Try to fixup the mess of mdoc(7)/man(7) mixture as created by the merge.
[netbsd-mini2440.git] / sys / kern / vfs_subr.c
blob5ecb9ad325c8e22af0fe75669bf9c8cb18b85d88
1 /* $NetBSD: vfs_subr.c,v 1.394 2010/01/08 11:35:10 pooka Exp $ */
3 /*-
4 * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
70 * Note on v_usecount and locking:
72 * At nearly all points it is known that v_usecount could be zero, the
73 * vnode interlock will be held.
75 * To change v_usecount away from zero, the interlock must be held. To
76 * change from a non-zero value to zero, again the interlock must be
77 * held.
79 * There's a flag bit, VC_XLOCK, embedded in v_usecount.
80 * To raise v_usecount, if the VC_XLOCK bit is set in it, the interlock
81 * must be held.
82 * To modify the VC_XLOCK bit, the interlock must be held.
83 * We always keep the usecount (v_usecount & VC_MASK) non-zero while the
84 * VC_XLOCK bit is set.
86 * Unless the VC_XLOCK bit is set, changing the usecount from a non-zero
87 * value to a non-zero value can safely be done using atomic operations,
88 * without the interlock held.
89 * Even if the VC_XLOCK bit is set, decreasing the usecount to a non-zero
90 * value can be done using atomic operations, without the interlock held.
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.394 2010/01/08 11:35:10 pooka Exp $");
96 #include "opt_ddb.h"
97 #include "opt_compat_netbsd.h"
98 #include "opt_compat_43.h"
100 #include <sys/param.h>
101 #include <sys/systm.h>
102 #include <sys/conf.h>
103 #include <sys/proc.h>
104 #include <sys/kernel.h>
105 #include <sys/mount.h>
106 #include <sys/fcntl.h>
107 #include <sys/vnode.h>
108 #include <sys/stat.h>
109 #include <sys/namei.h>
110 #include <sys/ucred.h>
111 #include <sys/buf.h>
112 #include <sys/errno.h>
113 #include <sys/kmem.h>
114 #include <sys/syscallargs.h>
115 #include <sys/device.h>
116 #include <sys/filedesc.h>
117 #include <sys/kauth.h>
118 #include <sys/atomic.h>
119 #include <sys/kthread.h>
120 #include <sys/wapbl.h>
122 #include <miscfs/genfs/genfs.h>
123 #include <miscfs/specfs/specdev.h>
124 #include <miscfs/syncfs/syncfs.h>
126 #include <uvm/uvm.h>
127 #include <uvm/uvm_readahead.h>
128 #include <uvm/uvm_ddb.h>
130 #include <sys/sysctl.h>
132 const enum vtype iftovt_tab[16] = {
133 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
134 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
136 const int vttoif_tab[9] = {
137 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
138 S_IFSOCK, S_IFIFO, S_IFMT,
142 * Insq/Remq for the vnode usage lists.
144 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
145 #define bufremvn(bp) { \
146 LIST_REMOVE(bp, b_vnbufs); \
147 (bp)->b_vnbufs.le_next = NOLIST; \
150 int doforce = 1; /* 1 => permit forcible unmounting */
151 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
153 static vnodelst_t vnode_free_list = TAILQ_HEAD_INITIALIZER(vnode_free_list);
154 static vnodelst_t vnode_hold_list = TAILQ_HEAD_INITIALIZER(vnode_hold_list);
155 static vnodelst_t vrele_list = TAILQ_HEAD_INITIALIZER(vrele_list);
157 struct mntlist mountlist = /* mounted filesystem list */
158 CIRCLEQ_HEAD_INITIALIZER(mountlist);
160 u_int numvnodes;
161 static specificdata_domain_t mount_specificdata_domain;
163 static int vrele_pending;
164 static int vrele_gen;
165 static kmutex_t vrele_lock;
166 static kcondvar_t vrele_cv;
167 static lwp_t *vrele_lwp;
169 static uint64_t mountgen = 0;
170 static kmutex_t mountgen_lock;
172 kmutex_t mountlist_lock;
173 kmutex_t mntid_lock;
174 kmutex_t mntvnode_lock;
175 kmutex_t vnode_free_list_lock;
176 kmutex_t vfs_list_lock;
178 static pool_cache_t vnode_cache;
181 * These define the root filesystem and device.
183 struct vnode *rootvnode;
184 struct device *root_device; /* root device */
187 * Local declarations.
190 static void vrele_thread(void *);
191 static void insmntque(vnode_t *, struct mount *);
192 static int getdevvp(dev_t, vnode_t **, enum vtype);
193 static vnode_t *getcleanvnode(void);
194 void vpanic(vnode_t *, const char *);
195 static void vfs_shutdown1(struct lwp *);
197 #ifdef DEBUG
198 void printlockedvnodes(void);
199 #endif
201 #ifdef DIAGNOSTIC
202 void
203 vpanic(vnode_t *vp, const char *msg)
206 vprint(NULL, vp);
207 panic("%s\n", msg);
209 #else
210 #define vpanic(vp, msg) /* nothing */
211 #endif
213 void
214 vn_init1(void)
217 vnode_cache = pool_cache_init(sizeof(struct vnode), 0, 0, 0, "vnodepl",
218 NULL, IPL_NONE, NULL, NULL, NULL);
219 KASSERT(vnode_cache != NULL);
221 /* Create deferred release thread. */
222 mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
223 cv_init(&vrele_cv, "vrele");
224 if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
225 NULL, &vrele_lwp, "vrele"))
226 panic("fork vrele");
230 * Initialize the vnode management data structures.
232 void
233 vntblinit(void)
236 mutex_init(&mountgen_lock, MUTEX_DEFAULT, IPL_NONE);
237 mutex_init(&mountlist_lock, MUTEX_DEFAULT, IPL_NONE);
238 mutex_init(&mntid_lock, MUTEX_DEFAULT, IPL_NONE);
239 mutex_init(&mntvnode_lock, MUTEX_DEFAULT, IPL_NONE);
240 mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
241 mutex_init(&vfs_list_lock, MUTEX_DEFAULT, IPL_NONE);
243 mount_specificdata_domain = specificdata_domain_create();
245 /* Initialize the filesystem syncer. */
246 vn_initialize_syncerd();
247 vn_init1();
251 vfs_drainvnodes(long target, struct lwp *l)
254 while (numvnodes > target) {
255 vnode_t *vp;
257 mutex_enter(&vnode_free_list_lock);
258 vp = getcleanvnode();
259 if (vp == NULL)
260 return EBUSY; /* give up */
261 ungetnewvnode(vp);
264 return 0;
268 * Lookup a mount point by filesystem identifier.
270 * XXX Needs to add a reference to the mount point.
272 struct mount *
273 vfs_getvfs(fsid_t *fsid)
275 struct mount *mp;
277 mutex_enter(&mountlist_lock);
278 CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
279 if (mp->mnt_stat.f_fsidx.__fsid_val[0] == fsid->__fsid_val[0] &&
280 mp->mnt_stat.f_fsidx.__fsid_val[1] == fsid->__fsid_val[1]) {
281 mutex_exit(&mountlist_lock);
282 return (mp);
285 mutex_exit(&mountlist_lock);
286 return ((struct mount *)0);
290 * Drop a reference to a mount structure, freeing if the last reference.
292 void
293 vfs_destroy(struct mount *mp)
296 if (__predict_true((int)atomic_dec_uint_nv(&mp->mnt_refcnt) > 0)) {
297 return;
301 * Nothing else has visibility of the mount: we can now
302 * free the data structures.
304 KASSERT(mp->mnt_refcnt == 0);
305 specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
306 rw_destroy(&mp->mnt_unmounting);
307 mutex_destroy(&mp->mnt_updating);
308 mutex_destroy(&mp->mnt_renamelock);
309 if (mp->mnt_op != NULL) {
310 vfs_delref(mp->mnt_op);
312 kmem_free(mp, sizeof(*mp));
316 * grab a vnode from freelist and clean it.
318 vnode_t *
319 getcleanvnode(void)
321 vnode_t *vp;
322 vnodelst_t *listhd;
324 KASSERT(mutex_owned(&vnode_free_list_lock));
326 retry:
327 listhd = &vnode_free_list;
328 try_nextlist:
329 TAILQ_FOREACH(vp, listhd, v_freelist) {
331 * It's safe to test v_usecount and v_iflag
332 * without holding the interlock here, since
333 * these vnodes should never appear on the
334 * lists.
336 if (vp->v_usecount != 0) {
337 vpanic(vp, "free vnode isn't");
339 if ((vp->v_iflag & VI_CLEAN) != 0) {
340 vpanic(vp, "clean vnode on freelist");
342 if (vp->v_freelisthd != listhd) {
343 printf("vnode sez %p, listhd %p\n", vp->v_freelisthd, listhd);
344 vpanic(vp, "list head mismatch");
346 if (!mutex_tryenter(&vp->v_interlock))
347 continue;
349 * Our lwp might hold the underlying vnode
350 * locked, so don't try to reclaim a VI_LAYER
351 * node if it's locked.
353 if ((vp->v_iflag & VI_XLOCK) == 0 &&
354 ((vp->v_iflag & VI_LAYER) == 0 || VOP_ISLOCKED(vp) == 0)) {
355 break;
357 mutex_exit(&vp->v_interlock);
360 if (vp == NULL) {
361 if (listhd == &vnode_free_list) {
362 listhd = &vnode_hold_list;
363 goto try_nextlist;
365 mutex_exit(&vnode_free_list_lock);
366 return NULL;
369 /* Remove it from the freelist. */
370 TAILQ_REMOVE(listhd, vp, v_freelist);
371 vp->v_freelisthd = NULL;
372 mutex_exit(&vnode_free_list_lock);
374 if (vp->v_usecount != 0) {
376 * was referenced again before we got the interlock
377 * Don't return to freelist - the holder of the last
378 * reference will destroy it.
380 mutex_exit(&vp->v_interlock);
381 mutex_enter(&vnode_free_list_lock);
382 goto retry;
386 * The vnode is still associated with a file system, so we must
387 * clean it out before reusing it. We need to add a reference
388 * before doing this. If the vnode gains another reference while
389 * being cleaned out then we lose - retry.
391 atomic_add_int(&vp->v_usecount, 1 + VC_XLOCK);
392 vclean(vp, DOCLOSE);
393 KASSERT(vp->v_usecount >= 1 + VC_XLOCK);
394 atomic_add_int(&vp->v_usecount, -VC_XLOCK);
395 if (vp->v_usecount == 1) {
396 /* We're about to dirty it. */
397 vp->v_iflag &= ~VI_CLEAN;
398 mutex_exit(&vp->v_interlock);
399 if (vp->v_type == VBLK || vp->v_type == VCHR) {
400 spec_node_destroy(vp);
402 vp->v_type = VNON;
403 } else {
405 * Don't return to freelist - the holder of the last
406 * reference will destroy it.
408 vrelel(vp, 0); /* releases vp->v_interlock */
409 mutex_enter(&vnode_free_list_lock);
410 goto retry;
413 if (vp->v_data != NULL || vp->v_uobj.uo_npages != 0 ||
414 !TAILQ_EMPTY(&vp->v_uobj.memq)) {
415 vpanic(vp, "cleaned vnode isn't");
417 if (vp->v_numoutput != 0) {
418 vpanic(vp, "clean vnode has pending I/O's");
420 if ((vp->v_iflag & VI_ONWORKLST) != 0) {
421 vpanic(vp, "clean vnode on syncer list");
424 return vp;
428 * Mark a mount point as busy, and gain a new reference to it. Used to
429 * prevent the file system from being unmounted during critical sections.
431 * => The caller must hold a pre-existing reference to the mount.
432 * => Will fail if the file system is being unmounted, or is unmounted.
