Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / cddl / osnet / sys / kern / fm.c
blobd4161d194a3b0ec72ccefe1846ab2a7513ba913b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Fault Management Architecture (FMA) Resource and Protocol Support
29 * The routines contained herein provide services to support kernel subsystems
30 * in publishing fault management telemetry (see PSARC 2002/412 and 2003/089).
32 * Name-Value Pair Lists
34 * The embodiment of an FMA protocol element (event, fmri or authority) is a
35 * name-value pair list (nvlist_t). FMA-specific nvlist construtor and
36 * destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used
37 * to create an nvpair list using custom allocators. Callers may choose to
38 * allocate either from the kernel memory allocator, or from a preallocated
39 * buffer, useful in constrained contexts like high-level interrupt routines.
41 * Protocol Event and FMRI Construction
43 * Convenience routines are provided to construct nvlist events according to
44 * the FMA Event Protocol and Naming Schema specification for ereports and
45 * FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes.
47 * ENA Manipulation
49 * Routines to generate ENA formats 0, 1 and 2 are available as well as
50 * routines to increment formats 1 and 2. Individual fields within the
51 * ENA are extractable via fm_ena_time_get(), fm_ena_id_get(),
52 * fm_ena_format_get() and fm_ena_gen_get().
55 #include <sys/types.h>
56 #include <sys/pset.h>
57 #include <sys/time.h>
58 #include <sys/kernel.h>
59 #include <sys/systm.h>
60 #include <sys/sysevent.h>
61 #include <sys/nvpair.h>
62 #include <sys/cmn_err.h>
63 #include <sys/cpuvar.h>
64 #include <sys/sysmacros.h>
65 #include <sys/systm.h>
66 #include <sys/cpu.h>
67 #include <sys/atomic.h>
68 #include <sys/systeminfo.h>
69 #include <sys/sysevent/eventdefs.h>
70 #include <sys/fm/util.h>
71 #include <sys/fm/protocol.h>
74 * URL and SUNW-MSG-ID value to display for fm_panic(), defined below. These
75 * values must be kept in sync with the FMA source code in usr/src/cmd/fm.
77 static const char *fm_url = "http://www.sun.com/msg";
78 static const char *fm_msgid = "SUNOS-8000-0G";
79 static char *volatile fm_panicstr = NULL;
81 errorq_t *ereport_errorq;
83 static uint_t ereport_chanlen = ERPT_EVCH_MAX;
84 static evchan_t *ereport_chan = NULL;
85 static ulong_t ereport_qlen = 0;
86 static size_t ereport_size = 0;
87 static int ereport_cols = 80;
90 * Formatting utility function for fm_nvprintr. We attempt to wrap chunks of
91 * output so they aren't split across console lines, and return the end column.
93 /*PRINTFLIKE4*/
94 static int
95 fm_printf(int depth, int c, int cols, const char *format, ...)
97 va_list ap;
98 int width;
99 char c1;
100 return 0;
101 va_start(ap, format);
102 width = vsnprintf(&c1, sizeof (c1), format, ap);
103 va_end(ap);
105 if (c + width >= cols) {
106 printf("\n\r");
107 c = 0;
108 if (format[0] != ' ' && depth > 0) {
109 printf(" ");
110 c++;
114 va_start(ap, format);
115 vprintf(format, ap);
116 va_end(ap);
118 return ((c + width) % cols);
122 * Recursively print a nvlist in the specified column width and return the
123 * column we end up in. This function is called recursively by fm_nvprint(),
124 * below. We generically format the entire nvpair using hexadecimal
125 * integers and strings, and elide any integer arrays. Arrays are basically
126 * used for cache dumps right now, so we suppress them so as not to overwhelm
127 * the amount of console output we produce at panic time. This can be further
128 * enhanced as FMA technology grows based upon the needs of consumers. All
129 * FMA telemetry is logged using the dump device transport, so the console
130 * output serves only as a fallback in case this procedure is unsuccessful.
