Try to fixup the mess of mdoc(7)/man(7) mixture as created by the merge.
[netbsd-mini2440.git] / sys / kern / uipc_usrreq.c
blob6d5c4a1f6ad28caf2d9267b4c166c2b648531d72
1 /* $NetBSD: uipc_usrreq.c,v 1.127 2009/08/26 22:34:47 bouyer Exp $ */
3 /*-
4 * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. All advertising materials mentioning features or use of this software
76 * must display the following acknowledgement:
77 * This product includes software developed by the University of
78 * California, Berkeley and its contributors.
79 * 4. Neither the name of the University nor the names of its contributors
80 * may be used to endorse or promote products derived from this software
81 * without specific prior written permission.
83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93 * SUCH DAMAGE.
95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.127 2009/08/26 22:34:47 bouyer Exp $");
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
124 * Unix communications domain.
126 * TODO:
127 * SEQPACKET, RDM
128 * rethink name space problems
129 * need a proper out-of-band
131 * Notes on locking:
133 * The generic rules noted in uipc_socket2.c apply. In addition:
135 * o We have a global lock, uipc_lock.
137 * o All datagram sockets are locked by uipc_lock.
139 * o For stream socketpairs, the two endpoints are created sharing the same
140 * independent lock. Sockets presented to PRU_CONNECT2 must already have
141 * matching locks.
143 * o Stream sockets created via socket() start life with their own
144 * independent lock.
146 * o Stream connections to a named endpoint are slightly more complicated.
147 * Sockets that have called listen() have their lock pointer mutated to
148 * the global uipc_lock. When establishing a connection, the connecting
149 * socket also has its lock mutated to uipc_lock, which matches the head
150 * (listening socket). We create a new socket for accept() to return, and
151 * that also shares the head's lock. Until the connection is completely
152 * done on both ends, all three sockets are locked by uipc_lock. Once the
153 * connection is complete, the association with the head's lock is broken.
154 * The connecting socket and the socket returned from accept() have their
155 * lock pointers mutated away from uipc_lock, and back to the connecting
156 * socket's original, independent lock. The head continues to be locked
157 * by uipc_lock.
159 * o If uipc_lock is determined to be a significant source of contention,
160 * it could easily be hashed out. It is difficult to simply make it an
161 * independent lock because of visibility / garbage collection issues:
162 * if a socket has been associated with a lock at any point, that lock
163 * must remain valid until the socket is no longer visible in the system.
164 * The lock must not be freed or otherwise destroyed until any sockets
165 * that had referenced it have also been destroyed.
167 const struct sockaddr_un sun_noname = {
168 .sun_len = sizeof(sun_noname),
169 .sun_family = AF_LOCAL,
171 ino_t unp_ino; /* prototype for fake inode numbers */
173 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
174 static void unp_mark(file_t *);
175 static void unp_scan(struct mbuf *, void (*)(file_t *), int);
176 static void unp_discard_now(file_t *);
177 static void unp_discard_later(file_t *);
178 static void unp_thread(void *);
179 static void unp_thread_kick(void);
180 static kmutex_t *uipc_lock;
182 static kcondvar_t unp_thread_cv;
183 static lwp_t *unp_thread_lwp;
184 static SLIST_HEAD(,file) unp_thread_discard;
185 static int unp_defer;
188 * Initialize Unix protocols.
190 void
191 uipc_init(void)
193 int error;
195 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
196 cv_init(&unp_thread_cv, "unpgc");
198 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
199 NULL, &unp_thread_lwp, "unpgc");
200 if (error != 0)
201 panic("uipc_init %d", error);
205 * A connection succeeded: disassociate both endpoints from the head's
206 * lock, and make them share their own lock. There is a race here: for
207 * a very brief time one endpoint will be locked by a different lock
208 * than the other end. However, since the current thread holds the old
209 * lock (the listening socket's lock, the head) access can still only be
210 * made to one side of the connection.
212 static void
213 unp_setpeerlocks(struct socket *so, struct socket *so2)
215 struct unpcb *unp;
216 kmutex_t *lock;
218 KASSERT(solocked2(so, so2));
221 * Bail out if either end of the socket is not yet fully
222 * connected or accepted. We only break the lock association
223 * with the head when the pair of sockets stand completely
224 * on their own.
226 KASSERT(so->so_head == NULL);
227 if (so2->so_head != NULL)
228 return;
231 * Drop references to old lock. A third reference (from the
232 * queue head) must be held as we still hold its lock. Bonus:
233 * we don't need to worry about garbage collecting the lock.
235 lock = so->so_lock;
236 KASSERT(lock == uipc_lock);
237 mutex_obj_free(lock);
238 mutex_obj_free(lock);
241 * Grab stream lock from the initiator and share between the two
242 * endpoints. Issue memory barrier to ensure all modifications
243 * become globally visible before the lock change. so2 is
244 * assumed not to have a stream lock, because it was created
245 * purely for the server side to accept this connection and
246 * started out life using the domain-wide lock.
248 unp = sotounpcb(so);
249 KASSERT(unp->unp_streamlock != NULL);
250 KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
251 lock = unp->unp_streamlock;
252 unp->unp_streamlock = NULL;
253 mutex_obj_hold(lock);
254 membar_exit();
256 * possible race if lock is not held - see comment in
257 * uipc_usrreq(PRU_ACCEPT).
259 KASSERT(mutex_owned(lock));
260 solockreset(so, lock);
261 solockreset(so2, lock);
265 * Reset a socket's lock back to the domain-wide lock.
