Try to fixup the mess of mdoc(7)/man(7) mixture as created by the merge.
[netbsd-mini2440.git] / sys / net80211 / ieee80211_output.c
blob9ae715cc9ba93a20affcc2e919e726b2285a3eba
1 /* $NetBSD: ieee80211_output.c,v 1.47 2007/03/04 06:03:19 christos Exp $ */
2 /*-
3 * Copyright (c) 2001 Atsushi Onoe
4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
18 * Alternatively, this software may be distributed under the terms of the
19 * GNU General Public License ("GPL") version 2 as published by the Free
20 * Software Foundation.
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/cdefs.h>
35 #ifdef __FreeBSD__
36 __FBSDID("$FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.34 2005/08/10 16:22:29 sam Exp $");
37 #endif
38 #ifdef __NetBSD__
39 __KERNEL_RCSID(0, "$NetBSD: ieee80211_output.c,v 1.47 2007/03/04 06:03:19 christos Exp $");
40 #endif
42 #include "opt_inet.h"
44 #ifdef __NetBSD__
45 #include "bpfilter.h"
46 #endif /* __NetBSD__ */
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/mbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/endian.h>
53 #include <sys/errno.h>
54 #include <sys/proc.h>
55 #include <sys/sysctl.h>
57 #include <net/if.h>
58 #include <net/if_llc.h>
59 #include <net/if_media.h>
60 #include <net/if_arp.h>
61 #include <net/if_ether.h>
62 #include <net/if_llc.h>
63 #include <net/if_vlanvar.h>
65 #include <net80211/ieee80211_netbsd.h>
66 #include <net80211/ieee80211_var.h>
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <net/if_ether.h>
78 #endif
80 static int ieee80211_fragment(struct ieee80211com *, struct mbuf *,
81 u_int hdrsize, u_int ciphdrsize, u_int mtu);
83 #ifdef IEEE80211_DEBUG
85 * Decide if an outbound management frame should be
86 * printed when debugging is enabled. This filters some
87 * of the less interesting frames that come frequently
88 * (e.g. beacons).
90 static __inline int
91 doprint(struct ieee80211com *ic, int subtype)
93 switch (subtype) {
94 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
95 return (ic->ic_opmode == IEEE80211_M_IBSS);
97 return 1;
99 #endif
102 * Set the direction field and address fields of an outgoing
103 * non-QoS frame. Note this should be called early on in
104 * constructing a frame as it sets i_fc[1]; other bits can
105 * then be or'd in.
107 static void
108 ieee80211_send_setup(struct ieee80211com *ic,
109 struct ieee80211_node *ni,
110 struct ieee80211_frame *wh,
111 int type,
112 const u_int8_t sa[IEEE80211_ADDR_LEN],
113 const u_int8_t da[IEEE80211_ADDR_LEN],
114 const u_int8_t bssid[IEEE80211_ADDR_LEN])
116 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
118 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
119 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
120 switch (ic->ic_opmode) {
121 case IEEE80211_M_STA:
122 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
123 IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
124 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
125 IEEE80211_ADDR_COPY(wh->i_addr3, da);
126 break;
127 case IEEE80211_M_IBSS:
128 case IEEE80211_M_AHDEMO:
129 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
130 IEEE80211_ADDR_COPY(wh->i_addr1, da);
131 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
132 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
133 break;
134 case IEEE80211_M_HOSTAP:
135 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
136 IEEE80211_ADDR_COPY(wh->i_addr1, da);
137 IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
138 IEEE80211_ADDR_COPY(wh->i_addr3, sa);
139 break;
140 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
141 break;
143 } else {
144 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
145 IEEE80211_ADDR_COPY(wh->i_addr1, da);
146 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
147 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
149 *(u_int16_t *)&wh->i_dur[0] = 0;
150 /* NB: use non-QoS tid */
151 *(u_int16_t *)&wh->i_seq[0] =
152 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
153 ni->ni_txseqs[0]++;
154 #undef WH4
158 * Send a management frame to the specified node. The node pointer
159 * must have a reference as the pointer will be passed to the driver
160 * and potentially held for a long time. If the frame is successfully
161 * dispatched to the driver, then it is responsible for freeing the
162 * reference (and potentially free'ing up any associated storage).