132 static int
133 fm_nvprintr(nvlist_t *nvl, int d, int c, int cols)
135 nvpair_t *nvp;
137 for (nvp = nvlist_next_nvpair(nvl, NULL);
138 nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) {
140 data_type_t type = nvpair_type(nvp);
141 const char *name = nvpair_name(nvp);
143 boolean_t b;
144 uint8_t i8;
145 uint16_t i16;
146 uint32_t i32;
147 uint64_t i64;
148 char *str;
149 nvlist_t *cnv;
151 if (strcmp(name, FM_CLASS) == 0)
152 continue; /* already printed by caller */
154 c = fm_printf(d, c, cols, " %s=", name);
156 switch (type) {
157 case DATA_TYPE_BOOLEAN:
158 c = fm_printf(d + 1, c, cols, " 1");
159 break;
161 case DATA_TYPE_BOOLEAN_VALUE:
162 (void) nvpair_value_boolean_value(nvp, &b);
163 c = fm_printf(d + 1, c, cols, b ? "1" : "0");
164 break;
166 case DATA_TYPE_BYTE:
167 (void) nvpair_value_byte(nvp, &i8);
168 c = fm_printf(d + 1, c, cols, "%x", i8);
169 break;
171 case DATA_TYPE_INT8:
172 (void) nvpair_value_int8(nvp, (void *)&i8);
173 c = fm_printf(d + 1, c, cols, "%x", i8);
174 break;
176 case DATA_TYPE_UINT8:
177 (void) nvpair_value_uint8(nvp, &i8);
178 c = fm_printf(d + 1, c, cols, "%x", i8);
179 break;
181 case DATA_TYPE_INT16:
182 (void) nvpair_value_int16(nvp, (void *)&i16);
183 c = fm_printf(d + 1, c, cols, "%x", i16);
184 break;
186 case DATA_TYPE_UINT16:
187 (void) nvpair_value_uint16(nvp, &i16);
188 c = fm_printf(d + 1, c, cols, "%x", i16);
189 break;
191 case DATA_TYPE_INT32:
192 (void) nvpair_value_int32(nvp, (void *)&i32);
193 c = fm_printf(d + 1, c, cols, "%x", i32);
194 break;
196 case DATA_TYPE_UINT32:
197 (void) nvpair_value_uint32(nvp, &i32);
198 c = fm_printf(d + 1, c, cols, "%x", i32);
199 break;
201 case DATA_TYPE_INT64:
202 (void) nvpair_value_int64(nvp, (void *)&i64);
203 c = fm_printf(d + 1, c, cols, "%llx",
204 (u_longlong_t)i64);
205 break;
207 case DATA_TYPE_UINT64:
208 (void) nvpair_value_uint64(nvp, &i64);
209 c = fm_printf(d + 1, c, cols, "%llx",
210 (u_longlong_t)i64);
211 break;
213 case DATA_TYPE_HRTIME:
214 (void) nvpair_value_hrtime(nvp, (void *)&i64);
215 c = fm_printf(d + 1, c, cols, "%llx",
216 (u_longlong_t)i64);
217 break;
219 case DATA_TYPE_STRING:
220 (void) nvpair_value_string(nvp, &str);
221 c = fm_printf(d + 1, c, cols, "\"%s\"",
222 str ? str : "<NULL>");
223 break;
225 case DATA_TYPE_NVLIST:
226 c = fm_printf(d + 1, c, cols, "[");
227 (void) nvpair_value_nvlist(nvp, &cnv);
228 c = fm_nvprintr(cnv, d + 1, c, cols);
229 c = fm_printf(d + 1, c, cols, " ]");
230 break;
232 case DATA_TYPE_NVLIST_ARRAY: {
233 nvlist_t **val;
234 uint_t i, nelem;
236 c = fm_printf(d + 1, c, cols, "[");
237 (void) nvpair_value_nvlist_array(nvp, &val, &nelem);
238 for (i = 0; i < nelem; i++) {
239 c = fm_nvprintr(val[i], d + 1, c, cols);
241 c = fm_printf(d + 1, c, cols, " ]");
243 break;
245 case DATA_TYPE_BOOLEAN_ARRAY:
246 case DATA_TYPE_BYTE_ARRAY:
247 case DATA_TYPE_INT8_ARRAY:
248 case DATA_TYPE_UINT8_ARRAY:
249 case DATA_TYPE_INT16_ARRAY:
250 case DATA_TYPE_UINT16_ARRAY:
251 case DATA_TYPE_INT32_ARRAY:
252 case DATA_TYPE_UINT32_ARRAY:
253 case DATA_TYPE_INT64_ARRAY:
254 case DATA_TYPE_UINT64_ARRAY:
255 case DATA_TYPE_STRING_ARRAY:
256 c = fm_printf(d + 1, c, cols, "[...]");
257 break;
258 case DATA_TYPE_UNKNOWN:
259 c = fm_printf(d + 1, c, cols, "<unknown>");
260 break;
264 return (c);
267 void
268 fm_nvprint(nvlist_t *nvl)
270 char *class;
271 int c = 0;
273 printf("\r");
275 if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0)
276 c = fm_printf(0, c, ereport_cols, "%s", class);
278 if (fm_nvprintr(nvl, 0, c, ereport_cols) != 0)
279 printf("\n");
281 printf("\n");
285 * Wrapper for panic() that first produces an FMA-style message for admins.
