Patrick Welche <prlw1@cam.ac.uk>
[netbsd-mini2440.git] / usr.bin / compress / zopen.c
blobabde0186b910e9238ef636ce87f61d589048593e
1 /* $NetBSD: zopen.c,v 1.12 2008/02/21 02:50:11 joerg Exp $ */
3 /*-
4 * Copyright (c) 1985, 1986, 1992, 1993
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Diomidis Spinellis and James A. Woods, derived from original
9 * work by Spencer Thomas and Joseph Orost.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)zopen.c 8.1 (Berkeley) 6/27/93";
39 #else
40 static char rcsid[] = "$NetBSD: zopen.c,v 1.12 2008/02/21 02:50:11 joerg Exp $";
41 #endif
42 #endif /* LIBC_SCCS and not lint */
44 /*-
45 * fcompress.c - File compression ala IEEE Computer, June 1984.
47 * Compress authors:
48 * Spencer W. Thomas (decvax!utah-cs!thomas)
49 * Jim McKie (decvax!mcvax!jim)
50 * Steve Davies (decvax!vax135!petsd!peora!srd)
51 * Ken Turkowski (decvax!decwrl!turtlevax!ken)
52 * James A. Woods (decvax!ihnp4!ames!jaw)
53 * Joe Orost (decvax!vax135!petsd!joe)
55 * Cleaned up and converted to library returning I/O streams by
56 * Diomidis Spinellis <dds@doc.ic.ac.uk>.
58 * zopen(filename, mode, bits)
59 * Returns a FILE * that can be used for read or write. The modes
60 * supported are only "r" and "w". Seeking is not allowed. On
61 * reading the file is decompressed, on writing it is compressed.
62 * The output is compatible with compress(1) with 16 bit tables.
63 * Any file produced by compress(1) can be read.
66 #include <sys/param.h>
67 #include <sys/stat.h>
69 #include <errno.h>
70 #include <signal.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <string.h>
74 #include <unistd.h>
76 #define BITS 16 /* Default bits. */
77 #define HSIZE 69001 /* 95% occupancy */
79 /* A code_int must be able to hold 2**BITS values of type int, and also -1. */
80 typedef long code_int;
81 typedef long count_int;
83 typedef u_char char_type;
84 static char_type magic_header[] =
85 {'\037', '\235'}; /* 1F 9D */
87 #define BIT_MASK 0x1f /* Defines for third byte of header. */
88 #define BLOCK_MASK 0x80
91 * Masks 0x40 and 0x20 are free. I think 0x20 should mean that there is
92 * a fourth header byte (for expansion).
94 #define INIT_BITS 9 /* Initial number of bits/code. */
96 #define MAXCODE(n_bits) ((1 << (n_bits)) - 1)
98 struct s_zstate {
99 FILE *zs_fp; /* File stream for I/O */
100 char zs_mode; /* r or w */
101 enum {
102 S_START, S_MIDDLE, S_EOF
103 } zs_state; /* State of computation */
104 int zs_n_bits; /* Number of bits/code. */
105 int zs_maxbits; /* User settable max # bits/code. */
106 code_int zs_maxcode; /* Maximum code, given n_bits. */
107 code_int zs_maxmaxcode; /* Should NEVER generate this code. */
108 count_int zs_htab [HSIZE];
109 u_short zs_codetab [HSIZE];
110 code_int zs_hsize; /* For dynamic table sizing. */
111 code_int zs_free_ent; /* First unused entry. */
113 * Block compression parameters -- after all codes are used up,
114 * and compression rate changes, start over.
