_cache[c] != last_cache) {
157 last_cache = zio_buf_cache[c];
158 kmem_cache_destroy(zio_buf_cache[c]);
160 zio_buf_cache[c] = NULL;
162 if (zio_data_buf_cache[c] != last_data_cache) {
163 last_data_cache = zio_data_buf_cache[c];
164 kmem_cache_destroy(zio_data_buf_cache[c]);
166 zio_data_buf_cache[c] = NULL;
168 #endif /* __NetBSD__ */
170 kmem_cache_destroy(zio_cache);
172 zio_inject_fini();
176 * ==========================================================================
177 * Allocate and free I/O buffers
178 * ==========================================================================
182 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
183 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
184 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
185 * excess / transient data in-core during a crashdump.
187 void *
188 zio_buf_alloc(size_t size)
190 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
191 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
192 #ifdef __NetBSD__
193 return (kmem_alloc(size, KM_SLEEP));
194 #else
195 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
196 #endif
200 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
201 * crashdump if the kernel panics. This exists so that we will limit the amount
202 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
203 * of kernel heap dumped to disk when the kernel panics)
205 void *
206 zio_data_buf_alloc(size_t size)
208 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
210 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
211 #ifdef __NetBSD__
212 return (kmem_alloc(size, KM_SLEEP));
213 #else
214 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
215 #endif
218 void
219 zio_buf_free(void *buf, size_t size)
221 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
223 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
225 #ifdef __NetBSD__
226 kmem_free(buf, size);
227 #else
228 kmem_cache_free(zio_buf_cache[c], buf);
229 #endif
232 void
233 zio_data_buf_free(void *buf, size_t size)
235 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
237 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
239 #ifdef __NetBSD__
240 kmem_free(buf, size);
241 #else
242 kmem_cache_free(zio_data_buf_cache[c], buf);
243 #endif
247 * ==========================================================================
248 * Push and pop I/O transform buffers
249 * ==========================================================================
251 static void
252 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
253 zio_transform_func_t *transform)
255 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
257 zt->zt_orig_data = zio->io_data;
258 zt->zt_orig_size = zio->io_size;
259 zt->zt_bufsize = bufsize;
260 zt->zt_transform = transform;
262 zt->zt_next = zio->io_transform_stack;
263 zio->io_transform_stack = zt;
265 zio->io_data = data;
266 zio->io_size = size;
269 static void
270 zio_pop_transforms(zio_t *zio)
272 zio_transform_t *zt;
274 while ((zt = zio->io_transform_stack) != NULL) {
275 if (zt->zt_transform != NULL)
276 zt->zt_transform(zio,
277 zt->zt_orig_data, zt->zt_orig_size);
279 zio_buf_free(zio->io_data, zt->zt_bufsize);
281 zio->io_data = zt->zt_orig_data;
282 zio->io_size = zt->zt_orig_size;
283 zio->io_transform_stack = zt->zt_next;
285 kmem_free(zt, sizeof (zio_transform_t));
290 * ==========================================================================
291 * I/O transform callbacks for subblocks and decompression
292 * ==========================================================================
294 static void
295 zio_subblock(zio_t *zio, void *data, uint64_t size)
297 ASSERT(zio->io_size > size);
299 if (zio->io_type == ZIO_TYPE_READ)
300 bcopy(zio->io_data, data, size);
303 static void
304 zio_decompress(zio_t *zio, void *data, uint64_t size)
306 if (zio->io_error == 0 &&
307 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
308 zio->io_data, zio->io_size, data, size) != 0)
309 zio->io_error = EIO;
313 * ==========================================================================
314 * I/O parent/child relationships and pipeline interlocks
315 * ==========================================================================
318 static void
319 zio_add_child(zio_t *pio, zio_t *zio)
321 mutex_enter(&pio->io_lock);
322 if (zio->io_stage < ZIO_STAGE_READY)
323 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++;
324 if (zio->io_stage < ZIO_STAGE_DONE)
325 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++;
326 zio->io_sibling_prev = NULL;
327 zio->io_sibling_next = pio->io_child;
328 if (pio->io_child != NULL)
329 pio->io_child->io_sibling_prev = zio;
330 pio->io_child = zio;
331 zio->io_parent = pio;
332 mutex_exit(&pio->io_lock);
335 static void
336 zio_remove_child(zio_t *pio, zio_t *zio)
338 zio_t *next, *prev;
340 ASSERT(zio->io_parent == pio);
342 mutex_enter(&pio->io_lock);
343 next = zio->io_sibling_next;
344 prev = zio->io_sibling_prev;
345 if (next != NULL)
346 next->io_sibling_prev = prev;
347 if (prev != NULL)
348 prev->io_sibling_next = next;
349 if (pio->io_child == zio)
350 pio->io_child = next;
351 mutex_exit(&pio->io_lock);
354 static boolean_t
355 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
357 uint64_t *countp = &zio->io_children[child][wait];
358 boolean_t waiting = B_FALSE;
360 mutex_enter(&zio->io_lock);
361 ASSERT(zio->io_stall == NULL);
362 if (*countp != 0) {
363 zio->io_stage--;
364 zio->io_stall = countp;
365 waiting = B_TRUE;
367 mutex_exit(&zio->io_lock);
369 return (waiting);
372 static void
373 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
375 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
376 int *errorp = &pio->io_child_error[zio->io_child_type];
378 mutex_enter(&pio->io_lock);
379 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
380 *errorp = zio_worst_error(*errorp, zio->io_error);
381 pio->io_reexecute |= zio->io_reexecute;
382 ASSERT3U(*countp, >, 0);
383 if (--*countp == 0 && pio->io_stall == countp) {
384 pio->io_stall = NULL;
385 mutex_exit(&pio->io_lock);
386 zio_execute(pio);
387 } else {
388 mutex_exit(&pio->io_lock);
392 static void
393 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
395 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
396 zio->io_error = zio->io_child_error[c];
400 * ==========================================================================
401 * Create the various types of I/O (read, write, free, etc)
402 * ==========================================================================
404 static zio_t *
405 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
406 void *data, uint64_t size, zio_done_func_t *done, void *private,
407 zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset,
408 const zbookmark_t *zb, uint8_t stage, uint32_t pipeline)
410 zio_t *zio;
412 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
413 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
414 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
416 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
417 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
418 ASSERT(vd || stage == ZIO_STAGE_OPEN);
420 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
421 bzero(zio, sizeof (zio_t));
423 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
424 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
426 if (vd != NULL)
427 zio->io_child_type = ZIO_CHILD_VDEV;
428 else if (flags & ZIO_FLAG_GANG_CHILD)
429 zio->io_child_type = ZIO_CHILD_GANG;
430 else
431 zio->io_child_type = ZIO_CHILD_LOGICAL;
433 if (bp != NULL) {
434 zio->io_bp = bp;
435 zio->io_bp_copy = *bp;
436 zio->io_bp_orig = *bp;
437 if (type != ZIO_TYPE_WRITE)
438 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
439 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
440 if (BP_IS_GANG(bp))
441 pipeline |= ZIO_GANG_STAGES;
442 zio->io_logical = zio;
446 zio->io_spa = spa;
447 zio->io_txg = txg;
448 zio->io_data = data;
449 zio->io_size = size;
450 zio->io_done = done;
451 zio->io_private = private;
452 zio->io_type = type;
453 zio->io_priority = priority;
454 zio->io_vd = vd;
455 zio->io_offset = offset;
456 zio->io_orig_flags = zio->io_flags = flags;
457 zio->io_orig_stage = zio->io_stage = stage;
458 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
460 if (zb != NULL)
461 zio->io_bookmark = *zb;
463 if (pio != NULL) {
465 * Logical I/Os can have logical, gang, or vdev children.