286 * Normally such messages are generated by fmd(1M)'s syslog-msgs agent: this
287 * is the one exception to that rule and the only error that gets messaged.
288 * This function is intended for use by subsystems that have detected a fatal
289 * error and enqueued appropriate ereports and wish to then force a panic.
291 /*PRINTFLIKE1*/
292 void
293 fm_panic(const char *format, ...)
295 va_list ap;
297 (void) atomic_cas_ptr((void *)&fm_panicstr, NULL, (void *)format);
298 va_start(ap, format);
299 vcmn_err(CE_PANIC, format, ap);
300 va_end(ap);
304 * Print any appropriate FMA banner message before the panic message. This
305 * function is called by panicsys() and prints the message for fm_panic().
306 * We print the message here so that it comes after the system is quiesced.
307 * A one-line summary is recorded in the log only (cmn_err(9F) with "!" prefix).
308 * The rest of the message is for the console only and not needed in the log,
309 * so it is printed using printf(). We break it up into multiple
310 * chunks so as to avoid overflowing any small legacy prom_printf() buffers.
312 void
313 fm_banner(void)
315 struct timespec tod;
316 hrtime_t now;
318 if (!fm_panicstr)
319 return; /* panic was not initiated by fm_panic(); do nothing */
321 getnanotime(&tod);
322 now = hardclock_ticks;
324 cmn_err(CE_NOTE, "!SUNW-MSG-ID: %s, "
325 "TYPE: Error, VER: 1, SEVERITY: Major\n", fm_msgid);
327 printf(
328 "\n\rSUNW-MSG-ID: %s, TYPE: Error, VER: 1, SEVERITY: Major\n"
329 "EVENT-TIME: 0x%lx.0x%lx (0x%llx)\n",
330 fm_msgid, tod.tv_sec, tod.tv_nsec, (u_longlong_t)now);
332 printf(
333 "PLATFORM: %s, CSN: -, HOSTNAME: %s\n"
334 "SOURCE: %s, REV: %s\n",
335 machine, hostname, "NetBSD",
336 osrelease);
338 printf(
339 "DESC: Errors have been detected that require a reboot to ensure system\n"
340 "integrity. See %s/%s for more information.\n",
341 fm_url, fm_msgid);
343 printf(
344 "AUTO-RESPONSE: NetBSD will not attempt to save and diagnose the error telemetry\n"
345 "IMPACT: The system will sync files, save a crash dump if needed, and reboot\n"
346 "REC-ACTION: Save the error summary below\n");
348 printf("\n");
352 * Post an error report (ereport) to the sysevent error channel. The error
353 * channel must be established with a prior call to sysevent_evc_create()
354 * before publication may occur.
356 void
357 fm_ereport_post(nvlist_t *ereport, int evc_flag)
359 size_t nvl_size = 0;
360 evchan_t *error_chan;
362 (void) nvlist_size(ereport, &nvl_size, NV_ENCODE_NATIVE);
363 if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) {
364 printf("fm_ereport_post: dropped report\n");
365 return;
368 fm_banner();
369 fm_nvprint(ereport);
374 * Wrapppers for FM nvlist allocators
376 /* ARGSUSED */
377 static void *
378 i_fm_alloc(nv_alloc_t *nva, size_t size)
380 return (kmem_zalloc(size, KM_SLEEP));
383 /* ARGSUSED */
384 static void
385 i_fm_free(nv_alloc_t *nva, void *buf, size_t size)
387 kmem_free(buf, size);
390 const nv_alloc_ops_t fm_mem_alloc_ops = {
391 NULL,
392 NULL,
393 i_fm_alloc,
394 i_fm_free,
395 NULL
399 * Create and initialize a new nv_alloc_t for a fixed buffer, buf. A pointer
400 * to the newly allocated nv_alloc_t structure is returned upon success or NULL
401 * is returned to indicate that the nv_alloc structure could not be created.
