Try to fixup the mess of mdoc(7)/man(7) mixture as created by the merge.
[netbsd-mini2440.git] / sys / kern / sys_aio.c
blobef3a7cdfd65e16a83398d870d8dbd55d6c48e11c
1 /* $NetBSD: sys_aio.c,v 1.29 2009/10/21 21:12:06 rmind Exp $ */
3 /*
4 * Copyright (c) 2007, Mindaugas Rasiukevicius <rmind at NetBSD org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
30 * Implementation of POSIX asynchronous I/O.
31 * Defined in the Base Definitions volume of IEEE Std 1003.1-2001.
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: sys_aio.c,v 1.29 2009/10/21 21:12:06 rmind Exp $");
37 #ifdef _KERNEL_OPT
38 #include "opt_ddb.h"
39 #endif
41 #include <sys/param.h>
42 #include <sys/condvar.h>
43 #include <sys/file.h>
44 #include <sys/filedesc.h>
45 #include <sys/kernel.h>
46 #include <sys/kmem.h>
47 #include <sys/lwp.h>
48 #include <sys/mutex.h>
49 #include <sys/pool.h>
50 #include <sys/proc.h>
51 #include <sys/queue.h>
52 #include <sys/signal.h>
53 #include <sys/signalvar.h>
54 #include <sys/syscall.h>
55 #include <sys/syscallargs.h>
56 #include <sys/syscallvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/vnode.h>
61 #include <sys/atomic.h>
62 #include <sys/module.h>
63 #include <sys/buf.h>
65 #include <uvm/uvm_extern.h>
67 MODULE(MODULE_CLASS_MISC, aio, NULL);
70 * System-wide limits and counter of AIO operations.
72 u_int aio_listio_max = AIO_LISTIO_MAX;
73 static u_int aio_max = AIO_MAX;
74 static u_int aio_jobs_count;
76 static struct pool aio_job_pool;
77 static struct pool aio_lio_pool;
78 static void *aio_ehook;
80 /* Prototypes */
81 static void aio_worker(void *);
82 static void aio_process(struct aio_job *);
83 static void aio_sendsig(struct proc *, struct sigevent *);
84 static int aio_enqueue_job(int, void *, struct lio_req *);
85 static void aio_exit(proc_t *, void *);
87 static const struct syscall_package aio_syscalls[] = {
88 { SYS_aio_cancel, 0, (sy_call_t *)sys_aio_cancel },
89 { SYS_aio_error, 0, (sy_call_t *)sys_aio_error },
90 { SYS_aio_fsync, 0, (sy_call_t *)sys_aio_fsync },
91 { SYS_aio_read, 0, (sy_call_t *)sys_aio_read },
92 { SYS_aio_return, 0, (sy_call_t *)sys_aio_return },
93 { SYS___aio_suspend50, 0, (sy_call_t *)sys___aio_suspend50 },
94 { SYS_aio_write, 0, (sy_call_t *)sys_aio_write },
95 { SYS_lio_listio, 0, (sy_call_t *)sys_lio_listio },
96 { 0, 0, NULL },
100 * Tear down all AIO state.
102 static int
103 aio_fini(bool interface)
105 int error;
106 proc_t *p;
108 if (interface) {
109 /* Stop syscall activity. */
110 error = syscall_disestablish(NULL, aio_syscalls);
111 if (error != 0)
112 return error;
113 /* Abort if any processes are using AIO. */
114 mutex_enter(proc_lock);
115 PROCLIST_FOREACH(p, &allproc) {
116 if (p->p_aio != NULL)
117 break;
119 mutex_exit(proc_lock);
120 if (p != NULL) {
121 error = syscall_establish(NULL, aio_syscalls);
122 KASSERT(error == 0);
123 return EBUSY;
126 KASSERT(aio_jobs_count == 0);
127 exithook_disestablish(aio_ehook);
128 pool_destroy(&aio_job_pool);
129 pool_destroy(&aio_lio_pool);
130 return 0;
134 * Initialize global AIO state.
136 static int
137 aio_init(void)
139 int error;
141 pool_init(&aio_job_pool, sizeof(struct aio_job), 0, 0, 0,
142 "aio_jobs_pool", &pool_allocator_nointr, IPL_NONE);
143 pool_init(&aio_lio_pool, sizeof(struct lio_req), 0, 0, 0,
144 "aio_lio_pool", &pool_allocator_nointr, IPL_NONE);
145 aio_ehook = exithook_establish(aio_exit, NULL);
146 error = syscall_establish(NULL, aio_syscalls);
147 if (error != 0)
148 aio_fini(false);
149 return error;
153 * Module interface.