466 * Gang I/Os can have gang or vdev children.
467 * Vdev I/Os can only have vdev children.
468 * The following ASSERT captures all of these constraints.
470 ASSERT(zio->io_child_type <= pio->io_child_type);
471 if (zio->io_logical == NULL)
472 zio->io_logical = pio->io_logical;
473 zio_add_child(pio, zio);
476 return (zio);
479 static void
480 zio_destroy(zio_t *zio)
482 spa_t *spa = zio->io_spa;
483 uint8_t async_root = zio->io_async_root;
485 mutex_destroy(&zio->io_lock);
486 cv_destroy(&zio->io_cv);
487 kmem_cache_free(zio_cache, zio);
489 if (async_root) {
490 mutex_enter(&spa->spa_async_root_lock);
491 if (--spa->spa_async_root_count == 0)
492 cv_broadcast(&spa->spa_async_root_cv);
493 mutex_exit(&spa->spa_async_root_lock);
497 zio_t *
498 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private,
499 int flags)
501 zio_t *zio;
503 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
504 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
505 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
507 return (zio);
510 zio_t *
511 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags)
513 return (zio_null(NULL, spa, done, private, flags));
516 zio_t *
517 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
518 void *data, uint64_t size, zio_done_func_t *done, void *private,
519 int priority, int flags, const zbookmark_t *zb)
521 zio_t *zio;
523 zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp,
524 data, size, done, private,
525 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
526 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE);
528 return (zio);
531 void
532 zio_skip_write(zio_t *zio)
534 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
535 ASSERT(zio->io_stage == ZIO_STAGE_READY);
536 ASSERT(!BP_IS_GANG(zio->io_bp));
538 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
541 zio_t *
542 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
543 void *data, uint64_t size, zio_prop_t *zp,
544 zio_done_func_t *ready, zio_done_func_t *done, void *private,
545 int priority, int flags, const zbookmark_t *zb)
547 zio_t *zio;
549 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
550 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
551 zp->zp_compress >= ZIO_COMPRESS_OFF &&
552 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
553 zp->zp_type < DMU_OT_NUMTYPES &&
554 zp->zp_level < 32 &&
555 zp->zp_ndvas > 0 &&
556 zp->zp_ndvas <= spa_max_replication(spa));
557 ASSERT(ready != NULL);
559 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
560 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
561 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE);
563 zio->io_ready = ready;
564 zio->io_prop = *zp;
566 return (zio);
569 zio_t *
570 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
571 uint64_t size, zio_done_func_t *done, void *private, int priority,
572 int flags, zbookmark_t *zb)
574 zio_t *zio;
576 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
577 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
578 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
580 return (zio);
583 zio_t *
584 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
585 zio_done_func_t *done, void *private, int flags)
587 zio_t *zio;
589 ASSERT(!BP_IS_HOLE(bp));
591 if (bp->blk_fill == BLK_FILL_ALREADY_FREED)
592 return (zio_null(pio, spa, NULL, NULL, flags));
594 if (txg == spa->spa_syncing_txg &&
595 spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) {
596 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
597 return (zio_null(pio, spa, NULL, NULL, flags));
600 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
601 done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
602 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
604 return (zio);
607 zio_t *
608 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
609 zio_done_func_t *done, void *private, int flags)
611 zio_t *zio;
614 * A claim is an allocation of a specific block. Claims are needed
615 * to support immediate writes in the intent log. The issue is that
616 * immediate writes contain committed data, but in a txg that was
617 * *not* committed. Upon opening the pool after an unclean shutdown,
618 * the intent log claims all blocks that contain immediate write data
619 * so that the SPA knows they're in use.
621 * All claims *must* be resolved in the first txg -- before the SPA
622 * starts allocating blocks -- so that nothing is allocated twice.
624 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
625 ASSERT3U(spa_first_txg(spa), <=, txg);
627 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
628 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
629 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
631 return (zio);
634 zio_t *
635 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
636 zio_done_func_t *done, void *private, int priority, int flags)
638 zio_t *zio;
639 int c;
641 if (vd->vdev_children == 0) {
642 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
643 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
644 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
646 zio->io_cmd = cmd;
647 } else {
648 zio = zio_null(pio, spa, NULL, NULL, flags);
650 for (c = 0; c < vd->vdev_children; c++)
651 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
652 done, private, priority, flags));
655 return (zio);
658 zio_t *
659 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
660 void *data, int checksum, zio_done_func_t *done, void *private,
661 int priority, int flags, boolean_t labels)
663 zio_t *zio;
665 ASSERT(vd->vdev_children == 0);
666 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
667 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
668 ASSERT3U(offset + size, <=, vd->vdev_psize);
670 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
671 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
672 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
674 zio->io_prop.zp_checksum = checksum;
676 return (zio);
679 zio_t *
680 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
681 void *data, int checksum, zio_done_func_t *done, void *private,
682 int priority, int flags, boolean_t labels)
684 zio_t *zio;
686 ASSERT(vd->vdev_children == 0);
687 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
688 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
689 ASSERT3U(offset + size, <=, vd->vdev_psize);
691 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
692 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
693 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
695 zio->io_prop.zp_checksum = checksum;
697 if (zio_checksum_table[checksum].ci_zbt) {
699 * zbt checksums are necessarily destructive -- they modify
700 * the end of the write buffer to hold the verifier/checksum.
701 * Therefore, we must make a local copy in case the data is
702 * being written to multiple places in parallel.
704 void *wbuf = zio_buf_alloc(size);
705 bcopy(data, wbuf, size);
706 zio_push_transform(zio, wbuf, size, size, NULL);
709 return (zio);
713 * Create a child I/O to do some work for us.
715 zio_t *
716 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
717 void *data, uint64_t size, int type, int priority, int flags,
718 zio_done_func_t *done, void *private)
720 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE;
721 zio_t *zio;
723 ASSERT(vd->vdev_parent ==
724 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
726 if (type == ZIO_TYPE_READ && bp != NULL) {
728 * If we have the bp, then the child should perform the
729 * checksum and the parent need not. This pushes error
730 * detection as close to the leaves as possible and
731 * eliminates redundant checksums in the interior nodes.