403 nv_alloc_t *
404 fm_nva_xcreate(char *buf, size_t bufsz)
406 nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
408 if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) {
409 kmem_free(nvhdl, sizeof (nv_alloc_t));
410 return (NULL);
413 return (nvhdl);
417 * Destroy a previously allocated nv_alloc structure. The fixed buffer
418 * associated with nva must be freed by the caller.
420 void
421 fm_nva_xdestroy(nv_alloc_t *nva)
423 nv_alloc_fini(nva);
424 kmem_free(nva, sizeof (nv_alloc_t));
428 * Create a new nv list. A pointer to a new nv list structure is returned
429 * upon success or NULL is returned to indicate that the structure could
430 * not be created. The newly created nv list is created and managed by the
431 * operations installed in nva. If nva is NULL, the default FMA nva
432 * operations are installed and used.
434 * When called from the kernel and nva == NULL, this function must be called
435 * from passive kernel context with no locks held that can prevent a
436 * sleeping memory allocation from occurring. Otherwise, this function may
437 * be called from other kernel contexts as long a valid nva created via
438 * fm_nva_create() is supplied.
440 nvlist_t *
441 fm_nvlist_create(nv_alloc_t *nva)
443 int hdl_alloced = 0;
444 nvlist_t *nvl;
445 nv_alloc_t *nvhdl;
447 if (nva == NULL) {
448 nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
450 if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) {
451 kmem_free(nvhdl, sizeof (nv_alloc_t));
452 return (NULL);
454 hdl_alloced = 1;
455 } else {
456 nvhdl = nva;
459 if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) {
460 if (hdl_alloced) {
461 kmem_free(nvhdl, sizeof (nv_alloc_t));
462 nv_alloc_fini(nvhdl);
464 return (NULL);
467 return (nvl);
471 * Destroy a previously allocated nvlist structure. flag indicates whether
472 * or not the associated nva structure should be freed (FM_NVA_FREE) or
473 * retained (FM_NVA_RETAIN). Retaining the nv alloc structure allows
474 * it to be re-used for future nvlist creation operations.
476 void
477 fm_nvlist_destroy(nvlist_t *nvl, int flag)
479 nv_alloc_t *nva = nvlist_lookup_nv_alloc(nvl);
481 nvlist_free(nvl);
483 if (nva != NULL) {
484 if (flag == FM_NVA_FREE)
485 fm_nva_xdestroy(nva);
490 i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap)
492 int nelem, ret = 0;
493 data_type_t type;
495 while (ret == 0 && name != NULL) {
496 type = va_arg(ap, data_type_t);
497 switch (type) {
498 case DATA_TYPE_BYTE:
499 ret = nvlist_add_byte(payload, name,
500 va_arg(ap, uint_t));
501 break;
502 case DATA_TYPE_BYTE_ARRAY:
503 nelem = va_arg(ap, int);
504 ret = nvlist_add_byte_array(payload, name,
505 va_arg(ap, uchar_t *), nelem);
506 break;
507 case DATA_TYPE_BOOLEAN_VALUE:
508 ret = nvlist_add_boolean_value(payload, name,
509 va_arg(ap, boolean_t));
510 break;
511 case DATA_TYPE_BOOLEAN_ARRAY:
512 nelem = va_arg(ap, int);
513 ret = nvlist_add_boolean_array(payload, name,
514 va_arg(ap, boolean_t *), nelem);
515 break;
516 case DATA_TYPE_INT8:
517 ret = nvlist_add_int8(payload, name,
518 va_arg(ap, int));
519 break;
520 case DATA_TYPE_INT8_ARRAY:
521 nelem = va_arg(ap, int);
522 ret = nvlist_add_int8_array(payload, name,