155 static int
156 aio_modcmd(modcmd_t cmd, void *arg)
159 switch (cmd) {
160 case MODULE_CMD_INIT:
161 return aio_init();
162 case MODULE_CMD_FINI:
163 return aio_fini(true);
164 default:
165 return ENOTTY;
170 * Initialize Asynchronous I/O data structures for the process.
172 static int
173 aio_procinit(struct proc *p)
175 struct aioproc *aio;
176 struct lwp *l;
177 int error;
178 vaddr_t uaddr;
180 /* Allocate and initialize AIO structure */
181 aio = kmem_zalloc(sizeof(struct aioproc), KM_SLEEP);
182 if (aio == NULL)
183 return EAGAIN;
185 /* Initialize queue and their synchronization structures */
186 mutex_init(&aio->aio_mtx, MUTEX_DEFAULT, IPL_NONE);
187 cv_init(&aio->aio_worker_cv, "aiowork");
188 cv_init(&aio->done_cv, "aiodone");
189 TAILQ_INIT(&aio->jobs_queue);
192 * Create an AIO worker thread.
193 * XXX: Currently, AIO thread is not protected against user's actions.
195 uaddr = uvm_uarea_alloc();
196 if (uaddr == 0) {
197 aio_exit(p, aio);
198 return EAGAIN;
200 error = lwp_create(curlwp, p, uaddr, 0, NULL, 0, aio_worker,
201 NULL, &l, curlwp->l_class);
202 if (error != 0) {
203 uvm_uarea_free(uaddr);
204 aio_exit(p, aio);
205 return error;
208 /* Recheck if we are really first */
209 mutex_enter(p->p_lock);
210 if (p->p_aio) {
211 mutex_exit(p->p_lock);
212 aio_exit(p, aio);
213 lwp_exit(l);
214 return 0;
216 p->p_aio = aio;
218 /* Complete the initialization of thread, and run it */
219 aio->aio_worker = l;
220 p->p_nrlwps++;
221 lwp_lock(l);
222 l->l_stat = LSRUN;
223 l->l_priority = MAXPRI_USER;
224 sched_enqueue(l, false);
225 lwp_unlock(l);
226 mutex_exit(p->p_lock);
228 return 0;
232 * Exit of Asynchronous I/O subsystem of process.
234 static void
235 aio_exit(struct proc *p, void *cookie)
237 struct aio_job *a_job;
238 struct aioproc *aio;
240 if (cookie != NULL)
241 aio = cookie;
242 else if ((aio = p->p_aio) == NULL)
243 return;
245 /* Free AIO queue */
246 while (!TAILQ_EMPTY(&aio->jobs_queue)) {
247 a_job = TAILQ_FIRST(&aio->jobs_queue);
248 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
249 pool_put(&aio_job_pool, a_job);
250 atomic_dec_uint(&aio_jobs_count);
253 /* Destroy and free the entire AIO data structure */
254 cv_destroy(&aio->aio_worker_cv);
255 cv_destroy(&aio->done_cv);
256 mutex_destroy(&aio->aio_mtx);
257 kmem_free(aio, sizeof(struct aioproc));
261 * AIO worker thread and processor.
263 static void
264 aio_worker(void *arg)
266 struct proc *p = curlwp->l_proc;
267 struct aioproc *aio = p->p_aio;
268 struct aio_job *a_job;
269 struct lio_req *lio;
270 sigset_t oss, nss;
271 int error, refcnt;
274 * Make an empty signal mask, so it
275 * handles only SIGKILL and SIGSTOP.
277 sigfillset(&nss);
278 mutex_enter(p->p_lock);
279 error = sigprocmask1(curlwp, SIG_SETMASK, &nss, &oss);
280 mutex_exit(p->p_lock);
281 KASSERT(error == 0);
283 for (;;) {
285 * Loop for each job in the queue. If there
286 * are no jobs then sleep.
288 mutex_enter(&aio->aio_mtx);
289 while ((a_job = TAILQ_FIRST(&aio->jobs_queue)) == NULL) {
290 if (cv_wait_sig(&aio->aio_worker_cv, &aio->aio_mtx)) {
292 * Thread was interrupted - check for
293 * pending exit or suspend.
