Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / external / gpl3 / binutils / dist / bfd / elf64-sparc.c
blobdf3fb8bb80fd6a37d866444d9e6e7710e4083bd6
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34 section can represent up to two relocs, we must tell the user to allocate
35 more space. */
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
40 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
43 static long
44 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
46 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
49 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
50 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
51 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
52 for the same location, R_SPARC_LO10 and R_SPARC_13. */
54 static bfd_boolean
55 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
56 Elf_Internal_Shdr *rel_hdr,
57 asymbol **symbols, bfd_boolean dynamic)
59 PTR allocated = NULL;
60 bfd_byte *native_relocs;
61 arelent *relent;
62 unsigned int i;
63 int entsize;
64 bfd_size_type count;
65 arelent *relents;
67 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
68 if (allocated == NULL)
69 goto error_return;
71 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
72 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
73 goto error_return;
75 native_relocs = (bfd_byte *) allocated;
77 relents = asect->relocation + canon_reloc_count (asect);
79 entsize = rel_hdr->sh_entsize;
80 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
82 count = rel_hdr->sh_size / entsize;
84 for (i = 0, relent = relents; i < count;
85 i++, relent++, native_relocs += entsize)
87 Elf_Internal_Rela rela;
88 unsigned int r_type;
90 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
92 /* The address of an ELF reloc is section relative for an object
93 file, and absolute for an executable file or shared library.
94 The address of a normal BFD reloc is always section relative,
95 and the address of a dynamic reloc is absolute.. */
96 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
97 relent->address = rela.r_offset;
98 else
99 relent->address = rela.r_offset - asect->vma;
101 if (ELF64_R_SYM (rela.r_info) == 0)
102 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
103 else
105 asymbol **ps, *s;
107 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
108 s = *ps;
110 /* Canonicalize ELF section symbols. FIXME: Why? */
111 if ((s->flags & BSF_SECTION_SYM) == 0)
112 relent->sym_ptr_ptr = ps;
113 else
114 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
117 relent->addend = rela.r_addend;
119 r_type = ELF64_R_TYPE_ID (rela.r_info);
120 if (r_type == R_SPARC_OLO10)
122 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
123 relent[1].address = relent->address;
124 relent++;
125 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
126 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
127 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129 else
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
133 canon_reloc_count (asect) += relent - relents;
135 if (allocated != NULL)
136 free (allocated);
138 return TRUE;
140 error_return:
141 if (allocated != NULL)
142 free (allocated);
143 return FALSE;
146 /* Read in and swap the external relocs. */
148 static bfd_boolean
149 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
150 asymbol **symbols, bfd_boolean dynamic)
152 struct bfd_elf_section_data * const d = elf_section_data (asect);
153 Elf_Internal_Shdr *rel_hdr;
154 Elf_Internal_Shdr *rel_hdr2;
155 bfd_size_type amt;
157 if (asect->relocation != NULL)
158 return TRUE;
160 if (! dynamic)
162 if ((asect->flags & SEC_RELOC) == 0
163 || asect->reloc_count == 0)
164 return TRUE;
166 rel_hdr = &d->rel_hdr;
167 rel_hdr2 = d->rel_hdr2;
169 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
170 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
172 else
174 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
175 case because relocations against this section may use the
176 dynamic symbol table, and in that case bfd_section_from_shdr
177 in elf.c does not update the RELOC_COUNT. */
178 if (asect->size == 0)
179 return TRUE;
