1 /* $NetBSD: n_erf.c,v 1.6 2003/08/07 16:44:50 agc Exp $ */
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 static char sccsid
[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93";
39 /* Modified Nov 30, 1992 P. McILROY:
40 * Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
41 * Replaced even+odd with direct calculation for x < .84375,
42 * to avoid destructive cancellation.
44 * Performance of erfc(x):
45 * In 300000 trials in the range [.83, .84375] the
46 * maximum observed error was 3.6ulp.
48 * In [.84735,1.25] the maximum observed error was <2.5ulp in
49 * 100000 runs in the range [1.2, 1.25].
51 * In [1.25,26] (Not including subnormal results)
52 * the error is < 1.7ulp.
55 /* double erf(double x)
56 * double erfc(double x)
59 * erf(x) = --------- | exp(-t*t)dt
66 * 1. Reduce x to |x| by erf(-x) = -erf(x)
67 * 2. For x in [0, 0.84375]
68 * erf(x) = x + x*P(x^2)
69 * erfc(x) = 1 - erf(x) if x<=0.25
70 * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
73 * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x )
74 * is an approximation to (erf(x)-x)/x with precision
77 * | P - (erf(x)-x)/x | <= 2
80 * Remark. The formula is derived by noting
81 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
83 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
84 * is close to one. The interval is chosen because the fixed
85 * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
86 * near 0.6174), and by some experiment, 0.84375 is chosen to
87 * guarantee the error is less than one ulp for erf.
89 * 3. For x in [0.84375,1.25], let s = x - 1, and
90 * c = 0.84506291151 rounded to single (24 bits)
91 * erf(x) = c + P1(s)/Q1(s)
92 * erfc(x) = (1-c) - P1(s)/Q1(s)
93 * |P1/Q1 - (erf(x)-c)| <= 2**-59.06
94 * Remark: here we use the taylor series expansion at x=1.
95 * erf(1+s) = erf(1) + s*Poly(s)
96 * = 0.845.. + P1(s)/Q1(s)
97 * That is, we use rational approximation to approximate
98 * erf(1+s) - (c = (single)0.84506291151)
99 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
101 * P1(s) = degree 6 poly in s
102 * Q1(s) = degree 6 poly in s
104 * 4. For x in [1.25, 2]; [2, 4]
105 * erf(x) = 1.0 - tiny
106 * erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
108 * Where z = 1/(x*x), R is degree 9, and S is degree 3;
111 * erf(x) = 1.0 - tiny
112 * erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
114 * Where P is degree 14 polynomial in 1/(x*x).
117 * Here 4 and 5 make use of the asymptotic series
119 * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
122 * where for z = 1/(x*x)
123 * P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
125 * Thus we use rational approximation to approximate
126 * erfc*x*exp(x*x) ~ 1/sqrt(pi);
128 * The error bound for the target function, G(z) for
131 * |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
133 * |R(z)/S(z) - G(z)| < 2**(-58.24)
135 * |R(z)/S(z) - G(z)| < 2**(-58.12)
137 * 6. For inf > x >= 28
138 * erf(x) = 1 - tiny (raise inexact)
139 * erfc(x) = tiny*tiny (raise underflow)
142 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
143 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
144 * erfc/erf(NaN) is NaN
147 #if defined(__vax__) || defined(tahoe)
149 #define TRUNC(x) (x) = (float)(x)
152 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
153 #define infnan(x) 0.0
158 * redefining "___function" to "function" in _IEEE_LIBM mode
160 #include "ieee_libm.h"
168 c
= 8.45062911510467529297e-01, /* (float)0.84506291151 */
170 * Coefficients for approximation to erf in [0,0.84375]
172 p0t8
= 1.02703333676410051049867154944018394163280,
173 p0
= 1.283791670955125638123339436800229927041e-0001,
174 p1
= -3.761263890318340796574473028946097022260e-0001,
175 p2
= 1.128379167093567004871858633779992337238e-0001,
176 p3
= -2.686617064084433642889526516177508374437e-0002,
177 p4
= 5.223977576966219409445780927846432273191e-0003,
178 p5
= -8.548323822001639515038738961618255438422e-0004,
179 p6
= 1.205520092530505090384383082516403772317e-0004,
180 p7
= -1.492214100762529635365672665955239554276e-0005,
181 p8
= 1.640186161764254363152286358441771740838e-0006,
182 p9
= -1.571599331700515057841960987689515895479e-0007,
183 p10
= 1.073087585213621540635426191486561494058e-0008;
185 * Coefficients for approximation to erf in [0.84375,1.25]
188 pa0
= -2.362118560752659485957248365514511540287e-0003,
189 pa1
= 4.148561186837483359654781492060070469522e-0001,
190 pa2
= -3.722078760357013107593507594535478633044e-0001,
191 pa3
= 3.183466199011617316853636418691420262160e-0001,
192 pa4
= -1.108946942823966771253985510891237782544e-0001,
193 pa5
= 3.547830432561823343969797140537411825179e-0002,
194 pa6
= -2.166375594868790886906539848893221184820e-0003,
195 qa1
= 1.064208804008442270765369280952419863524e-0001,
196 qa2
= 5.403979177021710663441167681878575087235e-0001,
197 qa3
= 7.182865441419627066207655332170665812023e-0002,
198 qa4
= 1.261712198087616469108438860983447773726e-0001,
199 qa5
= 1.363708391202905087876983523620537833157e-0002,
200 qa6
= 1.198449984679910764099772682882189711364e-0002;
202 * log(sqrt(pi)) for large x expansions.