164 static int
165 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
166 struct mbuf *m, int type, int timer)
168 struct ifnet *ifp = ic->ic_ifp;
169 struct ieee80211_frame *wh;
171 IASSERT(ni != NULL, ("null node"));
174 * Yech, hack alert! We want to pass the node down to the
175 * driver's start routine. If we don't do so then the start
176 * routine must immediately look it up again and that can
177 * cause a lock order reversal if, for example, this frame
178 * is being sent because the station is being timedout and
179 * the frame being sent is a DEAUTH message. We could stick
180 * this in an m_tag and tack that on to the mbuf. However
181 * that's rather expensive to do for every frame so instead
182 * we stuff it in the rcvif field since outbound frames do
183 * not (presently) use this.
185 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
186 if (m == NULL)
187 return ENOMEM;
188 #ifdef __FreeBSD__
189 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
190 #endif
191 m->m_pkthdr.rcvif = (void *)ni;
193 wh = mtod(m, struct ieee80211_frame *);
194 ieee80211_send_setup(ic, ni, wh,
195 IEEE80211_FC0_TYPE_MGT | type,
196 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
197 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) {
198 m->m_flags &= ~M_LINK0;
199 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
200 "[%s] encrypting frame (%s)\n",
201 ether_sprintf(wh->i_addr1), __func__);
202 wh->i_fc[1] |= IEEE80211_FC1_WEP;
204 #ifdef IEEE80211_DEBUG
205 /* avoid printing too many frames */
206 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
207 ieee80211_msg_dumppkts(ic)) {
208 printf("[%s] send %s on channel %u\n",
209 ether_sprintf(wh->i_addr1),
210 ieee80211_mgt_subtype_name[
211 (type & IEEE80211_FC0_SUBTYPE_MASK) >>
212 IEEE80211_FC0_SUBTYPE_SHIFT],
213 ieee80211_chan2ieee(ic, ic->ic_curchan));
215 #endif
216 IEEE80211_NODE_STAT(ni, tx_mgmt);
217 IF_ENQUEUE(&ic->ic_mgtq, m);
218 if (timer) {
220 * Set the mgt frame timeout.
222 ic->ic_mgt_timer = timer;
223 ifp->if_timer = 1;
225 (*ifp->if_start)(ifp);
226 return 0;
230 * Send a null data frame to the specified node.
232 * NB: the caller is assumed to have setup a node reference
233 * for use; this is necessary to deal with a race condition
234 * when probing for inactive stations.
237 ieee80211_send_nulldata(struct ieee80211_node *ni)
239 struct ieee80211com *ic = ni->ni_ic;
240 struct ifnet *ifp = ic->ic_ifp;
241 struct mbuf *m;
242 struct ieee80211_frame *wh;
244 MGETHDR(m, M_NOWAIT, MT_HEADER);
245 if (m == NULL) {
246 /* XXX debug msg */
247 ic->ic_stats.is_tx_nobuf++;
248 ieee80211_unref_node(&ni);
249 return ENOMEM;
251 m->m_pkthdr.rcvif = (void *) ni;
253 wh = mtod(m, struct ieee80211_frame *);
254 ieee80211_send_setup(ic, ni, wh,
255 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
256 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
257 /* NB: power management bit is never sent by an AP */
258 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
259 ic->ic_opmode != IEEE80211_M_HOSTAP)
260 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
261 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
263 IEEE80211_NODE_STAT(ni, tx_data);
265 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
266 "[%s] send null data frame on channel %u, pwr mgt %s\n",
267 ether_sprintf(ni->ni_macaddr),
268 ieee80211_chan2ieee(ic, ic->ic_curchan),
269 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
271 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */
272 (*ifp->if_start)(ifp);
274 return 0;
278 * Assign priority to a frame based on any vlan tag assigned
279 * to the station and/or any Diffserv setting in an IP header.