733 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY;
734 pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
737 if (vd->vdev_children == 0)
738 offset += VDEV_LABEL_START_SIZE;
740 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
741 done, private, type, priority,
742 (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) |
743 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags,
744 vd, offset, &pio->io_bookmark,
745 ZIO_STAGE_VDEV_IO_START - 1, pipeline);
747 return (zio);
750 zio_t *
751 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
752 int type, int priority, int flags, zio_done_func_t *done, void *private)
754 zio_t *zio;
756 ASSERT(vd->vdev_ops->vdev_op_leaf);
758 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
759 data, size, done, private, type, priority,
760 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
761 vd, offset, NULL,
762 ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE);
764 return (zio);
767 void
768 zio_flush(zio_t *zio, vdev_t *vd)
770 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
771 NULL, NULL, ZIO_PRIORITY_NOW,
772 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
776 * ==========================================================================
777 * Prepare to read and write logical blocks
778 * ==========================================================================
781 static int
782 zio_read_bp_init(zio_t *zio)
784 blkptr_t *bp = zio->io_bp;
786 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && zio->io_logical == zio) {
787 uint64_t csize = BP_GET_PSIZE(bp);
788 void *cbuf = zio_buf_alloc(csize);
790 zio_push_transform(zio, cbuf, csize, csize, zio_decompress);
793 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
794 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
796 return (ZIO_PIPELINE_CONTINUE);
799 static int
800 zio_write_bp_init(zio_t *zio)
802 zio_prop_t *zp = &zio->io_prop;
803 int compress = zp->zp_compress;
804 blkptr_t *bp = zio->io_bp;
805 void *cbuf;
806 uint64_t lsize = zio->io_size;
807 uint64_t csize = lsize;
808 uint64_t cbufsize = 0;
809 int pass = 1;
812 * If our children haven't all reached the ready stage,
813 * wait for them and then repeat this pipeline stage.
815 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
816 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
817 return (ZIO_PIPELINE_STOP);
819 if (!IO_IS_ALLOCATING(zio))
820 return (ZIO_PIPELINE_CONTINUE);
822 ASSERT(compress != ZIO_COMPRESS_INHERIT);
824 if (bp->blk_birth == zio->io_txg) {
826 * We're rewriting an existing block, which means we're
827 * working on behalf of spa_sync(). For spa_sync() to
828 * converge, it must eventually be the case that we don't
829 * have to allocate new blocks. But compression changes
830 * the blocksize, which forces a reallocate, and makes
831 * convergence take longer. Therefore, after the first
832 * few passes, stop compressing to ensure convergence.
834 pass = spa_sync_pass(zio->io_spa);
835 ASSERT(pass > 1);
837 if (pass > SYNC_PASS_DONT_COMPRESS)
838 compress = ZIO_COMPRESS_OFF;
841 * Only MOS (objset 0) data should need to be rewritten.
843 ASSERT(zio->io_logical->io_bookmark.zb_objset == 0);
845 /* Make sure someone doesn't change their mind on overwrites */
846 ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp),
847 spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp));
850 if (compress != ZIO_COMPRESS_OFF) {
851 if (!zio_compress_data(compress, zio->io_data, zio->io_size,
852 &cbuf, &csize, &cbufsize)) {
853 compress = ZIO_COMPRESS_OFF;
854 } else if (csize != 0) {
855 zio_push_transform(zio, cbuf, csize, cbufsize, NULL);
860 * The final pass of spa_sync() must be all rewrites, but the first
861 * few passes offer a trade-off: allocating blocks defers convergence,
862 * but newly allocated blocks are sequential, so they can be written
863 * to disk faster. Therefore, we allow the first few passes of
864 * spa_sync() to allocate new blocks, but force rewrites after that.
865 * There should only be a handful of blocks after pass 1 in any case.
867 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize &&
868 pass > SYNC_PASS_REWRITE) {
869 ASSERT(csize != 0);
870 uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
871 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
872 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
873 } else {
874 BP_ZERO(bp);
875 zio->io_pipeline = ZIO_WRITE_PIPELINE;
878 if (csize == 0) {
879 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
880 } else {
881 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
882 BP_SET_LSIZE(bp, lsize);
883 BP_SET_PSIZE(bp, csize);
884 BP_SET_COMPRESS(bp, compress);
885 BP_SET_CHECKSUM(bp, zp->zp_checksum);
886 BP_SET_TYPE(bp, zp->zp_type);
887 BP_SET_LEVEL(bp, zp->zp_level);
888 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
891 return (ZIO_PIPELINE_CONTINUE);
895 * ==========================================================================
896 * Execute the I/O pipeline
897 * ==========================================================================
900 static void
901 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q)
903 zio_type_t t = zio->io_type;
906 * If we're a config writer, the normal issue and interrupt threads
907 * may all be blocked waiting for the config lock. In this case,
908 * select the otherwise-unused taskq for ZIO_TYPE_NULL.
910 if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER)
911 t = ZIO_TYPE_NULL;
914 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
916 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
917 t = ZIO_TYPE_NULL;
919 (void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q],
920 (task_func_t *)zio_execute, zio, TQ_SLEEP);
923 static boolean_t
924 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
926 kthread_t *executor = zio->io_executor;
927 spa_t *spa = zio->io_spa;
929 for (zio_type_t t = 0; t < ZIO_TYPES; t++)
930 if (taskq_member(spa->spa_zio_taskq[t][q], executor))
931 return (B_TRUE);
933 return (B_FALSE);
936 static int
937 zio_issue_async(zio_t *zio)
939 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
941 return (ZIO_PIPELINE_STOP);
944 void
945 zio_interrupt(zio_t *zio)
947 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT);
951 * Execute the I/O pipeline until one of the following occurs:
952 * (1) the I/O completes; (2) the pipeline stalls waiting for
953 * dependent child I/Os; (3) the I/O issues, so we're waiting
954 * for an I/O completion interrupt; (4) the I/O is delegated by
955 * vdev-level caching or aggregation; (5) the I/O is deferred
956 * due to vdev-level queueing; (6) the I/O is handed off to
957 * another thread. In all cases, the pipeline stops whenever
958 * there's no CPU work; it never burns a thread in cv_wait().
960 * There's no locking on io_stage because there's no legitimate way
961 * for multiple threads to be attempting to process the same I/O.
963 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES];
965 void
966 zio_execute(zio_t *zio)
968 zio->io_executor = curthread;
970 while (zio->io_stage < ZIO_STAGE_DONE) {
971 uint32_t pipeline = zio->io_pipeline;
972 zio_stage_t stage = zio->io_stage;
973 int rv;
975 ASSERT(!MUTEX_HELD(&zio->io_lock));
977 while (((1U << ++stage) & pipeline) == 0)
978 continue;
980 ASSERT(stage <= ZIO_STAGE_DONE);
981 ASSERT(zio->io_stall == NULL);
984 * If we are in interrupt context and this pipeline stage
985 * will grab a config lock that is held across I/O,
986 * issue async to avoid deadlock.