295 mutex_exit(&aio->aio_mtx);
296 lwp_userret(curlwp);
297 mutex_enter(&aio->aio_mtx);
301 /* Take the job from the queue */
302 aio->curjob = a_job;
303 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
305 atomic_dec_uint(&aio_jobs_count);
306 aio->jobs_count--;
308 mutex_exit(&aio->aio_mtx);
310 /* Process an AIO operation */
311 aio_process(a_job);
313 /* Copy data structure back to the user-space */
314 (void)copyout(&a_job->aiocbp, a_job->aiocb_uptr,
315 sizeof(struct aiocb));
317 mutex_enter(&aio->aio_mtx);
318 aio->curjob = NULL;
320 /* Decrease a reference counter, if there is a LIO structure */
321 lio = a_job->lio;
322 refcnt = (lio != NULL ? --lio->refcnt : -1);
324 /* Notify all suspenders */
325 cv_broadcast(&aio->done_cv);
326 mutex_exit(&aio->aio_mtx);
328 /* Send a signal, if any */
329 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
331 /* Destroy the LIO structure */
332 if (refcnt == 0) {
333 aio_sendsig(p, &lio->sig);
334 pool_put(&aio_lio_pool, lio);
337 /* Destroy the job */
338 pool_put(&aio_job_pool, a_job);
341 /* NOTREACHED */
344 static void
345 aio_process(struct aio_job *a_job)
347 struct proc *p = curlwp->l_proc;
348 struct aiocb *aiocbp = &a_job->aiocbp;
349 struct file *fp;
350 int fd = aiocbp->aio_fildes;
351 int error = 0;
353 KASSERT(a_job->aio_op != 0);
355 if ((a_job->aio_op & (AIO_READ | AIO_WRITE)) != 0) {
356 struct iovec aiov;
357 struct uio auio;
359 if (aiocbp->aio_nbytes > SSIZE_MAX) {
360 error = EINVAL;
361 goto done;
364 fp = fd_getfile(fd);
365 if (fp == NULL) {
366 error = EBADF;
367 goto done;
370 aiov.iov_base = (void *)(uintptr_t)aiocbp->aio_buf;
371 aiov.iov_len = aiocbp->aio_nbytes;
372 auio.uio_iov = &aiov;
373 auio.uio_iovcnt = 1;
374 auio.uio_resid = aiocbp->aio_nbytes;
375 auio.uio_vmspace = p->p_vmspace;
377 if (a_job->aio_op & AIO_READ) {
379 * Perform a Read operation
381 KASSERT((a_job->aio_op & AIO_WRITE) == 0);
383 if ((fp->f_flag & FREAD) == 0) {
384 fd_putfile(fd);
385 error = EBADF;
386 goto done;
388 auio.uio_rw = UIO_READ;
389 error = (*fp->f_ops->fo_read)(fp, &aiocbp->aio_offset,
390 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
391 } else {
393 * Perform a Write operation
395 KASSERT(a_job->aio_op & AIO_WRITE);
397 if ((fp->f_flag & FWRITE) == 0) {
398 fd_putfile(fd);
399 error = EBADF;
400 goto done;
402 auio.uio_rw = UIO_WRITE;
403 error = (*fp->f_ops->fo_write)(fp, &aiocbp->aio_offset,
404 &auio, fp->f_cred, FOF_UPDATE_OFFSET);
406 fd_putfile(fd);
408 /* Store the result value */
409 a_job->aiocbp.aio_nbytes -= auio.uio_resid;
410 a_job->aiocbp._retval = (error == 0) ?
411 a_job->aiocbp.aio_nbytes : -1;
413 } else if ((a_job->aio_op & (AIO_SYNC | AIO_DSYNC)) != 0) {
415 * Perform a file Sync operation
417 struct vnode *vp;
419 if ((error = fd_getvnode(fd, &fp)) != 0)
420 goto done;
422 if ((fp->f_flag & FWRITE) == 0) {
423 fd_putfile(fd);
424 error = EBADF;
425 goto done;
428 vp = (struct vnode *)fp->f_data;
429 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
430 if (a_job->aio_op & AIO_DSYNC) {
431 error = VOP_FSYNC(vp, fp->f_cred,
432 FSYNC_WAIT | FSYNC_DATAONLY, 0, 0);
433 } else if (a_job->aio_op & AIO_SYNC) {
434 error = VOP_FSYNC(vp, fp->f_cred,
435 FSYNC_WAIT, 0, 0);
437 VOP_UNLOCK(vp, 0);
438 fd_putfile(fd);
440 /* Store the result value */
441 a_job->aiocbp._retval = (error == 0) ? 0 : -1;
443 } else
444 panic("aio_process: invalid operation code\n");
446 done:
447 /* Job is done, set the error, if any */
448 a_job->aiocbp._errno = error;
449 a_job->aiocbp._state = JOB_DONE;
453 * Send AIO signal.