280 * Finally, if an ACM policy is setup (in station mode) it's
281 * applied.
284 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
286 int v_wme_ac, d_wme_ac, ac;
287 #ifdef INET
288 struct ether_header *eh;
289 #endif
291 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
292 ac = WME_AC_BE;
293 goto done;
297 * If node has a vlan tag then all traffic
298 * to it must have a matching tag.
300 v_wme_ac = 0;
301 if (ni->ni_vlan != 0) {
302 /* XXX used to check ec_nvlans. */
303 struct m_tag *mtag = m_tag_find(m, PACKET_TAG_VLAN, NULL);
304 if (mtag == NULL) {
305 IEEE80211_NODE_STAT(ni, tx_novlantag);
306 return 1;
308 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
309 EVL_VLANOFTAG(ni->ni_vlan)) {
310 IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
311 return 1;
313 /* map vlan priority to AC */
314 switch (EVL_PRIOFTAG(ni->ni_vlan)) {
315 case 1:
316 case 2:
317 v_wme_ac = WME_AC_BK;
318 break;
319 case 0:
320 case 3:
321 v_wme_ac = WME_AC_BE;
322 break;
323 case 4:
324 case 5:
325 v_wme_ac = WME_AC_VI;
326 break;
327 case 6:
328 case 7:
329 v_wme_ac = WME_AC_VO;
330 break;
334 #ifdef INET
335 eh = mtod(m, struct ether_header *);
336 if (eh->ether_type == htons(ETHERTYPE_IP)) {
337 const struct ip *ip = (struct ip *)
338 (mtod(m, u_int8_t *) + sizeof (*eh));
340 * IP frame, map the TOS field.
342 switch (ip->ip_tos) {
343 case 0x08:
344 case 0x20:
345 d_wme_ac = WME_AC_BK; /* background */
346 break;
347 case 0x28:
348 case 0xa0:
349 d_wme_ac = WME_AC_VI; /* video */
350 break;
351 case 0x30: /* voice */
352 case 0xe0:
353 case 0x88: /* XXX UPSD */
354 case 0xb8:
355 d_wme_ac = WME_AC_VO;
356 break;
357 default:
358 d_wme_ac = WME_AC_BE;
359 break;
361 } else {
362 #endif /* INET */
363 d_wme_ac = WME_AC_BE;
364 #ifdef INET
366 #endif
368 * Use highest priority AC.
370 if (v_wme_ac > d_wme_ac)
371 ac = v_wme_ac;
372 else
373 ac = d_wme_ac;
376 * Apply ACM policy.
378 if (ic->ic_opmode == IEEE80211_M_STA) {
379 static const int acmap[4] = {
380 WME_AC_BK, /* WME_AC_BE */
381 WME_AC_BK, /* WME_AC_BK */
382 WME_AC_BE, /* WME_AC_VI */
383 WME_AC_VI, /* WME_AC_VO */
385 while (ac != WME_AC_BK &&
386 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
387 ac = acmap[ac];
389 done:
390 M_WME_SETAC(m, ac);
391 return 0;
395 * Insure there is sufficient contiguous space to encapsulate the
396 * 802.11 data frame. If room isn't already there, arrange for it.
397 * Drivers and cipher modules assume we have done the necessary work
398 * and fail rudely if they don't find the space they need.
400 static struct mbuf *
401 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
402 struct ieee80211_key *key, struct mbuf *m)
404 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
405 int needed_space = hdrsize;
406 int wlen = 0;
408 if (key != NULL) {
409 /* XXX belongs in crypto code? */
410 needed_space += key->wk_cipher->ic_header;
411 /* XXX frags */
414 * We know we are called just before stripping an Ethernet
415 * header and prepending an LLC header. This means we know
416 * there will be
417 * sizeof(struct ether_header) - sizeof(struct llc)
418 * bytes recovered to which we need additional space for the
419 * 802.11 header and any crypto header.