988 if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) &&
989 zio->io_vd == NULL &&
990 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
991 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
992 return;
995 zio->io_stage = stage;
996 rv = zio_pipeline[stage](zio);
998 if (rv == ZIO_PIPELINE_STOP)
999 return;
1001 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1006 * ==========================================================================
1007 * Initiate I/O, either sync or async
1008 * ==========================================================================
1011 zio_wait(zio_t *zio)
1013 int error;
1015 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1016 ASSERT(zio->io_executor == NULL);
1018 zio->io_waiter = curthread;
1020 zio_execute(zio);
1022 mutex_enter(&zio->io_lock);
1023 while (zio->io_executor != NULL)
1024 cv_wait(&zio->io_cv, &zio->io_lock);
1025 mutex_exit(&zio->io_lock);
1027 error = zio->io_error;
1028 zio_destroy(zio);
1030 return (error);
1033 void
1034 zio_nowait(zio_t *zio)
1036 ASSERT(zio->io_executor == NULL);
1038 if (zio->io_parent == NULL && zio->io_child_type == ZIO_CHILD_LOGICAL) {
1040 * This is a logical async I/O with no parent to wait for it.
1041 * Attach it to the pool's global async root zio so that
1042 * spa_unload() has a way of waiting for async I/O to finish.
1044 spa_t *spa = zio->io_spa;
1045 zio->io_async_root = B_TRUE;
1046 mutex_enter(&spa->spa_async_root_lock);
1047 spa->spa_async_root_count++;
1048 mutex_exit(&spa->spa_async_root_lock);
1051 zio_execute(zio);
1055 * ==========================================================================
1056 * Reexecute or suspend/resume failed I/O
1057 * ==========================================================================
1060 static void
1061 zio_reexecute(zio_t *pio)
1063 zio_t *zio, *zio_next;
1065 pio->io_flags = pio->io_orig_flags;
1066 pio->io_stage = pio->io_orig_stage;
1067 pio->io_pipeline = pio->io_orig_pipeline;
1068 pio->io_reexecute = 0;
1069 pio->io_error = 0;
1070 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1071 pio->io_child_error[c] = 0;
1073 if (IO_IS_ALLOCATING(pio)) {
1075 * Remember the failed bp so that the io_ready() callback
1076 * can update its accounting upon reexecution. The block
1077 * was already freed in zio_done(); we indicate this with
1078 * a fill count of -1 so that zio_free() knows to skip it.
1080 blkptr_t *bp = pio->io_bp;
1081 ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg);
1082 bp->blk_fill = BLK_FILL_ALREADY_FREED;
1083 pio->io_bp_orig = *bp;
1084 BP_ZERO(bp);
1088 * As we reexecute pio's children, new children could be created.
1089 * New children go to the head of the io_child list, however,
1090 * so we will (correctly) not reexecute them. The key is that
1091 * the remainder of the io_child list, from 'zio_next' onward,
1092 * cannot be affected by any side effects of reexecuting 'zio'.
1094 for (zio = pio->io_child; zio != NULL; zio = zio_next) {
1095 zio_next = zio->io_sibling_next;
1096 mutex_enter(&pio->io_lock);
1097 pio->io_children[zio->io_child_type][ZIO_WAIT_READY]++;
1098 pio->io_children[zio->io_child_type][ZIO_WAIT_DONE]++;
1099 mutex_exit(&pio->io_lock);
1100 zio_reexecute(zio);
1104 * Now that all children have been reexecuted, execute the parent.
1106 zio_execute(pio);
1109 void
1110 zio_suspend(spa_t *spa, zio_t *zio)
1112 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1113 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1114 "failure and the failure mode property for this pool "
1115 "is set to panic.", spa_name(spa));
1117 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1119 mutex_enter(&spa->spa_suspend_lock);
1121 if (spa->spa_suspend_zio_root == NULL)
1122 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 0);
1124 spa->spa_suspended = B_TRUE;
1126 if (zio != NULL) {
1127 ASSERT(zio != spa->spa_suspend_zio_root);
1128 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1129 ASSERT(zio->io_parent == NULL);
1130 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1131 zio_add_child(spa->spa_suspend_zio_root, zio);
1134 mutex_exit(&spa->spa_suspend_lock);
1137 void
1138 zio_resume(spa_t *spa)
1140 zio_t *pio, *zio;
1143 * Reexecute all previously suspended i/o.
1145 mutex_enter(&spa->spa_suspend_lock);
1146 spa->spa_suspended = B_FALSE;
1147 cv_broadcast(&spa->spa_suspend_cv);
1148 pio = spa->spa_suspend_zio_root;
1149 spa->spa_suspend_zio_root = NULL;
1150 mutex_exit(&spa->spa_suspend_lock);
1152 if (pio == NULL)
1153 return;
1155 while ((zio = pio->io_child) != NULL) {
1156 zio_remove_child(pio, zio);
1157 zio->io_parent = NULL;
1158 zio_reexecute(zio);
1161 ASSERT(pio->io_children[ZIO_CHILD_LOGICAL][ZIO_WAIT_DONE] == 0);
1163 (void) zio_wait(pio);
1166 void
1167 zio_resume_wait(spa_t *spa)
1169 mutex_enter(&spa->spa_suspend_lock);
1170 while (spa_suspended(spa))
1171 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1172 mutex_exit(&spa->spa_suspend_lock);
1176 * ==========================================================================
1177 * Gang blocks.
1179 * A gang block is a collection of small blocks that looks to the DMU
1180 * like one large block. When zio_dva_allocate() cannot find a block
1181 * of the requested size, due to either severe fragmentation or the pool
1182 * being nearly full, it calls zio_write_gang_block() to construct the
1183 * block from smaller fragments.
1185 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1186 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1187 * an indirect block: it's an array of block pointers. It consumes
1188 * only one sector and hence is allocatable regardless of fragmentation.
1189 * The gang header's bps point to its gang members, which hold the data.
1191 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1192 * as the verifier to ensure uniqueness of the SHA256 checksum.
1193 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1194 * not the gang header. This ensures that data block signatures (needed for
1195 * deduplication) are independent of how the block is physically stored.
1197 * Gang blocks can be nested: a gang member may itself be a gang block.
1198 * Thus every gang block is a tree in which root and all interior nodes are
1199 * gang headers, and the leaves are normal blocks that contain user data.
1200 * The root of the gang tree is called the gang leader.
1202 * To perform any operation (read, rewrite, free, claim) on a gang block,
1203 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1204 * in the io_gang_tree field of the original logical i/o by recursively
1205 * reading the gang leader and all gang headers below it. This yields
1206 * an in-core tree containing the contents of every gang header and the
1207 * bps for every constituent of the gang block.