181 rel_hdr = &d->this_hdr;
182 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
183 rel_hdr2 = NULL;
186 amt = asect->reloc_count;
187 amt *= 2 * sizeof (arelent);
188 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
189 if (asect->relocation == NULL)
190 return FALSE;
192 /* The elf64_sparc_slurp_one_reloc_table routine increments
193 canon_reloc_count. */
194 canon_reloc_count (asect) = 0;
196 if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
197 dynamic))
198 return FALSE;
200 if (rel_hdr2
201 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
202 dynamic))
203 return FALSE;
205 return TRUE;
208 /* Canonicalize the relocs. */
210 static long
211 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
212 arelent **relptr, asymbol **symbols)
214 arelent *tblptr;
215 unsigned int i;
216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
218 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
219 return -1;
221 tblptr = section->relocation;
222 for (i = 0; i < canon_reloc_count (section); i++)
223 *relptr++ = tblptr++;
225 *relptr = NULL;
227 return canon_reloc_count (section);
231 /* Canonicalize the dynamic relocation entries. Note that we return
232 the dynamic relocations as a single block, although they are
233 actually associated with particular sections; the interface, which
234 was designed for SunOS style shared libraries, expects that there
235 is only one set of dynamic relocs. Any section that was actually
236 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
237 the dynamic symbol table, is considered to be a dynamic reloc
238 section. */
240 static long
241 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
242 asymbol **syms)
244 asection *s;
245 long ret;
247 if (elf_dynsymtab (abfd) == 0)
249 bfd_set_error (bfd_error_invalid_operation);
250 return -1;
253 ret = 0;
254 for (s = abfd->sections; s != NULL; s = s->next)
256 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
257 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
259 arelent *p;
260 long count, i;
262 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
263 return -1;
264 count = canon_reloc_count (s);
265 p = s->relocation;
266 for (i = 0; i < count; i++)
267 *storage++ = p++;
268 ret += count;
272 *storage = NULL;
274 return ret;
277 /* Write out the relocs. */
279 static void
280 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
282 bfd_boolean *failedp = (bfd_boolean *) data;
283 Elf_Internal_Shdr *rela_hdr;
284 bfd_vma addr_offset;
285 Elf64_External_Rela *outbound_relocas, *src_rela;
286 unsigned int idx, count;
287 asymbol *last_sym = 0;
288 int last_sym_idx = 0;
290 /* If we have already failed, don't do anything. */
291 if (*failedp)
292 return;
294 if ((sec->flags & SEC_RELOC) == 0)
295 return;
297 /* The linker backend writes the relocs out itself, and sets the
298 reloc_count field to zero to inhibit writing them here. Also,
299 sometimes the SEC_RELOC flag gets set even when there aren't any
300 relocs. */
301 if (sec->reloc_count == 0)
302 return;
304 /* We can combine two relocs that refer to the same address
305 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
306 latter is R_SPARC_13 with no associated symbol. */
307 count = 0;
308 for (idx = 0; idx < sec->reloc_count; idx++)
310 bfd_vma addr;
312 ++count;
314 addr = sec->orelocation[idx]->address;
315 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
316 && idx < sec->reloc_count - 1)
318 arelent *r = sec->orelocation[idx + 1];
320 if (r->howto->type == R_SPARC_13
321 && r->address == addr
322 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
323 && (*r->sym_ptr_ptr)->value == 0)
324 ++idx;
328 rela_hdr = &elf_section_data (sec)->rel_hdr;
330 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
331 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
332 if (rela_hdr->contents == NULL)
334 *failedp = TRUE;
335 return;
338 /* Figure out whether the relocations are RELA or REL relocations. */
339 if (rela_hdr->sh_type != SHT_RELA)
340 abort ();
342 /* The address of an ELF reloc is section relative for an object
343 file, and absolute for an executable file or shared library.