421 /* XXX check trailing space and copy instead? */
422 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
423 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
424 if (n == NULL) {
425 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
426 "%s: cannot expand storage\n", __func__);
427 ic->ic_stats.is_tx_nobuf++;
428 m_freem(m);
429 return NULL;
431 IASSERT(needed_space <= MHLEN,
432 ("not enough room, need %u got %zu\n", needed_space, MHLEN));
434 * Setup new mbuf to have leading space to prepend the
435 * 802.11 header and any crypto header bits that are
436 * required (the latter are added when the driver calls
437 * back to ieee80211_crypto_encap to do crypto encapsulation).
439 /* NB: must be first 'cuz it clobbers m_data */
440 M_MOVE_PKTHDR(n, m);
441 n->m_len = 0; /* NB: m_gethdr does not set */
442 n->m_data += needed_space;
444 * Pull up Ethernet header to create the expected layout.
445 * We could use m_pullup but that's overkill (i.e. we don't
446 * need the actual data) and it cannot fail so do it inline
447 * for speed.
449 /* NB: struct ether_header is known to be contiguous */
450 n->m_len += sizeof(struct ether_header);
451 m->m_len -= sizeof(struct ether_header);
452 m->m_data += sizeof(struct ether_header);
454 * Replace the head of the chain.
456 n->m_next = m;
457 m = n;
458 } else {
459 /* We will overwrite the ethernet header in the
460 * 802.11 encapsulation stage. Make sure that it
461 * is writable.
463 wlen = sizeof(struct ether_header);
467 * If we're going to s/w encrypt the mbuf chain make sure it is
468 * writable.
470 if (key != NULL && (key->wk_flags & IEEE80211_KEY_SWCRYPT) != 0)
471 wlen = M_COPYALL;
473 if (wlen != 0 && m_makewritable(&m, 0, wlen, M_DONTWAIT) != 0) {
474 m_freem(m);
475 return NULL;
477 return m;
478 #undef TO_BE_RECLAIMED
482 * Return the transmit key to use in sending a unicast frame.
483 * If a unicast key is set we use that. When no unicast key is set
484 * we fall back to the default transmit key.
486 static __inline struct ieee80211_key *
487 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
489 if (IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)) {
490 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
491 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
492 return NULL;
493 return &ic->ic_nw_keys[ic->ic_def_txkey];
494 } else {
495 return &ni->ni_ucastkey;
500 * Return the transmit key to use in sending a multicast frame.
501 * Multicast traffic always uses the group key which is installed as
502 * the default tx key.
504 static __inline struct ieee80211_key *
505 ieee80211_crypto_getmcastkey(struct ieee80211com *ic,
506 struct ieee80211_node *ni)
508 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
509 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
510 return NULL;
511 return &ic->ic_nw_keys[ic->ic_def_txkey];
515 * Encapsulate an outbound data frame. The mbuf chain is updated.
516 * If an error is encountered NULL is returned. The caller is required
517 * to provide a node reference and pullup the ethernet header in the
518 * first mbuf.
520 struct mbuf *
521 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
522 struct ieee80211_node *ni)
524 struct ether_header eh;
525 struct ieee80211_frame *wh;
526 struct ieee80211_key *key;
527 struct llc *llc;
528 int hdrsize, datalen, addqos, txfrag;
530 IASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
531 memcpy(&eh, mtod(m, void *), sizeof(struct ether_header));
534 * Insure space for additional headers. First identify
535 * transmit key to use in calculating any buffer adjustments
536 * required. This is also used below to do privacy
537 * encapsulation work. Then calculate the 802.11 header
538 * size and any padding required by the driver.
540 * Note key may be NULL if we fall back to the default
541 * transmit key and that is not set. In that case the
542 * buffer may not be expanded as needed by the cipher
543 * routines, but they will/should discard it.