1209 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1210 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1211 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1212 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1213 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1214 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1215 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1216 * of the gang header plus zio_checksum_compute() of the data to update the
1217 * gang header's blk_cksum as described above.
1219 * The two-phase assemble/issue model solves the problem of partial failure --
1220 * what if you'd freed part of a gang block but then couldn't read the
1221 * gang header for another part? Assembling the entire gang tree first
1222 * ensures that all the necessary gang header I/O has succeeded before
1223 * starting the actual work of free, claim, or write. Once the gang tree
1224 * is assembled, free and claim are in-memory operations that cannot fail.
1226 * In the event that a gang write fails, zio_dva_unallocate() walks the
1227 * gang tree to immediately free (i.e. insert back into the space map)
1228 * everything we've allocated. This ensures that we don't get ENOSPC
1229 * errors during repeated suspend/resume cycles due to a flaky device.
1231 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1232 * the gang tree, we won't modify the block, so we can safely defer the free
1233 * (knowing that the block is still intact). If we *can* assemble the gang
1234 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1235 * each constituent bp and we can allocate a new block on the next sync pass.
1237 * In all cases, the gang tree allows complete recovery from partial failure.
1238 * ==========================================================================
1241 static zio_t *
1242 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1244 if (gn != NULL)
1245 return (pio);
1247 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1248 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1249 &pio->io_bookmark));
1252 zio_t *
1253 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1255 zio_t *zio;
1257 if (gn != NULL) {
1258 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1259 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1260 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1262 * As we rewrite each gang header, the pipeline will compute
1263 * a new gang block header checksum for it; but no one will
1264 * compute a new data checksum, so we do that here. The one
1265 * exception is the gang leader: the pipeline already computed
1266 * its data checksum because that stage precedes gang assembly.
1267 * (Presently, nothing actually uses interior data checksums;
1268 * this is just good hygiene.)
1270 if (gn != pio->io_logical->io_gang_tree) {
1271 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1272 data, BP_GET_PSIZE(bp));
1274 } else {
1275 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1276 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1277 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1280 return (zio);
1283 /* ARGSUSED */
1284 zio_t *
1285 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1287 return (zio_free(pio, pio->io_spa, pio->io_txg, bp,
1288 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1291 /* ARGSUSED */
1292 zio_t *
1293 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1295 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1296 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1299 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1300 NULL,
1301 zio_read_gang,
1302 zio_rewrite_gang,
1303 zio_free_gang,
1304 zio_claim_gang,
1305 NULL
1308 static void zio_gang_tree_assemble_done(zio_t *zio);
1310 static zio_gang_node_t *
1311 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1313 zio_gang_node_t *gn;
1315 ASSERT(*gnpp == NULL);
1317 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1318 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1319 *gnpp = gn;
1321 return (gn);
1324 static void
1325 zio_gang_node_free(zio_gang_node_t **gnpp)
1327 zio_gang_node_t *gn = *gnpp;
1329 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1330 ASSERT(gn->gn_child[g] == NULL);
1332 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1333 kmem_free(gn, sizeof (*gn));
1334 *gnpp = NULL;
1337 static void
1338 zio_gang_tree_free(zio_gang_node_t **gnpp)
1340 zio_gang_node_t *gn = *gnpp;
1342 if (gn == NULL)
1343 return;
1345 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1346 zio_gang_tree_free(&gn->gn_child[g]);
1348 zio_gang_node_free(gnpp);
1351 static void
1352 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp)
1354 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1356 ASSERT(lio->io_logical == lio);
1357 ASSERT(BP_IS_GANG(bp));
1359 zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh,
1360 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1361 lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark));
1364 static void
1365 zio_gang_tree_assemble_done(zio_t *zio)
1367 zio_t *lio = zio->io_logical;
1368 zio_gang_node_t *gn = zio->io_private;
1369 blkptr_t *bp = zio->io_bp;
1371 ASSERT(zio->io_parent == lio);
1372 ASSERT(zio->io_child == NULL);
1374 if (zio->io_error)
1375 return;
1377 if (BP_SHOULD_BYTESWAP(bp))
1378 byteswap_uint64_array(zio->io_data, zio->io_size);
1380 ASSERT(zio->io_data == gn->gn_gbh);
1381 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1382 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
1384 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1385 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1386 if (!BP_IS_GANG(gbp))
1387 continue;
1388 zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]);
1392 static void
1393 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1395 zio_t *lio = pio->io_logical;
1396 zio_t *zio;
1398 ASSERT(BP_IS_GANG(bp) == !!gn);
1399 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp));
1400 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree);
1403 * If you're a gang header, your data is in gn->gn_gbh.
1404 * If you're a gang member, your data is in 'data' and gn == NULL.
1406 zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data);
1408 if (gn != NULL) {
1409 ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
1411 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1412 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1413 if (BP_IS_HOLE(gbp))
1414 continue;
1415 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1416 data = (char *)data + BP_GET_PSIZE(gbp);
1420 if (gn == lio->io_gang_tree)
1421 ASSERT3P((char *)lio->io_data + lio->io_size, ==, data);
1423 if (zio != pio)
1424 zio_nowait(zio);
1427 static int
1428 zio_gang_assemble(zio_t *zio)
1430 blkptr_t *bp = zio->io_bp;
1432 ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical);
1434 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1436 return (ZIO_PIPELINE_CONTINUE);
1439 static int
1440 zio_gang_issue(zio_t *zio)
1442 zio_t *lio = zio->io_logical;
1443 blkptr_t *bp = zio->io_bp;
1445 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1446 return (ZIO_PIPELINE_STOP);
1448 ASSERT(BP_IS_GANG(bp) && zio == lio);
1450 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1451 zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data);
1452 else
1453 zio_gang_tree_free(&lio->io_gang_tree);
1455 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1457 return (ZIO_PIPELINE_CONTINUE);
1460 static void
1461 zio_write_gang_member_ready(zio_t *zio)
1463 zio_t *pio = zio->io_parent;
1464 zio_t *lio = zio->io_logical;
1465 dva_t *cdva = zio->io_bp->blk_dva;
1466 dva_t *pdva = pio->io_bp->blk_dva;
1467 uint64_t asize;
1469 if (BP_IS_HOLE(zio->io_bp))
1470 return;
1472 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1474 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1475 ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas);
1476 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp));
1477 ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp));
1478 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1480 mutex_enter(&pio->io_lock);
1481 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1482 ASSERT(DVA_GET_GANG(&pdva[d]));
1483 asize = DVA_GET_ASIZE(&pdva[d]);
1484 asize += DVA_GET_ASIZE(&cdva[d]);
1485 DVA_SET_ASIZE(&pdva[d], asize);
1487 mutex_exit(&pio->io_lock);
1490 static int
1491 zio_write_gang_block(zio_t *pio)
1493 spa_t *spa = pio->io_spa;
1494 blkptr_t *bp = pio->io_bp;
1495 zio_t *lio = pio->io_logical;
1496 zio_t *zio;
1497 zio_gang_node_t *gn, **gnpp;
1498 zio_gbh_phys_t *gbh;
1499 uint64_t txg = pio->io_txg;
1500 uint64_t resid = pio->io_size;
1501 uint64_t lsize;
1502 int ndvas = lio->io_prop.zp_ndvas;
1503 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa));
1504 zio_prop_t zp;
1505 int error;
1507 error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE,
1508 bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp,
1509 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1510 if (error) {
1511 pio->io_error = error;
1512 return (ZIO_PIPELINE_CONTINUE);
1515 if (pio == lio) {
1516 gnpp = &lio->io_gang_tree;
1517 } else {
1518 gnpp = pio->io_private;
1519 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1522 gn = zio_gang_node_alloc(gnpp);
1523 gbh = gn->gn_gbh;
1524 bzero(gbh, SPA_GANGBLOCKSIZE);
1527 * Create the gang header.