435 vfs_busy(struct mount *mp, struct mount **nextp)
438 KASSERT(mp->mnt_refcnt > 0);
440 if (__predict_false(!rw_tryenter(&mp->mnt_unmounting, RW_READER))) {
441 if (nextp != NULL) {
442 KASSERT(mutex_owned(&mountlist_lock));
443 *nextp = CIRCLEQ_NEXT(mp, mnt_list);
445 return EBUSY;
447 if (__predict_false((mp->mnt_iflag & IMNT_GONE) != 0)) {
448 rw_exit(&mp->mnt_unmounting);
449 if (nextp != NULL) {
450 KASSERT(mutex_owned(&mountlist_lock));
451 *nextp = CIRCLEQ_NEXT(mp, mnt_list);
453 return ENOENT;
455 if (nextp != NULL) {
456 mutex_exit(&mountlist_lock);
458 atomic_inc_uint(&mp->mnt_refcnt);
459 return 0;
463 * Unbusy a busy filesystem.
465 * => If keepref is true, preserve reference added by vfs_busy().
466 * => If nextp != NULL, acquire mountlist_lock.
468 void
469 vfs_unbusy(struct mount *mp, bool keepref, struct mount **nextp)
472 KASSERT(mp->mnt_refcnt > 0);
474 if (nextp != NULL) {
475 mutex_enter(&mountlist_lock);
477 rw_exit(&mp->mnt_unmounting);
478 if (!keepref) {
479 vfs_destroy(mp);
481 if (nextp != NULL) {
482 KASSERT(mutex_owned(&mountlist_lock));
483 *nextp = CIRCLEQ_NEXT(mp, mnt_list);
487 struct mount *
488 vfs_mountalloc(struct vfsops *vfsops, struct vnode *vp)
490 int error;
491 struct mount *mp;
493 mp = kmem_zalloc(sizeof(*mp), KM_SLEEP);
494 if (mp == NULL)
495 return NULL;
497 mp->mnt_op = vfsops;
498 mp->mnt_refcnt = 1;
499 TAILQ_INIT(&mp->mnt_vnodelist);
500 rw_init(&mp->mnt_unmounting);
501 mutex_init(&mp->mnt_renamelock, MUTEX_DEFAULT, IPL_NONE);
502 mutex_init(&mp->mnt_updating, MUTEX_DEFAULT, IPL_NONE);
503 error = vfs_busy(mp, NULL);
504 KASSERT(error == 0);
505 mp->mnt_vnodecovered = vp;
506 mount_initspecific(mp);
508 mutex_enter(&mountgen_lock);
509 mp->mnt_gen = mountgen++;
510 mutex_exit(&mountgen_lock);
512 return mp;
516 * Lookup a filesystem type, and if found allocate and initialize
517 * a mount structure for it.
519 * Devname is usually updated by mount(8) after booting.
522 vfs_rootmountalloc(const char *fstypename, const char *devname,
523 struct mount **mpp)
525 struct vfsops *vfsp = NULL;
526 struct mount *mp;
528 mutex_enter(&vfs_list_lock);
529 LIST_FOREACH(vfsp, &vfs_list, vfs_list)
530 if (!strncmp(vfsp->vfs_name, fstypename,
531 sizeof(mp->mnt_stat.f_fstypename)))
532 break;
533 if (vfsp == NULL) {
534 mutex_exit(&vfs_list_lock);
535 return (ENODEV);
537 vfsp->vfs_refcount++;
538 mutex_exit(&vfs_list_lock);
540 if ((mp = vfs_mountalloc(vfsp, NULL)) == NULL)
541 return ENOMEM;
542 mp->mnt_flag = MNT_RDONLY;
543 (void)strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfs_name,
544 sizeof(mp->mnt_stat.f_fstypename));
545 mp->mnt_stat.f_mntonname[0] = '/';
546 mp->mnt_stat.f_mntonname[1] = '\0';
547 mp->mnt_stat.f_mntfromname[sizeof(mp->mnt_stat.f_mntfromname) - 1] =
548 '\0';
549 (void)copystr(devname, mp->mnt_stat.f_mntfromname,
550 sizeof(mp->mnt_stat.f_mntfromname) - 1, 0);
551 *mpp = mp;
552 return (0);
556 * Routines having to do with the management of the vnode table.
558 extern int (**dead_vnodeop_p)(void *);
561 * Return the next vnode from the free list.
564 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
565 vnode_t **vpp)
567 struct uvm_object *uobj;
568 static int toggle;
569 vnode_t *vp;
570 int error = 0, tryalloc;
572 try_again:
573 if (mp != NULL) {
575 * Mark filesystem busy while we're creating a
576 * vnode. If unmount is in progress, this will
577 * fail.
579 error = vfs_busy(mp, NULL);
580 if (error)
581 return error;
585 * We must choose whether to allocate a new vnode or recycle an
586 * existing one. The criterion for allocating a new one is that
587 * the total number of vnodes is less than the number desired or
588 * there are no vnodes on either free list. Generally we only
589 * want to recycle vnodes that have no buffers associated with
590 * them, so we look first on the vnode_free_list. If it is empty,
591 * we next consider vnodes with referencing buffers on the
592 * vnode_hold_list. The toggle ensures that half the time we
593 * will use a buffer from the vnode_hold_list, and half the time
594 * we will allocate a new one unless the list has grown to twice
595 * the desired size. We are reticent to recycle vnodes from the
596 * vnode_hold_list because we will lose the identity of all its
597 * referencing buffers.
600 vp = NULL;
602 mutex_enter(&vnode_free_list_lock);
604 toggle ^= 1;
605 if (numvnodes > 2 * desiredvnodes)
606 toggle = 0;
608 tryalloc = numvnodes < desiredvnodes ||
609 (TAILQ_FIRST(&vnode_free_list) == NULL &&
610 (TAILQ_FIRST(&vnode_hold_list) == NULL || toggle));
612 if (tryalloc) {
613 numvnodes++;
614 mutex_exit(&vnode_free_list_lock);
615 if ((vp = vnalloc(NULL)) == NULL) {
616 mutex_enter(&vnode_free_list_lock);
617 numvnodes--;
618 } else
619 vp->v_usecount = 1;
622 if (vp == NULL) {
623 vp = getcleanvnode();
624 if (vp == NULL) {
625 if (mp != NULL) {
626 vfs_unbusy(mp, false, NULL);
628 if (tryalloc) {
629 printf("WARNING: unable to allocate new "
630 "vnode, retrying...\n");
631 kpause("newvn", false, hz, NULL);
632 goto try_again;
634 tablefull("vnode", "increase kern.maxvnodes or NVNODE");
635 *vpp = 0;
636 return (ENFILE);
638 vp->v_iflag = 0;
639 vp->v_vflag = 0;
640 vp->v_uflag = 0;
641 vp->v_socket = NULL;
644 KASSERT(vp->v_usecount == 1);
645 KASSERT(vp->v_freelisthd == NULL);
646 KASSERT(LIST_EMPTY(&vp->v_nclist));
647 KASSERT(LIST_EMPTY(&vp->v_dnclist));
649 vp->v_type = VNON;
650 vp->v_vnlock = &vp->v_lock;
651 vp->v_tag = tag;
652 vp->v_op = vops;
653 insmntque(vp, mp);
654 *vpp = vp;
655 vp->v_data = 0;
658 * initialize uvm_object within vnode.
661 uobj = &vp->v_uobj;
662 KASSERT(uobj->pgops == &uvm_vnodeops);
663 KASSERT(uobj->uo_npages == 0);
664 KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
665 vp->v_size = vp->v_writesize = VSIZENOTSET;
667 if (mp != NULL) {
668 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
669 vp->v_vflag |= VV_MPSAFE;
670 vfs_unbusy(mp, true, NULL);
673 return (0);
677 * This is really just the reverse of getnewvnode(). Needed for
678 * VFS_VGET functions who may need to push back a vnode in case
679 * of a locking race.
681 void
682 ungetnewvnode(vnode_t *vp)
685 KASSERT(vp->v_usecount == 1);
686 KASSERT(vp->v_data == NULL);
687 KASSERT(vp->v_freelisthd == NULL);
689 mutex_enter(&vp->v_interlock);
690 vp->v_iflag |= VI_CLEAN;
691 vrelel(vp, 0);
695 * Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a
696 * marker vnode and we are prepared to wait for the allocation.
698 vnode_t *
699 vnalloc(struct mount *mp)
701 vnode_t *vp;
703 vp = pool_cache_get(vnode_cache, (mp != NULL ? PR_WAITOK : PR_NOWAIT));
704 if (vp == NULL) {
705 return NULL;
708 memset(vp, 0, sizeof(*vp));
709 UVM_OBJ_INIT(&vp->v_uobj, &uvm_vnodeops, 0);
710 cv_init(&vp->v_cv, "vnode");
712 * done by memset() above.
713 * LIST_INIT(&vp->v_nclist);
714 * LIST_INIT(&vp->v_dnclist);
717 if (mp != NULL) {
718 vp->v_mount = mp;
719 vp->v_type = VBAD;
720 vp->v_iflag = VI_MARKER;
721 } else {
722 rw_init(&vp->v_lock.vl_lock);
725 return vp;
729 * Free an unused, unreferenced vnode.
731 void
732 vnfree(vnode_t *vp)
735 KASSERT(vp->v_usecount == 0);
737 if ((vp->v_iflag & VI_MARKER) == 0) {
738 rw_destroy(&vp->v_lock.vl_lock);
739 mutex_enter(&vnode_free_list_lock);
740 numvnodes--;
741 mutex_exit(&vnode_free_list_lock);
744 UVM_OBJ_DESTROY(&vp->v_uobj);
745 cv_destroy(&vp->v_cv);
746 pool_cache_put(vnode_cache, vp);
750 * Remove a vnode from its freelist.
752 static inline void
753 vremfree(vnode_t *vp)
756 KASSERT(mutex_owned(&vp->v_interlock));
757 KASSERT(vp->v_usecount == 0);
760 * Note that the reference count must not change until
761 * the vnode is removed.
763 mutex_enter(&vnode_free_list_lock);
764 if (vp->v_holdcnt > 0) {
765 KASSERT(vp->v_freelisthd == &vnode_hold_list);
766 } else {
767 KASSERT(vp->v_freelisthd == &vnode_free_list);
769 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
770 vp->v_freelisthd = NULL;
771 mutex_exit(&vnode_free_list_lock);
775 * Move a vnode from one mount queue to another.
777 static void
778 insmntque(vnode_t *vp, struct mount *mp)
780 struct mount *omp;
782 #ifdef DIAGNOSTIC
783 if ((mp != NULL) &&
784 (mp->mnt_iflag & IMNT_UNMOUNT) &&
785 vp->v_tag != VT_VFS) {
786 panic("insmntque into dying filesystem");
788 #endif
790 mutex_enter(&mntvnode_lock);
792 * Delete from old mount point vnode list, if on one.
794 if ((omp = vp->v_mount) != NULL)
795 TAILQ_REMOVE(&vp->v_mount->mnt_vnodelist, vp, v_mntvnodes);
797 * Insert into list of vnodes for the new mount point, if
798 * available. The caller must take a reference on the mount
799 * structure and donate to the vnode.
801 if ((vp->v_mount = mp) != NULL)
802 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
803 mutex_exit(&mntvnode_lock);
805 if (omp != NULL) {
806 /* Release reference to old mount. */
807 vfs_destroy(omp);
812 * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
813 * recycled.
815 void
816 vwait(vnode_t *vp, int flags)
819 KASSERT(mutex_owned(&vp->v_interlock));
820 KASSERT(vp->v_usecount != 0);
822 while ((vp->v_iflag & flags) != 0)
823 cv_wait(&vp->v_cv, &vp->v_interlock);
827 * Insert a marker vnode into a mount's vnode list, after the
828 * specified vnode. mntvnode_lock must be held.
830 void
831 vmark(vnode_t *mvp, vnode_t *vp)
833 struct mount *mp;
835 mp = mvp->v_mount;
837 KASSERT(mutex_owned(&mntvnode_lock));
838 KASSERT((mvp->v_iflag & VI_MARKER) != 0);
839 KASSERT(vp->v_mount == mp);
841 TAILQ_INSERT_AFTER(&mp->mnt_vnodelist, vp, mvp, v_mntvnodes);
845 * Remove a marker vnode from a mount's vnode list, and return
846 * a pointer to the next vnode in the list. mntvnode_lock must
847 * be held.