455 static void
456 aio_sendsig(struct proc *p, struct sigevent *sig)
458 ksiginfo_t ksi;
460 if (sig->sigev_signo == 0 || sig->sigev_notify == SIGEV_NONE)
461 return;
463 KSI_INIT(&ksi);
464 ksi.ksi_signo = sig->sigev_signo;
465 ksi.ksi_code = SI_ASYNCIO;
466 ksi.ksi_value = sig->sigev_value;
467 mutex_enter(proc_lock);
468 kpsignal(p, &ksi, NULL);
469 mutex_exit(proc_lock);
473 * Enqueue the job.
475 static int
476 aio_enqueue_job(int op, void *aiocb_uptr, struct lio_req *lio)
478 struct proc *p = curlwp->l_proc;
479 struct aioproc *aio;
480 struct aio_job *a_job;
481 struct aiocb aiocbp;
482 struct sigevent *sig;
483 int error;
485 /* Non-accurate check for the limit */
486 if (aio_jobs_count + 1 > aio_max)
487 return EAGAIN;
489 /* Get the data structure from user-space */
490 error = copyin(aiocb_uptr, &aiocbp, sizeof(struct aiocb));
491 if (error)
492 return error;
494 /* Check if signal is set, and validate it */
495 sig = &aiocbp.aio_sigevent;
496 if (sig->sigev_signo < 0 || sig->sigev_signo >= NSIG ||
497 sig->sigev_notify < SIGEV_NONE || sig->sigev_notify > SIGEV_SA)
498 return EINVAL;
500 /* Buffer and byte count */
501 if (((AIO_SYNC | AIO_DSYNC) & op) == 0)
502 if (aiocbp.aio_buf == NULL || aiocbp.aio_nbytes > SSIZE_MAX)
503 return EINVAL;
505 /* Check the opcode, if LIO_NOP - simply ignore */
506 if (op == AIO_LIO) {
507 KASSERT(lio != NULL);
508 if (aiocbp.aio_lio_opcode == LIO_WRITE)
509 op = AIO_WRITE;
510 else if (aiocbp.aio_lio_opcode == LIO_READ)
511 op = AIO_READ;
512 else
513 return (aiocbp.aio_lio_opcode == LIO_NOP) ? 0 : EINVAL;
514 } else {
515 KASSERT(lio == NULL);
519 * Look for already existing job. If found - the job is in-progress.
520 * According to POSIX this is invalid, so return the error.
522 aio = p->p_aio;
523 if (aio) {
524 mutex_enter(&aio->aio_mtx);
525 if (aio->curjob) {
526 a_job = aio->curjob;
527 if (a_job->aiocb_uptr == aiocb_uptr) {
528 mutex_exit(&aio->aio_mtx);
529 return EINVAL;
532 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
533 if (a_job->aiocb_uptr != aiocb_uptr)
534 continue;
535 mutex_exit(&aio->aio_mtx);
536 return EINVAL;
538 mutex_exit(&aio->aio_mtx);
542 * Check if AIO structure is initialized, if not - initialize it.
543 * In LIO case, we did that already. We will recheck this with
544 * the lock in aio_procinit().
546 if (lio == NULL && p->p_aio == NULL)
547 if (aio_procinit(p))
548 return EAGAIN;
549 aio = p->p_aio;
552 * Set the state with errno, and copy data
553 * structure back to the user-space.
555 aiocbp._state = JOB_WIP;
556 aiocbp._errno = EINPROGRESS;
557 aiocbp._retval = -1;
558 error = copyout(&aiocbp, aiocb_uptr, sizeof(struct aiocb));
559 if (error)
560 return error;
562 /* Allocate and initialize a new AIO job */
563 a_job = pool_get(&aio_job_pool, PR_WAITOK);
564 memset(a_job, 0, sizeof(struct aio_job));
567 * Set the data.
568 * Store the user-space pointer for searching. Since we
569 * are storing only per proc pointers - it is safe.
571 memcpy(&a_job->aiocbp, &aiocbp, sizeof(struct aiocb));
572 a_job->aiocb_uptr = aiocb_uptr;
573 a_job->aio_op |= op;
574 a_job->lio = lio;
577 * Add the job to the queue, update the counters, and
578 * notify the AIO worker thread to handle the job.
580 mutex_enter(&aio->aio_mtx);
582 /* Fail, if the limit was reached */
583 if (atomic_inc_uint_nv(&aio_jobs_count) > aio_max ||
584 aio->jobs_count >= aio_listio_max) {
585 atomic_dec_uint(&aio_jobs_count);
586 mutex_exit(&aio->aio_mtx);
587 pool_put(&aio_job_pool, a_job);
588 return EAGAIN;
591 TAILQ_INSERT_TAIL(&aio->jobs_queue, a_job, list);
592 aio->jobs_count++;
593 if (lio)
594 lio->refcnt++;
595 cv_signal(&aio->aio_worker_cv);
597 mutex_exit(&aio->aio_mtx);
600 * One would handle the errors only with aio_error() function.