267 static void
268 unp_resetlock(struct socket *so)
270 kmutex_t *olock, *nlock;
271 struct unpcb *unp;
273 KASSERT(solocked(so));
275 olock = so->so_lock;
276 nlock = uipc_lock;
277 if (olock == nlock)
278 return;
279 unp = sotounpcb(so);
280 KASSERT(unp->unp_streamlock == NULL);
281 unp->unp_streamlock = olock;
282 mutex_obj_hold(nlock);
283 mutex_enter(nlock);
284 solockreset(so, nlock);
285 mutex_exit(olock);
288 static void
289 unp_free(struct unpcb *unp)
292 if (unp->unp_addr)
293 free(unp->unp_addr, M_SONAME);
294 if (unp->unp_streamlock != NULL)
295 mutex_obj_free(unp->unp_streamlock);
296 free(unp, M_PCB);
300 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
301 struct lwp *l)
303 struct socket *so2;
304 const struct sockaddr_un *sun;
306 so2 = unp->unp_conn->unp_socket;
308 KASSERT(solocked(so2));
310 if (unp->unp_addr)
311 sun = unp->unp_addr;
312 else
313 sun = &sun_noname;
314 if (unp->unp_conn->unp_flags & UNP_WANTCRED)
315 control = unp_addsockcred(l, control);
316 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
317 control) == 0) {
318 so2->so_rcv.sb_overflowed++;
319 unp_dispose(control);
320 m_freem(control);
321 m_freem(m);
322 return (ENOBUFS);
323 } else {
324 sorwakeup(so2);
325 return (0);
329 void
330 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
332 const struct sockaddr_un *sun;
333 struct unpcb *unp;
334 bool ext;
336 KASSERT(solocked(so));
337 unp = sotounpcb(so);
338 ext = false;
340 for (;;) {
341 sun = NULL;
342 if (peeraddr) {
343 if (unp->unp_conn && unp->unp_conn->unp_addr)
344 sun = unp->unp_conn->unp_addr;
345 } else {
346 if (unp->unp_addr)
347 sun = unp->unp_addr;
349 if (sun == NULL)
350 sun = &sun_noname;
351 nam->m_len = sun->sun_len;
352 if (nam->m_len > MLEN && !ext) {
353 sounlock(so);
354 MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
355 solock(so);
356 ext = true;
357 } else {
358 KASSERT(nam->m_len <= MAXPATHLEN * 2);
359 memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
360 break;
365 /*ARGSUSED*/
367 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
368 struct mbuf *control, struct lwp *l)
370 struct unpcb *unp = sotounpcb(so);
371 struct socket *so2;
372 struct proc *p;
373 u_int newhiwat;
374 int error = 0;
376 if (req == PRU_CONTROL)
377 return (EOPNOTSUPP);
379 #ifdef DIAGNOSTIC
380 if (req != PRU_SEND && req != PRU_SENDOOB && control)
381 panic("uipc_usrreq: unexpected control mbuf");
382 #endif
383 p = l ? l->l_proc : NULL;
384 if (req != PRU_ATTACH) {
385 if (unp == NULL) {
386 error = EINVAL;
387 goto release;
389 KASSERT(solocked(so));
392 switch (req) {
394 case PRU_ATTACH:
395 if (unp != NULL) {
396 error = EISCONN;
397 break;
399 error = unp_attach(so);
400 break;
402 case PRU_DETACH:
403 unp_detach(unp);
404 break;
406 case PRU_BIND:
407 KASSERT(l != NULL);
408 error = unp_bind(so, nam, l);
409 break;
411 case PRU_LISTEN:
413 * If the socket can accept a connection, it must be
414 * locked by uipc_lock.
416 unp_resetlock(so);
417 if (unp->unp_vnode == NULL)
418 error = EINVAL;
419 break;
421 case PRU_CONNECT:
422 KASSERT(l != NULL);
423 error = unp_connect(so, nam, l);
424 break;
426 case PRU_CONNECT2:
427 error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
428 break;
430 case PRU_DISCONNECT:
431 unp_disconnect(unp);
432 break;
434 case PRU_ACCEPT:
435 KASSERT(so->so_lock == uipc_lock);
437 * Mark the initiating STREAM socket as connected *ONLY*
438 * after it's been accepted. This prevents a client from
439 * overrunning a server and receiving ECONNREFUSED.
441 if (unp->unp_conn == NULL)
442 break;
443 so2 = unp->unp_conn->unp_socket;
444 if (so2->so_state & SS_ISCONNECTING) {
445 KASSERT(solocked2(so, so->so_head));
446 KASSERT(solocked2(so2, so->so_head));
447 soisconnected(so2);
450 * If the connection is fully established, break the
451 * association with uipc_lock and give the connected
452 * pair a seperate lock to share.
453 * There is a race here: sotounpcb(so2)->unp_streamlock
454 * is not locked, so when changing so2->so_lock
455 * another thread can grab it while so->so_lock is still
456 * pointing to the (locked) uipc_lock.
457 * this should be harmless, exept that this makes
458 * solocked2() and solocked() unreliable.
459 * Another problem is that unp_setaddr() expects the
460 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
461 * fixes both issues.
463 mutex_enter(sotounpcb(so2)->unp_streamlock);
464 unp_setpeerlocks(so2, so);
466 * Only now return peer's address, as we may need to
467 * block in order to allocate memory.
469 * XXX Minor race: connection can be broken while
470 * lock is dropped in unp_setaddr(). We will return
471 * error == 0 and sun_noname as the peer address.
473 unp_setaddr(so, nam, true);
474 /* so_lock now points to unp_streamlock */
475 mutex_exit(so2->so_lock);
476 break;
478 case PRU_SHUTDOWN:
479 socantsendmore(so);
480 unp_shutdown(unp);
481 break;
483 case PRU_RCVD:
484 switch (so->so_type) {
486 case SOCK_DGRAM:
487 panic("uipc 1");
488 /*NOTREACHED*/
490 case SOCK_STREAM:
491 #define rcv (&so->so_rcv)
492 #define snd (&so2->so_snd)
493 if (unp->unp_conn == 0)
494 break;
495 so2 = unp->unp_conn->unp_socket;
496 KASSERT(solocked2(so, so2));
498 * Adjust backpressure on sender
499 * and wakeup any waiting to write.