545 if (ic->ic_flags & IEEE80211_F_PRIVACY) {
546 if (ic->ic_opmode == IEEE80211_M_STA ||
547 !IEEE80211_IS_MULTICAST(eh.ether_dhost))
548 key = ieee80211_crypto_getucastkey(ic, ni);
549 else
550 key = ieee80211_crypto_getmcastkey(ic, ni);
551 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
552 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
553 "[%s] no default transmit key (%s) deftxkey %u\n",
554 ether_sprintf(eh.ether_dhost), __func__,
555 ic->ic_def_txkey);
556 ic->ic_stats.is_tx_nodefkey++;
558 } else
559 key = NULL;
560 /* XXX 4-address format */
562 * XXX Some ap's don't handle QoS-encapsulated EAPOL
563 * frames so suppress use. This may be an issue if other
564 * ap's require all data frames to be QoS-encapsulated
565 * once negotiated in which case we'll need to make this
566 * configurable.
568 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
569 eh.ether_type != htons(ETHERTYPE_PAE);
570 if (addqos)
571 hdrsize = sizeof(struct ieee80211_qosframe);
572 else
573 hdrsize = sizeof(struct ieee80211_frame);
574 if (ic->ic_flags & IEEE80211_F_DATAPAD)
575 hdrsize = roundup(hdrsize, sizeof(u_int32_t));
576 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
577 if (m == NULL) {
578 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
579 goto bad;
582 /* NB: this could be optimized because of ieee80211_mbuf_adjust */
583 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
584 llc = mtod(m, struct llc *);
585 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
586 llc->llc_control = LLC_UI;
587 llc->llc_snap.org_code[0] = 0;
588 llc->llc_snap.org_code[1] = 0;
589 llc->llc_snap.org_code[2] = 0;
590 llc->llc_snap.ether_type = eh.ether_type;
591 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
593 M_PREPEND(m, hdrsize, M_DONTWAIT);
594 if (m == NULL) {
595 ic->ic_stats.is_tx_nobuf++;
596 goto bad;
598 wh = mtod(m, struct ieee80211_frame *);
599 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
600 *(u_int16_t *)wh->i_dur = 0;
601 switch (ic->ic_opmode) {
602 case IEEE80211_M_STA:
603 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
604 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
605 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
606 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
607 break;
608 case IEEE80211_M_IBSS:
609 case IEEE80211_M_AHDEMO:
610 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
611 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
612 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
614 * NB: always use the bssid from ic_bss as the
615 * neighbor's may be stale after an ibss merge
617 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
618 break;
619 case IEEE80211_M_HOSTAP:
620 #ifndef IEEE80211_NO_HOSTAP
621 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
622 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
623 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
624 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
625 #endif /* !IEEE80211_NO_HOSTAP */
626 break;
627 case IEEE80211_M_MONITOR:
628 goto bad;
630 if (m->m_flags & M_MORE_DATA)
631 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
632 if (addqos) {
633 struct ieee80211_qosframe *qwh =
634 (struct ieee80211_qosframe *) wh;
635 int ac, tid;
637 ac = M_WME_GETAC(m);
638 /* map from access class/queue to 11e header priorty value */
639 tid = WME_AC_TO_TID(ac);
640 qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
641 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
642 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
643 qwh->i_qos[1] = 0;
644 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
646 *(u_int16_t *)wh->i_seq =
647 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
648 ni->ni_txseqs[tid]++;
649 } else {
650 *(u_int16_t *)wh->i_seq =
651 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
652 ni->ni_txseqs[0]++;
654 /* check if xmit fragmentation is required */
655 txfrag = (m->m_pkthdr.len > ic->ic_fragthreshold &&
656 !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
657 (m->m_flags & M_FF) == 0); /* NB: don't fragment ff's */
658 if (key != NULL) {
660 * IEEE 802.1X: send EAPOL frames always in the clear.
661 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
663 if (eh.ether_type != htons(ETHERTYPE_PAE) ||
664 ((ic->ic_flags & IEEE80211_F_WPA) &&
665 (ic->ic_opmode == IEEE80211_M_STA ?