1529 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1530 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1533 * Create and nowait the gang children.
1535 for (int g = 0; resid != 0; resid -= lsize, g++) {
1536 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1537 SPA_MINBLOCKSIZE);
1538 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1540 zp.zp_checksum = lio->io_prop.zp_checksum;
1541 zp.zp_compress = ZIO_COMPRESS_OFF;
1542 zp.zp_type = DMU_OT_NONE;
1543 zp.zp_level = 0;
1544 zp.zp_ndvas = lio->io_prop.zp_ndvas;
1546 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1547 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1548 zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1549 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1550 &pio->io_bookmark));
1554 * Set pio's pipeline to just wait for zio to finish.
1556 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1558 zio_nowait(zio);
1560 return (ZIO_PIPELINE_CONTINUE);
1564 * ==========================================================================
1565 * Allocate and free blocks
1566 * ==========================================================================
1569 static int
1570 zio_dva_allocate(zio_t *zio)
1572 spa_t *spa = zio->io_spa;
1573 metaslab_class_t *mc = spa->spa_normal_class;
1574 blkptr_t *bp = zio->io_bp;
1575 int error;
1577 ASSERT(BP_IS_HOLE(bp));
1578 ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
1579 ASSERT3U(zio->io_prop.zp_ndvas, >, 0);
1580 ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa));
1581 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
1583 error = metaslab_alloc(spa, mc, zio->io_size, bp,
1584 zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0);
1586 if (error) {
1587 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
1588 return (zio_write_gang_block(zio));
1589 zio->io_error = error;
1592 return (ZIO_PIPELINE_CONTINUE);
1595 static int
1596 zio_dva_free(zio_t *zio)
1598 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
1600 return (ZIO_PIPELINE_CONTINUE);
1603 static int
1604 zio_dva_claim(zio_t *zio)
1606 int error;
1608 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
1609 if (error)
1610 zio->io_error = error;
1612 return (ZIO_PIPELINE_CONTINUE);
1616 * Undo an allocation. This is used by zio_done() when an I/O fails
1617 * and we want to give back the block we just allocated.
1618 * This handles both normal blocks and gang blocks.
1620 static void
1621 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
1623 spa_t *spa = zio->io_spa;
1624 boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE);
1626 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
1628 if (zio->io_bp == bp && !now) {
1630 * This is a rewrite for sync-to-convergence.
1631 * We can't do a metaslab_free(NOW) because bp wasn't allocated
1632 * during this sync pass, which means that metaslab_sync()
1633 * already committed the allocation.
1635 ASSERT(DVA_EQUAL(BP_IDENTITY(bp),
1636 BP_IDENTITY(&zio->io_bp_orig)));
1637 ASSERT(spa_sync_pass(spa) > 1);
1639 if (BP_IS_GANG(bp) && gn == NULL) {
1641 * This is a gang leader whose gang header(s) we
1642 * couldn't read now, so defer the free until later.
1643 * The block should still be intact because without
1644 * the headers, we'd never even start the rewrite.
1646 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
1647 return;
1651 if (!BP_IS_HOLE(bp))
1652 metaslab_free(spa, bp, bp->blk_birth, now);
1654 if (gn != NULL) {
1655 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1656 zio_dva_unallocate(zio, gn->gn_child[g],
1657 &gn->gn_gbh->zg_blkptr[g]);
1663 * Try to allocate an intent log block. Return 0 on success, errno on failure.
1666 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp,
1667 uint64_t txg)
1669 int error;
1671 error = metaslab_alloc(spa, spa->spa_log_class, size,
1672 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
1674 if (error)
1675 error = metaslab_alloc(spa, spa->spa_normal_class, size,
1676 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
1678 if (error == 0) {
1679 BP_SET_LSIZE(new_bp, size);
1680 BP_SET_PSIZE(new_bp, size);
1681 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
1682 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG);
1683 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
1684 BP_SET_LEVEL(new_bp, 0);
1685 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
1688 return (error);
1692 * Free an intent log block. We know it can't be a gang block, so there's
1693 * nothing to do except metaslab_free() it.
1695 void
1696 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg)
1698 ASSERT(!BP_IS_GANG(bp));
1700 metaslab_free(spa, bp, txg, B_FALSE);
1704 * ==========================================================================
1705 * Read and write to physical devices
1706 * ==========================================================================
1709 static void
1710 zio_vdev_io_probe_done(zio_t *zio)
1712 zio_t *dio;
1713 vdev_t *vd = zio->io_private;
1715 mutex_enter(&vd->vdev_probe_lock);
1716 ASSERT(vd->vdev_probe_zio == zio);
1717 vd->vdev_probe_zio = NULL;
1718 mutex_exit(&vd->vdev_probe_lock);
1720 while ((dio = zio->io_delegate_list) != NULL) {
1721 zio->io_delegate_list = dio->io_delegate_next;
1722 dio->io_delegate_next = NULL;
1723 if (!vdev_accessible(vd, dio))
1724 dio->io_error = ENXIO;
1725 zio_execute(dio);
1730 * Probe the device to determine whether I/O failure is specific to this
1731 * zio (e.g. a bad sector) or affects the entire vdev (e.g. unplugged).
1733 static int
1734 zio_vdev_io_probe(zio_t *zio)
1736 vdev_t *vd = zio->io_vd;
1737 zio_t *pio = NULL;
1738 boolean_t created_pio = B_FALSE;
1741 * Don't probe the probe.
1743 if (zio->io_flags & ZIO_FLAG_PROBE)
1744 return (ZIO_PIPELINE_CONTINUE);
1747 * To prevent 'probe storms' when a device fails, we create
1748 * just one probe i/o at a time. All zios that want to probe
1749 * this vdev will join the probe zio's io_delegate_list.
