1 /* $NetBSD: n_log.c,v 1.6 2003/08/07 16:44:51 agc Exp $ */
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 static char sccsid
[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
37 #include "../src/namespace.h"
45 __weak_alias(log
, _log
);
46 __weak_alias(logf
, _logf
);
49 /* Table-driven natural logarithm.
51 * This code was derived, with minor modifications, from:
52 * Peter Tang, "Table-Driven Implementation of the
53 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
54 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
56 * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
57 * where F = j/128 for j an integer in [0, 128].
59 * log(2^m) = log2_hi*m + log2_tail*m
60 * since m is an integer, the dominant term is exact.
61 * m has at most 10 digits (for subnormal numbers),
62 * and log2_hi has 11 trailing zero bits.
64 * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
65 * logF_hi[] + 512 is exact.
67 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
68 * the leading term is calculated to extra precision in two
69 * parts, the larger of which adds exactly to the dominant
71 * There are two cases:
72 * 1. when m, j are non-zero (m | j), use absolute
73 * precision for the leading term.
74 * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
75 * In this case, use a relative precision of 24 bits.
76 * (This is done differently in the original paper)
79 * 0 return signalling -Inf
80 * neg return signalling NaN
84 #if defined(__vax__) || defined(tahoe)
86 #define TRUNC(x) x = (double) (float) (x)
89 #define endian (((*(int *) &one)) ? 1 : 0)
90 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
96 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
97 * Used for generation of extend precision logarithms.
98 * The constant 35184372088832 is 2^45, so the divide is exact.
99 * It ensures correct reading of logF_head, even for inaccurate
100 * decimal-to-binary conversion routines. (Everybody gets the
101 * right answer for integers less than 2^53.)
102 * Values for log(F) were generated using error < 10^-57 absolute
103 * with the bc -l package.
105 static const double A1
= .08333333333333178827;
106 static const double A2
= .01250000000377174923;
107 static const double A3
= .002232139987919447809;
108 static const double A4
= .0004348877777076145742;
110 static const double logF_head
[N
+1] = {
112 .007782140442060381246,
113 .015504186535963526694,
114 .023167059281547608406,
115 .030771658666765233647,
116 .038318864302141264488,
117 .045809536031242714670,
118 .053244514518837604555,
119 .060624621816486978786,
120 .067950661908525944454,
121 .075223421237524235039,
122 .082443669210988446138,
123 .089612158689760690322,
124 .096729626458454731618,
125 .103796793681567578460,
126 .110814366340264314203,
127 .117783035656430001836,
128 .124703478501032805070,
129 .131576357788617315236,
130 .138402322859292326029,
131 .145182009844575077295,
132 .151916042025732167530,
133 .158605030176659056451,
134 .165249572895390883786,
135 .171850256926518341060,
136 .178407657472689606947,
137 .184922338493834104156,
138 .191394852999565046047,
139 .197825743329758552135,
140 .204215541428766300668,
141 .210564769107350002741,
142 .216873938300523150246,
143 .223143551314024080056,
144 .229374101064877322642,
145 .235566071312860003672,
146 .241719936886966024758,
147 .247836163904594286577,
148 .253915209980732470285,
149 .259957524436686071567,
150 .265963548496984003577,
151 .271933715484010463114,
152 .277868451003087102435,
153 .283768173130738432519,
154 .289633292582948342896,
155 .295464212893421063199,
156 .301261330578199704177,
157 .307025035294827830512,
158 .312755710004239517729,
159 .318453731118097493890,
160 .324119468654316733591,
161 .329753286372579168528,
162 .335355541920762334484,
163 .340926586970454081892,
164 .346466767346100823488,
165 .351976423156884266063,
166 .357455888922231679316,
167 .362905493689140712376,
168 .368325561158599157352,
169 .373716409793814818840,
170 .379078352934811846353,
171 .384411698910298582632,
172 .389716751140440464951,
173 .394993808240542421117,
174 .400243164127459749579,
175 .405465108107819105498,
176 .410659924985338875558,