849 vnode_t *
850 vunmark(vnode_t *mvp)
852 vnode_t *vp;
853 struct mount *mp;
855 mp = mvp->v_mount;
857 KASSERT(mutex_owned(&mntvnode_lock));
858 KASSERT((mvp->v_iflag & VI_MARKER) != 0);
860 vp = TAILQ_NEXT(mvp, v_mntvnodes);
861 TAILQ_REMOVE(&mp->mnt_vnodelist, mvp, v_mntvnodes);
863 KASSERT(vp == NULL || vp->v_mount == mp);
865 return vp;
869 * Update outstanding I/O count and do wakeup if requested.
871 void
872 vwakeup(struct buf *bp)
874 struct vnode *vp;
876 if ((vp = bp->b_vp) == NULL)
877 return;
879 KASSERT(bp->b_objlock == &vp->v_interlock);
880 KASSERT(mutex_owned(bp->b_objlock));
882 if (--vp->v_numoutput < 0)
883 panic("vwakeup: neg numoutput, vp %p", vp);
884 if (vp->v_numoutput == 0)
885 cv_broadcast(&vp->v_cv);
889 * Flush out and invalidate all buffers associated with a vnode.
890 * Called with the underlying vnode locked, which should prevent new dirty
891 * buffers from being queued.
894 vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l,
895 bool catch, int slptimeo)
897 struct buf *bp, *nbp;
898 int error;
899 int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO |
900 (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0);
902 /* XXXUBC this doesn't look at flags or slp* */
903 mutex_enter(&vp->v_interlock);
904 error = VOP_PUTPAGES(vp, 0, 0, flushflags);
905 if (error) {
906 return error;
909 if (flags & V_SAVE) {
910 error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0);
911 if (error)
912 return (error);
913 KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd));
916 mutex_enter(&bufcache_lock);
917 restart:
918 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
919 nbp = LIST_NEXT(bp, b_vnbufs);
920 error = bbusy(bp, catch, slptimeo, NULL);
921 if (error != 0) {
922 if (error == EPASSTHROUGH)
923 goto restart;
924 mutex_exit(&bufcache_lock);
925 return (error);
927 brelsel(bp, BC_INVAL | BC_VFLUSH);
930 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
931 nbp = LIST_NEXT(bp, b_vnbufs);
932 error = bbusy(bp, catch, slptimeo, NULL);
933 if (error != 0) {
934 if (error == EPASSTHROUGH)
935 goto restart;
936 mutex_exit(&bufcache_lock);
937 return (error);
940 * XXX Since there are no node locks for NFS, I believe
941 * there is a slight chance that a delayed write will
942 * occur while sleeping just above, so check for it.
944 if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) {
945 #ifdef DEBUG
946 printf("buffer still DELWRI\n");
947 #endif
948 bp->b_cflags |= BC_BUSY | BC_VFLUSH;
949 mutex_exit(&bufcache_lock);
950 VOP_BWRITE(bp);
951 mutex_enter(&bufcache_lock);
952 goto restart;
954 brelsel(bp, BC_INVAL | BC_VFLUSH);
957 #ifdef DIAGNOSTIC
958 if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))
959 panic("vinvalbuf: flush failed, vp %p", vp);
960 #endif
962 mutex_exit(&bufcache_lock);
964 return (0);
968 * Destroy any in core blocks past the truncation length.
969 * Called with the underlying vnode locked, which should prevent new dirty
970 * buffers from being queued.
973 vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch, int slptimeo)
975 struct buf *bp, *nbp;
976 int error;
977 voff_t off;
979 off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift);
980 mutex_enter(&vp->v_interlock);
981 error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO);
982 if (error) {
983 return error;
986 mutex_enter(&bufcache_lock);
987 restart:
988 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
989 nbp = LIST_NEXT(bp, b_vnbufs);
990 if (bp->b_lblkno < lbn)
991 continue;
992 error = bbusy(bp, catch, slptimeo, NULL);
993 if (error != 0) {
994 if (error == EPASSTHROUGH)
995 goto restart;
996 mutex_exit(&bufcache_lock);
997 return (error);
999 brelsel(bp, BC_INVAL | BC_VFLUSH);
1002 for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
1003 nbp = LIST_NEXT(bp, b_vnbufs);
1004 if (bp->b_lblkno < lbn)
1005 continue;
1006 error = bbusy(bp, catch, slptimeo, NULL);
1007 if (error != 0) {
1008 if (error == EPASSTHROUGH)
1009 goto restart;
1010 mutex_exit(&bufcache_lock);
1011 return (error);
1013 brelsel(bp, BC_INVAL | BC_VFLUSH);
1015 mutex_exit(&bufcache_lock);
1017 return (0);
1021 * Flush all dirty buffers from a vnode.
1022 * Called with the underlying vnode locked, which should prevent new dirty
1023 * buffers from being queued.
1025 void
1026 vflushbuf(struct vnode *vp, int sync)
1028 struct buf *bp, *nbp;
1029 int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0);
1030 bool dirty;
1032 mutex_enter(&vp->v_interlock);
1033 (void) VOP_PUTPAGES(vp, 0, 0, flags);
1035 loop:
1036 mutex_enter(&bufcache_lock);
1037 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
1038 nbp = LIST_NEXT(bp, b_vnbufs);
1039 if ((bp->b_cflags & BC_BUSY))
1040 continue;
1041 if ((bp->b_oflags & BO_DELWRI) == 0)
1042 panic("vflushbuf: not dirty, bp %p", bp);
1043 bp->b_cflags |= BC_BUSY | BC_VFLUSH;
1044 mutex_exit(&bufcache_lock);
1046 * Wait for I/O associated with indirect blocks to complete,
1047 * since there is no way to quickly wait for them below.
1049 if (bp->b_vp == vp || sync == 0)
1050 (void) bawrite(bp);
1051 else
1052 (void) bwrite(bp);
1053 goto loop;
1055 mutex_exit(&bufcache_lock);
1057 if (sync == 0)
1058 return;
1060 mutex_enter(&vp->v_interlock);
1061 while (vp->v_numoutput != 0)
1062 cv_wait(&vp->v_cv, &vp->v_interlock);
1063 dirty = !LIST_EMPTY(&vp->v_dirtyblkhd);
1064 mutex_exit(&vp->v_interlock);
1066 if (dirty) {
1067 vprint("vflushbuf: dirty", vp);
1068 goto loop;
1073 * Create a vnode for a block device.
1074 * Used for root filesystem and swap areas.
1075 * Also used for memory file system special devices.
1078 bdevvp(dev_t dev, vnode_t **vpp)
1081 return (getdevvp(dev, vpp, VBLK));
1085 * Create a vnode for a character device.
1086 * Used for kernfs and some console handling.
1089 cdevvp(dev_t dev, vnode_t **vpp)
1092 return (getdevvp(dev, vpp, VCHR));
1096 * Associate a buffer with a vnode. There must already be a hold on
1097 * the vnode.
1099 void
1100 bgetvp(struct vnode *vp, struct buf *bp)
1103 KASSERT(bp->b_vp == NULL);
1104 KASSERT(bp->b_objlock == &buffer_lock);
1105 KASSERT(mutex_owned(&vp->v_interlock));
1106 KASSERT(mutex_owned(&bufcache_lock));
1107 KASSERT((bp->b_cflags & BC_BUSY) != 0);
1108 KASSERT(!cv_has_waiters(&bp->b_done));
1110 vholdl(vp);
1111 bp->b_vp = vp;
1112 if (vp->v_type == VBLK || vp->v_type == VCHR)
1113 bp->b_dev = vp->v_rdev;
1114 else
1115 bp->b_dev = NODEV;
1118 * Insert onto list for new vnode.
1120 bufinsvn(bp, &vp->v_cleanblkhd);
1121 bp->b_objlock = &vp->v_interlock;
1125 * Disassociate a buffer from a vnode.
1127 void
1128 brelvp(struct buf *bp)
1130 struct vnode *vp = bp->b_vp;
1132 KASSERT(vp != NULL);
1133 KASSERT(bp->b_objlock == &vp->v_interlock);
1134 KASSERT(mutex_owned(&vp->v_interlock));
1135 KASSERT(mutex_owned(&bufcache_lock));
1136 KASSERT((bp->b_cflags & BC_BUSY) != 0);
1137 KASSERT(!cv_has_waiters(&bp->b_done));
1140 * Delete from old vnode list, if on one.
1142 if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1143 bufremvn(bp);
1145 if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) &&
1146 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1147 vp->v_iflag &= ~VI_WRMAPDIRTY;
1148 vn_syncer_remove_from_worklist(vp);
1151 bp->b_objlock = &buffer_lock;
1152 bp->b_vp = NULL;
1153 holdrelel(vp);
1157 * Reassign a buffer from one vnode list to another.
1158 * The list reassignment must be within the same vnode.
1159 * Used to assign file specific control information
1160 * (indirect blocks) to the list to which they belong.
1162 void
1163 reassignbuf(struct buf *bp, struct vnode *vp)
1165 struct buflists *listheadp;
1166 int delayx;
1168 KASSERT(mutex_owned(&bufcache_lock));
1169 KASSERT(bp->b_objlock == &vp->v_interlock);
1170 KASSERT(mutex_owned(&vp->v_interlock));
1171 KASSERT((bp->b_cflags & BC_BUSY) != 0);
1174 * Delete from old vnode list, if on one.
1176 if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
1177 bufremvn(bp);
1180 * If dirty, put on list of dirty buffers;
1181 * otherwise insert onto list of clean buffers.
1183 if ((bp->b_oflags & BO_DELWRI) == 0) {
1184 listheadp = &vp->v_cleanblkhd;
1185 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
1186 (vp->v_iflag & VI_ONWORKLST) &&
1187 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1188 vp->v_iflag &= ~VI_WRMAPDIRTY;
1189 vn_syncer_remove_from_worklist(vp);
1191 } else {
1192 listheadp = &vp->v_dirtyblkhd;
1193 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1194 switch (vp->v_type) {
1195 case VDIR:
1196 delayx = dirdelay;
1197 break;
1198 case VBLK:
1199 if (vp->v_specmountpoint != NULL) {
1200 delayx = metadelay;
1201 break;
1203 /* fall through */
1204 default:
1205 delayx = filedelay;
1206 break;
1208 if (!vp->v_mount ||
1209 (vp->v_mount->mnt_flag & MNT_ASYNC) == 0)
1210 vn_syncer_add_to_worklist(vp, delayx);
1213 bufinsvn(bp, listheadp);
1217 * Create a vnode for a device.
1218 * Used by bdevvp (block device) for root file system etc.,
1219 * and by cdevvp (character device) for console and kernfs.
1221 static int
1222 getdevvp(dev_t dev, vnode_t **vpp, enum vtype type)
1224 vnode_t *vp;
1225 vnode_t *nvp;
1226 int error;
1228 if (dev == NODEV) {
1229 *vpp = NULL;
1230 return (0);
1232 error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &nvp);
1233 if (error) {
1234 *vpp = NULL;
1235 return (error);
1237 vp = nvp;
1238 vp->v_type = type;
1239 vp->v_vflag |= VV_MPSAFE;
1240 uvm_vnp_setsize(vp, 0);
1241 spec_node_init(vp, dev);
1242 *vpp = vp;
1243 return (0);
1247 * Try to gain a reference to a vnode, without acquiring its interlock.
1248 * The caller must hold a lock that will prevent the vnode from being
1249 * recycled or freed.
1251 bool
1252 vtryget(vnode_t *vp)
1254 u_int use, next;
1257 * If the vnode is being freed, don't make life any harder
1258 * for vclean() by adding another reference without waiting.
1259 * This is not strictly necessary, but we'll do it anyway.
1261 if (__predict_false((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0)) {
1262 return false;
1264 for (use = vp->v_usecount;; use = next) {
1265 if (use == 0 || __predict_false((use & VC_XLOCK) != 0)) {
1266 /* Need interlock held if first reference. */
1267 return false;
1269 next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
1270 if (__predict_true(next == use)) {
1271 return true;
1277 * Grab a particular vnode from the free list, increment its
1278 * reference count and lock it. If the vnode lock bit is set the
1279 * vnode is being eliminated in vgone. In that case, we can not
1280 * grab the vnode, so the process is awakened when the transition is
1281 * completed, and an error returned to indicate that the vnode is no
1282 * longer usable (possibly having been changed to a new file system type).