501 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
502 unp->unp_mbcnt = rcv->sb_mbcnt;
503 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
504 (void)chgsbsize(so2->so_uidinfo,
505 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
506 unp->unp_cc = rcv->sb_cc;
507 sowwakeup(so2);
508 #undef snd
509 #undef rcv
510 break;
512 default:
513 panic("uipc 2");
515 break;
517 case PRU_SEND:
519 * Note: unp_internalize() rejects any control message
520 * other than SCM_RIGHTS, and only allows one. This
521 * has the side-effect of preventing a caller from
522 * forging SCM_CREDS.
524 if (control) {
525 sounlock(so);
526 error = unp_internalize(&control);
527 solock(so);
528 if (error != 0) {
529 m_freem(control);
530 m_freem(m);
531 break;
534 switch (so->so_type) {
536 case SOCK_DGRAM: {
537 KASSERT(so->so_lock == uipc_lock);
538 if (nam) {
539 if ((so->so_state & SS_ISCONNECTED) != 0)
540 error = EISCONN;
541 else {
543 * Note: once connected, the
544 * socket's lock must not be
545 * dropped until we have sent
546 * the message and disconnected.
547 * This is necessary to prevent
548 * intervening control ops, like
549 * another connection.
551 error = unp_connect(so, nam, l);
553 } else {
554 if ((so->so_state & SS_ISCONNECTED) == 0)
555 error = ENOTCONN;
557 if (error) {
558 unp_dispose(control);
559 m_freem(control);
560 m_freem(m);
561 break;
563 KASSERT(p != NULL);
564 error = unp_output(m, control, unp, l);
565 if (nam)
566 unp_disconnect(unp);
567 break;
570 case SOCK_STREAM:
571 #define rcv (&so2->so_rcv)
572 #define snd (&so->so_snd)
573 if (unp->unp_conn == NULL) {
574 error = ENOTCONN;
575 break;
577 so2 = unp->unp_conn->unp_socket;
578 KASSERT(solocked2(so, so2));
579 if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
581 * Credentials are passed only once on
582 * SOCK_STREAM.
584 unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
585 control = unp_addsockcred(l, control);
588 * Send to paired receive port, and then reduce
589 * send buffer hiwater marks to maintain backpressure.
590 * Wake up readers.
592 if (control) {
593 if (sbappendcontrol(rcv, m, control) != 0)
594 control = NULL;
595 } else
596 sbappend(rcv, m);
597 snd->sb_mbmax -=
598 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
599 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
600 newhiwat = snd->sb_hiwat -
601 (rcv->sb_cc - unp->unp_conn->unp_cc);
602 (void)chgsbsize(so->so_uidinfo,
603 &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
604 unp->unp_conn->unp_cc = rcv->sb_cc;
605 sorwakeup(so2);
606 #undef snd
607 #undef rcv
608 if (control != NULL) {
609 unp_dispose(control);
610 m_freem(control);
612 break;
614 default:
615 panic("uipc 4");
617 break;
619 case PRU_ABORT:
620 (void)unp_drop(unp, ECONNABORTED);
622 KASSERT(so->so_head == NULL);
623 #ifdef DIAGNOSTIC
624 if (so->so_pcb == NULL)
625 panic("uipc 5: drop killed pcb");
626 #endif
627 unp_detach(unp);
628 break;
630 case PRU_SENSE:
631 ((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
632 if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
633 so2 = unp->unp_conn->unp_socket;
634 KASSERT(solocked2(so, so2));
635 ((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
637 ((struct stat *) m)->st_dev = NODEV;
638 if (unp->unp_ino == 0)
639 unp->unp_ino = unp_ino++;
640 ((struct stat *) m)->st_atimespec =
641 ((struct stat *) m)->st_mtimespec =
642 ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
643 ((struct stat *) m)->st_ino = unp->unp_ino;
644 return (0);
646 case PRU_RCVOOB:
647 error = EOPNOTSUPP;
648 break;
650 case PRU_SENDOOB:
651 m_freem(control);
652 m_freem(m);
653 error = EOPNOTSUPP;
654 break;
656 case PRU_SOCKADDR:
657 unp_setaddr(so, nam, false);
658 break;
660 case PRU_PEERADDR:
661 unp_setaddr(so, nam, true);
662 break;
664 default:
665 panic("piusrreq");
668 release:
669 return (error);
673 * Unix domain socket option processing.
676 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
678 struct unpcb *unp = sotounpcb(so);
679 int optval = 0, error = 0;
681 KASSERT(solocked(so));
683 if (sopt->sopt_level != 0) {
684 error = ENOPROTOOPT;
685 } else switch (op) {
687 case PRCO_SETOPT:
688 switch (sopt->sopt_name) {
689 case LOCAL_CREDS:
690 case LOCAL_CONNWAIT:
691 error = sockopt_getint(sopt, &optval);
692 if (error)
693 break;
694 switch (sopt->sopt_name) {
695 #define OPTSET(bit) \
696 if (optval) \
697 unp->unp_flags |= (bit); \
698 else \
699 unp->unp_flags &= ~(bit);
701 case LOCAL_CREDS:
702 OPTSET(UNP_WANTCRED);
703 break;
704 case LOCAL_CONNWAIT:
705 OPTSET(UNP_CONNWAIT);
706 break;
708 break;
709 #undef OPTSET
711 default:
712 error = ENOPROTOOPT;
713 break;
715 break;
717 case PRCO_GETOPT:
718 sounlock(so);
719 switch (sopt->sopt_name) {
720 case LOCAL_PEEREID:
721 if (unp->unp_flags & UNP_EIDSVALID) {
722 error = sockopt_set(sopt,
723 &unp->unp_connid, sizeof(unp->unp_connid));
724 } else {
725 error = EINVAL;
727 break;
728 case LOCAL_CREDS:
729 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
731 optval = OPTBIT(UNP_WANTCRED);
732 error = sockopt_setint(sopt, optval);
733 break;
734 #undef OPTBIT
736 default:
737 error = ENOPROTOOPT;
738 break;
740 solock(so);
741 break;
743 return (error);
747 * Both send and receive buffers are allocated PIPSIZ bytes of buffering
748 * for stream sockets, although the total for sender and receiver is
749 * actually only PIPSIZ.
