1 /* $NetBSD: n_exp.c,v 1.7 2003/08/07 16:44:50 agc Exp $ */
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 static char sccsid
[] = "@(#)exp.c 8.1 (Berkeley) 6/4/93";
38 * RETURN THE EXPONENTIAL OF X
39 * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
40 * CODED IN C BY K.C. NG, 1/19/85;
41 * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
43 * Required system supported functions:
49 * 1. Argument Reduction: given the input x, find r and integer k such
51 * x = k*ln2 + r, |r| <= 0.5*ln2 .
52 * r will be represented as r := z+c for better accuracy.
54 * 2. Compute exp(r) by
56 * exp(r) = 1 + r + r*R1/(2-R1),
58 * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
60 * 3. exp(x) = 2^k * exp(r) .
63 * exp(INF) is INF, exp(NaN) is NaN;
65 * for finite argument, only exp(0)=1 is exact.
68 * exp(x) returns the exponential of x nearly rounded. In a test run
69 * with 1,156,000 random arguments on a VAX, the maximum observed
70 * error was 0.869 ulps (units in the last place).
73 * The hexadecimal values are the intended ones for the following constants.
74 * The decimal values may be used, provided that the compiler will convert
75 * from decimal to binary accurately enough to produce the hexadecimal values
80 #include "../src/namespace.h"
84 __weak_alias(exp
, _exp
);
85 __weak_alias(expf
, _expf
);
88 vc(ln2hi
, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0
, 0, .B17217F7D00000
)
89 vc(ln2lo
, 1.6465949582897081279E-12 ,bcd5
,2ce7
,d9cc
,e4f1
, -39, .E7BCD5E4F1D9CC
)
90 vc(lnhuge
, 9.4961163736712506989E1
,ec1d
,43bd
,9010,a73e
, 7, .BDEC1DA73E9010
)
91 vc(lntiny
,-9.5654310917272452386E1
,4f01
,c3bf
,33af
,d72e
, 7,-.BF4F01D72E33AF
)
92 vc(invln2
, 1.4426950408889634148E0
,aa3b
,40b8
,17f1
,295c
, 1, .B8AA3B295C17F1
)
93 vc(p1
, 1.6666666666666602251E-1 ,aaaa
,3f2a
,a9f1
,aaaa
, -2, .AAAAAAAAAAA9F1
)
94 vc(p2
, -2.7777777777015591216E-3 ,0b60,bc36
,ec94
,b5f5
, -8,-.B60B60B5F5EC94
)
95 vc(p3
, 6.6137563214379341918E-5 ,b355
,398a
,f15f
,792e
, -13, .8AB355792EF15F
)
96 vc(p4
, -1.6533902205465250480E-6 ,ea0e
,b6dd
,5f84
,2e93
, -19,-.DDEA0E2E935F84
)
97 vc(p5
, 4.1381367970572387085E-8 ,bb4b
,3431,2683,95f5
, -24, .B1BB4B95F52683
)
100 #define ln2hi vccast(ln2hi)
101 #define ln2lo vccast(ln2lo)
102 #define lnhuge vccast(lnhuge)
103 #define lntiny vccast(lntiny)
104 #define invln2 vccast(invln2)
105 #define p1 vccast(p1)
106 #define p2 vccast(p2)
107 #define p3 vccast(p3)
108 #define p4 vccast(p4)
109 #define p5 vccast(p5)
112 ic(p1
, 1.6666666666666601904E-1, -3, 1.555555555553E
)
113 ic(p2
, -2.7777777777015593384E-3, -9, -1.6C16C16BEBD93
)
114 ic(p3
, 6.6137563214379343612E-5, -14, 1.1566AAF25DE2C
)
115 ic(p4
, -1.6533902205465251539E-6, -20, -1.BBD41C5D26BF1
)
116 ic(p5
, 4.1381367970572384604E-8, -25, 1.6376972BEA4D0
)
117 ic(ln2hi
, 6.9314718036912381649E-1, -1, 1.62E42FEE00000
)
118 ic(ln2lo
, 1.9082149292705877000E-10,-33, 1.A39EF35793C76
)
119 ic(lnhuge
, 7.1602103751842355450E2
, 9, 1.6602B15B7ECF2
)
120 ic(lntiny
,-7.5137154372698068983E2
, 9, -1.77AF8EBEAE354
)
121 ic(invln2
, 1.4426950408889633870E0
, 0, 1.71547652B82FE
)
129 #if !defined(__vax__)&&!defined(tahoe)
130 if(x
!=x
) return(x
); /* x is NaN */
131 #endif /* !defined(__vax__)&&!defined(tahoe) */
135 /* argument reduction : x --> x - k*ln2 */
137 k
=invln2
*x
+copysign(0.5,x
); /* k=NINT(x/ln2) */
139 /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
144 /* return 2^k*[1+x+x*c/(2+c)] */
146 c
= x
- z
*(p1
+z
*(p2
+z
*(p3
+z
*(p4
+z
*p5
))));
147 return scalb(1.0+(hi
-(lo
-(x
*c
)/(2.0-c
))),k
);
150 /* end of x > lntiny */
153 /* exp(-big#) underflows to zero */
154 if(finite(x
)) return(scalb(1.0,-5000));
156 /* exp(-INF) is zero */
159 /* end of x < lnhuge */
162 /* exp(INF) is INF, exp(+big#) overflows to INF */
163 return( finite(x
) ? scalb(1.0,5000) : x
);
169 return(exp((double)x
));
172 /* returns exp(r = x + c) for |c| < |x| with no overlap. */
175 __exp__D(double x
, double c
)
180 #if !defined(__vax__)&&!defined(tahoe)
181 if (x
!=x
) return(x
); /* x is NaN */
182 #endif /* !defined(__vax__)&&!defined(tahoe) */
186 /* argument reduction : x --> x - k*ln2 */
188 k
= z
+ copysign(.5, x
);
190 /* express (x+c)-k*ln2 as hi-lo and let x=hi-lo rounded */
192 hi
=(x
-k
*ln2hi
); /* Exact. */
193 x
= hi
- (lo
= k
*ln2lo
-c
);
194 /* return 2^k*[1+x+x*c/(2+c)] */
196 c
= x
- z
*(p1
+z
*(p2
+z
*(p3
+z
*(p4
+z
*p5
))));
199 return scalb(1.+(hi
-(lo
- c
)), k
);
201 /* end of x > lntiny */
204 /* exp(-big#) underflows to zero */
205 if(finite(x
)) return(scalb(1.0,-5000));
207 /* exp(-INF) is zero */
210 /* end of x < lnhuge */
213 /* exp(INF) is INF, exp(+big#) overflows to INF */
214 return( finite(x
) ? scalb(1.0,5000) : x
);