Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / lib / libm / noieee_src / n_cabs.c
blobb7d282f6acb2434fd876177b26ecf620cb8df683
1 /* $NetBSD: n_cabs.c,v 1.4 2002/06/15 00:10:17 matt Exp $ */
2 /*
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
31 #ifndef lint
32 static char sccsid[] = "@(#)cabs.c 8.1 (Berkeley) 6/4/93";
33 #endif /* not lint */
35 /* HYPOT(X,Y)
36 * RETURN THE SQUARE ROOT OF X^2 + Y^2 WHERE Z=X+iY
37 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
38 * CODED IN C BY K.C. NG, 11/28/84;
39 * REVISED BY K.C. NG, 7/12/85.
41 * Required system supported functions :
42 * copysign(x,y)
43 * finite(x)
44 * scalb(x,N)
45 * sqrt(x)
47 * Method :
48 * 1. replace x by |x| and y by |y|, and swap x and
49 * y if y > x (hence x is never smaller than y).
50 * 2. Hypot(x,y) is computed by:
51 * Case I, x/y > 2
53 * y
54 * hypot = x + -----------------------------
55 * 2
56 * sqrt ( 1 + [x/y] ) + x/y
58 * Case II, x/y <= 2
59 * y
60 * hypot = x + --------------------------------------------------
61 * 2
62 * [x/y] - 2
63 * (sqrt(2)+1) + (x-y)/y + -----------------------------
64 * 2
65 * sqrt ( 1 + [x/y] ) + sqrt(2)
69 * Special cases:
70 * hypot(x,y) is INF if x or y is +INF or -INF; else
71 * hypot(x,y) is NAN if x or y is NAN.
73 * Accuracy:
74 * hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
75 * in the last place). See Kahan's "Interval Arithmetic Options in the
76 * Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
77 * 1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
78 * code follows in comments.) In a test run with 500,000 random arguments
79 * on a VAX, the maximum observed error was .959 ulps.
81 * Constants:
82 * The hexadecimal values are the intended ones for the following constants.
83 * The decimal values may be used, provided that the compiler will convert
84 * from decimal to binary accurately enough to produce the hexadecimal values
85 * shown.
87 #define _LIBM_STATIC
88 #include "mathimpl.h"
90 vc(r2p1hi, 2.4142135623730950345E0 ,8279,411a,ef32,99fc, 2, .9A827999FCEF32)
91 vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
92 vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65)
94 ic(r2p1hi, 2.4142135623730949234E0 , 1, 1.3504F333F9DE6)
95 ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
96 ic(sqrt2, 1.4142135623730951455E0 , 0, 1.6A09E667F3BCD)
98 #ifdef vccast
99 #define r2p1hi vccast(r2p1hi)
100 #define r2p1lo vccast(r2p1lo)
101 #define sqrt2 vccast(sqrt2)
102 #endif
104 double
105 hypot(double x, double y)
107 static const double zero=0, one=1,
108 small=1.0E-18; /* fl(1+small)==1 */
109 static const ibig=30; /* fl(1+2**(2*ibig))==1 */
110 double t,r;
111 int exp;
113 if(finite(x))
114 if(finite(y))
116 x=copysign(x,one);
117 y=copysign(y,one);
118 if(y > x)
119 { t=x; x=y; y=t; }
120 if(x == zero) return(zero);
121 if(y == zero) return(x);
122 exp= logb(x);
123 if(exp-(int)logb(y) > ibig )
124 /* raise inexact flag and return |x| */
125 { one+small; return(x); }
127 /* start computing sqrt(x^2 + y^2) */
128 r=x-y;
129 if(r>y) { /* x/y > 2 */
130 r=x/y;
131 r=r+sqrt(one+r*r); }
132 else { /* 1 <= x/y <= 2 */
133 r/=y; t=r*(r+2.0);
134 r+=t/(sqrt2+sqrt(2.0+t));
135 r+=r2p1lo; r+=r2p1hi; }
137 r=y/r;
138 return(x+r);
142 else if(y==y) /* y is +-INF */
143 return(copysign(y,one));
144 else
145 return(y); /* y is NaN and x is finite */
147 else if(x==x) /* x is +-INF */
148 return (copysign(x,one));
149 else if(finite(y))
150 return(x); /* x is NaN, y is finite */
151 #if !defined(__vax__)&&!defined(tahoe)
152 else if(y!=y) return(y); /* x and y is NaN */
153 #endif /* !defined(__vax__)&&!defined(tahoe) */
154 else return(copysign(y,one)); /* y is INF */
157 /* CABS(Z)
158 * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER Z = X + iY
159 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
160 * CODED IN C BY K.C. NG, 11/28/84.
161 * REVISED BY K.C. NG, 7/12/85.
163 * Required kernel function :
164 * hypot(x,y)
166 * Method :
167 * cabs(z) = hypot(x,y) .
170 struct complex { double x, y; };
172 double
173 cabs(z)
174 struct complex z;
176 return hypot(z.x,z.y);
179 double
180 z_abs(z)
181 struct complex *z;
183 return hypot(z->x,z->y);
186 /* A faster but less accurate version of cabs(x,y) */
187 #if 0
188 double hypot(x,y)
189 double x, y;
191 static const double zero=0, one=1;
192 small=1.0E-18; /* fl(1+small)==1 */
193 static const ibig=30; /* fl(1+2**(2*ibig))==1 */
194 double temp;
195 int exp;
197 if(finite(x))
198 if(finite(y))
200 x=copysign(x,one);
201 y=copysign(y,one);
202 if(y > x)
203 { temp=x; x=y; y=temp; }
204 if(x == zero) return(zero);
205 if(y == zero) return(x);
206 exp= logb(x);
207 x=scalb(x,-exp);
208 if(exp-(int)logb(y) > ibig )
209 /* raise inexact flag and return |x| */
210 { one+small; return(scalb(x,exp)); }
211 else y=scalb(y,-exp);
212 return(scalb(sqrt(x*x+y*y),exp));
215 else if(y==y) /* y is +-INF */
216 return(copysign(y,one));
217 else
218 return(y); /* y is NaN and x is finite */
220 else if(x==x) /* x is +-INF */
221 return (copysign(x,one));
222 else if(finite(y))
223 return(x); /* x is NaN, y is finite */
224 else if(y!=y) return(y); /* x and y is NaN */
225 else return(copysign(y,one)); /* y is INF */
227 #endif