750 * Datagram sockets really use the sendspace as the maximum datagram size,
751 * and don't really want to reserve the sendspace. Their recvspace should
752 * be large enough for at least one max-size datagram plus address.
754 #define PIPSIZ 4096
755 u_long unpst_sendspace = PIPSIZ;
756 u_long unpst_recvspace = PIPSIZ;
757 u_long unpdg_sendspace = 2*1024; /* really max datagram size */
758 u_long unpdg_recvspace = 4*1024;
760 u_int unp_rights; /* files in flight */
761 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
764 unp_attach(struct socket *so)
766 struct unpcb *unp;
767 int error;
769 switch (so->so_type) {
770 case SOCK_STREAM:
771 if (so->so_lock == NULL) {
773 * XXX Assuming that no socket locks are held,
774 * as this call may sleep.
776 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
777 solock(so);
779 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
780 error = soreserve(so, unpst_sendspace, unpst_recvspace);
781 if (error != 0)
782 return (error);
784 break;
786 case SOCK_DGRAM:
787 if (so->so_lock == NULL) {
788 mutex_obj_hold(uipc_lock);
789 so->so_lock = uipc_lock;
790 solock(so);
792 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
793 error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
794 if (error != 0)
795 return (error);
797 break;
799 default:
800 panic("unp_attach");
802 KASSERT(solocked(so));
803 unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
804 if (unp == NULL)
805 return (ENOBUFS);
806 memset(unp, 0, sizeof(*unp));
807 unp->unp_socket = so;
808 so->so_pcb = unp;
809 nanotime(&unp->unp_ctime);
810 return (0);
813 void
814 unp_detach(struct unpcb *unp)
816 struct socket *so;
817 vnode_t *vp;
819 so = unp->unp_socket;
821 retry:
822 if ((vp = unp->unp_vnode) != NULL) {
823 sounlock(so);
824 /* Acquire v_interlock to protect against unp_connect(). */
825 /* XXXAD racy */
826 mutex_enter(&vp->v_interlock);
827 vp->v_socket = NULL;
828 vrelel(vp, 0);
829 solock(so);
830 unp->unp_vnode = NULL;
832 if (unp->unp_conn)
833 unp_disconnect(unp);
834 while (unp->unp_refs) {
835 KASSERT(solocked2(so, unp->unp_refs->unp_socket));
836 if (unp_drop(unp->unp_refs, ECONNRESET)) {
837 solock(so);
838 goto retry;
841 soisdisconnected(so);
842 so->so_pcb = NULL;
843 if (unp_rights) {
845 * Normally the receive buffer is flushed later, in sofree,
846 * but if our receive buffer holds references to files that
847 * are now garbage, we will enqueue those file references to
848 * the garbage collector and kick it into action.
850 sorflush(so);
851 unp_free(unp);
852 unp_thread_kick();
853 } else
854 unp_free(unp);
858 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
860 struct sockaddr_un *sun;
861 struct unpcb *unp;
862 vnode_t *vp;
863 struct vattr vattr;
864 size_t addrlen;
865 int error;
866 struct nameidata nd;
867 proc_t *p;
869 unp = sotounpcb(so);
870 if (unp->unp_vnode != NULL)
871 return (EINVAL);
872 if ((unp->unp_flags & UNP_BUSY) != 0) {
874 * EALREADY may not be strictly accurate, but since this
875 * is a major application error it's hardly a big deal.
877 return (EALREADY);
879 unp->unp_flags |= UNP_BUSY;
880 sounlock(so);
883 * Allocate the new sockaddr. We have to allocate one
884 * extra byte so that we can ensure that the pathname
885 * is nul-terminated.
887 p = l->l_proc;
888 addrlen = nam->m_len + 1;
889 sun = malloc(addrlen, M_SONAME, M_WAITOK);
890 m_copydata(nam, 0, nam->m_len, (void *)sun);
891 *(((char *)sun) + nam->m_len) = '\0';
893 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
894 sun->sun_path);
896 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
897 if ((error = namei(&nd)) != 0)
898 goto bad;
899 vp = nd.ni_vp;
900 if (vp != NULL) {
901 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
902 if (nd.ni_dvp == vp)
903 vrele(nd.ni_dvp);
904 else
905 vput(nd.ni_dvp);
906 vrele(vp);
907 error = EADDRINUSE;
908 goto bad;
910 vattr_null(&vattr);
911 vattr.va_type = VSOCK;
912 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
913 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
914 if (error)
915 goto bad;
916 vp = nd.ni_vp;
917 solock(so);
918 vp->v_socket = unp->unp_socket;
919 unp->unp_vnode = vp;
920 unp->unp_addrlen = addrlen;
921 unp->unp_addr = sun;
922 unp->unp_connid.unp_pid = p->p_pid;
923 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
924 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
925 unp->unp_flags |= UNP_EIDSBIND;
926 VOP_UNLOCK(vp, 0);
927 unp->unp_flags &= ~UNP_BUSY;
928 return (0);
930 bad:
931 free(sun, M_SONAME);
932 solock(so);
933 unp->unp_flags &= ~UNP_BUSY;
934 return (error);
938 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
940 struct sockaddr_un *sun;
941 vnode_t *vp;
942 struct socket *so2, *so3;
943 struct unpcb *unp, *unp2, *unp3;
944 size_t addrlen;
945 int error;
946 struct nameidata nd;
948 unp = sotounpcb(so);
949 if ((unp->unp_flags & UNP_BUSY) != 0) {
951 * EALREADY may not be strictly accurate, but since this
952 * is a major application error it's hardly a big deal.