177 .415827895143593195825,
178 .420969294644237379543,
179 .426084395310681429691,
180 .431173464818130014464,
181 .436236766774527495726,
182 .441274560805140936281,
183 .446287102628048160113,
184 .451274644139630254358,
185 .456237433481874177232,
186 .461175715122408291790,
187 .466089729924533457960,
188 .470979715219073113985,
189 .475845904869856894947,
190 .480688529345570714212,
191 .485507815781602403149,
192 .490303988045525329653,
193 .495077266798034543171,
194 .499827869556611403822,
195 .504556010751912253908,
196 .509261901790523552335,
197 .513945751101346104405,
198 .518607764208354637958,
199 .523248143765158602036,
200 .527867089620485785417,
201 .532464798869114019908,
202 .537041465897345915436,
203 .541597282432121573947,
204 .546132437597407260909,
205 .550647117952394182793,
206 .555141507540611200965,
207 .559615787935399566777,
208 .564070138285387656651,
209 .568504735352689749561,
210 .572919753562018740922,
211 .577315365035246941260,
212 .581691739635061821900,
213 .586049045003164792433,
214 .590387446602107957005,
215 .594707107746216934174,
216 .599008189645246602594,
217 .603290851438941899687,
218 .607555250224322662688,
219 .611801541106615331955,
220 .616029877215623855590,
221 .620240409751204424537,
222 .624433288012369303032,
223 .628608659422752680256,
224 .632766669570628437213,
225 .636907462236194987781,
226 .641031179420679109171,
227 .645137961373620782978,
228 .649227946625615004450,
229 .653301272011958644725,
230 .657358072709030238911,
231 .661398482245203922502,
232 .665422632544505177065,
233 .669430653942981734871,
234 .673422675212350441142,
235 .677398823590920073911,
236 .681359224807238206267,
237 .685304003098281100392,
238 .689233281238557538017,
239 .693147180560117703862
242 static const double logF_tail
[N
+1] = {
244 -.00000000000000543229938420049,
245 .00000000000000172745674997061,
246 -.00000000000001323017818229233,
247 -.00000000000001154527628289872,
248 -.00000000000000466529469958300,
249 .00000000000005148849572685810,
250 -.00000000000002532168943117445,
251 -.00000000000005213620639136504,
252 -.00000000000001819506003016881,
253 .00000000000006329065958724544,
254 .00000000000008614512936087814,
255 -.00000000000007355770219435028,
256 .00000000000009638067658552277,
257 .00000000000007598636597194141,
258 .00000000000002579999128306990,
259 -.00000000000004654729747598444,
260 -.00000000000007556920687451336,
261 .00000000000010195735223708472,
262 -.00000000000017319034406422306,
263 -.00000000000007718001336828098,
264 .00000000000010980754099855238,
265 -.00000000000002047235780046195,
266 -.00000000000008372091099235912,
267 .00000000000014088127937111135,
268 .00000000000012869017157588257,
269 .00000000000017788850778198106,
270 .00000000000006440856150696891,
271 .00000000000016132822667240822,
272 -.00000000000007540916511956188,
273 -.00000000000000036507188831790,
274 .00000000000009120937249914984,
275 .00000000000018567570959796010,
276 -.00000000000003149265065191483,
277 -.00000000000009309459495196889,
278 .00000000000017914338601329117,
279 -.00000000000001302979717330866,
280 .00000000000023097385217586939,
281 .00000000000023999540484211737,
282 .00000000000015393776174455408,
283 -.00000000000036870428315837678,
284 .00000000000036920375082080089,
285 -.00000000000009383417223663699,
286 .00000000000009433398189512690,
287 .00000000000041481318704258568,
288 -.00000000000003792316480209314,
289 .00000000000008403156304792424,
290 -.00000000000034262934348285429,
291 .00000000000043712191957429145,
292 -.00000000000010475750058776541,
293 -.00000000000011118671389559323,
294 .00000000000037549577257259853,
295 .00000000000013912841212197565,
296 .00000000000010775743037572640,
297 .00000000000029391859187648000,
298 -.00000000000042790509060060774,
299 .00000000000022774076114039555,
300 .00000000000010849569622967912,
301 -.00000000000023073801945705758,
302 .00000000000015761203773969435,
303 .00000000000003345710269544082,
304 -.00000000000041525158063436123,
305 .00000000000032655698896907146,
306 -.00000000000044704265010452446,
307 .00000000000034527647952039772,
308 -.00000000000007048962392109746,
309 .00000000000011776978751369214,