116 int zs_block_compress;
117 int zs_clear_flg;
118 long zs_ratio;
119 count_int zs_checkpoint;
120 int zs_offset;
121 long zs_in_count; /* Length of input. */
122 long zs_bytes_out; /* Length of compressed output. */
123 long zs_out_count; /* # of codes output (for debugging). */
124 char_type zs_buf[BITS];
125 union {
126 struct {
127 long zs_fcode;
128 code_int zs_ent;
129 code_int zs_hsize_reg;
130 int zs_hshift;
131 } w; /* Write paramenters */
132 struct {
133 char_type *zs_stackp;
134 int zs_finchar;
135 code_int zs_code, zs_oldcode, zs_incode;
136 int zs_roffset, zs_size;
137 char_type zs_gbuf[BITS];
138 } r; /* Read parameters */
139 } u;
142 /* Definitions to retain old variable names */
143 #define fp zs->zs_fp
144 #define zmode zs->zs_mode
145 #define state zs->zs_state
146 #define n_bits zs->zs_n_bits
147 #define maxbits zs->zs_maxbits
148 #define maxcode zs->zs_maxcode
149 #define maxmaxcode zs->zs_maxmaxcode
150 #define htab zs->zs_htab
151 #define codetab zs->zs_codetab
152 #define hsize zs->zs_hsize
153 #define free_ent zs->zs_free_ent
154 #define block_compress zs->zs_block_compress
155 #define clear_flg zs->zs_clear_flg
156 #define ratio zs->zs_ratio
157 #define checkpoint zs->zs_checkpoint
158 #define offset zs->zs_offset
159 #define in_count zs->zs_in_count
160 #define bytes_out zs->zs_bytes_out
161 #define out_count zs->zs_out_count
162 #define buf zs->zs_buf
163 #define fcode zs->u.w.zs_fcode
164 #define hsize_reg zs->u.w.zs_hsize_reg
165 #define ent zs->u.w.zs_ent
166 #define hshift zs->u.w.zs_hshift
167 #define stackp zs->u.r.zs_stackp
168 #define finchar zs->u.r.zs_finchar
169 #define code zs->u.r.zs_code
170 #define oldcode zs->u.r.zs_oldcode
171 #define incode zs->u.r.zs_incode
172 #define roffset zs->u.r.zs_roffset
173 #define size zs->u.r.zs_size
174 #define gbuf zs->u.r.zs_gbuf
177 * To save much memory, we overlay the table used by compress() with those
178 * used by decompress(). The tab_prefix table is the same size and type as
179 * the codetab. The tab_suffix table needs 2**BITS characters. We get this
180 * from the beginning of htab. The output stack uses the rest of htab, and
181 * contains characters. There is plenty of room for any possible stack
182 * (stack used to be 8000 characters).
185 #define htabof(i) htab[i]
186 #define codetabof(i) codetab[i]
188 #define tab_prefixof(i) codetabof(i)
189 #define tab_suffixof(i) ((char_type *)(htab))[i]
190 #define de_stack ((char_type *)&tab_suffixof(1 << BITS))
192 #define CHECK_GAP 10000 /* Ratio check interval. */
195 * the next two codes should not be changed lightly, as they must not
196 * lie within the contiguous general code space.
198 #define FIRST 257 /* First free entry. */
199 #define CLEAR 256 /* Table clear output code. */
201 static int cl_block(struct s_zstate *);
202 static code_int getcode(struct s_zstate *);
203 static int output(struct s_zstate *, code_int);
204 static int zclose(void *);
205 FILE *zopen(const char *, const char *, int);
206 static int zread(void *, char *, int);
207 static int zwrite(void *, const char *, int);
210 * Algorithm from "A Technique for High Performance Data Compression",
211 * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
213 * Algorithm:
214 * Modified Lempel-Ziv method (LZW). Basically finds common
215 * substrings and replaces them with a variable size code. This is
216 * deterministic, and can be done on the fly. Thus, the decompression
217 * procedure needs no input table, but tracks the way the table was built.
221 * compress write
223 * Algorithm: use open addressing double hashing (no chaining) on the
224 * prefix code / next character combination. We do a variant of Knuth's
225 * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
226 * secondary probe. Here, the modular division first probe is gives way
227 * to a faster exclusive-or manipulation. Also do block compression with
228 * an adaptive reset, whereby the code table is cleared when the compression
229 * ratio decreases, but after the table fills. The variable-length output
230 * codes are re-sized at this point, and a special CLEAR code is generated
231 * for the decompressor. Late addition: construct the table according to
232 * file size for noticeable speed improvement on small files. Please direct
233 * questions about this implementation to ames!jaw.
