1 /* $NetBSD: n_cabs.c,v 1.4 2002/06/15 00:10:17 matt Exp $ */
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 static char sccsid
[] = "@(#)cabs.c 8.1 (Berkeley) 6/4/93";
36 * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
37 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
38 * CODED IN C BY K.C. NG, 11/28/84;
39 * REVISED BY K.C. NG, 7/12/85.
41 * Required system supported functions :
48 * 1. replace x by |x| and y by |y|, and swap x and
49 * y if y > x (hence x is never smaller than y).
50 * 2. Hypot(x,y) is computed by:
54 * hypot = x + -----------------------------
56 * sqrt ( 1 + [x/y] ) + x/y
60 * hypot = x + --------------------------------------------------
63 * (sqrt(2)+1) + (x-y)/y + -----------------------------
65 * sqrt ( 1 + [x/y] ) + sqrt(2)
70 * hypot(x,y) is INF if x or y is +INF or -INF; else
71 * hypot(x,y) is NAN if x or y is NAN.
74 * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
75 * in the last place). See Kahan's "Interval Arithmetic Options in the
76 * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
77 * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
78 * code follows in comments.) In a test run with 500,000 random arguments
79 * on a VAX, the maximum observed error was .959 ulps.
82 * The hexadecimal values are the intended ones for the following constants.
83 * The decimal values may be used, provided that the compiler will convert
84 * from decimal to binary accurately enough to produce the hexadecimal values
90 vc(r2p1hi
, 2.4142135623730950345E0
,8279,411a
,ef32
,99fc
, 2, .9A827999FCEF32
)
91 vc(r2p1lo
, 1.4349369327986523769E-17 ,597d
,2484,754b
,89b3
, -55, .84597D89B3754B
)
92 vc(sqrt2
, 1.4142135623730950622E0
,04f3
,40b5
,de65
,33f9
, 1, .B504F333F9DE65
)
94 ic(r2p1hi
, 2.4142135623730949234E0
, 1, 1.3504F333F9DE6
)
95 ic(r2p1lo
, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5
)
96 ic(sqrt2
, 1.4142135623730951455E0
, 0, 1.6A09E667F3BCD
)
99 #define r2p1hi vccast(r2p1hi)
100 #define r2p1lo vccast(r2p1lo)
101 #define sqrt2 vccast(sqrt2)
105 hypot(double x
, double y
)
107 static const double zero
=0, one
=1,
108 small
=1.0E-18; /* fl(1+small)==1 */
109 static const ibig
=30; /* fl(1+2**(2*ibig))==1 */
120 if(x
== zero
) return(zero
);
121 if(y
== zero
) return(x
);
123 if(exp
-(int)logb(y
) > ibig
)
124 /* raise inexact flag and return |x| */
125 { one
+small
; return(x
); }
127 /* start computing sqrt(x^2 + y^2) */
129 if(r
>y
) { /* x/y > 2 */
132 else { /* 1 <= x/y <= 2 */
134 r
+=t
/(sqrt2
+sqrt(2.0+t
));
135 r
+=r2p1lo
; r
+=r2p1hi
; }
142 else if(y
==y
) /* y is +-INF */
143 return(copysign(y
,one
));
145 return(y
); /* y is NaN and x is finite */
147 else if(x
==x
) /* x is +-INF */
148 return (copysign(x
,one
));
150 return(x
); /* x is NaN, y is finite */
151 #if !defined(__vax__)&&!defined(tahoe)
152 else if(y
!=y
) return(y
); /* x and y is NaN */
153 #endif /* !defined(__vax__)&&!defined(tahoe) */
154 else return(copysign(y
,one
)); /* y is INF */
158 * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
159 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
160 * CODED IN C BY K.C. NG, 11/28/84.
161 * REVISED BY K.C. NG, 7/12/85.
163 * Required kernel function :
167 * cabs(z) = hypot(x,y) .
170 struct complex { double x
, y
; };
176 return hypot(z
.x
,z
.y
);
183 return hypot(z
->x
,z
->y
);
186 /* A faster but less accurate version of cabs(x,y) */
191 static const double zero
=0, one
=1;
192 small
=1.0E-18; /* fl(1+small)==1 */
193 static const ibig
=30; /* fl(1+2**(2*ibig))==1 */
203 { temp
=x
; x
=y
; y
=temp
; }
204 if(x
== zero
) return(zero
);
205 if(y
== zero
) return(x
);
208 if(exp
-(int)logb(y
) > ibig
)
209 /* raise inexact flag and return |x| */
210 { one
+small
; return(scalb(x
,exp
)); }
211 else y
=scalb(y
,-exp
);
212 return(scalb(sqrt(x
*x
+y
*y
),exp
));
215 else if(y
==y
) /* y is +-INF */
216 return(copysign(y
,one
));
218 return(y
); /* y is NaN and x is finite */
220 else if(x
==x
) /* x is +-INF */
221 return (copysign(x
,one
));
223 return(x
); /* x is NaN, y is finite */
224 else if(y
!=y
) return(y
); /* x and y is NaN */
225 else return(copysign(y
,one
)); /* y is INF */