203 * The tail (lsqrtPI_lo) is included in the rational
207 lsqrtPI_hi
= .5723649429247000819387380943226;
209 * lsqrtPI_lo = .000000000000000005132975581353913;
211 * Coefficients for approximation to erfc in [2, 4]
214 rb0
= -1.5306508387410807582e-010, /* includes lsqrtPI_lo */
215 rb1
= 2.15592846101742183841910806188e-008,
216 rb2
= 6.24998557732436510470108714799e-001,
217 rb3
= 8.24849222231141787631258921465e+000,
218 rb4
= 2.63974967372233173534823436057e+001,
219 rb5
= 9.86383092541570505318304640241e+000,
220 rb6
= -7.28024154841991322228977878694e+000,
221 rb7
= 5.96303287280680116566600190708e+000,
222 rb8
= -4.40070358507372993983608466806e+000,
223 rb9
= 2.39923700182518073731330332521e+000,
224 rb10
= -6.89257464785841156285073338950e-001,
225 sb1
= 1.56641558965626774835300238919e+001,
226 sb2
= 7.20522741000949622502957936376e+001,
227 sb3
= 9.60121069770492994166488642804e+001;
229 * Coefficients for approximation to erfc in [1.25, 2]
232 rc0
= -2.47925334685189288817e-007, /* includes lsqrtPI_lo */
233 rc1
= 1.28735722546372485255126993930e-005,
234 rc2
= 6.24664954087883916855616917019e-001,
235 rc3
= 4.69798884785807402408863708843e+000,
236 rc4
= 7.61618295853929705430118701770e+000,
237 rc5
= 9.15640208659364240872946538730e-001,
238 rc6
= -3.59753040425048631334448145935e-001,
239 rc7
= 1.42862267989304403403849619281e-001,
240 rc8
= -4.74392758811439801958087514322e-002,
241 rc9
= 1.09964787987580810135757047874e-002,
242 rc10
= -1.28856240494889325194638463046e-003,
243 sc1
= 9.97395106984001955652274773456e+000,
244 sc2
= 2.80952153365721279953959310660e+001,
245 sc3
= 2.19826478142545234106819407316e+001;
247 * Coefficients for approximation to erfc in [4,28]
250 rd0
= -2.1491361969012978677e-016, /* includes lsqrtPI_lo */
251 rd1
= -4.99999999999640086151350330820e-001,
252 rd2
= 6.24999999772906433825880867516e-001,
253 rd3
= -1.54166659428052432723177389562e+000,
254 rd4
= 5.51561147405411844601985649206e+000,
255 rd5
= -2.55046307982949826964613748714e+001,
256 rd6
= 1.43631424382843846387913799845e+002,
257 rd7
= -9.45789244999420134263345971704e+002,
258 rd8
= 6.94834146607051206956384703517e+003,
259 rd9
= -5.27176414235983393155038356781e+004,
260 rd10
= 3.68530281128672766499221324921e+005,
261 rd11
= -2.06466642800404317677021026611e+006,
262 rd12
= 7.78293889471135381609201431274e+006,
263 rd13
= -1.42821001129434127360582351685e+007;