1285 vget(vnode_t *vp, int flags)
1287 int error;
1289 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1291 if ((flags & LK_INTERLOCK) == 0)
1292 mutex_enter(&vp->v_interlock);
1295 * Before adding a reference, we must remove the vnode
1296 * from its freelist.
1298 if (vp->v_usecount == 0) {
1299 vremfree(vp);
1300 vp->v_usecount = 1;
1301 } else {
1302 atomic_inc_uint(&vp->v_usecount);
1306 * If the vnode is in the process of being cleaned out for
1307 * another use, we wait for the cleaning to finish and then
1308 * return failure. Cleaning is determined by checking if
1309 * the VI_XLOCK or VI_FREEING flags are set.
1311 if ((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0) {
1312 if ((flags & LK_NOWAIT) != 0) {
1313 vrelel(vp, 0);
1314 return EBUSY;
1316 vwait(vp, VI_XLOCK | VI_FREEING);
1317 vrelel(vp, 0);
1318 return ENOENT;
1321 if ((vp->v_iflag & VI_INACTNOW) != 0) {
1323 * if it's being desactived, wait for it to complete.
1324 * Make sure to not return a clean vnode.
1326 if ((flags & LK_NOWAIT) != 0) {
1327 vrelel(vp, 0);
1328 return EBUSY;
1330 vwait(vp, VI_INACTNOW);
1331 if ((vp->v_iflag & VI_CLEAN) != 0) {
1332 vrelel(vp, 0);
1333 return ENOENT;
1336 if (flags & LK_TYPE_MASK) {
1337 error = vn_lock(vp, flags | LK_INTERLOCK);
1338 if (error != 0) {
1339 vrele(vp);
1341 return error;
1343 mutex_exit(&vp->v_interlock);
1344 return 0;
1348 * vput(), just unlock and vrele()
1350 void
1351 vput(vnode_t *vp)
1354 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1356 VOP_UNLOCK(vp, 0);
1357 vrele(vp);
1361 * Try to drop reference on a vnode. Abort if we are releasing the
1362 * last reference. Note: this _must_ succeed if not the last reference.
1364 static inline bool
1365 vtryrele(vnode_t *vp)
1367 u_int use, next;
1369 for (use = vp->v_usecount;; use = next) {
1370 if (use == 1) {
1371 return false;
1373 KASSERT((use & VC_MASK) > 1);
1374 next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
1375 if (__predict_true(next == use)) {
1376 return true;
1382 * Vnode release. If reference count drops to zero, call inactive
1383 * routine and either return to freelist or free to the pool.
1385 void
1386 vrelel(vnode_t *vp, int flags)
1388 bool recycle, defer;
1389 int error;
1391 KASSERT(mutex_owned(&vp->v_interlock));
1392 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1393 KASSERT(vp->v_freelisthd == NULL);
1395 if (__predict_false(vp->v_op == dead_vnodeop_p &&
1396 (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
1397 vpanic(vp, "dead but not clean");
1401 * If not the last reference, just drop the reference count
1402 * and unlock.
1404 if (vtryrele(vp)) {
1405 vp->v_iflag |= VI_INACTREDO;
1406 mutex_exit(&vp->v_interlock);
1407 return;
1409 if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
1410 vpanic(vp, "vrelel: bad ref count");
1413 KASSERT((vp->v_iflag & VI_XLOCK) == 0);
1416 * If not clean, deactivate the vnode, but preserve
1417 * our reference across the call to VOP_INACTIVE().
1419 retry:
1420 if ((vp->v_iflag & VI_CLEAN) == 0) {
1421 recycle = false;
1422 vp->v_iflag |= VI_INACTNOW;
1425 * XXX This ugly block can be largely eliminated if
1426 * locking is pushed down into the file systems.
1428 if (curlwp == uvm.pagedaemon_lwp) {
1429 /* The pagedaemon can't wait around; defer. */
1430 defer = true;
1431 } else if (curlwp == vrele_lwp) {
1433 * We have to try harder. But we can't sleep
1434 * with VI_INACTNOW as vget() may be waiting on it.
1436 vp->v_iflag &= ~(VI_INACTREDO|VI_INACTNOW);
1437 cv_broadcast(&vp->v_cv);
1438 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1439 LK_RETRY);
1440 if (error != 0) {
1441 /* XXX */
1442 vpanic(vp, "vrele: unable to lock %p");
1444 mutex_enter(&vp->v_interlock);
1446 * if we did get another reference while
1447 * sleeping, don't try to inactivate it yet.
1449 if (__predict_false(vtryrele(vp))) {
1450 VOP_UNLOCK(vp, 0);
1451 mutex_exit(&vp->v_interlock);
1452 return;
1454 vp->v_iflag |= VI_INACTNOW;
1455 mutex_exit(&vp->v_interlock);
1456 defer = false;
1457 } else if ((vp->v_iflag & VI_LAYER) != 0) {
1459 * Acquiring the stack's lock in vclean() even
1460 * for an honest vput/vrele is dangerous because
1461 * our caller may hold other vnode locks; defer.
1463 defer = true;
1464 } else {
1465 /* If we can't acquire the lock, then defer. */
1466 vp->v_iflag &= ~VI_INACTREDO;
1467 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK |
1468 LK_NOWAIT);
1469 if (error != 0) {
1470 defer = true;
1471 mutex_enter(&vp->v_interlock);
1472 } else {
1473 defer = false;
1477 if (defer) {
1479 * Defer reclaim to the kthread; it's not safe to
1480 * clean it here. We donate it our last reference.
1482 KASSERT(mutex_owned(&vp->v_interlock));
1483 KASSERT((vp->v_iflag & VI_INACTPEND) == 0);
1484 vp->v_iflag &= ~VI_INACTNOW;
1485 vp->v_iflag |= VI_INACTPEND;
1486 mutex_enter(&vrele_lock);
1487 TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
1488 if (++vrele_pending > (desiredvnodes >> 8))
1489 cv_signal(&vrele_cv);
1490 mutex_exit(&vrele_lock);
1491 cv_broadcast(&vp->v_cv);
1492 mutex_exit(&vp->v_interlock);
1493 return;
1496 #ifdef DIAGNOSTIC
1497 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1498 vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
1499 vprint("vrelel: missing VOP_CLOSE()", vp);
1501 #endif
1504 * The vnode can gain another reference while being
1505 * deactivated. If VOP_INACTIVE() indicates that
1506 * the described file has been deleted, then recycle
1507 * the vnode irrespective of additional references.
1508 * Another thread may be waiting to re-use the on-disk
1509 * inode.
1511 * Note that VOP_INACTIVE() will drop the vnode lock.
1513 VOP_INACTIVE(vp, &recycle);
1514 mutex_enter(&vp->v_interlock);
1515 vp->v_iflag &= ~VI_INACTNOW;
1516 cv_broadcast(&vp->v_cv);
1517 if (!recycle) {
1518 if (vtryrele(vp)) {
1519 mutex_exit(&vp->v_interlock);
1520 return;
1524 * If we grew another reference while
1525 * VOP_INACTIVE() was underway, retry.
1527 if ((vp->v_iflag & VI_INACTREDO) != 0) {
1528 goto retry;
1532 /* Take care of space accounting. */
1533 if (vp->v_iflag & VI_EXECMAP) {
1534 atomic_add_int(&uvmexp.execpages,
1535 -vp->v_uobj.uo_npages);
1536 atomic_add_int(&uvmexp.filepages,
1537 vp->v_uobj.uo_npages);
1539 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
1540 vp->v_vflag &= ~VV_MAPPED;
1543 * Recycle the vnode if the file is now unused (unlinked),
1544 * otherwise just free it.
1546 if (recycle) {
1547 vclean(vp, DOCLOSE);
1549 KASSERT(vp->v_usecount > 0);
1552 if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
1553 /* Gained another reference while being reclaimed. */
1554 mutex_exit(&vp->v_interlock);
1555 return;
1558 if ((vp->v_iflag & VI_CLEAN) != 0) {
1560 * It's clean so destroy it. It isn't referenced
1561 * anywhere since it has been reclaimed.
1563 KASSERT(vp->v_holdcnt == 0);
1564 KASSERT(vp->v_writecount == 0);
1565 mutex_exit(&vp->v_interlock);
1566 insmntque(vp, NULL);
1567 if (vp->v_type == VBLK || vp->v_type == VCHR) {
1568 spec_node_destroy(vp);
1570 vnfree(vp);
1571 } else {
1573 * Otherwise, put it back onto the freelist. It
1574 * can't be destroyed while still associated with
1575 * a file system.
1577 mutex_enter(&vnode_free_list_lock);
1578 if (vp->v_holdcnt > 0) {
1579 vp->v_freelisthd = &vnode_hold_list;
1580 } else {
1581 vp->v_freelisthd = &vnode_free_list;
1583 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1584 mutex_exit(&vnode_free_list_lock);
1585 mutex_exit(&vp->v_interlock);
1589 void
1590 vrele(vnode_t *vp)
1593 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1595 if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
1596 return;
1598 mutex_enter(&vp->v_interlock);
1599 vrelel(vp, 0);
1602 static void
1603 vrele_thread(void *cookie)
1605 vnode_t *vp;
1607 for (;;) {
1608 mutex_enter(&vrele_lock);
1609 while (TAILQ_EMPTY(&vrele_list)) {
1610 vrele_gen++;
1611 cv_broadcast(&vrele_cv);
1612 cv_timedwait(&vrele_cv, &vrele_lock, hz);
1614 vp = TAILQ_FIRST(&vrele_list);
1615 TAILQ_REMOVE(&vrele_list, vp, v_freelist);
1616 vrele_pending--;
1617 mutex_exit(&vrele_lock);
1620 * If not the last reference, then ignore the vnode
1621 * and look for more work.
1623 mutex_enter(&vp->v_interlock);
1624 KASSERT((vp->v_iflag & VI_INACTPEND) != 0);
1625 vp->v_iflag &= ~VI_INACTPEND;
1626 vrelel(vp, 0);
1631 * Page or buffer structure gets a reference.
1632 * Called with v_interlock held.
1634 void
1635 vholdl(vnode_t *vp)
1638 KASSERT(mutex_owned(&vp->v_interlock));
1639 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1641 if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
1642 mutex_enter(&vnode_free_list_lock);
1643 KASSERT(vp->v_freelisthd == &vnode_free_list);
1644 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1645 vp->v_freelisthd = &vnode_hold_list;
1646 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1647 mutex_exit(&vnode_free_list_lock);
1652 * Page or buffer structure frees a reference.
1653 * Called with v_interlock held.
1655 void
1656 holdrelel(vnode_t *vp)
1659 KASSERT(mutex_owned(&vp->v_interlock));
1660 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1662 if (vp->v_holdcnt <= 0) {
1663 vpanic(vp, "holdrelel: holdcnt vp %p");
1666 vp->v_holdcnt--;
1667 if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
1668 mutex_enter(&vnode_free_list_lock);
1669 KASSERT(vp->v_freelisthd == &vnode_hold_list);
1670 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
1671 vp->v_freelisthd = &vnode_free_list;
1672 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
1673 mutex_exit(&vnode_free_list_lock);
1678 * Vnode reference, where a reference is already held by some other
1679 * object (for example, a file structure).
1681 void
1682 vref(vnode_t *vp)
1685 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1686 KASSERT(vp->v_usecount != 0);
1688 atomic_inc_uint(&vp->v_usecount);
1692 * Remove any vnodes in the vnode table belonging to mount point mp.
1694 * If FORCECLOSE is not specified, there should not be any active ones,
1695 * return error if any are found (nb: this is a user error, not a
1696 * system error). If FORCECLOSE is specified, detach any active vnodes
1697 * that are found.
1699 * If WRITECLOSE is set, only flush out regular file vnodes open for
1700 * writing.