344 The address of a BFD reloc is always section relative. */
345 addr_offset = 0;
346 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
347 addr_offset = sec->vma;
349 /* orelocation has the data, reloc_count has the count... */
350 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
351 src_rela = outbound_relocas;
353 for (idx = 0; idx < sec->reloc_count; idx++)
355 Elf_Internal_Rela dst_rela;
356 arelent *ptr;
357 asymbol *sym;
358 int n;
360 ptr = sec->orelocation[idx];
361 sym = *ptr->sym_ptr_ptr;
362 if (sym == last_sym)
363 n = last_sym_idx;
364 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
365 n = STN_UNDEF;
366 else
368 last_sym = sym;
369 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
370 if (n < 0)
372 *failedp = TRUE;
373 return;
375 last_sym_idx = n;
378 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
379 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
380 && ! _bfd_elf_validate_reloc (abfd, ptr))
382 *failedp = TRUE;
383 return;
386 if (ptr->howto->type == R_SPARC_LO10
387 && idx < sec->reloc_count - 1)
389 arelent *r = sec->orelocation[idx + 1];
391 if (r->howto->type == R_SPARC_13
392 && r->address == ptr->address
393 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
394 && (*r->sym_ptr_ptr)->value == 0)
396 idx++;
397 dst_rela.r_info
398 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
399 R_SPARC_OLO10));
401 else
402 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
404 else
405 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
407 dst_rela.r_offset = ptr->address + addr_offset;
408 dst_rela.r_addend = ptr->addend;
410 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
411 ++src_rela;
415 /* Hook called by the linker routine which adds symbols from an object
416 file. We use it for STT_REGISTER symbols. */
418 static bfd_boolean
419 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
420 Elf_Internal_Sym *sym, const char **namep,
421 flagword *flagsp ATTRIBUTE_UNUSED,
422 asection **secp ATTRIBUTE_UNUSED,
423 bfd_vma *valp ATTRIBUTE_UNUSED)
425 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
427 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
429 int reg;
430 struct _bfd_sparc_elf_app_reg *p;
432 reg = (int)sym->st_value;
433 switch (reg & ~1)
435 case 2: reg -= 2; break;
436 case 6: reg -= 4; break;
437 default:
438 (*_bfd_error_handler)
439 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
440 abfd);
441 return FALSE;
444 if (info->output_bfd->xvec != abfd->xvec
445 || (abfd->flags & DYNAMIC) != 0)
447 /* STT_REGISTER only works when linking an elf64_sparc object.
448 If STT_REGISTER comes from a dynamic object, don't put it into
449 the output bfd. The dynamic linker will recheck it. */
450 *namep = NULL;
451 return TRUE;
454 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
456 if (p->name != NULL && strcmp (p->name, *namep))
458 (*_bfd_error_handler)
459 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
460 abfd, p->abfd, (int) sym->st_value,
461 **namep ? *namep : "#scratch",
462 *p->name ? p->name : "#scratch");
463 return FALSE;
466 if (p->name == NULL)
468 if (**namep)
470 struct elf_link_hash_entry *h;
472 h = (struct elf_link_hash_entry *)
473 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
475 if (h != NULL)
477 unsigned char type = h->type;
479 if (type > STT_FUNC)
480 type = 0;
481 (*_bfd_error_handler)
482 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
483 abfd, p->abfd, *namep, stt_types[type]);
484 return FALSE;
487 p->name = bfd_hash_allocate (&info->hash->table,
488 strlen (*namep) + 1);
489 if (!p->name)
490 return FALSE;
492 strcpy (p->name, *namep);
494 else
495 p->name = "";
496 p->bind = ELF_ST_BIND (sym->st_info);
497 p->abfd = abfd;
498 p->shndx = sym->st_shndx;
500 else
502 if (p->bind == STB_WEAK
503 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
505 p->bind = STB_GLOBAL;
506 p->abfd = abfd;
509 *namep = NULL;
510 return TRUE;
512 else if (*namep && **namep