1751 mutex_enter(&vd->vdev_probe_lock);
1753 if ((pio = vd->vdev_probe_zio) == NULL) {
1754 vd->vdev_probe_zio = pio = zio_root(zio->io_spa,
1755 zio_vdev_io_probe_done, vd, ZIO_FLAG_CANFAIL);
1756 created_pio = B_TRUE;
1757 vd->vdev_probe_wanted = B_TRUE;
1758 spa_async_request(zio->io_spa, SPA_ASYNC_PROBE);
1761 zio->io_delegate_next = pio->io_delegate_list;
1762 pio->io_delegate_list = zio;
1764 mutex_exit(&vd->vdev_probe_lock);
1766 if (created_pio) {
1767 zio_nowait(vdev_probe(vd, pio));
1768 zio_nowait(pio);
1771 return (ZIO_PIPELINE_STOP);
1774 static int
1775 zio_vdev_io_start(zio_t *zio)
1777 vdev_t *vd = zio->io_vd;
1778 uint64_t align;
1779 spa_t *spa = zio->io_spa;
1781 ASSERT(zio->io_error == 0);
1782 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
1784 if (vd == NULL) {
1785 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
1786 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
1789 * The mirror_ops handle multiple DVAs in a single BP.
1791 return (vdev_mirror_ops.vdev_op_io_start(zio));
1794 align = 1ULL << vd->vdev_top->vdev_ashift;
1796 if (P2PHASE(zio->io_size, align) != 0) {
1797 uint64_t asize = P2ROUNDUP(zio->io_size, align);
1798 char *abuf = zio_buf_alloc(asize);
1799 ASSERT(vd == vd->vdev_top);
1800 if (zio->io_type == ZIO_TYPE_WRITE) {
1801 bcopy(zio->io_data, abuf, zio->io_size);
1802 bzero(abuf + zio->io_size, asize - zio->io_size);
1804 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
1807 ASSERT(P2PHASE(zio->io_offset, align) == 0);
1808 ASSERT(P2PHASE(zio->io_size, align) == 0);
1809 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE));
1811 if (vd->vdev_ops->vdev_op_leaf &&
1812 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
1814 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
1815 return (ZIO_PIPELINE_STOP);
1817 if ((zio = vdev_queue_io(zio)) == NULL)
1818 return (ZIO_PIPELINE_STOP);
1820 if (!vdev_accessible(vd, zio)) {
1821 zio->io_error = ENXIO;
1822 zio_interrupt(zio);
1823 return (ZIO_PIPELINE_STOP);
1828 return (vd->vdev_ops->vdev_op_io_start(zio));
1831 static int
1832 zio_vdev_io_done(zio_t *zio)
1834 vdev_t *vd = zio->io_vd;
1835 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
1836 boolean_t unexpected_error = B_FALSE;
1838 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
1839 return (ZIO_PIPELINE_STOP);
1841 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
1843 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
1845 vdev_queue_io_done(zio);
1847 if (zio->io_type == ZIO_TYPE_WRITE)
1848 vdev_cache_write(zio);
1850 if (zio_injection_enabled && zio->io_error == 0)
1851 zio->io_error = zio_handle_device_injection(vd, EIO);
1853 if (zio_injection_enabled && zio->io_error == 0)
1854 zio->io_error = zio_handle_label_injection(zio, EIO);
1856 if (zio->io_error) {
1857 if (!vdev_accessible(vd, zio)) {
1858 zio->io_error = ENXIO;
1859 } else {
1860 unexpected_error = B_TRUE;
1865 ops->vdev_op_io_done(zio);
1867 if (unexpected_error)
1868 return (zio_vdev_io_probe(zio));
1870 return (ZIO_PIPELINE_CONTINUE);
1873 static int
1874 zio_vdev_io_assess(zio_t *zio)
1876 vdev_t *vd = zio->io_vd;
1878 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
1879 return (ZIO_PIPELINE_STOP);
1881 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
1882 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
1884 if (zio->io_vsd != NULL) {
1885 zio->io_vsd_free(zio);
1886 zio->io_vsd = NULL;
1889 if (zio_injection_enabled && zio->io_error == 0)
1890 zio->io_error = zio_handle_fault_injection(zio, EIO);
1893 * If the I/O failed, determine whether we should attempt to retry it.
1895 if (zio->io_error && vd == NULL &&
1896 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
1897 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
1898 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
1899 zio->io_error = 0;
1900 zio->io_flags |= ZIO_FLAG_IO_RETRY |
1901 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
1902 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1;
1903 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
1904 return (ZIO_PIPELINE_STOP);
1908 * If we got an error on a leaf device, convert it to ENXIO
1909 * if the device is not accessible at all.
1911 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
1912 !vdev_accessible(vd, zio))
1913 zio->io_error = ENXIO;
1916 * If we can't write to an interior vdev (mirror or RAID-Z),
1917 * set vdev_cant_write so that we stop trying to allocate from it.
1919 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
1920 vd != NULL && !vd->vdev_ops->vdev_op_leaf)
1921 vd->vdev_cant_write = B_TRUE;
1923 if (zio->io_error)
1924 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1926 return (ZIO_PIPELINE_CONTINUE);
1929 void
1930 zio_vdev_io_reissue(zio_t *zio)
1932 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1933 ASSERT(zio->io_error == 0);
1935 zio->io_stage--;
1938 void
1939 zio_vdev_io_redone(zio_t *zio)
1941 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
1943 zio->io_stage--;
1946 void
1947 zio_vdev_io_bypass(zio_t *zio)
1949 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1950 ASSERT(zio->io_error == 0);
1952 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
1953 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1;
1957 * ==========================================================================
1958 * Generate and verify checksums
1959 * ==========================================================================
1961 static int
1962 zio_checksum_generate(zio_t *zio)
1964 blkptr_t *bp = zio->io_bp;
1965 enum zio_checksum checksum;
1967 if (bp == NULL) {
1969 * This is zio_write_phys().
1970 * We're either generating a label checksum, or none at all.
1972 checksum = zio->io_prop.zp_checksum;
1974 if (checksum == ZIO_CHECKSUM_OFF)
1975 return (ZIO_PIPELINE_CONTINUE);
1977 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
1978 } else {
1979 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
1980 ASSERT(!IO_IS_ALLOCATING(zio));
1981 checksum = ZIO_CHECKSUM_GANG_HEADER;
1982 } else {
1983 checksum = BP_GET_CHECKSUM(bp);
1987 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
1989 return (ZIO_PIPELINE_CONTINUE);
1992 static int
1993 zio_checksum_verify(zio_t *zio)
1995 blkptr_t *bp = zio->io_bp;
1996 int error;
1998 if (bp == NULL) {
2000 * This is zio_read_phys().
2001 * We're either verifying a label checksum, or nothing at all.
2003 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2004 return (ZIO_PIPELINE_CONTINUE);
2006 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2009 if ((error = zio_checksum_error(zio)) != 0) {
2010 zio->io_error = error;
2011 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2012 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM,
2013 zio->io_spa, zio->io_vd, zio, 0, 0);
2017 return (ZIO_PIPELINE_CONTINUE);
2021 * Called by RAID-Z to ensure we don't compute the checksum twice.
