Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / lib / libm / src / s_log1p.c
blob0c903ab1c29e3c39850908c5fb8cb6954fc8e388
1 /* @(#)s_log1p.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: s_log1p.c,v 1.11 1999/07/02 15:37:43 simonb Exp $");
16 #endif
18 /* double log1p(double x)
20 * Method :
21 * 1. Argument Reduction: find k and f such that
22 * 1+x = 2^k * (1+f),
23 * where sqrt(2)/2 < 1+f < sqrt(2) .
25 * Note. If k=0, then f=x is exact. However, if k!=0, then f
26 * may not be representable exactly. In that case, a correction
27 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
28 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
29 * and add back the correction term c/u.
30 * (Note: when x > 2**53, one can simply return log(x))
32 * 2. Approximation of log1p(f).
33 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
34 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
35 * = 2s + s*R
36 * We use a special Reme algorithm on [0,0.1716] to generate
37 * a polynomial of degree 14 to approximate R The maximum error
38 * of this polynomial approximation is bounded by 2**-58.45. In
39 * other words,
40 * 2 4 6 8 10 12 14
41 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
42 * (the values of Lp1 to Lp7 are listed in the program)
43 * and
44 * | 2 14 | -58.45
45 * | Lp1*s +...+Lp7*s - R(z) | <= 2
46 * | |
47 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
48 * In order to guarantee error in log below 1ulp, we compute log
49 * by
50 * log1p(f) = f - (hfsq - s*(hfsq+R)).
52 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
53 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
54 * Here ln2 is split into two floating point number:
55 * ln2_hi + ln2_lo,
56 * where n*ln2_hi is always exact for |n| < 2000.
58 * Special cases:
59 * log1p(x) is NaN with signal if x < -1 (including -INF) ;
60 * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
61 * log1p(NaN) is that NaN with no signal.
63 * Accuracy:
64 * according to an error analysis, the error is always less than
65 * 1 ulp (unit in the last place).
67 * Constants:
68 * The hexadecimal values are the intended ones for the following
69 * constants. The decimal values may be used, provided that the
70 * compiler will convert from decimal to binary accurately enough
71 * to produce the hexadecimal values shown.
73 * Note: Assuming log() return accurate answer, the following
74 * algorithm can be used to compute log1p(x) to within a few ULP:
76 * u = 1+x;
77 * if(u==1.0) return x ; else
78 * return log(u)*(x/(u-1.0));
80 * See HP-15C Advanced Functions Handbook, p.193.
83 #include "math.h"
84 #include "math_private.h"
86 static const double
87 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
88 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
89 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
90 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
91 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
92 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
93 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
94 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
95 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
96 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
98 static const double zero = 0.0;
100 double
101 log1p(double x)
103 double hfsq,f,c,s,z,R,u;
104 int32_t k,hx,hu,ax;
106 f = c = 0;
107 hu = 0;
108 GET_HIGH_WORD(hx,x);
109 ax = hx&0x7fffffff;
111 k = 1;
112 if (hx < 0x3FDA827A) { /* x < 0.41422 */
113 if(ax>=0x3ff00000) { /* x <= -1.0 */
114 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
115 else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
117 if(ax<0x3e200000) { /* |x| < 2**-29 */
118 if(two54+x>zero /* raise inexact */
119 &&ax<0x3c900000) /* |x| < 2**-54 */
120 return x;
121 else
122 return x - x*x*0.5;
124 if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
125 k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
127 if (hx >= 0x7ff00000) return x+x;
128 if(k!=0) {
129 if(hx<0x43400000) {
130 u = 1.0+x;
131 GET_HIGH_WORD(hu,u);
132 k = (hu>>20)-1023;
133 c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
134 c /= u;
135 } else {
136 u = x;
137 GET_HIGH_WORD(hu,u);
138 k = (hu>>20)-1023;
139 c = 0;
141 hu &= 0x000fffff;
142 if(hu<0x6a09e) {
143 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
144 } else {
145 k += 1;
146 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
147 hu = (0x00100000-hu)>>2;
149 f = u-1.0;
151 hfsq=0.5*f*f;
152 if(hu==0) { /* |f| < 2**-20 */
153 if(f==zero) { if(k==0) return zero;
154 else {c += k*ln2_lo; return k*ln2_hi+c;}
156 R = hfsq*(1.0-0.66666666666666666*f);
157 if(k==0) return f-R; else
158 return k*ln2_hi-((R-(k*ln2_lo+c))-f);
160 s = f/(2.0+f);
161 z = s*s;
162 R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
163 if(k==0) return f-(hfsq-s*(hfsq+R)); else
164 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);