513 && info->output_bfd->xvec == abfd->xvec)
515 int i;
516 struct _bfd_sparc_elf_app_reg *p;
518 p = _bfd_sparc_elf_hash_table(info)->app_regs;
519 for (i = 0; i < 4; i++, p++)
520 if (p->name != NULL && ! strcmp (p->name, *namep))
522 unsigned char type = ELF_ST_TYPE (sym->st_info);
524 if (type > STT_FUNC)
525 type = 0;
526 (*_bfd_error_handler)
527 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
528 abfd, p->abfd, *namep, stt_types[type]);
529 return FALSE;
532 return TRUE;
535 /* This function takes care of emitting STT_REGISTER symbols
536 which we cannot easily keep in the symbol hash table. */
538 static bfd_boolean
539 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
540 struct bfd_link_info *info,
541 PTR finfo, bfd_boolean (*func) (PTR, const char *,
542 Elf_Internal_Sym *,
543 asection *,
544 struct elf_link_hash_entry *))
546 int reg;
547 struct _bfd_sparc_elf_app_reg *app_regs =
548 _bfd_sparc_elf_hash_table(info)->app_regs;
549 Elf_Internal_Sym sym;
551 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
552 at the end of the dynlocal list, so they came at the end of the local
553 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
554 to back up symtab->sh_info. */
555 if (elf_hash_table (info)->dynlocal)
557 bfd * dynobj = elf_hash_table (info)->dynobj;
558 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
559 struct elf_link_local_dynamic_entry *e;
561 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
562 if (e->input_indx == -1)
563 break;
564 if (e)
566 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
567 = e->dynindx;
571 if (info->strip == strip_all)
572 return TRUE;
574 for (reg = 0; reg < 4; reg++)
575 if (app_regs [reg].name != NULL)
577 if (info->strip == strip_some
578 && bfd_hash_lookup (info->keep_hash,
579 app_regs [reg].name,
580 FALSE, FALSE) == NULL)
581 continue;
583 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
584 sym.st_size = 0;
585 sym.st_other = 0;
586 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
587 sym.st_shndx = app_regs [reg].shndx;
588 if (! (*func) (finfo, app_regs [reg].name, &sym,
589 sym.st_shndx == SHN_ABS
590 ? bfd_abs_section_ptr : bfd_und_section_ptr,
591 NULL))
592 return FALSE;
595 return TRUE;
598 static int
599 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
601 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
602 return STT_REGISTER;
603 else
604 return type;
607 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
608 even in SHN_UNDEF section. */
610 static void
611 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
613 elf_symbol_type *elfsym;
615 elfsym = (elf_symbol_type *) asym;
616 if (elfsym->internal_elf_sym.st_info
617 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
619 asym->flags |= BSF_GLOBAL;
624 /* Functions for dealing with the e_flags field. */
626 /* Merge backend specific data from an object file to the output
627 object file when linking. */
629 static bfd_boolean
630 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
632 bfd_boolean error;
633 flagword new_flags, old_flags;
634 int new_mm, old_mm;
636 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
637 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
638 return TRUE;
640 new_flags = elf_elfheader (ibfd)->e_flags;
641 old_flags = elf_elfheader (obfd)->e_flags;
643 if (!elf_flags_init (obfd)) /* First call, no flags set */
645 elf_flags_init (obfd) = TRUE;
646 elf_elfheader (obfd)->e_flags = new_flags;
649 else if (new_flags == old_flags) /* Compatible flags are ok */
652 else /* Incompatible flags */
654 error = FALSE;
656 #define EF_SPARC_ISA_EXTENSIONS \
657 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
659 if ((ibfd->flags & DYNAMIC) != 0)
661 /* We don't want dynamic objects memory ordering and
662 architecture to have any role. That's what dynamic linker
663 should do. */
664 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
665 new_flags |= (old_flags