601 * This way is appropriate according to POSIX.
603 return 0;
607 * Syscall functions.
611 sys_aio_cancel(struct lwp *l, const struct sys_aio_cancel_args *uap,
612 register_t *retval)
614 /* {
615 syscallarg(int) fildes;
616 syscallarg(struct aiocb *) aiocbp;
617 } */
618 struct proc *p = l->l_proc;
619 struct aioproc *aio;
620 struct aio_job *a_job;
621 struct aiocb *aiocbp_ptr;
622 struct lio_req *lio;
623 struct filedesc *fdp = p->p_fd;
624 unsigned int cn, errcnt, fildes;
625 fdtab_t *dt;
627 TAILQ_HEAD(, aio_job) tmp_jobs_list;
629 /* Check for invalid file descriptor */
630 fildes = (unsigned int)SCARG(uap, fildes);
631 dt = fdp->fd_dt;
632 if (fildes >= dt->dt_nfiles)
633 return EBADF;
634 if (dt->dt_ff[fildes] == NULL || dt->dt_ff[fildes]->ff_file == NULL)
635 return EBADF;
637 /* Check if AIO structure is initialized */
638 if (p->p_aio == NULL) {
639 *retval = AIO_NOTCANCELED;
640 return 0;
643 aio = p->p_aio;
644 aiocbp_ptr = (struct aiocb *)SCARG(uap, aiocbp);
646 mutex_enter(&aio->aio_mtx);
648 /* Cancel the jobs, and remove them from the queue */
649 cn = 0;
650 TAILQ_INIT(&tmp_jobs_list);
651 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
652 if (aiocbp_ptr) {
653 if (aiocbp_ptr != a_job->aiocb_uptr)
654 continue;
655 if (fildes != a_job->aiocbp.aio_fildes) {
656 mutex_exit(&aio->aio_mtx);
657 return EBADF;
659 } else if (a_job->aiocbp.aio_fildes != fildes)
660 continue;
662 TAILQ_REMOVE(&aio->jobs_queue, a_job, list);
663 TAILQ_INSERT_TAIL(&tmp_jobs_list, a_job, list);
665 /* Decrease the counters */
666 atomic_dec_uint(&aio_jobs_count);
667 aio->jobs_count--;
668 lio = a_job->lio;
669 if (lio != NULL && --lio->refcnt != 0)
670 a_job->lio = NULL;
672 cn++;
673 if (aiocbp_ptr)
674 break;
677 /* There are canceled jobs */
678 if (cn)
679 *retval = AIO_CANCELED;
681 /* We cannot cancel current job */
682 a_job = aio->curjob;
683 if (a_job && ((a_job->aiocbp.aio_fildes == fildes) ||
684 (a_job->aiocb_uptr == aiocbp_ptr)))
685 *retval = AIO_NOTCANCELED;
687 mutex_exit(&aio->aio_mtx);
689 /* Free the jobs after the lock */
690 errcnt = 0;
691 while (!TAILQ_EMPTY(&tmp_jobs_list)) {
692 a_job = TAILQ_FIRST(&tmp_jobs_list);
693 TAILQ_REMOVE(&tmp_jobs_list, a_job, list);
694 /* Set the errno and copy structures back to the user-space */
695 a_job->aiocbp._errno = ECANCELED;
696 a_job->aiocbp._state = JOB_DONE;
697 if (copyout(&a_job->aiocbp, a_job->aiocb_uptr,
698 sizeof(struct aiocb)))
699 errcnt++;
700 /* Send a signal if any */
701 aio_sendsig(p, &a_job->aiocbp.aio_sigevent);
702 if (a_job->lio) {
703 lio = a_job->lio;
704 aio_sendsig(p, &lio->sig);
705 pool_put(&aio_lio_pool, lio);
707 pool_put(&aio_job_pool, a_job);
710 if (errcnt)
711 return EFAULT;
713 /* Set a correct return value */
714 if (*retval == 0)
715 *retval = AIO_ALLDONE;
717 return 0;
721 sys_aio_error(struct lwp *l, const struct sys_aio_error_args *uap,
722 register_t *retval)
724 /* {
725 syscallarg(const struct aiocb *) aiocbp;
726 } */
727 struct proc *p = l->l_proc;
728 struct aioproc *aio = p->p_aio;
729 struct aiocb aiocbp;
730 int error;
732 if (aio == NULL)
733 return EINVAL;
735 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