235 static int
236 zwrite(void *cookie, const char *wbp, int num)
238 code_int i;
239 int c, disp;
240 struct s_zstate *zs;
241 const u_char *bp;
242 u_char tmp;
243 int count;
245 if (num == 0)
246 return (0);
248 zs = cookie;
249 count = num;
250 bp = (const u_char *)wbp;
251 if (state == S_MIDDLE)
252 goto middle;
253 state = S_MIDDLE;
255 maxmaxcode = 1L << maxbits;
256 if (fwrite(magic_header,
257 sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
258 return (-1);
259 tmp = (u_char)(maxbits | block_compress);
260 if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
261 return (-1);
263 offset = 0;
264 bytes_out = 3; /* Includes 3-byte header mojo. */
265 out_count = 0;
266 clear_flg = 0;
267 ratio = 0;
268 in_count = 1;
269 checkpoint = CHECK_GAP;
270 maxcode = MAXCODE(n_bits = INIT_BITS);
271 free_ent = ((block_compress) ? FIRST : 256);
273 ent = *bp++;
274 --count;
276 hshift = 0;
277 for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
278 hshift++;
279 hshift = 8 - hshift; /* Set hash code range bound. */
281 hsize_reg = hsize;
282 memset(htab, 0xff, hsize_reg * sizeof(count_int));
284 middle: while (count--) {
285 c = *bp++;
286 in_count++;
287 fcode = (long)(((long)c << maxbits) + ent);
288 i = ((c << hshift) ^ ent); /* Xor hashing. */
290 if (htabof(i) == fcode) {
291 ent = codetabof(i);
292 continue;
293 } else if ((long)htabof(i) < 0) /* Empty slot. */
294 goto nomatch;
295 disp = hsize_reg - i; /* Secondary hash (after G. Knott). */
296 if (i == 0)
297 disp = 1;
298 probe: if ((i -= disp) < 0)
299 i += hsize_reg;
301 if (htabof(i) == fcode) {
302 ent = codetabof(i);
303 continue;
305 if ((long)htabof(i) >= 0)
306 goto probe;
307 nomatch: if (output(zs, (code_int) ent) == -1)
308 return (-1);
309 out_count++;
310 ent = c;
311 if (free_ent < maxmaxcode) {
312 codetabof(i) = free_ent++; /* code -> hashtable */
313 htabof(i) = fcode;
314 } else if ((count_int)in_count >=
315 checkpoint && block_compress) {
316 if (cl_block(zs) == -1)
317 return (-1);
320 return (num);
323 static int
324 zclose(void *cookie)
326 struct s_zstate *zs;
327 int rval;
329 zs = cookie;
330 if (zmode == 'w') { /* Put out the final code. */
331 if (output(zs, (code_int) ent) == -1) {
332 (void)fclose(fp);
333 free(zs);
334 return (-1);
336 out_count++;
337 if (output(zs, (code_int) - 1) == -1) {
338 (void)fclose(fp);
339 free(zs);
340 return (-1);
343 rval = fclose(fp) == EOF ? -1 : 0;
344 free(zs);
345 return (rval);
349 * Output the given code.
350 * Inputs:
351 * code: A n_bits-bit integer. If == -1, then EOF. This assumes
352 * that n_bits =< (long)wordsize - 1.
353 * Outputs:
354 * Outputs code to the file.
355 * Assumptions:
356 * Chars are 8 bits long.
357 * Algorithm:
358 * Maintain a BITS character long buffer (so that 8 codes will
359 * fit in it exactly). Use the VAX insv instruction to insert each
360 * code in turn. When the buffer fills up empty it and start over.
363 static char_type lmask[9] =
364 {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
365 static char_type rmask[9] =
366 {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
368 static int
369 output(struct s_zstate *zs, code_int ocode)
371 int bits, r_off;
372 char_type *bp;
374 r_off = offset;
375 bits = n_bits;
376 bp = buf;
377 if (ocode >= 0) {
378 /* Get to the first byte. */
379 bp += (r_off >> 3);
380 r_off &= 7;
382 * Since ocode is always >= 8 bits, only need to mask the first
383 * hunk on the left.