523 va_arg(ap, int8_t *), nelem);
524 break;
525 case DATA_TYPE_UINT8:
526 ret = nvlist_add_uint8(payload, name,
527 va_arg(ap, uint_t));
528 break;
529 case DATA_TYPE_UINT8_ARRAY:
530 nelem = va_arg(ap, int);
531 ret = nvlist_add_uint8_array(payload, name,
532 va_arg(ap, uint8_t *), nelem);
533 break;
534 case DATA_TYPE_INT16:
535 ret = nvlist_add_int16(payload, name,
536 va_arg(ap, int));
537 break;
538 case DATA_TYPE_INT16_ARRAY:
539 nelem = va_arg(ap, int);
540 ret = nvlist_add_int16_array(payload, name,
541 va_arg(ap, int16_t *), nelem);
542 break;
543 case DATA_TYPE_UINT16:
544 ret = nvlist_add_uint16(payload, name,
545 va_arg(ap, uint_t));
546 break;
547 case DATA_TYPE_UINT16_ARRAY:
548 nelem = va_arg(ap, int);
549 ret = nvlist_add_uint16_array(payload, name,
550 va_arg(ap, uint16_t *), nelem);
551 break;
552 case DATA_TYPE_INT32:
553 ret = nvlist_add_int32(payload, name,
554 va_arg(ap, int32_t));
555 break;
556 case DATA_TYPE_INT32_ARRAY:
557 nelem = va_arg(ap, int);
558 ret = nvlist_add_int32_array(payload, name,
559 va_arg(ap, int32_t *), nelem);
560 break;
561 case DATA_TYPE_UINT32:
562 ret = nvlist_add_uint32(payload, name,
563 va_arg(ap, uint32_t));
564 break;
565 case DATA_TYPE_UINT32_ARRAY:
566 nelem = va_arg(ap, int);
567 ret = nvlist_add_uint32_array(payload, name,
568 va_arg(ap, uint32_t *), nelem);
569 break;
570 case DATA_TYPE_INT64:
571 ret = nvlist_add_int64(payload, name,
572 va_arg(ap, int64_t));
573 break;
574 case DATA_TYPE_INT64_ARRAY:
575 nelem = va_arg(ap, int);
576 ret = nvlist_add_int64_array(payload, name,
577 va_arg(ap, int64_t *), nelem);
578 break;
579 case DATA_TYPE_UINT64:
580 ret = nvlist_add_uint64(payload, name,
581 va_arg(ap, uint64_t));
582 break;
583 case DATA_TYPE_UINT64_ARRAY:
584 nelem = va_arg(ap, int);
585 ret = nvlist_add_uint64_array(payload, name,
586 va_arg(ap, uint64_t *), nelem);
587 break;
588 case DATA_TYPE_STRING:
589 ret = nvlist_add_string(payload, name,
590 va_arg(ap, char *));
591 break;
592 case DATA_TYPE_STRING_ARRAY:
593 nelem = va_arg(ap, int);
594 ret = nvlist_add_string_array(payload, name,
595 va_arg(ap, char **), nelem);
596 break;
597 case DATA_TYPE_NVLIST:
598 ret = nvlist_add_nvlist(payload, name,
599 va_arg(ap, nvlist_t *));
600 break;
601 case DATA_TYPE_NVLIST_ARRAY:
602 nelem = va_arg(ap, int);
603 ret = nvlist_add_nvlist_array(payload, name,
604 va_arg(ap, nvlist_t **), nelem);
605 break;
606 default:
607 ret = EINVAL;
610 name = va_arg(ap, char *);
612 return (ret);
615 void
616 fm_payload_set(nvlist_t *payload, ...)
618 int ret;
619 const char *name;
620 va_list ap;
622 va_start(ap, payload);
623 name = va_arg(ap, char *);
624 ret = i_fm_payload_set(payload, name, ap);
625 va_end(ap);
627 if (ret)
628 printf("fm_payload_set: failed\n");
632 * Set-up and validate the members of an ereport event according to:
634 * Member name Type Value
635 * ====================================================
636 * class string ereport
637 * version uint8_t 0
638 * ena uint64_t <ena>
639 * detector nvlist_t <detector>
640 * ereport-payload nvlist_t <var args>
643 void
644 fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class,
645 uint64_t ena, const nvlist_t *detector, ...)