2023 void
2024 zio_checksum_verified(zio_t *zio)
2026 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
2030 * ==========================================================================
2031 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2032 * An error of 0 indictes success. ENXIO indicates whole-device failure,
2033 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2034 * indicate errors that are specific to one I/O, and most likely permanent.
2035 * Any other error is presumed to be worse because we weren't expecting it.
2036 * ==========================================================================
2039 zio_worst_error(int e1, int e2)
2041 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2042 int r1, r2;
2044 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2045 if (e1 == zio_error_rank[r1])
2046 break;
2048 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2049 if (e2 == zio_error_rank[r2])
2050 break;
2052 return (r1 > r2 ? e1 : e2);
2056 * ==========================================================================
2057 * I/O completion
2058 * ==========================================================================
2060 static int
2061 zio_ready(zio_t *zio)
2063 blkptr_t *bp = zio->io_bp;
2064 zio_t *pio = zio->io_parent;
2066 if (zio->io_ready) {
2067 if (BP_IS_GANG(bp) &&
2068 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY))
2069 return (ZIO_PIPELINE_STOP);
2071 ASSERT(IO_IS_ALLOCATING(zio));
2072 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2073 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2075 zio->io_ready(zio);
2078 if (bp != NULL && bp != &zio->io_bp_copy)
2079 zio->io_bp_copy = *bp;
2081 if (zio->io_error)
2082 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2084 if (pio != NULL)
2085 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2087 return (ZIO_PIPELINE_CONTINUE);
2090 static int
2091 zio_done(zio_t *zio)
2093 spa_t *spa = zio->io_spa;
2094 zio_t *pio = zio->io_parent;
2095 zio_t *lio = zio->io_logical;
2096 blkptr_t *bp = zio->io_bp;
2097 vdev_t *vd = zio->io_vd;
2098 uint64_t psize = zio->io_size;
2101 * If our of children haven't all completed,
2102 * wait for them and then repeat this pipeline stage.
2104 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2105 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2106 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2107 return (ZIO_PIPELINE_STOP);
2109 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2110 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2111 ASSERT(zio->io_children[c][w] == 0);
2113 if (bp != NULL) {
2114 ASSERT(bp->blk_pad[0] == 0);
2115 ASSERT(bp->blk_pad[1] == 0);
2116 ASSERT(bp->blk_pad[2] == 0);
2117 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2118 (pio != NULL && bp == pio->io_bp));
2119 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2120 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2121 ASSERT(!BP_SHOULD_BYTESWAP(bp));
2122 ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp));
2123 ASSERT(BP_COUNT_GANG(bp) == 0 ||
2124 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2129 * If there were child vdev or gang errors, they apply to us now.
2131 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2132 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2134 zio_pop_transforms(zio); /* note: may set zio->io_error */
2136 vdev_stat_update(zio, psize);
2138 if (zio->io_error) {
2140 * If this I/O is attached to a particular vdev,
2141 * generate an error message describing the I/O failure
2142 * at the block level. We ignore these errors if the
2143 * device is currently unavailable.
2145 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2146 zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2148 if ((zio->io_error == EIO ||
2149 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) {
2151 * For logical I/O requests, tell the SPA to log the
2152 * error and generate a logical data ereport.
2154 spa_log_error(spa, zio);
2155 zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2156 0, 0);
2160 if (zio->io_error && zio == lio) {
2162 * Determine whether zio should be reexecuted. This will
2163 * propagate all the way to the root via zio_notify_parent().
2165 ASSERT(vd == NULL && bp != NULL);
2167 if (IO_IS_ALLOCATING(zio))
2168 if (zio->io_error != ENOSPC)
2169 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2170 else
2171 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2173 if ((zio->io_type == ZIO_TYPE_READ ||
2174 zio->io_type == ZIO_TYPE_FREE) &&
2175 zio->io_error == ENXIO &&
2176 spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2177 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2179 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2180 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2184 * If there were logical child errors, they apply to us now.
2185 * We defer this until now to avoid conflating logical child
2186 * errors with errors that happened to the zio itself when
2187 * updating vdev stats and reporting FMA events above.
2189 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2191 if (zio->io_reexecute) {
2193 * This is a logical I/O that wants to reexecute.
2195 * Reexecute is top-down. When an i/o fails, if it's not
2196 * the root, it simply notifies its parent and sticks around.
2197 * The parent, seeing that it still has children in zio_done(),
2198 * does the same. This percolates all the way up to the root.
2199 * The root i/o will reexecute or suspend the entire tree.
2201 * This approach ensures that zio_reexecute() honors
2202 * all the original i/o dependency relationships, e.g.
2203 * parents not executing until children are ready.
2205 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2207 if (IO_IS_ALLOCATING(zio))
2208 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2210 zio_gang_tree_free(&zio->io_gang_tree);
2212 if (pio != NULL) {
2214 * We're not a root i/o, so there's nothing to do
2215 * but notify our parent. Don't propagate errors
2216 * upward since we haven't permanently failed yet.
2218 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2219 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2220 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2222 * We'd fail again if we reexecuted now, so suspend
2223 * until conditions improve (e.g. device comes online).
2225 zio_suspend(spa, zio);
2226 } else {
2228 * Reexecution is potentially a huge amount of work.
2229 * Hand it off to the otherwise-unused claim taskq.
2231 (void) taskq_dispatch(
2232 spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2233 (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
2235 return (ZIO_PIPELINE_STOP);
2238 ASSERT(zio->io_child == NULL);
2239 ASSERT(zio->io_reexecute == 0);
2240 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2242 if (zio->io_done)
2243 zio->io_done(zio);
2245 zio_gang_tree_free(&zio->io_gang_tree);
2247 ASSERT(zio->io_delegate_list == NULL);
2248 ASSERT(zio->io_delegate_next == NULL);
2250 if (pio != NULL) {
2251 zio_remove_child(pio, zio);
2252 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2255 if (zio->io_waiter != NULL) {
2256 mutex_enter(&zio->io_lock);
2257 zio->io_executor = NULL;
2258 cv_broadcast(&zio->io_cv);
2259 mutex_exit(&zio->io_lock);
2260 } else {
2261 zio_destroy(zio);
2264 return (ZIO_PIPELINE_STOP);
2268 * ==========================================================================
2269 * I/O pipeline definition
2270 * ==========================================================================
2272 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = {
2273 NULL,
2274 zio_issue_async,
2275 zio_read_bp_init,
2276 zio_write_bp_init,
2277 zio_checksum_generate,
2278 zio_gang_assemble,
2279 zio_gang_issue,
2280 zio_dva_allocate,
2281 zio_dva_free,
2282 zio_dva_claim,
2283 zio_ready,
2284 zio_vdev_io_start,
2285 zio_vdev_io_done,
2286 zio_vdev_io_assess,
2287 zio_checksum_verify,
2288 zio_done