268 double R
,S
,P
,Q
,ax
,s
,y
,z
,r
;
269 if(!finite(x
)) { /* erf(nan)=nan */
272 return (x
> 0 ? one
: -one
); /* erf(+/-inf)= +/-1 */
279 return 0.125*(8.0*x
+p0t8
*x
); /*avoid underflow */
283 r
= y
*(p1
+y
*(p2
+y
*(p3
+y
*(p4
+y
*(p5
+
284 y
*(p6
+y
*(p7
+y
*(p8
+y
*(p9
+y
*p10
)))))))));
287 if (ax
< 1.25) { /* 0.84375 <= |x| < 1.25 */
289 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
290 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
296 if (ax
>= 6.0) { /* inf>|x|>=6 */
302 /* 1.25 <= |x| < 6 */
306 R
= rc0
+s
*(rc1
+s
*(rc2
+s
*(rc3
+s
*(rc4
+s
*(rc5
+
307 s
*(rc6
+s
*(rc7
+s
*(rc8
+s
*(rc9
+s
*rc10
)))))))));
308 S
= one
+s
*(sc1
+s
*(sc2
+s
*sc3
));
310 R
= rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(rb5
+
311 s
*(rb6
+s
*(rb7
+s
*(rb8
+s
*(rb9
+s
*rb10
)))))))));
312 S
= one
+s
*(sb1
+s
*(sb2
+s
*sb3
));
314 y
= (R
/S
-.5*s
) - lsqrtPI_hi
;
326 double R
,S
,P
,Q
,s
,ax
,y
,z
,r
;
328 if (isnan(x
)) /* erfc(NaN) = NaN */
330 else if (x
> 0) /* erfc(+-inf)=0,2 */
337 if (ax
< .84375) { /* |x|<0.84375 */
338 if (ax
< 1.38777878078144568e-17) /* |x|<2**-56 */
341 r
= y
*(p1
+y
*(p2
+y
*(p3
+y
*(p4
+y
*(p5
+
342 y
*(p6
+y
*(p7
+y
*(p8
+y
*(p9
+y
*p10
)))))))));
343 if (ax
< .0625) { /* |x|<2**-4 */
344 return (one
-(x
+x
*(p0
+r
)));
351 if (ax
< 1.25) { /* 0.84375 <= |x| < 1.25 */
353 P
= pa0
+s
*(pa1
+s
*(pa2
+s
*(pa3
+s
*(pa4
+s
*(pa5
+s
*pa6
)))));
354 Q
= one
+s
*(qa1
+s
*(qa2
+s
*(qa3
+s
*(qa4
+s
*(qa5
+s
*qa6
)))));
356 z
= one
-c
; return z
- P
/Q
;
358 z
= c
+P
/Q
; return one
+z
;
361 if (ax
>= 28) { /* Out of range */
369 y
= z
- ax
; y
*= (ax
+z
);
370 z
*= -z
; /* Here z + y = -x^2 */
371 s
= one
/(-z
-y
); /* 1/(x*x) */
372 if (ax
>= 4) { /* 6 <= ax */
373 R
= s
*(rd1
+s
*(rd2
+s
*(rd3
+s
*(rd4
+s
*(rd5
+
374 s
*(rd6
+s
*(rd7
+s
*(rd8
+s
*(rd9
+s
*(rd10
375 +s
*(rd11
+s
*(rd12
+s
*rd13
))))))))))));
377 } else if (ax
>= 2) {
378 R
= rb0
+s
*(rb1
+s
*(rb2
+s
*(rb3
+s
*(rb4
+s
*(rb5
+
379 s
*(rb6
+s
*(rb7
+s
*(rb8
+s
*(rb9
+s
*rb10
)))))))));
380 S
= one
+s
*(sb1
+s
*(sb2
+s
*sb3
));
384 R
= rc0
+s
*(rc1
+s
*(rc2
+s
*(rc3
+s
*(rc4
+s
*(rc5
+
385 s
*(rc6
+s
*(rc7
+s
*(rc8
+s
*(rc9
+s
*rc10
)))))))));
386 S
= one
+s
*(sc1
+s
*(sc2
+s
*sc3
));
390 /* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */
391 s
= ((R
+ y
) - lsqrtPI_hi
) + z
;
392 y
= (((z
-s
) - lsqrtPI_hi
) + R
) + y
;
393 r
= __exp__D(s
, y
)/x
;