1702 * SKIPSYSTEM causes any vnodes marked V_SYSTEM to be skipped.
1704 #ifdef DEBUG
1705 int busyprt = 0; /* print out busy vnodes */
1706 struct ctldebug debug1 = { "busyprt", &busyprt };
1707 #endif
1709 static vnode_t *
1710 vflushnext(vnode_t *mvp, int *when)
1713 if (hardclock_ticks > *when) {
1714 mutex_exit(&mntvnode_lock);
1715 yield();
1716 mutex_enter(&mntvnode_lock);
1717 *when = hardclock_ticks + hz / 10;
1720 return vunmark(mvp);
1724 vflush(struct mount *mp, vnode_t *skipvp, int flags)
1726 vnode_t *vp, *mvp;
1727 int busy = 0, when = 0, gen;
1730 * First, flush out any vnode references from vrele_list.
1732 mutex_enter(&vrele_lock);
1733 gen = vrele_gen;
1734 while (vrele_pending && gen == vrele_gen) {
1735 cv_broadcast(&vrele_cv);
1736 cv_wait(&vrele_cv, &vrele_lock);
1738 mutex_exit(&vrele_lock);
1740 /* Allocate a marker vnode. */
1741 if ((mvp = vnalloc(mp)) == NULL)
1742 return (ENOMEM);
1745 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1746 * and vclean() are called
1748 mutex_enter(&mntvnode_lock);
1749 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp != NULL;
1750 vp = vflushnext(mvp, &when)) {
1751 vmark(mvp, vp);
1752 if (vp->v_mount != mp || vismarker(vp))
1753 continue;
1755 * Skip over a selected vnode.
1757 if (vp == skipvp)
1758 continue;
1759 mutex_enter(&vp->v_interlock);
1761 * Ignore clean but still referenced vnodes.
1763 if ((vp->v_iflag & VI_CLEAN) != 0) {
1764 mutex_exit(&vp->v_interlock);
1765 continue;
1768 * Skip over a vnodes marked VSYSTEM.
1770 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
1771 mutex_exit(&vp->v_interlock);
1772 continue;
1775 * If WRITECLOSE is set, only flush out regular file
1776 * vnodes open for writing.
1778 if ((flags & WRITECLOSE) &&
1779 (vp->v_writecount == 0 || vp->v_type != VREG)) {
1780 mutex_exit(&vp->v_interlock);
1781 continue;
1784 * With v_usecount == 0, all we need to do is clear
1785 * out the vnode data structures and we are done.
1787 if (vp->v_usecount == 0) {
1788 mutex_exit(&mntvnode_lock);
1789 vremfree(vp);
1790 vp->v_usecount = 1;
1791 vclean(vp, DOCLOSE);
1792 vrelel(vp, 0);
1793 mutex_enter(&mntvnode_lock);
1794 continue;
1797 * If FORCECLOSE is set, forcibly close the vnode.
1798 * For block or character devices, revert to an
1799 * anonymous device. For all other files, just
1800 * kill them.
1802 if (flags & FORCECLOSE) {
1803 mutex_exit(&mntvnode_lock);
1804 atomic_inc_uint(&vp->v_usecount);
1805 if (vp->v_type != VBLK && vp->v_type != VCHR) {
1806 vclean(vp, DOCLOSE);
1807 vrelel(vp, 0);
1808 } else {
1809 vclean(vp, 0);
1810 vp->v_op = spec_vnodeop_p; /* XXXSMP */
1811 mutex_exit(&vp->v_interlock);
1813 * The vnode isn't clean, but still resides
1814 * on the mount list. Remove it. XXX This
1815 * is a bit dodgy.
1817 insmntque(vp, NULL);
1818 vrele(vp);
1820 mutex_enter(&mntvnode_lock);
1821 continue;
1823 #ifdef DEBUG
1824 if (busyprt)
1825 vprint("vflush: busy vnode", vp);
1826 #endif
1827 mutex_exit(&vp->v_interlock);
1828 busy++;
1830 mutex_exit(&mntvnode_lock);
1831 vnfree(mvp);
1832 if (busy)
1833 return (EBUSY);
1834 return (0);
1838 * Disassociate the underlying file system from a vnode.
1840 * Must be called with the interlock held, and will return with it held.
1842 void
1843 vclean(vnode_t *vp, int flags)
1845 lwp_t *l = curlwp;
1846 bool recycle, active;
1847 int error;
1849 KASSERT(mutex_owned(&vp->v_interlock));
1850 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1851 KASSERT(vp->v_usecount != 0);
1853 /* If cleaning is already in progress wait until done and return. */
1854 if (vp->v_iflag & VI_XLOCK) {
1855 vwait(vp, VI_XLOCK);
1856 return;
1859 /* If already clean, nothing to do. */
1860 if ((vp->v_iflag & VI_CLEAN) != 0) {
1861 return;
1865 * Prevent the vnode from being recycled or brought into use
1866 * while we clean it out.
1868 vp->v_iflag |= VI_XLOCK;
1869 if (vp->v_iflag & VI_EXECMAP) {
1870 atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
1871 atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
1873 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1874 active = (vp->v_usecount > 1);
1876 /* XXXAD should not lock vnode under layer */
1877 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
1880 * Clean out any cached data associated with the vnode.
1881 * If purging an active vnode, it must be closed and
1882 * deactivated before being reclaimed. Note that the
1883 * VOP_INACTIVE will unlock the vnode.
1885 if (flags & DOCLOSE) {
1886 error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1887 if (error != 0) {
1888 /* XXX, fix vn_start_write's grab of mp and use that. */
1890 if (wapbl_vphaswapbl(vp))
1891 WAPBL_DISCARD(wapbl_vptomp(vp));
1892 error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1894 KASSERT(error == 0);
1895 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1896 if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1897 spec_node_revoke(vp);
1900 if (active) {
1901 VOP_INACTIVE(vp, &recycle);
1902 } else {
1904 * Any other processes trying to obtain this lock must first
1905 * wait for VI_XLOCK to clear, then call the new lock operation.
1907 VOP_UNLOCK(vp, 0);
1910 /* Disassociate the underlying file system from the vnode. */
1911 if (VOP_RECLAIM(vp)) {
1912 vpanic(vp, "vclean: cannot reclaim");
1915 KASSERT(vp->v_uobj.uo_npages == 0);
1916 if (vp->v_type == VREG && vp->v_ractx != NULL) {
1917 uvm_ra_freectx(vp->v_ractx);
1918 vp->v_ractx = NULL;
1920 cache_purge(vp);
1922 /* Done with purge, notify sleepers of the grim news. */
1923 mutex_enter(&vp->v_interlock);
1924 vp->v_op = dead_vnodeop_p;
1925 vp->v_tag = VT_NON;
1926 vp->v_vnlock = &vp->v_lock;
1927 KNOTE(&vp->v_klist, NOTE_REVOKE);
1928 vp->v_iflag &= ~(VI_XLOCK | VI_FREEING);
1929 vp->v_vflag &= ~VV_LOCKSWORK;
1930 if ((flags & DOCLOSE) != 0) {
1931 vp->v_iflag |= VI_CLEAN;
1933 cv_broadcast(&vp->v_cv);
1935 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1939 * Recycle an unused vnode to the front of the free list.
1940 * Release the passed interlock if the vnode will be recycled.
1943 vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l)
1946 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1948 mutex_enter(&vp->v_interlock);
1949 if (vp->v_usecount != 0) {
1950 mutex_exit(&vp->v_interlock);
1951 return (0);
1953 if (inter_lkp)
1954 mutex_exit(inter_lkp);
1955 vremfree(vp);
1956 vp->v_usecount = 1;
1957 vclean(vp, DOCLOSE);
1958 vrelel(vp, 0);
1959 return (1);
1963 * Eliminate all activity associated with a vnode in preparation for
1964 * reuse. Drops a reference from the vnode.
1966 void
1967 vgone(vnode_t *vp)
1970 mutex_enter(&vp->v_interlock);
1971 vclean(vp, DOCLOSE);
1972 vrelel(vp, 0);
1976 * Lookup a vnode by device number.
1979 vfinddev(dev_t dev, enum vtype type, vnode_t **vpp)
1981 vnode_t *vp;
1982 int rc = 0;
1984 mutex_enter(&device_lock);
1985 for (vp = specfs_hash[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
1986 if (dev != vp->v_rdev || type != vp->v_type)
1987 continue;
1988 *vpp = vp;
1989 rc = 1;
1990 break;
1992 mutex_exit(&device_lock);
1993 return (rc);
1997 * Revoke all the vnodes corresponding to the specified minor number
1998 * range (endpoints inclusive) of the specified major.
2000 void
2001 vdevgone(int maj, int minl, int minh, enum vtype type)
2003 vnode_t *vp, **vpp;
2004 dev_t dev;
2005 int mn;
2007 vp = NULL; /* XXX gcc */
2009 mutex_enter(&device_lock);
2010 for (mn = minl; mn <= minh; mn++) {
2011 dev = makedev(maj, mn);
2012 vpp = &specfs_hash[SPECHASH(dev)];
2013 for (vp = *vpp; vp != NULL;) {
2014 mutex_enter(&vp->v_interlock);
2015 if ((vp->v_iflag & VI_CLEAN) != 0 ||
2016 dev != vp->v_rdev || type != vp->v_type) {
2017 mutex_exit(&vp->v_interlock);
2018 vp = vp->v_specnext;
2019 continue;
2021 mutex_exit(&device_lock);
2022 if (vget(vp, LK_INTERLOCK) == 0) {
2023 VOP_REVOKE(vp, REVOKEALL);
2024 vrele(vp);
2026 mutex_enter(&device_lock);
2027 vp = *vpp;
2030 mutex_exit(&device_lock);
2034 * Eliminate all activity associated with the requested vnode
2035 * and with all vnodes aliased to the requested vnode.
2037 void
2038 vrevoke(vnode_t *vp)
2040 vnode_t *vq, **vpp;
2041 enum vtype type;
2042 dev_t dev;
2044 KASSERT(vp->v_usecount > 0);
2046 mutex_enter(&vp->v_interlock);
2047 if ((vp->v_iflag & VI_CLEAN) != 0) {
2048 mutex_exit(&vp->v_interlock);
2049 return;
2050 } else if (vp->v_type != VBLK && vp->v_type != VCHR) {
2051 atomic_inc_uint(&vp->v_usecount);
2052 vclean(vp, DOCLOSE);
2053 vrelel(vp, 0);
2054 return;
2055 } else {
2056 dev = vp->v_rdev;
2057 type = vp->v_type;
2058 mutex_exit(&vp->v_interlock);
2061 vpp = &specfs_hash[SPECHASH(dev)];
2062 mutex_enter(&device_lock);
2063 for (vq = *vpp; vq != NULL;) {
2064 /* If clean or being cleaned, then ignore it. */
2065 mutex_enter(&vq->v_interlock);
2066 if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 ||
2067 vq->v_rdev != dev || vq->v_type != type) {
2068 mutex_exit(&vq->v_interlock);
2069 vq = vq->v_specnext;
2070 continue;
2072 mutex_exit(&device_lock);
2073 if (vq->v_usecount == 0) {
2074 vremfree(vq);
2075 vq->v_usecount = 1;
2076 } else {
2077 atomic_inc_uint(&vq->v_usecount);
2079 vclean(vq, DOCLOSE);
2080 vrelel(vq, 0);
2081 mutex_enter(&device_lock);
2082 vq = *vpp;
2084 mutex_exit(&device_lock);
2088 * sysctl helper routine to return list of supported fstypes
2091 sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS)
2093 char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)];
2094 char *where = oldp;
2095 struct vfsops *v;
2096 size_t needed, left, slen;
2097 int error, first;
2099 if (newp != NULL)
2100 return (EPERM);
2101 if (namelen != 0)
2102 return (EINVAL);
2104 first = 1;
2105 error = 0;
2106 needed = 0;
2107 left = *oldlenp;
2109 sysctl_unlock();
2110 mutex_enter(&vfs_list_lock);
2111 LIST_FOREACH(v, &vfs_list, vfs_list) {
2112 if (where == NULL)
2113 needed += strlen(v->vfs_name) + 1;
2114 else {
2115 memset(bf, 0, sizeof(bf));
2116 if (first) {
2117 strncpy(bf, v->vfs_name, sizeof(bf));
2118 first = 0;
2119 } else {
2120 bf[0] = ' ';
2121 strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1);
2123 bf[sizeof(bf)-1] = '\0';
2124 slen = strlen(bf);
2125 if (left < slen + 1)
2126 break;
2127 v->vfs_refcount++;
2128 mutex_exit(&vfs_list_lock);
2129 /* +1 to copy out the trailing NUL byte */
2130 error = copyout(bf, where, slen + 1);
2131 mutex_enter(&vfs_list_lock);
2132 v->vfs_refcount--;
2133 if (error)
2134 break;
2135 where += slen;
2136 needed += slen;
2137 left -= slen;
2140 mutex_exit(&vfs_list_lock);
2141 sysctl_relock();
2142 *oldlenp = needed;
2143 return (error);
2147 int kinfo_vdebug = 1;
2148 int kinfo_vgetfailed;
2149 #define KINFO_VNODESLOP 10
2151 * Dump vnode list (via sysctl).