736 if (error)
737 return error;
739 if (aiocbp._state == JOB_NONE)
740 return EINVAL;
742 *retval = aiocbp._errno;
744 return 0;
748 sys_aio_fsync(struct lwp *l, const struct sys_aio_fsync_args *uap,
749 register_t *retval)
751 /* {
752 syscallarg(int) op;
753 syscallarg(struct aiocb *) aiocbp;
754 } */
755 int op = SCARG(uap, op);
757 if ((op != O_DSYNC) && (op != O_SYNC))
758 return EINVAL;
760 op = O_DSYNC ? AIO_DSYNC : AIO_SYNC;
762 return aio_enqueue_job(op, SCARG(uap, aiocbp), NULL);
766 sys_aio_read(struct lwp *l, const struct sys_aio_read_args *uap,
767 register_t *retval)
769 /* {
770 syscallarg(struct aiocb *) aiocbp;
771 } */
773 return aio_enqueue_job(AIO_READ, SCARG(uap, aiocbp), NULL);
777 sys_aio_return(struct lwp *l, const struct sys_aio_return_args *uap,
778 register_t *retval)
780 /* {
781 syscallarg(struct aiocb *) aiocbp;
782 } */
783 struct proc *p = l->l_proc;
784 struct aioproc *aio = p->p_aio;
785 struct aiocb aiocbp;
786 int error;
788 if (aio == NULL)
789 return EINVAL;
791 error = copyin(SCARG(uap, aiocbp), &aiocbp, sizeof(struct aiocb));
792 if (error)
793 return error;
795 if (aiocbp._errno == EINPROGRESS || aiocbp._state != JOB_DONE)
796 return EINVAL;
798 *retval = aiocbp._retval;
800 /* Reset the internal variables */
801 aiocbp._errno = 0;
802 aiocbp._retval = -1;
803 aiocbp._state = JOB_NONE;
804 error = copyout(&aiocbp, SCARG(uap, aiocbp), sizeof(struct aiocb));
806 return error;
810 sys___aio_suspend50(struct lwp *l, const struct sys___aio_suspend50_args *uap,
811 register_t *retval)
813 /* {
814 syscallarg(const struct aiocb *const[]) list;
815 syscallarg(int) nent;
816 syscallarg(const struct timespec *) timeout;
817 } */
818 struct aiocb **list;
819 struct timespec ts;
820 int error, nent;
822 nent = SCARG(uap, nent);
823 if (nent <= 0 || nent > aio_listio_max)
824 return EAGAIN;
826 if (SCARG(uap, timeout)) {
827 /* Convert timespec to ticks */
828 error = copyin(SCARG(uap, timeout), &ts,
829 sizeof(struct timespec));
830 if (error)
831 return error;
833 list = kmem_alloc(nent * sizeof(*list), KM_SLEEP);
834 error = copyin(SCARG(uap, list), list, nent * sizeof(*list));
835 if (error)
836 goto out;
837 error = aio_suspend1(l, list, nent, SCARG(uap, timeout) ? &ts : NULL);
838 out:
839 kmem_free(list, nent * sizeof(*list));
840 return error;
844 aio_suspend1(struct lwp *l, struct aiocb **aiocbp_list, int nent,
845 struct timespec *ts)
847 struct proc *p = l->l_proc;
848 struct aioproc *aio;
849 struct aio_job *a_job;
850 int i, error, timo;
852 if (p->p_aio == NULL)
853 return EAGAIN;
854 aio = p->p_aio;
856 if (ts) {
857 timo = mstohz((ts->tv_sec * 1000) + (ts->tv_nsec / 1000000));
858 if (timo == 0 && ts->tv_sec == 0 && ts->tv_nsec > 0)
859 timo = 1;
860 if (timo <= 0)
861 return EAGAIN;
862 } else
863 timo = 0;
865 /* Get the list from user-space */
867 mutex_enter(&aio->aio_mtx);
868 for (;;) {
870 for (i = 0; i < nent; i++) {
872 /* Skip NULL entries */
873 if (aiocbp_list[i] == NULL)
874 continue;
876 /* Skip current job */
877 if (aio->curjob) {
878 a_job = aio->curjob;
879 if (a_job->aiocb_uptr == aiocbp_list[i])
880 continue;
883 /* Look for a job in the queue */