954 return (EALREADY);
956 unp->unp_flags |= UNP_BUSY;
957 sounlock(so);
960 * Allocate a temporary sockaddr. We have to allocate one extra
961 * byte so that we can ensure that the pathname is nul-terminated.
962 * When we establish the connection, we copy the other PCB's
963 * sockaddr to our own.
965 addrlen = nam->m_len + 1;
966 sun = malloc(addrlen, M_SONAME, M_WAITOK);
967 m_copydata(nam, 0, nam->m_len, (void *)sun);
968 *(((char *)sun) + nam->m_len) = '\0';
970 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
971 sun->sun_path);
973 if ((error = namei(&nd)) != 0)
974 goto bad2;
975 vp = nd.ni_vp;
976 if (vp->v_type != VSOCK) {
977 error = ENOTSOCK;
978 goto bad;
980 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
981 goto bad;
982 /* Acquire v_interlock to protect against unp_detach(). */
983 mutex_enter(&vp->v_interlock);
984 so2 = vp->v_socket;
985 if (so2 == NULL) {
986 mutex_exit(&vp->v_interlock);
987 error = ECONNREFUSED;
988 goto bad;
990 if (so->so_type != so2->so_type) {
991 mutex_exit(&vp->v_interlock);
992 error = EPROTOTYPE;
993 goto bad;
995 solock(so);
996 unp_resetlock(so);
997 mutex_exit(&vp->v_interlock);
998 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1000 * This may seem somewhat fragile but is OK: if we can
1001 * see SO_ACCEPTCONN set on the endpoint, then it must
1002 * be locked by the domain-wide uipc_lock.
1004 KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
1005 so2->so_lock == uipc_lock);
1006 if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1007 (so3 = sonewconn(so2, 0)) == NULL) {
1008 error = ECONNREFUSED;
1009 sounlock(so);
1010 goto bad;
1012 unp2 = sotounpcb(so2);
1013 unp3 = sotounpcb(so3);
1014 if (unp2->unp_addr) {
1015 unp3->unp_addr = malloc(unp2->unp_addrlen,
1016 M_SONAME, M_WAITOK);
1017 memcpy(unp3->unp_addr, unp2->unp_addr,
1018 unp2->unp_addrlen);
1019 unp3->unp_addrlen = unp2->unp_addrlen;
1021 unp3->unp_flags = unp2->unp_flags;
1022 unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1023 unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1024 unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1025 unp3->unp_flags |= UNP_EIDSVALID;
1026 if (unp2->unp_flags & UNP_EIDSBIND) {
1027 unp->unp_connid = unp2->unp_connid;
1028 unp->unp_flags |= UNP_EIDSVALID;
1030 so2 = so3;
1032 error = unp_connect2(so, so2, PRU_CONNECT);
1033 sounlock(so);
1034 bad:
1035 vput(vp);
1036 bad2:
1037 free(sun, M_SONAME);
1038 solock(so);
1039 unp->unp_flags &= ~UNP_BUSY;
1040 return (error);
1044 unp_connect2(struct socket *so, struct socket *so2, int req)
1046 struct unpcb *unp = sotounpcb(so);
1047 struct unpcb *unp2;
1049 if (so2->so_type != so->so_type)
1050 return (EPROTOTYPE);
1053 * All three sockets involved must be locked by same lock:
1055 * local endpoint (so)
1056 * remote endpoint (so2)
1057 * queue head (so->so_head, only if PR_CONNREQUIRED)
1059 KASSERT(solocked2(so, so2));
1060 KASSERT(so->so_head == NULL);
1061 if (so2->so_head != NULL) {
1062 KASSERT(so2->so_lock == uipc_lock);
1063 KASSERT(solocked2(so2, so2->so_head));
1066 unp2 = sotounpcb(so2);
1067 unp->unp_conn = unp2;
1068 switch (so->so_type) {
1070 case SOCK_DGRAM:
1071 unp->unp_nextref = unp2->unp_refs;
1072 unp2->unp_refs = unp;
1073 soisconnected(so);
1074 break;
1076 case SOCK_STREAM:
1077 unp2->unp_conn = unp;
1078 if (req == PRU_CONNECT &&
1079 ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1080 soisconnecting(so);
1081 else
1082 soisconnected(so);
1083 soisconnected(so2);
1085 * If the connection is fully established, break the
1086 * association with uipc_lock and give the connected
1087 * pair a seperate lock to share. For CONNECT2, we
1088 * require that the locks already match (the sockets
1089 * are created that way).