385 *bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
386 bp++;
387 bits -= (8 - r_off);
388 ocode >>= 8 - r_off;
389 /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
390 if (bits >= 8) {
391 *bp++ = ocode;
392 ocode >>= 8;
393 bits -= 8;
395 /* Last bits. */
396 if (bits)
397 *bp = ocode;
398 offset += n_bits;
399 if (offset == (n_bits << 3)) {
400 bp = buf;
401 bits = n_bits;
402 bytes_out += bits;
403 if (fwrite(bp, sizeof(char), bits, fp) != (size_t)bits)
404 return (-1);
405 bp += bits;
406 bits = 0;
407 offset = 0;
410 * If the next entry is going to be too big for the ocode size,
411 * then increase it, if possible.
413 if (free_ent > maxcode || (clear_flg > 0)) {
415 * Write the whole buffer, because the input side won't
416 * discover the size increase until after it has read it.
418 if (offset > 0) {
419 if (fwrite(buf, 1, n_bits, fp) != (size_t)n_bits)
420 return (-1);
421 bytes_out += n_bits;
423 offset = 0;
425 if (clear_flg) {
426 maxcode = MAXCODE(n_bits = INIT_BITS);
427 clear_flg = 0;
428 } else {
429 n_bits++;
430 if (n_bits == maxbits)
431 maxcode = maxmaxcode;
432 else
433 maxcode = MAXCODE(n_bits);
436 } else {
437 /* At EOF, write the rest of the buffer. */
438 if (offset > 0) {
439 offset = (offset + 7) / 8;
440 if (fwrite(buf, 1, offset, fp) != (size_t)offset)
441 return (-1);
442 bytes_out += offset;
444 offset = 0;
446 return (0);
450 * Decompress read. This routine adapts to the codes in the file building
451 * the "string" table on-the-fly; requiring no table to be stored in the
452 * compressed file. The tables used herein are shared with those of the
453 * compress() routine. See the definitions above.
455 static int
456 zread(void *cookie, char *rbp, int num)
458 u_int count;
459 struct s_zstate *zs;
460 u_char *bp, header[3];
462 if (num == 0)
463 return (0);
465 zs = cookie;
466 count = num;
467 bp = (u_char *)rbp;
468 switch (state) {
469 case S_START:
470 state = S_MIDDLE;
471 break;
472 case S_MIDDLE:
473 goto middle;
474 case S_EOF:
475 goto eof;
478 /* Check the magic number */
479 if (fread(header,
480 sizeof(char), sizeof(header), fp) != sizeof(header) ||
481 memcmp(header, magic_header, sizeof(magic_header)) != 0) {
482 errno = EFTYPE;
483 return (-1);
485 maxbits = header[2]; /* Set -b from file. */
486 block_compress = maxbits & BLOCK_MASK;
487 maxbits &= BIT_MASK;
488 maxmaxcode = 1L << maxbits;
489 if (maxbits > BITS) {
490 errno = EFTYPE;
491 return (-1);
493 /* As above, initialize the first 256 entries in the table. */
494 maxcode = MAXCODE(n_bits = INIT_BITS);
495 for (code = 255; code >= 0; code--) {
496 tab_prefixof(code) = 0;
497 tab_suffixof(code) = (char_type) code;
499 free_ent = block_compress ? FIRST : 256;
501 finchar = oldcode = getcode(zs);
502 if (oldcode == -1) /* EOF already? */
503 return (0); /* Get out of here */
505 /* First code must be 8 bits = char. */
506 *bp++ = (u_char)finchar;
507 count--;
508 stackp = de_stack;
510 while ((code = getcode(zs)) > -1) {
512 if ((code == CLEAR) && block_compress) {
513 for (code = 255; code >= 0; code--)
514 tab_prefixof(code) = 0;
515 clear_flg = 1;
516 free_ent = FIRST - 1;
517 if ((code = getcode(zs)) == -1) /* O, untimely death! */
518 break;
520 incode = code;
522 /* Special case for KwKwK string. */
523 if (code >= free_ent) {
524 *stackp++ = finchar;
525 code = oldcode;
528 /* Generate output characters in reverse order. */
529 while (code >= 256) {
530 *stackp++ = tab_suffixof(code);
531 code = tab_prefixof(code);
533 *stackp++ = finchar = tab_suffixof(code);
535 /* And put them out in forward order. */
536 middle: do {
537 if (count-- == 0)
538 return (num);
539 *bp++ = *--stackp;
540 } while (stackp > de_stack);
542 /* Generate the new entry. */
543 if ((code = free_ent) < maxmaxcode) {
544 tab_prefixof(code) = (u_short) oldcode;
545 tab_suffixof(code) = finchar;
546 free_ent = code + 1;
549 /* Remember previous code. */
550 oldcode = incode;
552 state = S_EOF;
553 eof: return (num - count);
557 * Read one code from the standard input. If EOF, return -1.