666 !IEEE80211_KEY_UNDEFINED(*key) :
667 !IEEE80211_KEY_UNDEFINED(ni->ni_ucastkey)))) {
668 wh->i_fc[1] |= IEEE80211_FC1_WEP;
669 if (!ieee80211_crypto_enmic(ic, key, m, txfrag)) {
670 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
671 "[%s] enmic failed, discard frame\n",
672 ether_sprintf(eh.ether_dhost));
673 ic->ic_stats.is_crypto_enmicfail++;
674 goto bad;
678 if (txfrag && !ieee80211_fragment(ic, m, hdrsize,
679 key != NULL ? key->wk_cipher->ic_header : 0, ic->ic_fragthreshold))
680 goto bad;
682 IEEE80211_NODE_STAT(ni, tx_data);
683 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
685 return m;
686 bad:
687 if (m != NULL)
688 m_freem(m);
689 return NULL;
693 * Arguments in:
695 * paylen: payload length (no FCS, no WEP header)
697 * hdrlen: header length
699 * rate: MSDU speed, units 500kb/s
701 * flags: IEEE80211_F_SHPREAMBLE (use short preamble),
702 * IEEE80211_F_SHSLOT (use short slot length)
704 * Arguments out:
706 * d: 802.11 Duration field for RTS,
707 * 802.11 Duration field for data frame,
708 * PLCP Length for data frame,
709 * residual octets at end of data slot
711 static int
712 ieee80211_compute_duration1(int len, int use_ack, uint32_t icflags, int rate,
713 struct ieee80211_duration *d)
715 int pre, ctsrate;
716 int ack, bitlen, data_dur, remainder;
718 /* RTS reserves medium for SIFS | CTS | SIFS | (DATA) | SIFS | ACK
719 * DATA reserves medium for SIFS | ACK,
721 * (XXX or SIFS | ACK | SIFS | DATA | SIFS | ACK, if more fragments)
723 * XXXMYC: no ACK on multicast/broadcast or control packets
726 bitlen = len * 8;
728 pre = IEEE80211_DUR_DS_SIFS;
729 if ((icflags & IEEE80211_F_SHPREAMBLE) != 0)
730 pre += IEEE80211_DUR_DS_SHORT_PREAMBLE + IEEE80211_DUR_DS_FAST_PLCPHDR;
731 else
732 pre += IEEE80211_DUR_DS_LONG_PREAMBLE + IEEE80211_DUR_DS_SLOW_PLCPHDR;
734 d->d_residue = 0;
735 data_dur = (bitlen * 2) / rate;
736 remainder = (bitlen * 2) % rate;
737 if (remainder != 0) {
738 d->d_residue = (rate - remainder) / 16;
739 data_dur++;
742 switch (rate) {
743 case 2: /* 1 Mb/s */
744 case 4: /* 2 Mb/s */
745 /* 1 - 2 Mb/s WLAN: send ACK/CTS at 1 Mb/s */
746 ctsrate = 2;
747 break;
748 case 11: /* 5.5 Mb/s */
749 case 22: /* 11 Mb/s */
750 case 44: /* 22 Mb/s */
751 /* 5.5 - 11 Mb/s WLAN: send ACK/CTS at 2 Mb/s */
752 ctsrate = 4;
753 break;
754 default:
755 /* TBD */
756 return -1;
759 d->d_plcp_len = data_dur;
761 ack = (use_ack) ? pre + (IEEE80211_DUR_DS_SLOW_ACK * 2) / ctsrate : 0;
763 d->d_rts_dur =
764 pre + (IEEE80211_DUR_DS_SLOW_CTS * 2) / ctsrate +
765 pre + data_dur +
766 ack;
768 d->d_data_dur = ack;
770 return 0;
774 * Arguments in:
776 * wh: 802.11 header
778 * paylen: payload length (no FCS, no WEP header)
780 * rate: MSDU speed, units 500kb/s
782 * fraglen: fragment length, set to maximum (or higher) for no
783 * fragmentation
785 * flags: IEEE80211_F_PRIVACY (hardware adds WEP),
786 * IEEE80211_F_SHPREAMBLE (use short preamble),
787 * IEEE80211_F_SHSLOT (use short slot length)
789 * Arguments out:
791 * d0: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
792 * of first/only fragment
794 * dn: 802.11 Duration fields (RTS/Data), PLCP Length, Service fields
795 * of last fragment
797 * ieee80211_compute_duration assumes crypto-encapsulation, if any,
798 * has already taken place.