2152 * Copyout address of vnode followed by vnode.
2154 /* ARGSUSED */
2156 sysctl_kern_vnode(SYSCTLFN_ARGS)
2158 char *where = oldp;
2159 size_t *sizep = oldlenp;
2160 struct mount *mp, *nmp;
2161 vnode_t *vp, *mvp, vbuf;
2162 char *bp = where;
2163 char *ewhere;
2164 int error;
2166 if (namelen != 0)
2167 return (EOPNOTSUPP);
2168 if (newp != NULL)
2169 return (EPERM);
2171 #define VPTRSZ sizeof(vnode_t *)
2172 #define VNODESZ sizeof(vnode_t)
2173 if (where == NULL) {
2174 *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ);
2175 return (0);
2177 ewhere = where + *sizep;
2179 sysctl_unlock();
2180 mutex_enter(&mountlist_lock);
2181 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2182 mp = nmp) {
2183 if (vfs_busy(mp, &nmp)) {
2184 continue;
2186 /* Allocate a marker vnode. */
2187 mvp = vnalloc(mp);
2188 /* Should never fail for mp != NULL */
2189 KASSERT(mvp != NULL);
2190 mutex_enter(&mntvnode_lock);
2191 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp;
2192 vp = vunmark(mvp)) {
2193 vmark(mvp, vp);
2195 * Check that the vp is still associated with
2196 * this filesystem. RACE: could have been
2197 * recycled onto the same filesystem.
2199 if (vp->v_mount != mp || vismarker(vp))
2200 continue;
2201 if (bp + VPTRSZ + VNODESZ > ewhere) {
2202 (void)vunmark(mvp);
2203 mutex_exit(&mntvnode_lock);
2204 vnfree(mvp);
2205 vfs_unbusy(mp, false, NULL);
2206 sysctl_relock();
2207 *sizep = bp - where;
2208 return (ENOMEM);
2210 memcpy(&vbuf, vp, VNODESZ);
2211 mutex_exit(&mntvnode_lock);
2212 if ((error = copyout(&vp, bp, VPTRSZ)) ||
2213 (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) {
2214 mutex_enter(&mntvnode_lock);
2215 (void)vunmark(mvp);
2216 mutex_exit(&mntvnode_lock);
2217 vnfree(mvp);
2218 vfs_unbusy(mp, false, NULL);
2219 sysctl_relock();
2220 return (error);
2222 bp += VPTRSZ + VNODESZ;
2223 mutex_enter(&mntvnode_lock);
2225 mutex_exit(&mntvnode_lock);
2226 vnfree(mvp);
2227 vfs_unbusy(mp, false, &nmp);
2229 mutex_exit(&mountlist_lock);
2230 sysctl_relock();
2232 *sizep = bp - where;
2233 return (0);
2237 * Remove clean vnodes from a mountpoint's vnode list.
2239 void
2240 vfs_scrubvnlist(struct mount *mp)
2242 vnode_t *vp, *nvp;
2244 retry:
2245 mutex_enter(&mntvnode_lock);
2246 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
2247 nvp = TAILQ_NEXT(vp, v_mntvnodes);
2248 mutex_enter(&vp->v_interlock);
2249 if ((vp->v_iflag & VI_CLEAN) != 0) {
2250 TAILQ_REMOVE(&mp->mnt_vnodelist, vp, v_mntvnodes);
2251 vp->v_mount = NULL;
2252 mutex_exit(&mntvnode_lock);
2253 mutex_exit(&vp->v_interlock);
2254 vfs_destroy(mp);
2255 goto retry;
2257 mutex_exit(&vp->v_interlock);
2259 mutex_exit(&mntvnode_lock);
2263 * Check to see if a filesystem is mounted on a block device.
2266 vfs_mountedon(vnode_t *vp)
2268 vnode_t *vq;
2269 int error = 0;
2271 if (vp->v_type != VBLK)
2272 return ENOTBLK;
2273 if (vp->v_specmountpoint != NULL)
2274 return (EBUSY);
2275 mutex_enter(&device_lock);
2276 for (vq = specfs_hash[SPECHASH(vp->v_rdev)]; vq != NULL;
2277 vq = vq->v_specnext) {
2278 if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
2279 continue;
2280 if (vq->v_specmountpoint != NULL) {
2281 error = EBUSY;
2282 break;
2285 mutex_exit(&device_lock);
2286 return (error);
2290 * Unmount all file systems.
2291 * We traverse the list in reverse order under the assumption that doing so
2292 * will avoid needing to worry about dependencies.
2294 bool
2295 vfs_unmountall(struct lwp *l)
2297 printf("unmounting file systems...");
2298 return vfs_unmountall1(l, true, true);
2301 static void
2302 vfs_unmount_print(struct mount *mp, const char *pfx)
2304 printf("%sunmounted %s on %s type %s\n", pfx,
2305 mp->mnt_stat.f_mntfromname, mp->mnt_stat.f_mntonname,
2306 mp->mnt_stat.f_fstypename);
2309 bool
2310 vfs_unmount_forceone(struct lwp *l)
2312 struct mount *mp, *nmp = NULL;
2313 int error;
2315 CIRCLEQ_FOREACH_REVERSE(mp, &mountlist, mnt_list) {
2316 if (nmp == NULL || mp->mnt_gen > nmp->mnt_gen)
2317 nmp = mp;
2320 if (nmp == NULL)
2321 return false;
2323 #ifdef DEBUG
2324 printf("\nforcefully unmounting %s (%s)...",
2325 nmp->mnt_stat.f_mntonname, nmp->mnt_stat.f_mntfromname);
2326 #endif
2327 atomic_inc_uint(&nmp->mnt_refcnt);
2328 if ((error = dounmount(nmp, MNT_FORCE, l)) == 0) {
2329 vfs_unmount_print(nmp, "forcefully ");
2330 return true;
2331 } else
2332 atomic_dec_uint(&nmp->mnt_refcnt);
2334 #ifdef DEBUG
2335 printf("forceful unmount of %s failed with error %d\n",
2336 nmp->mnt_stat.f_mntonname, error);
2337 #endif
2339 return false;
2342 bool
2343 vfs_unmountall1(struct lwp *l, bool force, bool verbose)
2345 struct mount *mp, *nmp;
2346 bool any_error = false, progress = false;
2347 int error;
2349 for (mp = CIRCLEQ_LAST(&mountlist);
2350 mp != (void *)&mountlist;
2351 mp = nmp) {
2352 nmp = CIRCLEQ_PREV(mp, mnt_list);
2353 #ifdef DEBUG
2354 printf("\nunmounting %p %s (%s)...",
2355 (void *)mp, mp->mnt_stat.f_mntonname,
2356 mp->mnt_stat.f_mntfromname);
2357 #endif
2358 atomic_inc_uint(&mp->mnt_refcnt);
2359 if ((error = dounmount(mp, force ? MNT_FORCE : 0, l)) == 0) {
2360 vfs_unmount_print(mp, "");
2361 progress = true;
2362 } else {
2363 atomic_dec_uint(&mp->mnt_refcnt);
2364 if (verbose) {
2365 printf("unmount of %s failed with error %d\n",
2366 mp->mnt_stat.f_mntonname, error);
2368 any_error = true;
2371 if (verbose)
2372 printf(" done\n");
2373 if (any_error && verbose)
2374 printf("WARNING: some file systems would not unmount\n");
2375 return progress;
2379 * Sync and unmount file systems before shutting down.
2381 void
2382 vfs_shutdown(void)
2384 struct lwp *l;
2386 /* XXX we're certainly not running in lwp0's context! */
2387 l = (curlwp == NULL) ? &lwp0 : curlwp;
2389 vfs_shutdown1(l);
2392 void
2393 vfs_sync_all(struct lwp *l)
2395 printf("syncing disks... ");
2397 /* remove user processes from run queue */
2398 suspendsched();
2399 (void) spl0();
2401 /* avoid coming back this way again if we panic. */
2402 doing_shutdown = 1;
2404 sys_sync(l, NULL, NULL);
2406 /* Wait for sync to finish. */
2407 if (buf_syncwait() != 0) {
2408 #if defined(DDB) && defined(DEBUG_HALT_BUSY)
2409 Debugger();
2410 #endif
2411 printf("giving up\n");
2412 return;
2413 } else
2414 printf("done\n");
2417 static void
2418 vfs_shutdown1(struct lwp *l)
2421 vfs_sync_all(l);
2424 * If we've panic'd, don't make the situation potentially
2425 * worse by unmounting the file systems.
2427 if (panicstr != NULL)
2428 return;
2430 /* Release inodes held by texts before update. */
2431 #ifdef notdef
2432 vnshutdown();
2433 #endif
2434 /* Unmount file systems. */
2435 vfs_unmountall(l);
2439 * Print a list of supported file system types (used by vfs_mountroot)
2441 static void
2442 vfs_print_fstypes(void)
2444 struct vfsops *v;
2445 int cnt = 0;
2447 mutex_enter(&vfs_list_lock);
2448 LIST_FOREACH(v, &vfs_list, vfs_list)
2449 ++cnt;
2450 mutex_exit(&vfs_list_lock);
2452 if (cnt == 0) {
2453 printf("WARNING: No file system modules have been loaded.\n");
2454 return;
2457 printf("Supported file systems:");
2458 mutex_enter(&vfs_list_lock);
2459 LIST_FOREACH(v, &vfs_list, vfs_list) {
2460 printf(" %s", v->vfs_name);
2462 mutex_exit(&vfs_list_lock);
2463 printf("\n");
2467 * Mount the root file system. If the operator didn't specify a
2468 * file system to use, try all possible file systems until one
2469 * succeeds.
2472 vfs_mountroot(void)
2474 struct vfsops *v;
2475 int error = ENODEV;
2477 if (root_device == NULL)
2478 panic("vfs_mountroot: root device unknown");
2480 switch (device_class(root_device)) {
2481 case DV_IFNET:
2482 if (rootdev != NODEV)
2483 panic("vfs_mountroot: rootdev set for DV_IFNET "
2484 "(0x%llx -> %llu,%llu)",
2485 (unsigned long long)rootdev,
2486 (unsigned long long)major(rootdev),
2487 (unsigned long long)minor(rootdev));
2488 break;
2490 case DV_DISK:
2491 if (rootdev == NODEV)
2492 panic("vfs_mountroot: rootdev not set for DV_DISK");
2493 if (bdevvp(rootdev, &rootvp))
2494 panic("vfs_mountroot: can't get vnode for rootdev");
2495 error = VOP_OPEN(rootvp, FREAD, FSCRED);
2496 if (error) {
2497 printf("vfs_mountroot: can't open root device\n");
2498 return (error);
2500 break;
2502 case DV_VIRTUAL:
2503 break;
2505 default:
2506 printf("%s: inappropriate for root file system\n",
2507 device_xname(root_device));
2508 return (ENODEV);
2512 * If user specified a root fs type, use it. Make sure the
2513 * specified type exists and has a mount_root()
2515 if (strcmp(rootfstype, ROOT_FSTYPE_ANY) != 0) {
2516 v = vfs_getopsbyname(rootfstype);
2517 error = EFTYPE;
2518 if (v != NULL) {
2519 if (v->vfs_mountroot != NULL) {
2520 error = (v->vfs_mountroot)();
2522 v->vfs_refcount--;
2524 goto done;
2528 * Try each file system currently configured into the kernel.