884 TAILQ_FOREACH(a_job, &aio->jobs_queue, list)
885 if (a_job->aiocb_uptr == aiocbp_list[i])
886 break;
888 if (a_job == NULL) {
889 struct aiocb aiocbp;
891 mutex_exit(&aio->aio_mtx);
893 error = copyin(aiocbp_list[i], &aiocbp,
894 sizeof(struct aiocb));
895 if (error == 0 && aiocbp._state != JOB_DONE) {
896 mutex_enter(&aio->aio_mtx);
897 continue;
899 return error;
903 /* Wait for a signal or when timeout occurs */
904 error = cv_timedwait_sig(&aio->done_cv, &aio->aio_mtx, timo);
905 if (error) {
906 if (error == EWOULDBLOCK)
907 error = EAGAIN;
908 break;
911 mutex_exit(&aio->aio_mtx);
912 return error;
916 sys_aio_write(struct lwp *l, const struct sys_aio_write_args *uap,
917 register_t *retval)
919 /* {
920 syscallarg(struct aiocb *) aiocbp;
921 } */
923 return aio_enqueue_job(AIO_WRITE, SCARG(uap, aiocbp), NULL);
927 sys_lio_listio(struct lwp *l, const struct sys_lio_listio_args *uap,
928 register_t *retval)
930 /* {
931 syscallarg(int) mode;
932 syscallarg(struct aiocb *const[]) list;
933 syscallarg(int) nent;
934 syscallarg(struct sigevent *) sig;
935 } */
936 struct proc *p = l->l_proc;
937 struct aioproc *aio;
938 struct aiocb **aiocbp_list;
939 struct lio_req *lio;
940 int i, error, errcnt, mode, nent;
942 mode = SCARG(uap, mode);
943 nent = SCARG(uap, nent);
945 /* Non-accurate checks for the limit and invalid values */
946 if (nent < 1 || nent > aio_listio_max)
947 return EINVAL;
948 if (aio_jobs_count + nent > aio_max)
949 return EAGAIN;
951 /* Check if AIO structure is initialized, if not - initialize it */
952 if (p->p_aio == NULL)
953 if (aio_procinit(p))
954 return EAGAIN;
955 aio = p->p_aio;
957 /* Create a LIO structure */
958 lio = pool_get(&aio_lio_pool, PR_WAITOK);
959 lio->refcnt = 1;
960 error = 0;
962 switch (mode) {
963 case LIO_WAIT:
964 memset(&lio->sig, 0, sizeof(struct sigevent));
965 break;
966 case LIO_NOWAIT:
967 /* Check for signal, validate it */
968 if (SCARG(uap, sig)) {
969 struct sigevent *sig = &lio->sig;
971 error = copyin(SCARG(uap, sig), &lio->sig,
972 sizeof(struct sigevent));
973 if (error == 0 &&
974 (sig->sigev_signo < 0 ||
975 sig->sigev_signo >= NSIG ||
976 sig->sigev_notify < SIGEV_NONE ||
977 sig->sigev_notify > SIGEV_SA))
978 error = EINVAL;
979 } else
980 memset(&lio->sig, 0, sizeof(struct sigevent));
981 break;
982 default:
983 error = EINVAL;
984 break;
987 if (error != 0) {
988 pool_put(&aio_lio_pool, lio);
989 return error;
992 /* Get the list from user-space */
993 aiocbp_list = kmem_alloc(nent * sizeof(*aiocbp_list), KM_SLEEP);
994 error = copyin(SCARG(uap, list), aiocbp_list,
995 nent * sizeof(*aiocbp_list));
996 if (error) {
997 mutex_enter(&aio->aio_mtx);
998 goto err;
1001 /* Enqueue all jobs */
1002 errcnt = 0;
1003 for (i = 0; i < nent; i++) {
1004 error = aio_enqueue_job(AIO_LIO, aiocbp_list[i], lio);
1006 * According to POSIX, in such error case it may
1007 * fail with other I/O operations initiated.
1009 if (error)
1010 errcnt++;
1013 mutex_enter(&aio->aio_mtx);
1015 /* Return an error, if any */
1016 if (errcnt) {
1017 error = EIO;
1018 goto err;
1021 if (mode == LIO_WAIT) {
1023 * Wait for AIO completion. In such case,
1024 * the LIO structure will be freed here.