801 ieee80211_compute_duration(const struct ieee80211_frame_min *wh,
802 const struct ieee80211_key *wk, int len,
803 uint32_t icflags, int fraglen, int rate, struct ieee80211_duration *d0,
804 struct ieee80211_duration *dn, int *npktp, int debug)
806 int ack, rc;
807 int cryptolen, /* crypto overhead: header+trailer */
808 firstlen, /* first fragment's payload + overhead length */
809 hdrlen, /* header length w/o driver padding */
810 lastlen, /* last fragment's payload length w/ overhead */
811 lastlen0, /* last fragment's payload length w/o overhead */
812 npkt, /* number of fragments */
813 overlen, /* non-802.11 header overhead per fragment */
814 paylen; /* payload length w/o overhead */
816 hdrlen = ieee80211_anyhdrsize((const void *)wh);
818 /* Account for padding required by the driver. */
819 if (icflags & IEEE80211_F_DATAPAD)
820 paylen = len - roundup(hdrlen, sizeof(u_int32_t));
821 else
822 paylen = len - hdrlen;
824 overlen = IEEE80211_CRC_LEN;
826 if (wk != NULL) {
827 cryptolen = wk->wk_cipher->ic_header +
828 wk->wk_cipher->ic_trailer;
829 paylen -= cryptolen;
830 overlen += cryptolen;
833 npkt = paylen / fraglen;
834 lastlen0 = paylen % fraglen;
836 if (npkt == 0) /* no fragments */
837 lastlen = paylen + overlen;
838 else if (lastlen0 != 0) { /* a short "tail" fragment */
839 lastlen = lastlen0 + overlen;
840 npkt++;
841 } else /* full-length "tail" fragment */
842 lastlen = fraglen + overlen;
844 if (npktp != NULL)
845 *npktp = npkt;
847 if (npkt > 1)
848 firstlen = fraglen + overlen;
849 else
850 firstlen = paylen + overlen;
852 if (debug) {
853 printf("%s: npkt %d firstlen %d lastlen0 %d lastlen %d "
854 "fraglen %d overlen %d len %d rate %d icflags %08x\n",
855 __func__, npkt, firstlen, lastlen0, lastlen, fraglen,
856 overlen, len, rate, icflags);
859 ack = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
860 (wh->i_fc[1] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL;
862 rc = ieee80211_compute_duration1(firstlen + hdrlen,
863 ack, icflags, rate, d0);
864 if (rc == -1)
865 return rc;
867 if (npkt <= 1) {
868 *dn = *d0;
869 return 0;
871 return ieee80211_compute_duration1(lastlen + hdrlen, ack, icflags, rate,
872 dn);
876 * Fragment the frame according to the specified mtu.
877 * The size of the 802.11 header (w/o padding) is provided
878 * so we don't need to recalculate it. We create a new
879 * mbuf for each fragment and chain it through m_nextpkt;
880 * we might be able to optimize this by reusing the original
881 * packet's mbufs but that is significantly more complicated.