1091 if (req == PRU_CONNECT) {
1092 KASSERT(so2->so_head != NULL);
1093 unp_setpeerlocks(so, so2);
1095 break;
1097 default:
1098 panic("unp_connect2");
1100 return (0);
1103 void
1104 unp_disconnect(struct unpcb *unp)
1106 struct unpcb *unp2 = unp->unp_conn;
1107 struct socket *so;
1109 if (unp2 == 0)
1110 return;
1111 unp->unp_conn = 0;
1112 so = unp->unp_socket;
1113 switch (so->so_type) {
1114 case SOCK_DGRAM:
1115 if (unp2->unp_refs == unp)
1116 unp2->unp_refs = unp->unp_nextref;
1117 else {
1118 unp2 = unp2->unp_refs;
1119 for (;;) {
1120 KASSERT(solocked2(so, unp2->unp_socket));
1121 if (unp2 == 0)
1122 panic("unp_disconnect");
1123 if (unp2->unp_nextref == unp)
1124 break;
1125 unp2 = unp2->unp_nextref;
1127 unp2->unp_nextref = unp->unp_nextref;
1129 unp->unp_nextref = 0;
1130 so->so_state &= ~SS_ISCONNECTED;
1131 break;
1133 case SOCK_STREAM:
1134 KASSERT(solocked2(so, unp2->unp_socket));
1135 soisdisconnected(so);
1136 unp2->unp_conn = 0;
1137 soisdisconnected(unp2->unp_socket);
1138 break;
1142 #ifdef notdef
1143 unp_abort(struct unpcb *unp)
1145 unp_detach(unp);
1147 #endif
1149 void
1150 unp_shutdown(struct unpcb *unp)
1152 struct socket *so;
1154 if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1155 (so = unp->unp_conn->unp_socket))
1156 socantrcvmore(so);
1159 bool
1160 unp_drop(struct unpcb *unp, int errno)
1162 struct socket *so = unp->unp_socket;
1164 KASSERT(solocked(so));
1166 so->so_error = errno;
1167 unp_disconnect(unp);
1168 if (so->so_head) {
1169 so->so_pcb = NULL;
1170 /* sofree() drops the socket lock */
1171 sofree(so);
1172 unp_free(unp);
1173 return true;
1175 return false;
1178 #ifdef notdef
1179 unp_drain(void)
1183 #endif
1186 unp_externalize(struct mbuf *rights, struct lwp *l)
1188 struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1189 struct proc *p = l->l_proc;
1190 int i, *fdp;
1191 file_t **rp;
1192 file_t *fp;
1193 int nfds, error = 0;
1195 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1196 sizeof(file_t *);
1197 rp = (file_t **)CMSG_DATA(cm);
1199 fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1200 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1202 /* Make sure the recipient should be able to see the files.. */
1203 if (p->p_cwdi->cwdi_rdir != NULL) {
1204 rp = (file_t **)CMSG_DATA(cm);
1205 for (i = 0; i < nfds; i++) {
1206 fp = *rp++;
1208 * If we are in a chroot'ed directory, and
1209 * someone wants to pass us a directory, make
1210 * sure it's inside the subtree we're allowed
1211 * to access.
1213 if (fp->f_type == DTYPE_VNODE) {
1214 vnode_t *vp = (vnode_t *)fp->f_data;
1215 if ((vp->v_type == VDIR) &&
1216 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1217 error = EPERM;
1218 break;
1224 restart:
1225 rp = (file_t **)CMSG_DATA(cm);
1226 if (error != 0) {
1227 for (i = 0; i < nfds; i++) {
1228 fp = *rp;
1229 *rp++ = 0;
1230 unp_discard_now(fp);
1232 goto out;
1236 * First loop -- allocate file descriptor table slots for the
1237 * new files.
1239 for (i = 0; i < nfds; i++) {
1240 fp = *rp++;
1241 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1243 * Back out what we've done so far.
1245 for (--i; i >= 0; i--) {
1246 fd_abort(p, NULL, fdp[i]);
1248 if (error == ENOSPC) {
1249 fd_tryexpand(p);
1250 error = 0;
1251 } else {
1253 * This is the error that has historically
1254 * been returned, and some callers may
1255 * expect it.
1257 error = EMSGSIZE;
1259 goto restart;
1264 * Now that adding them has succeeded, update all of the
1265 * file passing state and affix the descriptors.
1267 rp = (file_t **)CMSG_DATA(cm);
1268 for (i = 0; i < nfds; i++) {
1269 fp = *rp++;
1270 atomic_dec_uint(&unp_rights);
1271 fd_affix(p, fp, fdp[i]);
1272 mutex_enter(&fp->f_lock);
1273 fp->f_msgcount--;
1274 mutex_exit(&fp->f_lock);
1276 * Note that fd_affix() adds a reference to the file.
1277 * The file may already have been closed by another
1278 * LWP in the process, so we must drop the reference
1279 * added by unp_internalize() with closef().
1281 closef(fp);
1285 * Copy temporary array to message and adjust length, in case of
1286 * transition from large file_t pointers to ints.
1288 memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1289 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1290 rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1291 out:
1292 rw_exit(&p->p_cwdi->cwdi_lock);
1293 free(fdp, M_TEMP);
1294 return (error);
1298 unp_internalize(struct mbuf **controlp)
1300 filedesc_t *fdescp = curlwp->l_fd;
1301 struct mbuf *control = *controlp;
1302 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1303 file_t **rp, **files;
1304 file_t *fp;
1305 int i, fd, *fdp;
1306 int nfds, error;
1307 u_int maxmsg;
1309 error = 0;
1310 newcm = NULL;
1312 /* Sanity check the control message header. */
1313 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1314 cm->cmsg_len > control->m_len ||
1315 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1316 return (EINVAL);
1319 * Verify that the file descriptors are valid, and acquire
1320 * a reference to each.
1322 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1323 fdp = (int *)CMSG_DATA(cm);
1324 maxmsg = maxfiles / unp_rights_ratio;
1325 for (i = 0; i < nfds; i++) {
1326 fd = *fdp++;
1327 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1328 atomic_dec_uint(&unp_rights);
1329 nfds = i;
1330 error = EAGAIN;
1331 goto out;
1333 if ((fp = fd_getfile(fd)) == NULL) {
1334 atomic_dec_uint(&unp_rights);
1335 nfds = i;
1336 error = EBADF;
1337 goto out;
1341 /* Allocate new space and copy header into it. */
1342 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1343 if (newcm == NULL) {
1344 error = E2BIG;
1345 goto out;
1347 memcpy(newcm, cm, sizeof(struct cmsghdr));
1348 files = (file_t **)CMSG_DATA(newcm);
1351 * Transform the file descriptors into file_t pointers, in
1352 * reverse order so that if pointers are bigger than ints, the
1353 * int won't get until we're done. No need to lock, as we have
1354 * already validated the descriptors with fd_getfile().