310 -.00000000000010774341461609578,
311 .00000000000021863343293215910,
312 .00000000000024132639491333131,
313 .00000000000039057462209830700,
314 -.00000000000026570679203560751,
315 .00000000000037135141919592021,
316 -.00000000000017166921336082431,
317 -.00000000000028658285157914353,
318 -.00000000000023812542263446809,
319 .00000000000006576659768580062,
320 -.00000000000028210143846181267,
321 .00000000000010701931762114254,
322 .00000000000018119346366441110,
323 .00000000000009840465278232627,
324 -.00000000000033149150282752542,
325 -.00000000000018302857356041668,
326 -.00000000000016207400156744949,
327 .00000000000048303314949553201,
328 -.00000000000071560553172382115,
329 .00000000000088821239518571855,
330 -.00000000000030900580513238244,
331 -.00000000000061076551972851496,
332 .00000000000035659969663347830,
333 .00000000000035782396591276383,
334 -.00000000000046226087001544578,
335 .00000000000062279762917225156,
336 .00000000000072838947272065741,
337 .00000000000026809646615211673,
338 -.00000000000010960825046059278,
339 .00000000000002311949383800537,
340 -.00000000000058469058005299247,
341 -.00000000000002103748251144494,
342 -.00000000000023323182945587408,
343 -.00000000000042333694288141916,
344 -.00000000000043933937969737844,
345 .00000000000041341647073835565,
346 .00000000000006841763641591466,
347 .00000000000047585534004430641,
348 .00000000000083679678674757695,
349 -.00000000000085763734646658640,
350 .00000000000021913281229340092,
351 -.00000000000062242842536431148,
352 -.00000000000010983594325438430,
353 .00000000000065310431377633651,
354 -.00000000000047580199021710769,
355 -.00000000000037854251265457040,
356 .00000000000040939233218678664,
357 .00000000000087424383914858291,
358 .00000000000025218188456842882,
359 -.00000000000003608131360422557,
360 -.00000000000050518555924280902,
361 .00000000000078699403323355317,
362 -.00000000000067020876961949060,
363 .00000000000016108575753932458,
364 .00000000000058527188436251509,
365 -.00000000000035246757297904791,
366 -.00000000000018372084495629058,
367 .00000000000088606689813494916,
368 .00000000000066486268071468700,
369 .00000000000063831615170646519,
370 .00000000000025144230728376072,
371 -.00000000000017239444525614834
378 double F
, f
, g
, q
, u
, u2
, v
, zero
= 0.0, one
= 1.0;
381 /* Catch special cases */
383 if (_IEEE
&& x
== zero
) /* log(0) = -Inf */
385 else if (_IEEE
) /* log(neg) = NaN */
387 else if (x
== zero
) /* NOT REACHED IF _IEEE */
388 return (infnan(-ERANGE
));
390 return (infnan(EDOM
));
391 } else if (!finite(x
)) {
392 if (_IEEE
) /* x = NaN, Inf */
395 return (infnan(ERANGE
));
398 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
399 /* y = F*(1 + f/F) for |f| <= 2^-8 */
403 if (_IEEE
&& m
== -1022) {
408 F
= (1.0/N
) * j
+ 1; /* F*128 is an integer in [128, 512] */
411 /* Approximate expansion for log(1+f/F) ~= u + q */
415 q
= u
*v
*(A1
+ v
*(A2
+ v
*(A3
+ v
*A4
)));
417 /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
418 * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
419 * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
422 u1
= u
+ 513, u1
-= 513;
424 /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
429 u2
= (2.0*(f
- F
*u1
) - u1
*f
) * g
;
430 /* u1 + u2 = 2f/(2F+f) to extra precision. */
432 /* log(x) = log(2^m*F*(1+f/F)) = */
433 /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
434 /* (exact) + (tiny) */
436 u1
+= m
*logF_head
[N
] + logF_head
[j
]; /* exact */
437 u2
= (u2
+ logF_tail
[j
]) + q
; /* tiny */
438 u2
+= logF_tail
[N
]*m
;
443 * Extra precision variant, returning struct {double a, b;};
444 * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
450 double F
, f
, g
, q
, u
, v
, u2
;
454 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
455 /* y = F*(1 + f/F) for |f| <= 2^-8 */
459 if (_IEEE
&& m
== -1022) {
470 q
= u
*v
*(A1
+ v
*(A2
+ v
*(A3
+ v
*A4
)));
472 u1
= u
+ 513, u1
-= 513;
475 u2
= (2.0*(f
- F
*u1
) - u1
*f
) * g
;
477 u1
+= m
*logF_head
[N
] + logF_head
[j
];
479 u2
+= logF_tail
[j
]; u2
+= q
;
480 u2
+= logF_tail
[N
]*m
;
481 r
.a
= u1
+ u2
; /* Only difference is here */
483 r
.b
= (u1
- r
.a
) + u2
;
490 return(log((double)x
));