666 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
668 else
670 /* Choose the highest architecture requirements. */
671 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
672 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
673 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
674 && (old_flags & EF_SPARC_HAL_R1))
676 error = TRUE;
677 (*_bfd_error_handler)
678 (_("%B: linking UltraSPARC specific with HAL specific code"),
679 ibfd);
681 /* Choose the most restrictive memory ordering. */
682 old_mm = (old_flags & EF_SPARCV9_MM);
683 new_mm = (new_flags & EF_SPARCV9_MM);
684 old_flags &= ~EF_SPARCV9_MM;
685 new_flags &= ~EF_SPARCV9_MM;
686 if (new_mm < old_mm)
687 old_mm = new_mm;
688 old_flags |= old_mm;
689 new_flags |= old_mm;
692 /* Warn about any other mismatches */
693 if (new_flags != old_flags)
695 error = TRUE;
696 (*_bfd_error_handler)
697 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
698 ibfd, (long) new_flags, (long) old_flags);
701 elf_elfheader (obfd)->e_flags = old_flags;
703 if (error)
705 bfd_set_error (bfd_error_bad_value);
706 return FALSE;
709 return TRUE;
712 /* MARCO: Set the correct entry size for the .stab section. */
714 static bfd_boolean
715 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
716 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
717 asection *sec)
719 const char *name;
721 name = bfd_get_section_name (abfd, sec);
723 if (strcmp (name, ".stab") == 0)
725 /* Even in the 64bit case the stab entries are only 12 bytes long. */
726 elf_section_data (sec)->this_hdr.sh_entsize = 12;
729 return TRUE;
732 /* Print a STT_REGISTER symbol to file FILE. */
734 static const char *
735 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
736 asymbol *symbol)
738 FILE *file = (FILE *) filep;
739 int reg, type;
741 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
742 != STT_REGISTER)
743 return NULL;
745 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
746 type = symbol->flags;
747 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
748 ((type & BSF_LOCAL)
749 ? (type & BSF_GLOBAL) ? '!' : 'l'
750 : (type & BSF_GLOBAL) ? 'g' : ' '),
751 (type & BSF_WEAK) ? 'w' : ' ');
752 if (symbol->name == NULL || symbol->name [0] == '\0')
753 return "#scratch";
754 else
755 return symbol->name;
758 static enum elf_reloc_type_class
759 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
761 switch ((int) ELF64_R_TYPE (rela->r_info))
763 case R_SPARC_RELATIVE:
764 return reloc_class_relative;
765 case R_SPARC_JMP_SLOT:
766 return reloc_class_plt;
767 case R_SPARC_COPY:
768 return reloc_class_copy;
769 default:
770 return reloc_class_normal;
774 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
775 standard ELF, because R_SPARC_OLO10 has secondary addend in
776 ELF64_R_TYPE_DATA field. This structure is used to redirect the
777 relocation handling routines. */
779 const struct elf_size_info elf64_sparc_size_info =
781 sizeof (Elf64_External_Ehdr),
782 sizeof (Elf64_External_Phdr),
783 sizeof (Elf64_External_Shdr),
784 sizeof (Elf64_External_Rel),
785 sizeof (Elf64_External_Rela),
786 sizeof (Elf64_External_Sym),
787 sizeof (Elf64_External_Dyn),
788 sizeof (Elf_External_Note),
789 4, /* hash-table entry size. */
790 /* Internal relocations per external relocations.
791 For link purposes we use just 1 internal per
792 1 external, for assembly and slurp symbol table
793 we use 2. */
795 64, /* arch_size. */
796 3, /* log_file_align. */
797 ELFCLASS64,
798 EV_CURRENT,
799 bfd_elf64_write_out_phdrs,
800 bfd_elf64_write_shdrs_and_ehdr,
801 bfd_elf64_checksum_contents,
802 elf64_sparc_write_relocs,
803 bfd_elf64_swap_symbol_in,
804 bfd_elf64_swap_symbol_out,
805 elf64_sparc_slurp_reloc_table,
806 bfd_elf64_slurp_symbol_table,
807 bfd_elf64_swap_dyn_in,
808 bfd_elf64_swap_dyn_out,
809 bfd_elf64_swap_reloc_in,
810 bfd_elf64_swap_reloc_out,
811 bfd_elf64_swap_reloca_in,
812 bfd_elf64_swap_reloca_out
815 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
816 #define TARGET_BIG_NAME "elf64-sparc"