1356 fdp = (int *)CMSG_DATA(cm) + nfds;
1357 rp = files + nfds;
1358 for (i = 0; i < nfds; i++) {
1359 fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1360 KASSERT(fp != NULL);
1361 mutex_enter(&fp->f_lock);
1362 *--rp = fp;
1363 fp->f_count++;
1364 fp->f_msgcount++;
1365 mutex_exit(&fp->f_lock);
1368 out:
1369 /* Release descriptor references. */
1370 fdp = (int *)CMSG_DATA(cm);
1371 for (i = 0; i < nfds; i++) {
1372 fd_putfile(*fdp++);
1373 if (error != 0) {
1374 atomic_dec_uint(&unp_rights);
1378 if (error == 0) {
1379 if (control->m_flags & M_EXT) {
1380 m_freem(control);
1381 *controlp = control = m_get(M_WAIT, MT_CONTROL);
1383 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1384 M_MBUF, NULL, NULL);
1385 cm = newcm;
1387 * Adjust message & mbuf to note amount of space
1388 * actually used.
1390 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1391 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1394 return error;
1397 struct mbuf *
1398 unp_addsockcred(struct lwp *l, struct mbuf *control)
1400 struct cmsghdr *cmp;
1401 struct sockcred *sc;
1402 struct mbuf *m, *n;
1403 int len, space, i;
1405 len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1406 space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1408 m = m_get(M_WAIT, MT_CONTROL);
1409 if (space > MLEN) {
1410 if (space > MCLBYTES)
1411 MEXTMALLOC(m, space, M_WAITOK);
1412 else
1413 m_clget(m, M_WAIT);
1414 if ((m->m_flags & M_EXT) == 0) {
1415 m_free(m);
1416 return (control);
1420 m->m_len = space;
1421 m->m_next = NULL;
1422 cmp = mtod(m, struct cmsghdr *);
1423 sc = (struct sockcred *)CMSG_DATA(cmp);
1424 cmp->cmsg_len = len;
1425 cmp->cmsg_level = SOL_SOCKET;
1426 cmp->cmsg_type = SCM_CREDS;
1427 sc->sc_uid = kauth_cred_getuid(l->l_cred);
1428 sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1429 sc->sc_gid = kauth_cred_getgid(l->l_cred);
1430 sc->sc_egid = kauth_cred_getegid(l->l_cred);
1431 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1432 for (i = 0; i < sc->sc_ngroups; i++)
1433 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1436 * If a control message already exists, append us to the end.
1438 if (control != NULL) {
1439 for (n = control; n->m_next != NULL; n = n->m_next)
1441 n->m_next = m;
1442 } else
1443 control = m;
1445 return (control);
1449 * Do a mark-sweep GC of files in the system, to free up any which are
1450 * caught in flight to an about-to-be-closed socket. Additionally,
1451 * process deferred file closures.
1453 static void
1454 unp_gc(file_t *dp)
1456 extern struct domain unixdomain;
1457 file_t *fp, *np;
1458 struct socket *so, *so1;
1459 u_int i, old, new;
1460 bool didwork;
1462 KASSERT(curlwp == unp_thread_lwp);
1463 KASSERT(mutex_owned(&filelist_lock));
1466 * First, process deferred file closures.
1468 while (!SLIST_EMPTY(&unp_thread_discard)) {
1469 fp = SLIST_FIRST(&unp_thread_discard);
1470 KASSERT(fp->f_unpcount > 0);
1471 KASSERT(fp->f_count > 0);
1472 KASSERT(fp->f_msgcount > 0);
1473 KASSERT(fp->f_count >= fp->f_unpcount);
1474 KASSERT(fp->f_count >= fp->f_msgcount);
1475 KASSERT(fp->f_msgcount >= fp->f_unpcount);
1476 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1477 i = fp->f_unpcount;
1478 fp->f_unpcount = 0;
1479 mutex_exit(&filelist_lock);
1480 for (; i != 0; i--) {
1481 unp_discard_now(fp);
1483 mutex_enter(&filelist_lock);
1487 * Clear mark bits. Ensure that we don't consider new files
1488 * entering the file table during this loop (they will not have
1489 * FSCAN set).
1491 unp_defer = 0;
1492 LIST_FOREACH(fp, &filehead, f_list) {
1493 for (old = fp->f_flag;; old = new) {
1494 new = atomic_cas_uint(&fp->f_flag, old,
1495 (old | FSCAN) & ~(FMARK|FDEFER));
1496 if (__predict_true(old == new)) {
1497 break;
1503 * Iterate over the set of sockets, marking ones believed (based on
1504 * refcount) to be referenced from a process, and marking for rescan
1505 * sockets which are queued on a socket. Recan continues descending
1506 * and searching for sockets referenced by sockets (FDEFER), until
1507 * there are no more socket->socket references to be discovered.
1509 do {
1510 didwork = false;
1511 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1512 KASSERT(mutex_owned(&filelist_lock));
1513 np = LIST_NEXT(fp, f_list);
1514 mutex_enter(&fp->f_lock);
1515 if ((fp->f_flag & FDEFER) != 0) {
1516 atomic_and_uint(&fp->f_flag, ~FDEFER);
1517 unp_defer--;
1518 KASSERT(fp->f_count != 0);
1519 } else {
1520 if (fp->f_count == 0 ||
1521 (fp->f_flag & FMARK) != 0 ||
1522 fp->f_count == fp->f_msgcount ||
1523 fp->f_unpcount != 0) {
1524 mutex_exit(&fp->f_lock);
1525 continue;
1528 atomic_or_uint(&fp->f_flag, FMARK);
1530 if (fp->f_type != DTYPE_SOCKET ||
1531 (so = fp->f_data) == NULL ||
1532 so->so_proto->pr_domain != &unixdomain ||
1533 (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1534 mutex_exit(&fp->f_lock);
1535 continue;
1538 /* Gain file ref, mark our position, and unlock. */
1539 didwork = true;
1540 LIST_INSERT_AFTER(fp, dp, f_list);
1541 fp->f_count++;
1542 mutex_exit(&fp->f_lock);
1543 mutex_exit(&filelist_lock);
1546 * Mark files referenced from sockets queued on the
1547 * accept queue as well.