2530 mutex_enter(&vfs_list_lock);
2531 LIST_FOREACH(v, &vfs_list, vfs_list) {
2532 if (v->vfs_mountroot == NULL)
2533 continue;
2534 #ifdef DEBUG
2535 aprint_normal("mountroot: trying %s...\n", v->vfs_name);
2536 #endif
2537 v->vfs_refcount++;
2538 mutex_exit(&vfs_list_lock);
2539 error = (*v->vfs_mountroot)();
2540 mutex_enter(&vfs_list_lock);
2541 v->vfs_refcount--;
2542 if (!error) {
2543 aprint_normal("root file system type: %s\n",
2544 v->vfs_name);
2545 break;
2548 mutex_exit(&vfs_list_lock);
2550 if (v == NULL) {
2551 vfs_print_fstypes();
2552 printf("no file system for %s", device_xname(root_device));
2553 if (device_class(root_device) == DV_DISK)
2554 printf(" (dev 0x%llx)", (unsigned long long)rootdev);
2555 printf("\n");
2556 error = EFTYPE;
2559 done:
2560 if (error && device_class(root_device) == DV_DISK) {
2561 VOP_CLOSE(rootvp, FREAD, FSCRED);
2562 vrele(rootvp);
2564 if (error == 0) {
2565 extern struct cwdinfo cwdi0;
2567 CIRCLEQ_FIRST(&mountlist)->mnt_flag |= MNT_ROOTFS;
2568 CIRCLEQ_FIRST(&mountlist)->mnt_op->vfs_refcount++;
2571 * Get the vnode for '/'. Set cwdi0.cwdi_cdir to
2572 * reference it.
2574 error = VFS_ROOT(CIRCLEQ_FIRST(&mountlist), &rootvnode);
2575 if (error)
2576 panic("cannot find root vnode, error=%d", error);
2577 cwdi0.cwdi_cdir = rootvnode;
2578 vref(cwdi0.cwdi_cdir);
2579 VOP_UNLOCK(rootvnode, 0);
2580 cwdi0.cwdi_rdir = NULL;
2583 * Now that root is mounted, we can fixup initproc's CWD
2584 * info. All other processes are kthreads, which merely
2585 * share proc0's CWD info.
2587 initproc->p_cwdi->cwdi_cdir = rootvnode;
2588 vref(initproc->p_cwdi->cwdi_cdir);
2589 initproc->p_cwdi->cwdi_rdir = NULL;
2591 return (error);
2595 * Get a new unique fsid
2597 void
2598 vfs_getnewfsid(struct mount *mp)
2600 static u_short xxxfs_mntid;
2601 fsid_t tfsid;
2602 int mtype;
2604 mutex_enter(&mntid_lock);
2605 mtype = makefstype(mp->mnt_op->vfs_name);
2606 mp->mnt_stat.f_fsidx.__fsid_val[0] = makedev(mtype, 0);
2607 mp->mnt_stat.f_fsidx.__fsid_val[1] = mtype;
2608 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2609 if (xxxfs_mntid == 0)
2610 ++xxxfs_mntid;
2611 tfsid.__fsid_val[0] = makedev(mtype & 0xff, xxxfs_mntid);
2612 tfsid.__fsid_val[1] = mtype;
2613 if (!CIRCLEQ_EMPTY(&mountlist)) {
2614 while (vfs_getvfs(&tfsid)) {
2615 tfsid.__fsid_val[0]++;
2616 xxxfs_mntid++;
2619 mp->mnt_stat.f_fsidx.__fsid_val[0] = tfsid.__fsid_val[0];
2620 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
2621 mutex_exit(&mntid_lock);
2625 * Make a 'unique' number from a mount type name.
2627 long
2628 makefstype(const char *type)
2630 long rv;
2632 for (rv = 0; *type; type++) {
2633 rv <<= 2;
2634 rv ^= *type;
2636 return rv;
2640 * Set vnode attributes to VNOVAL
2642 void
2643 vattr_null(struct vattr *vap)
2646 memset(vap, 0, sizeof(*vap));
2648 vap->va_type = VNON;
2651 * Assign individually so that it is safe even if size and
2652 * sign of each member are varied.
2654 vap->va_mode = VNOVAL;
2655 vap->va_nlink = VNOVAL;
2656 vap->va_uid = VNOVAL;
2657 vap->va_gid = VNOVAL;
2658 vap->va_fsid = VNOVAL;
2659 vap->va_fileid = VNOVAL;
2660 vap->va_size = VNOVAL;
2661 vap->va_blocksize = VNOVAL;
2662 vap->va_atime.tv_sec =
2663 vap->va_mtime.tv_sec =
2664 vap->va_ctime.tv_sec =
2665 vap->va_birthtime.tv_sec = VNOVAL;
2666 vap->va_atime.tv_nsec =
2667 vap->va_mtime.tv_nsec =
2668 vap->va_ctime.tv_nsec =
2669 vap->va_birthtime.tv_nsec = VNOVAL;
2670 vap->va_gen = VNOVAL;
2671 vap->va_flags = VNOVAL;
2672 vap->va_rdev = VNOVAL;
2673 vap->va_bytes = VNOVAL;
2676 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
2677 #define ARRAY_PRINT(idx, arr) \
2678 ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN")
2680 const char * const vnode_tags[] = { VNODE_TAGS };
2681 const char * const vnode_types[] = { VNODE_TYPES };
2682 const char vnode_flagbits[] = VNODE_FLAGBITS;
2685 * Print out a description of a vnode.
2687 void
2688 vprint(const char *label, struct vnode *vp)
2690 struct vnlock *vl;
2691 char bf[96];
2692 int flag;
2694 vl = (vp->v_vnlock != NULL ? vp->v_vnlock : &vp->v_lock);
2695 flag = vp->v_iflag | vp->v_vflag | vp->v_uflag;
2696 snprintb(bf, sizeof(bf), vnode_flagbits, flag);
2698 if (label != NULL)
2699 printf("%s: ", label);
2700 printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), "
2701 "usecount %d, writecount %d, holdcount %d\n"
2702 "\tfreelisthd %p, mount %p, data %p lock %p recursecnt %d\n",
2703 vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
2704 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
2705 vp->v_usecount, vp->v_writecount, vp->v_holdcnt,
2706 vp->v_freelisthd, vp->v_mount, vp->v_data, vl, vl->vl_recursecnt);
2707 if (vp->v_data != NULL) {
2708 printf("\t");
2709 VOP_PRINT(vp);
2713 #ifdef DEBUG
2715 * List all of the locked vnodes in the system.
2716 * Called when debugging the kernel.
2718 void
2719 printlockedvnodes(void)
2721 struct mount *mp, *nmp;
2722 struct vnode *vp;
2724 printf("Locked vnodes\n");
2725 mutex_enter(&mountlist_lock);
2726 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
2727 mp = nmp) {
2728 if (vfs_busy(mp, &nmp)) {
2729 continue;
2731 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2732 if (VOP_ISLOCKED(vp))
2733 vprint(NULL, vp);
2735 mutex_enter(&mountlist_lock);
2736 vfs_unbusy(mp, false, &nmp);
2738 mutex_exit(&mountlist_lock);
2740 #endif
2742 /* Deprecated. Kept for KPI compatibility. */
2744 vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
2745 mode_t acc_mode, kauth_cred_t cred)
2748 #ifdef DIAGNOSTIC
2749 printf("vaccess: deprecated interface used.\n");
2750 #endif /* DIAGNOSTIC */
2752 return genfs_can_access(type, file_mode, uid, gid, acc_mode, cred);
2756 * Given a file system name, look up the vfsops for that
2757 * file system, or return NULL if file system isn't present
2758 * in the kernel.
2760 struct vfsops *
2761 vfs_getopsbyname(const char *name)
2763 struct vfsops *v;
2765 mutex_enter(&vfs_list_lock);
2766 LIST_FOREACH(v, &vfs_list, vfs_list) {
2767 if (strcmp(v->vfs_name, name) == 0)
2768 break;
2770 if (v != NULL)
2771 v->vfs_refcount++;
2772 mutex_exit(&vfs_list_lock);
2774 return (v);
2777 void
2778 copy_statvfs_info(struct statvfs *sbp, const struct mount *mp)
2780 const struct statvfs *mbp;
2782 if (sbp == (mbp = &mp->mnt_stat))
2783 return;
2785 (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx));
2786 sbp->f_fsid = mbp->f_fsid;
2787 sbp->f_owner = mbp->f_owner;
2788 sbp->f_flag = mbp->f_flag;
2789 sbp->f_syncwrites = mbp->f_syncwrites;
2790 sbp->f_asyncwrites = mbp->f_asyncwrites;
2791 sbp->f_syncreads = mbp->f_syncreads;
2792 sbp->f_asyncreads = mbp->f_asyncreads;
2793 (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare));
2794 (void)memcpy(sbp->f_fstypename, mbp->f_fstypename,
2795 sizeof(sbp->f_fstypename));
2796 (void)memcpy(sbp->f_mntonname, mbp->f_mntonname,
2797 sizeof(sbp->f_mntonname));
2798 (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname,
2799 sizeof(sbp->f_mntfromname));
2800 sbp->f_namemax = mbp->f_namemax;
2804 set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom,
2805 const char *vfsname, struct mount *mp, struct lwp *l)
2807 int error;
2808 size_t size;
2809 struct statvfs *sfs = &mp->mnt_stat;
2810 int (*fun)(const void *, void *, size_t, size_t *);
2812 (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname,
2813 sizeof(mp->mnt_stat.f_fstypename));
2815 if (onp) {
2816 struct cwdinfo *cwdi = l->l_proc->p_cwdi;
2817 fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr;
2818 if (cwdi->cwdi_rdir != NULL) {
2819 size_t len;
2820 char *bp;
2821 char *path = PNBUF_GET();
2823 bp = path + MAXPATHLEN;
2824 *--bp = '\0';
2825 rw_enter(&cwdi->cwdi_lock, RW_READER);
2826 error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp,
2827 path, MAXPATHLEN / 2, 0, l);
2828 rw_exit(&cwdi->cwdi_lock);
2829 if (error) {
2830 PNBUF_PUT(path);
2831 return error;
2834 len = strlen(bp);
2835 if (len > sizeof(sfs->f_mntonname) - 1)
2836 len = sizeof(sfs->f_mntonname) - 1;
2837 (void)strncpy(sfs->f_mntonname, bp, len);
2838 PNBUF_PUT(path);
2840 if (len < sizeof(sfs->f_mntonname) - 1) {
2841 error = (*fun)(onp, &sfs->f_mntonname[len],
2842 sizeof(sfs->f_mntonname) - len - 1, &size);
2843 if (error)
2844 return error;
2845 size += len;
2846 } else {
2847 size = len;
2849 } else {
2850 error = (*fun)(onp, &sfs->f_mntonname,
2851 sizeof(sfs->f_mntonname) - 1, &size);
2852 if (error)
2853 return error;
2855 (void)memset(sfs->f_mntonname + size, 0,
2856 sizeof(sfs->f_mntonname) - size);
2859 if (fromp) {
2860 fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr;
2861 error = (*fun)(fromp, sfs->f_mntfromname,
2862 sizeof(sfs->f_mntfromname) - 1, &size);
2863 if (error)
2864 return error;
2865 (void)memset(sfs->f_mntfromname + size, 0,
2866 sizeof(sfs->f_mntfromname) - size);
2868 return 0;
2871 void
2872 vfs_timestamp(struct timespec *ts)
2875 nanotime(ts);
2878 time_t rootfstime; /* recorded root fs time, if known */
2879 void
2880 setrootfstime(time_t t)
2882 rootfstime = t;
2886 * Sham lock manager for vnodes. This is a temporary measure.