1026 while (lio->refcnt > 1 && error == 0)
1027 error = cv_wait_sig(&aio->done_cv, &aio->aio_mtx);
1028 if (error)
1029 error = EINTR;
1032 err:
1033 if (--lio->refcnt != 0)
1034 lio = NULL;
1035 mutex_exit(&aio->aio_mtx);
1036 if (lio != NULL) {
1037 aio_sendsig(p, &lio->sig);
1038 pool_put(&aio_lio_pool, lio);
1040 kmem_free(aiocbp_list, nent * sizeof(*aiocbp_list));
1041 return error;
1045 * SysCtl
1048 static int
1049 sysctl_aio_listio_max(SYSCTLFN_ARGS)
1051 struct sysctlnode node;
1052 int error, newsize;
1054 node = *rnode;
1055 node.sysctl_data = &newsize;
1057 newsize = aio_listio_max;
1058 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1059 if (error || newp == NULL)
1060 return error;
1062 if (newsize < 1 || newsize > aio_max)
1063 return EINVAL;
1064 aio_listio_max = newsize;
1066 return 0;
1069 static int
1070 sysctl_aio_max(SYSCTLFN_ARGS)
1072 struct sysctlnode node;
1073 int error, newsize;
1075 node = *rnode;
1076 node.sysctl_data = &newsize;
1078 newsize = aio_max;
1079 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1080 if (error || newp == NULL)
1081 return error;
1083 if (newsize < 1 || newsize < aio_listio_max)
1084 return EINVAL;
1085 aio_max = newsize;
1087 return 0;
1090 SYSCTL_SETUP(sysctl_aio_setup, "sysctl aio setup")
1093 sysctl_createv(clog, 0, NULL, NULL,
1094 CTLFLAG_PERMANENT,
1095 CTLTYPE_NODE, "kern", NULL,
1096 NULL, 0, NULL, 0,
1097 CTL_KERN, CTL_EOL);
1098 sysctl_createv(clog, 0, NULL, NULL,
1099 CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1100 CTLTYPE_INT, "posix_aio",
1101 SYSCTL_DESCR("Version of IEEE Std 1003.1 and its "
1102 "Asynchronous I/O option to which the "
1103 "system attempts to conform"),
1104 NULL, _POSIX_ASYNCHRONOUS_IO, NULL, 0,
1105 CTL_KERN, CTL_CREATE, CTL_EOL);
1106 sysctl_createv(clog, 0, NULL, NULL,
1107 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1108 CTLTYPE_INT, "aio_listio_max",
1109 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1110 "operations in a single list I/O call"),
1111 sysctl_aio_listio_max, 0, &aio_listio_max, 0,
1112 CTL_KERN, CTL_CREATE, CTL_EOL);
1113 sysctl_createv(clog, 0, NULL, NULL,
1114 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1115 CTLTYPE_INT, "aio_max",
1116 SYSCTL_DESCR("Maximum number of asynchronous I/O "
1117 "operations"),
1118 sysctl_aio_max, 0, &aio_max, 0,
1119 CTL_KERN, CTL_CREATE, CTL_EOL);
1123 * Debugging
1125 #if defined(DDB)
1126 void
1127 aio_print_jobs(void (*pr)(const char *, ...))
1129 struct proc *p = (curlwp == NULL ? NULL : curlwp->l_proc);
1130 struct aioproc *aio;
1131 struct aio_job *a_job;
1132 struct aiocb *aiocbp;
1134 if (p == NULL) {
1135 (*pr)("AIO: We are not in the processes right now.\n");
1136 return;
1139 aio = p->p_aio;
1140 if (aio == NULL) {
1141 (*pr)("AIO data is not initialized (PID = %d).\n", p->p_pid);
1142 return;
1145 (*pr)("AIO: PID = %d\n", p->p_pid);
1146 (*pr)("AIO: Global count of the jobs = %u\n", aio_jobs_count);
1147 (*pr)("AIO: Count of the jobs = %u\n", aio->jobs_count);
1149 if (aio->curjob) {
1150 a_job = aio->curjob;
1151 (*pr)("\nAIO current job:\n");
1152 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1153 a_job->aio_op, a_job->aiocbp._errno,
1154 a_job->aiocbp._state, a_job->aiocb_uptr);
1155 aiocbp = &a_job->aiocbp;
1156 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1157 aiocbp->aio_fildes, aiocbp->aio_offset,
1158 aiocbp->aio_buf, aiocbp->aio_nbytes);
1161 (*pr)("\nAIO queue:\n");
1162 TAILQ_FOREACH(a_job, &aio->jobs_queue, list) {
1163 (*pr)(" opcode = %d, errno = %d, state = %d, aiocb_ptr = %p\n",
1164 a_job->aio_op, a_job->aiocbp._errno,
1165 a_job->aiocbp._state, a_job->aiocb_uptr);
1166 aiocbp = &a_job->aiocbp;
1167 (*pr)(" fd = %d, offset = %u, buf = %p, nbytes = %u\n",
1168 aiocbp->aio_fildes, aiocbp->aio_offset,
1169 aiocbp->aio_buf, aiocbp->aio_nbytes);
1172 #endif /* defined(DDB) */