647 char ereport_class[FM_MAX_CLASS];
648 const char *name;
649 va_list ap;
650 int ret;
652 if (version != FM_EREPORT_VERS0) {
653 printf("fm_payload_set: bad version\n");
654 return;
657 (void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s",
658 FM_EREPORT_CLASS, erpt_class);
659 if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) {
660 printf("fm_payload_set: can't add\n");
661 return;
664 if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) {
665 printf("fm_payload_set: can't add\n");
668 if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR,
669 (nvlist_t *)detector) != 0) {
670 printf("fm_payload_set: can't add\n");
673 va_start(ap, detector);
674 name = va_arg(ap, const char *);
675 ret = i_fm_payload_set(ereport, name, ap);
676 va_end(ap);
678 if (ret)
679 printf("fm_payload_set: can't add\n");
682 void
683 fm_fmri_zfs_set(nvlist_t *fmri, int version, uint64_t pool_guid,
684 uint64_t vdev_guid)
686 if (version != ZFS_SCHEME_VERSION0) {
687 printf("fm_fmri_zfs_set: bad version\n");
688 return;
691 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
692 printf("fm_fmri_zfs_set: can't set\n");
693 return;
696 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0) {
697 printf("fm_fmri_zfs_set: can't set\n");
698 return;
701 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_POOL, pool_guid) != 0) {
702 printf("fm_fmri_zfs_set: can't set\n");
705 if (vdev_guid != 0) {
706 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_VDEV, vdev_guid) != 0) {
707 printf("fm_fmri_zfs_set: can't set\n");
712 uint64_t
713 fm_ena_increment(uint64_t ena)
715 uint64_t new_ena;
717 switch (ENA_FORMAT(ena)) {
718 case FM_ENA_FMT1:
719 new_ena = ena + (1 << ENA_FMT1_GEN_SHFT);
720 break;
721 case FM_ENA_FMT2:
722 new_ena = ena + (1 << ENA_FMT2_GEN_SHFT);
723 break;
724 default:
725 new_ena = 0;
728 return (new_ena);
731 uint64_t
732 fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format)
734 uint64_t ena = 0;
736 switch (format) {
737 case FM_ENA_FMT1:
738 if (timestamp) {
739 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
740 ((cpuid << ENA_FMT1_CPUID_SHFT) &
741 ENA_FMT1_CPUID_MASK) |
742 ((timestamp << ENA_FMT1_TIME_SHFT) &
743 ENA_FMT1_TIME_MASK));
744 } else {
745 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
746 ((cpuid << ENA_FMT1_CPUID_SHFT) &
747 ENA_FMT1_CPUID_MASK) |
748 ((hardclock_ticks << ENA_FMT1_TIME_SHFT) &
749 ENA_FMT1_TIME_MASK));
751 break;
752 case FM_ENA_FMT2:
753 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
754 ((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK));
755 break;
756 default:
757 break;
760 return (ena);
763 uint64_t
764 fm_ena_generate(uint64_t timestamp, uchar_t format)
766 return (fm_ena_generate_cpu(timestamp, cpu_index(curcpu()), format));
769 uint64_t
770 fm_ena_generation_get(uint64_t ena)
772 uint64_t gen;
774 switch (ENA_FORMAT(ena)) {
775 case FM_ENA_FMT1:
776 gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT;
777 break;
778 case FM_ENA_FMT2:
779 gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT;
780 break;
781 default:
782 gen = 0;
783 break;
786 return (gen);
789 uchar_t
790 fm_ena_format_get(uint64_t ena)
793 return (ENA_FORMAT(ena));
796 uint64_t
797 fm_ena_id_get(uint64_t ena)
799 uint64_t id;
801 switch (ENA_FORMAT(ena)) {
802 case FM_ENA_FMT1:
803 id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT;
804 break;
805 case FM_ENA_FMT2:
806 id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT;
807 break;
808 default:
809 id = 0;
812 return (id);
815 uint64_t
816 fm_ena_time_get(uint64_t ena)
818 uint64_t time;
820 switch (ENA_FORMAT(ena)) {
821 case FM_ENA_FMT1:
822 time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT;
823 break;
824 case FM_ENA_FMT2:
825 time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT;
826 break;
827 default:
828 time = 0;
831 return (time);