2889 vlockmgr(struct vnlock *vl, int flags)
2892 KASSERT((flags & ~(LK_CANRECURSE | LK_NOWAIT | LK_TYPE_MASK)) == 0);
2894 switch (flags & LK_TYPE_MASK) {
2895 case LK_SHARED:
2896 if (rw_tryenter(&vl->vl_lock, RW_READER)) {
2897 return 0;
2899 if ((flags & LK_NOWAIT) != 0) {
2900 return EBUSY;
2902 rw_enter(&vl->vl_lock, RW_READER);
2903 return 0;
2905 case LK_EXCLUSIVE:
2906 if (rw_tryenter(&vl->vl_lock, RW_WRITER)) {
2907 return 0;
2909 if ((vl->vl_canrecurse || (flags & LK_CANRECURSE) != 0) &&
2910 rw_write_held(&vl->vl_lock)) {
2911 vl->vl_recursecnt++;
2912 return 0;
2914 if ((flags & LK_NOWAIT) != 0) {
2915 return EBUSY;
2917 rw_enter(&vl->vl_lock, RW_WRITER);
2918 return 0;
2920 case LK_RELEASE:
2921 if (vl->vl_recursecnt != 0) {
2922 KASSERT(rw_write_held(&vl->vl_lock));
2923 vl->vl_recursecnt--;
2924 return 0;
2926 rw_exit(&vl->vl_lock);
2927 return 0;
2929 default:
2930 panic("vlockmgr: flags %x", flags);
2935 vlockstatus(struct vnlock *vl)
2938 if (rw_write_held(&vl->vl_lock)) {
2939 return LK_EXCLUSIVE;
2941 if (rw_read_held(&vl->vl_lock)) {
2942 return LK_SHARED;
2944 return 0;
2948 * mount_specific_key_create --
2949 * Create a key for subsystem mount-specific data.
2952 mount_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
2955 return (specificdata_key_create(mount_specificdata_domain, keyp, dtor));
2959 * mount_specific_key_delete --
2960 * Delete a key for subsystem mount-specific data.
2962 void
2963 mount_specific_key_delete(specificdata_key_t key)
2966 specificdata_key_delete(mount_specificdata_domain, key);
2970 * mount_initspecific --
2971 * Initialize a mount's specificdata container.
2973 void
2974 mount_initspecific(struct mount *mp)
2976 int error;
2978 error = specificdata_init(mount_specificdata_domain,
2979 &mp->mnt_specdataref);
2980 KASSERT(error == 0);
2984 * mount_finispecific --
2985 * Finalize a mount's specificdata container.
2987 void
2988 mount_finispecific(struct mount *mp)
2991 specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
2995 * mount_getspecific --
2996 * Return mount-specific data corresponding to the specified key.
2998 void *
2999 mount_getspecific(struct mount *mp, specificdata_key_t key)
3002 return (specificdata_getspecific(mount_specificdata_domain,
3003 &mp->mnt_specdataref, key));
3007 * mount_setspecific --
3008 * Set mount-specific data corresponding to the specified key.
3010 void
3011 mount_setspecific(struct mount *mp, specificdata_key_t key, void *data)
3014 specificdata_setspecific(mount_specificdata_domain,
3015 &mp->mnt_specdataref, key, data);
3019 VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c)
3021 int error;
3023 KERNEL_LOCK(1, NULL);
3024 error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c);
3025 KERNEL_UNLOCK_ONE(NULL);
3027 return error;
3031 VFS_START(struct mount *mp, int a)
3033 int error;
3035 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3036 KERNEL_LOCK(1, NULL);
3038 error = (*(mp->mnt_op->vfs_start))(mp, a);
3039 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3040 KERNEL_UNLOCK_ONE(NULL);
3043 return error;
3047 VFS_UNMOUNT(struct mount *mp, int a)
3049 int error;
3051 KERNEL_LOCK(1, NULL);
3052 error = (*(mp->mnt_op->vfs_unmount))(mp, a);
3053 KERNEL_UNLOCK_ONE(NULL);
3055 return error;
3059 VFS_ROOT(struct mount *mp, struct vnode **a)
3061 int error;
3063 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3064 KERNEL_LOCK(1, NULL);
3066 error = (*(mp->mnt_op->vfs_root))(mp, a);
3067 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3068 KERNEL_UNLOCK_ONE(NULL);
3071 return error;
3075 VFS_QUOTACTL(struct mount *mp, int a, uid_t b, void *c)
3077 int error;
3079 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3080 KERNEL_LOCK(1, NULL);
3082 error = (*(mp->mnt_op->vfs_quotactl))(mp, a, b, c);
3083 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3084 KERNEL_UNLOCK_ONE(NULL);
3087 return error;
3091 VFS_STATVFS(struct mount *mp, struct statvfs *a)
3093 int error;
3095 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3096 KERNEL_LOCK(1, NULL);
3098 error = (*(mp->mnt_op->vfs_statvfs))(mp, a);
3099 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3100 KERNEL_UNLOCK_ONE(NULL);
3103 return error;
3107 VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b)
3109 int error;
3111 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3112 KERNEL_LOCK(1, NULL);
3114 error = (*(mp->mnt_op->vfs_sync))(mp, a, b);
3115 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3116 KERNEL_UNLOCK_ONE(NULL);
3119 return error;
3123 VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b)
3125 int error;
3127 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3128 KERNEL_LOCK(1, NULL);
3130 error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b);
3131 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3132 KERNEL_UNLOCK_ONE(NULL);
3135 return error;
3139 VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b)
3141 int error;
3143 if ((vp->v_vflag & VV_MPSAFE) == 0) {
3144 KERNEL_LOCK(1, NULL);
3146 error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b);
3147 if ((vp->v_vflag & VV_MPSAFE) == 0) {
3148 KERNEL_UNLOCK_ONE(NULL);
3151 return error;
3155 VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b)
3157 int error;
3159 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3160 KERNEL_LOCK(1, NULL);
3162 error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b);
3163 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3164 KERNEL_UNLOCK_ONE(NULL);
3167 return error;
3171 VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d)
3173 int error;
3175 KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */
3176 error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d);
3177 KERNEL_UNLOCK_ONE(NULL); /* XXX */
3179 return error;
3183 VFS_SUSPENDCTL(struct mount *mp, int a)
3185 int error;
3187 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3188 KERNEL_LOCK(1, NULL);
3190 error = (*(mp->mnt_op->vfs_suspendctl))(mp, a);
3191 if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
3192 KERNEL_UNLOCK_ONE(NULL);
3195 return error;
3198 #if defined(DDB) || defined(DEBUGPRINT)
3199 static const char buf_flagbits[] = BUF_FLAGBITS;
3201 void
3202 vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...))
3204 char bf[1024];
3206 (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%"
3207 PRIx64 " dev 0x%x\n",
3208 bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev);
3210 snprintb(bf, sizeof(bf),
3211 buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags);
3212 (*pr)(" error %d flags 0x%s\n", bp->b_error, bf);
3214 (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n",
3215 bp->b_bufsize, bp->b_bcount, bp->b_resid);
3216 (*pr)(" data %p saveaddr %p\n",
3217 bp->b_data, bp->b_saveaddr);
3218 (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock);
3222 void
3223 vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...))
3225 char bf[256];
3227 uvm_object_printit(&vp->v_uobj, full, pr);
3228 snprintb(bf, sizeof(bf),
3229 vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag);
3230 (*pr)("\nVNODE flags %s\n", bf);
3231 (*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n",
3232 vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize);
3234 (*pr)("data %p writecount %ld holdcnt %ld\n",
3235 vp->v_data, vp->v_writecount, vp->v_holdcnt);
3237 (*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n",
3238 ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
3239 ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
3240 vp->v_mount, vp->v_mountedhere);
3242 (*pr)("v_lock %p v_vnlock %p\n", &vp->v_lock, vp->v_vnlock);
3244 if (full) {
3245 struct buf *bp;
3247 (*pr)("clean bufs:\n");
3248 LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) {
3249 (*pr)(" bp %p\n", bp);
3250 vfs_buf_print(bp, full, pr);
3253 (*pr)("dirty bufs:\n");
3254 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
3255 (*pr)(" bp %p\n", bp);
3256 vfs_buf_print(bp, full, pr);
3261 void
3262 vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...))
3264 char sbuf[256];
3266 (*pr)("vnodecovered = %p syncer = %p data = %p\n",
3267 mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data);
3269 (*pr)("fs_bshift %d dev_bshift = %d\n",
3270 mp->mnt_fs_bshift,mp->mnt_dev_bshift);
3272 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag);
3273 (*pr)("flag = %s\n", sbuf);
3275 snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag);
3276 (*pr)("iflag = %s\n", sbuf);
3278 (*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt,
3279 &mp->mnt_unmounting, &mp->mnt_updating);
3281 (*pr)("statvfs cache:\n");
3282 (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize);
3283 (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize);
3284 (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize);
3286 (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks);
3287 (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree);
3288 (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail);
3289 (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd);
3291 (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files);
3292 (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree);
3293 (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail);
3294 (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd);
3296 (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n",
3297 mp->mnt_stat.f_fsidx.__fsid_val[0],
3298 mp->mnt_stat.f_fsidx.__fsid_val[1]);
3300 (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner);
3301 (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax);
3303 snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag);
3305 (*pr)("\tflag = %s\n",sbuf);
3306 (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites);
3307 (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites);
3308 (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads);
3309 (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads);
3310 (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename);
3311 (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname);
3312 (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname);
3315 int cnt = 0;
3316 struct vnode *vp;
3317 (*pr)("locked vnodes =");
3318 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3319 if (VOP_ISLOCKED(vp)) {
3320 if ((++cnt % 6) == 0) {
3321 (*pr)(" %p,\n\t", vp);
3322 } else {
3323 (*pr)(" %p,", vp);
3327 (*pr)("\n");
3330 if (full) {
3331 int cnt = 0;
3332 struct vnode *vp;
3333 (*pr)("all vnodes =");
3334 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
3335 if (!TAILQ_NEXT(vp, v_mntvnodes)) {
3336 (*pr)(" %p", vp);
3337 } else if ((++cnt % 6) == 0) {
3338 (*pr)(" %p,\n\t", vp);
3339 } else {
3340 (*pr)(" %p,", vp);
3343 (*pr)("\n", vp);
3346 #endif /* DDB || DEBUGPRINT */
3349 * Check if a device pointed to by vp is mounted.
3351 * Returns:
3352 * EINVAL if it's not a disk
3353 * EBUSY if it's a disk and mounted
3354 * 0 if it's a disk and not mounted
3357 rawdev_mounted(struct vnode *vp, struct vnode **bvpp)
3359 struct vnode *bvp;
3360 dev_t dev;
3361 int d_type;
3363 bvp = NULL;
3364 dev = vp->v_rdev;
3365 d_type = D_OTHER;
3367 if (iskmemvp(vp))
3368 return EINVAL;
3370 switch (vp->v_type) {
3371 case VCHR: {
3372 const struct cdevsw *cdev;
3374 cdev = cdevsw_lookup(dev);
3375 if (cdev != NULL) {
3376 dev_t blkdev;
3378 blkdev = devsw_chr2blk(dev);
3379 if (blkdev != NODEV) {
3380 vfinddev(blkdev, VBLK, &bvp);
3381 if (bvp != NULL)
3382 d_type = (cdev->d_flag & D_TYPEMASK);
3386 break;
3389 case VBLK: {
3390 const struct bdevsw *bdev;
3392 bdev = bdevsw_lookup(dev);
3393 if (bdev != NULL)
3394 d_type = (bdev->d_flag & D_TYPEMASK);
3396 bvp = vp;
3398 break;
3401 default:
3402 break;
3405 if (d_type != D_DISK)
3406 return EINVAL;
3408 if (bvpp != NULL)
3409 *bvpp = bvp;
3412 * XXX: This is bogus. We should be failing the request
3413 * XXX: not only if this specific slice is mounted, but
3414 * XXX: if it's on a disk with any other mounted slice.
3416 if (vfs_mountedon(bvp))
3417 return EBUSY;
3419 return 0;