558 * Inputs:
559 * stdin
560 * Outputs:
561 * code or -1 is returned.
563 static code_int
564 getcode(struct s_zstate *zs)
566 code_int gcode;
567 int r_off, bits;
568 char_type *bp;
570 bp = gbuf;
571 if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
573 * If the next entry will be too big for the current gcode
574 * size, then we must increase the size. This implies reading
575 * a new buffer full, too.
577 if (free_ent > maxcode) {
578 n_bits++;
579 if (n_bits == maxbits) /* Won't get any bigger now. */
580 maxcode = maxmaxcode;
581 else
582 maxcode = MAXCODE(n_bits);
584 if (clear_flg > 0) {
585 maxcode = MAXCODE(n_bits = INIT_BITS);
586 clear_flg = 0;
588 size = fread(gbuf, 1, n_bits, fp);
589 if (size <= 0) /* End of file. */
590 return (-1);
591 roffset = 0;
592 /* Round size down to integral number of codes. */
593 size = (size << 3) - (n_bits - 1);
595 r_off = roffset;
596 bits = n_bits;
598 /* Get to the first byte. */
599 bp += (r_off >> 3);
600 r_off &= 7;
602 /* Get first part (low order bits). */
603 gcode = (*bp++ >> r_off);
604 bits -= (8 - r_off);
605 r_off = 8 - r_off; /* Now, roffset into gcode word. */
607 /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
608 if (bits >= 8) {
609 gcode |= *bp++ << r_off;
610 r_off += 8;
611 bits -= 8;
614 /* High order bits. */
615 gcode |= (*bp & rmask[bits]) << r_off;
616 roffset += n_bits;
618 return (gcode);
621 static int
622 cl_block(struct s_zstate *zs) /* Table clear for block compress. */
624 long rat;
626 checkpoint = in_count + CHECK_GAP;
628 if (in_count > 0x007fffff) { /* Shift will overflow. */
629 rat = bytes_out >> 8;
630 if (rat == 0) /* Don't divide by zero. */
631 rat = 0x7fffffff;
632 else
633 rat = in_count / rat;
634 } else
635 rat = (in_count << 8) / bytes_out; /* 8 fractional bits. */
636 if (rat > ratio)
637 ratio = rat;
638 else {
639 ratio = 0;
640 memset(htab, 0xff, hsize * sizeof(count_int));
641 free_ent = FIRST;
642 clear_flg = 1;
643 if (output(zs, (code_int) CLEAR) == -1)
644 return (-1);
646 return (0);
649 FILE *
650 zopen(const char *fname, const char *mode, int bits)
652 struct s_zstate *zs;
654 if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
655 bits < 0 || bits > BITS) {
656 errno = EINVAL;
657 return (NULL);
660 if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
661 return (NULL);
663 maxbits = bits ? bits : BITS; /* User settable max # bits/code. */
664 maxmaxcode = 1 << maxbits; /* Should NEVER generate this code. */
665 hsize = HSIZE; /* For dynamic table sizing. */
666 free_ent = 0; /* First unused entry. */
667 block_compress = BLOCK_MASK;
668 clear_flg = 0;
669 ratio = 0;
670 checkpoint = CHECK_GAP;
671 in_count = 1; /* Length of input. */
672 out_count = 0; /* # of codes output (for debugging). */
673 state = S_START;
674 roffset = 0;
675 size = 0;
678 * Layering compress on top of stdio in order to provide buffering,
679 * and ensure that reads and write work with the data specified.
681 if ((fp = fopen(fname, mode)) == NULL) {
682 free(zs);
683 return (NULL);
685 switch (*mode) {
686 case 'r':
687 zmode = 'r';
688 return (funopen(zs, zread, NULL, NULL, zclose));
689 case 'w':
690 zmode = 'w';
691 return (funopen(zs, NULL, zwrite, NULL, zclose));
693 /* NOTREACHED */
694 return (NULL);