1549 solock(so);
1550 unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1551 if ((so->so_options & SO_ACCEPTCONN) != 0) {
1552 TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1553 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1555 TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1556 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1559 sounlock(so);
1561 /* Re-lock and restart from where we left off. */
1562 closef(fp);
1563 mutex_enter(&filelist_lock);
1564 np = LIST_NEXT(dp, f_list);
1565 LIST_REMOVE(dp, f_list);
1568 * Bail early if we did nothing in the loop above. Could
1569 * happen because of concurrent activity causing unp_defer
1570 * to get out of sync.
1572 } while (unp_defer != 0 && didwork);
1575 * Sweep pass.
1577 * We grab an extra reference to each of the files that are
1578 * not otherwise accessible and then free the rights that are
1579 * stored in messages on them.
1581 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1582 KASSERT(mutex_owned(&filelist_lock));
1583 np = LIST_NEXT(fp, f_list);
1584 mutex_enter(&fp->f_lock);
1587 * Ignore non-sockets.
1588 * Ignore dead sockets, or sockets with pending close.
1589 * Ignore sockets obviously referenced elsewhere.
1590 * Ignore sockets marked as referenced by our scan.
1591 * Ignore new sockets that did not exist during the scan.
1593 if (fp->f_type != DTYPE_SOCKET ||
1594 fp->f_count == 0 || fp->f_unpcount != 0 ||
1595 fp->f_count != fp->f_msgcount ||
1596 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1597 mutex_exit(&fp->f_lock);
1598 continue;
1601 /* Gain file ref, mark our position, and unlock. */
1602 LIST_INSERT_AFTER(fp, dp, f_list);
1603 fp->f_count++;
1604 mutex_exit(&fp->f_lock);
1605 mutex_exit(&filelist_lock);
1608 * Flush all data from the socket's receive buffer.
1609 * This will cause files referenced only by the
1610 * socket to be queued for close.
1612 so = fp->f_data;
1613 solock(so);
1614 sorflush(so);
1615 sounlock(so);
1617 /* Re-lock and restart from where we left off. */
1618 closef(fp);
1619 mutex_enter(&filelist_lock);
1620 np = LIST_NEXT(dp, f_list);
1621 LIST_REMOVE(dp, f_list);
1626 * Garbage collector thread. While SCM_RIGHTS messages are in transit,
1627 * wake once per second to garbage collect. Run continually while we
1628 * have deferred closes to process.
1630 static void
1631 unp_thread(void *cookie)
1633 file_t *dp;
1635 /* Allocate a dummy file for our scans. */
1636 if ((dp = fgetdummy()) == NULL) {
1637 panic("unp_thread");
1640 mutex_enter(&filelist_lock);
1641 for (;;) {
1642 KASSERT(mutex_owned(&filelist_lock));
1643 if (SLIST_EMPTY(&unp_thread_discard)) {
1644 if (unp_rights != 0) {
1645 (void)cv_timedwait(&unp_thread_cv,
1646 &filelist_lock, hz);
1647 } else {
1648 cv_wait(&unp_thread_cv, &filelist_lock);
1651 unp_gc(dp);
1653 /* NOTREACHED */
1657 * Kick the garbage collector into action if there is something for
1658 * it to process.
1660 static void
1661 unp_thread_kick(void)
1664 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1665 mutex_enter(&filelist_lock);
1666 cv_signal(&unp_thread_cv);
1667 mutex_exit(&filelist_lock);
1671 void
1672 unp_dispose(struct mbuf *m)
1675 if (m)
1676 unp_scan(m, unp_discard_later, 1);
1679 void
1680 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1682 struct mbuf *m;
1683 file_t **rp, *fp;
1684 struct cmsghdr *cm;
1685 int i, qfds;
1687 while (m0) {
1688 for (m = m0; m; m = m->m_next) {
1689 if (m->m_type != MT_CONTROL ||
1690 m->m_len < sizeof(*cm)) {
1691 continue;
1693 cm = mtod(m, struct cmsghdr *);
1694 if (cm->cmsg_level != SOL_SOCKET ||
1695 cm->cmsg_type != SCM_RIGHTS)
1696 continue;
1697 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1698 / sizeof(file_t *);
1699 rp = (file_t **)CMSG_DATA(cm);
1700 for (i = 0; i < qfds; i++) {
1701 fp = *rp;
1702 if (discard) {
1703 *rp = 0;
1705 (*op)(fp);
1706 rp++;
1709 m0 = m0->m_nextpkt;
1713 void
1714 unp_mark(file_t *fp)
1717 if (fp == NULL)
1718 return;
1720 /* If we're already deferred, don't screw up the defer count */
1721 mutex_enter(&fp->f_lock);
1722 if (fp->f_flag & (FMARK | FDEFER)) {
1723 mutex_exit(&fp->f_lock);
1724 return;
1728 * Minimize the number of deferrals... Sockets are the only type of
1729 * file which can hold references to another file, so just mark
1730 * other files, and defer unmarked sockets for the next pass.
1732 if (fp->f_type == DTYPE_SOCKET) {
1733 unp_defer++;
1734 KASSERT(fp->f_count != 0);
1735 atomic_or_uint(&fp->f_flag, FDEFER);
1736 } else {
1737 atomic_or_uint(&fp->f_flag, FMARK);
1739 mutex_exit(&fp->f_lock);
1742 static void
1743 unp_discard_now(file_t *fp)
1746 if (fp == NULL)
1747 return;
1749 KASSERT(fp->f_count > 0);
1750 KASSERT(fp->f_msgcount > 0);
1752 mutex_enter(&fp->f_lock);
1753 fp->f_msgcount--;
1754 mutex_exit(&fp->f_lock);
1755 atomic_dec_uint(&unp_rights);
1756 (void)closef(fp);
1759 static void
1760 unp_discard_later(file_t *fp)
1763 if (fp == NULL)
1764 return;
1766 KASSERT(fp->f_count > 0);
1767 KASSERT(fp->f_msgcount > 0);
1769 mutex_enter(&filelist_lock);
1770 if (fp->f_unpcount++ == 0) {
1771 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1773 mutex_exit(&filelist_lock);