817 #define ELF_ARCH bfd_arch_sparc
818 #define ELF_MAXPAGESIZE 0x100000
819 #define ELF_COMMONPAGESIZE 0x2000
821 /* This is the official ABI value. */
822 #define ELF_MACHINE_CODE EM_SPARCV9
824 /* This is the value that we used before the ABI was released. */
825 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
827 #define elf_backend_reloc_type_class \
828 elf64_sparc_reloc_type_class
829 #define bfd_elf64_get_reloc_upper_bound \
830 elf64_sparc_get_reloc_upper_bound
831 #define bfd_elf64_get_dynamic_reloc_upper_bound \
832 elf64_sparc_get_dynamic_reloc_upper_bound
833 #define bfd_elf64_canonicalize_reloc \
834 elf64_sparc_canonicalize_reloc
835 #define bfd_elf64_canonicalize_dynamic_reloc \
836 elf64_sparc_canonicalize_dynamic_reloc
837 #define elf_backend_add_symbol_hook \
838 elf64_sparc_add_symbol_hook
839 #define elf_backend_get_symbol_type \
840 elf64_sparc_get_symbol_type
841 #define elf_backend_symbol_processing \
842 elf64_sparc_symbol_processing
843 #define elf_backend_print_symbol_all \
844 elf64_sparc_print_symbol_all
845 #define elf_backend_output_arch_syms \
846 elf64_sparc_output_arch_syms
847 #define bfd_elf64_bfd_merge_private_bfd_data \
848 elf64_sparc_merge_private_bfd_data
849 #define elf_backend_fake_sections \
850 elf64_sparc_fake_sections
851 #define elf_backend_size_info \
852 elf64_sparc_size_info
854 #define elf_backend_plt_sym_val \
855 _bfd_sparc_elf_plt_sym_val
856 #define bfd_elf64_bfd_link_hash_table_create \
857 _bfd_sparc_elf_link_hash_table_create
858 #define elf_info_to_howto \
859 _bfd_sparc_elf_info_to_howto
860 #define elf_backend_copy_indirect_symbol \
861 _bfd_sparc_elf_copy_indirect_symbol
862 #define bfd_elf64_bfd_reloc_type_lookup \
863 _bfd_sparc_elf_reloc_type_lookup
864 #define bfd_elf64_bfd_reloc_name_lookup \
865 _bfd_sparc_elf_reloc_name_lookup
866 #define bfd_elf64_bfd_relax_section \
867 _bfd_sparc_elf_relax_section
868 #define bfd_elf64_new_section_hook \
869 _bfd_sparc_elf_new_section_hook
871 #define elf_backend_create_dynamic_sections \
872 _bfd_sparc_elf_create_dynamic_sections
873 #define elf_backend_relocs_compatible \
874 _bfd_elf_relocs_compatible
875 #define elf_backend_check_relocs \
876 _bfd_sparc_elf_check_relocs
877 #define elf_backend_adjust_dynamic_symbol \
878 _bfd_sparc_elf_adjust_dynamic_symbol
879 #define elf_backend_omit_section_dynsym \
880 _bfd_sparc_elf_omit_section_dynsym
881 #define elf_backend_size_dynamic_sections \
882 _bfd_sparc_elf_size_dynamic_sections
883 #define elf_backend_relocate_section \
884 _bfd_sparc_elf_relocate_section
885 #define elf_backend_finish_dynamic_symbol \
886 _bfd_sparc_elf_finish_dynamic_symbol
887 #define elf_backend_finish_dynamic_sections \
888 _bfd_sparc_elf_finish_dynamic_sections
890 #define bfd_elf64_mkobject \
891 _bfd_sparc_elf_mkobject
892 #define elf_backend_object_p \
893 _bfd_sparc_elf_object_p
894 #define elf_backend_gc_mark_hook \
895 _bfd_sparc_elf_gc_mark_hook
896 #define elf_backend_gc_sweep_hook \
897 _bfd_sparc_elf_gc_sweep_hook
898 #define elf_backend_init_index_section \
899 _bfd_elf_init_1_index_section
901 #define elf_backend_can_gc_sections 1
902 #define elf_backend_can_refcount 1
903 #define elf_backend_want_got_plt 0
904 #define elf_backend_plt_readonly 0
905 #define elf_backend_want_plt_sym 1
906 #define elf_backend_got_header_size 8
907 #define elf_backend_rela_normal 1
909 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
910 #define elf_backend_plt_alignment 8
912 #include "elf64-target.h"
914 /* FreeBSD support */
915 #undef TARGET_BIG_SYM
916 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
917 #undef TARGET_BIG_NAME
918 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
919 #undef ELF_OSABI
920 #define ELF_OSABI ELFOSABI_FREEBSD
922 #undef elf_backend_post_process_headers
923 #define elf_backend_post_process_headers _bfd_elf_set_osabi
924 #undef elf64_bed
925 #define elf64_bed elf64_sparc_fbsd_bed
927 #include "elf64-target.h"