883 static int
884 ieee80211_fragment(struct ieee80211com *ic, struct mbuf *m0,
885 u_int hdrsize, u_int ciphdrsize, u_int mtu)
887 struct ieee80211_frame *wh, *whf;
888 struct mbuf *m, *prev, *next;
889 u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
891 IASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
892 IASSERT(m0->m_pkthdr.len > mtu,
893 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
895 wh = mtod(m0, struct ieee80211_frame *);
896 /* NB: mark the first frag; it will be propagated below */
897 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
898 totalhdrsize = hdrsize + ciphdrsize;
899 fragno = 1;
900 off = mtu - ciphdrsize;
901 remainder = m0->m_pkthdr.len - off;
902 prev = m0;
903 do {
904 fragsize = totalhdrsize + remainder;
905 if (fragsize > mtu)
906 fragsize = mtu;
907 IASSERT(fragsize < MCLBYTES,
908 ("fragment size %u too big!", fragsize));
909 if (fragsize > MHLEN)
910 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
911 else
912 m = m_gethdr(M_DONTWAIT, MT_DATA);
913 if (m == NULL)
914 goto bad;
915 /* leave room to prepend any cipher header */
916 m_align(m, fragsize - ciphdrsize);
919 * Form the header in the fragment. Note that since
920 * we mark the first fragment with the MORE_FRAG bit
921 * it automatically is propagated to each fragment; we
922 * need only clear it on the last fragment (done below).
924 whf = mtod(m, struct ieee80211_frame *);
925 memcpy(whf, wh, hdrsize);
926 *(u_int16_t *)&whf->i_seq[0] |= htole16(
927 (fragno & IEEE80211_SEQ_FRAG_MASK) <<
928 IEEE80211_SEQ_FRAG_SHIFT);
929 fragno++;
931 payload = fragsize - totalhdrsize;
932 /* NB: destination is known to be contiguous */
933 m_copydata(m0, off, payload, mtod(m, u_int8_t *) + hdrsize);
934 m->m_len = hdrsize + payload;
935 m->m_pkthdr.len = hdrsize + payload;
936 m->m_flags |= M_FRAG;
938 /* chain up the fragment */
939 prev->m_nextpkt = m;
940 prev = m;
942 /* deduct fragment just formed */
943 remainder -= payload;
944 off += payload;
945 } while (remainder != 0);
946 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
948 /* strip first mbuf now that everything has been copied */
949 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
950 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
952 ic->ic_stats.is_tx_fragframes++;
953 ic->ic_stats.is_tx_frags += fragno-1;
955 return 1;
956 bad:
957 /* reclaim fragments but leave original frame for caller to free */
958 for (m = m0->m_nextpkt; m != NULL; m = next) {
959 next = m->m_nextpkt;
960 m->m_nextpkt = NULL; /* XXX paranoid */
961 m_freem(m);
963 m0->m_nextpkt = NULL;
964 return 0;
968 * Add a supported rates element id to a frame.
970 static u_int8_t *
971 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs)
973 int nrates;
975 *frm++ = IEEE80211_ELEMID_RATES;
976 nrates = rs->rs_nrates;
977 if (nrates > IEEE80211_RATE_SIZE)
978 nrates = IEEE80211_RATE_SIZE;
979 *frm++ = nrates;
980 memcpy(frm, rs->rs_rates, nrates);
981 return frm + nrates;
985 * Add an extended supported rates element id to a frame.
987 static u_int8_t *
988 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs)
991 * Add an extended supported rates element if operating in 11g mode.
993 if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
994 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
995 *frm++ = IEEE80211_ELEMID_XRATES;
996 *frm++ = nrates;
997 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
998 frm += nrates;
1000 return frm;
1004 * Add an ssid elemet to a frame.
1006 static u_int8_t *
1007 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len)
1009 *frm++ = IEEE80211_ELEMID_SSID;
1010 *frm++ = len;
1011 memcpy(frm, ssid, len);
1012 return frm + len;
1016 * Add an erp element to a frame.
1018 static u_int8_t *
1019 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic)
1021 u_int8_t erp;
1023 *frm++ = IEEE80211_ELEMID_ERP;
1024 *frm++ = 1;
1025 erp = 0;
1026 if (ic->ic_nonerpsta != 0)
1027 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1028 if (ic->ic_flags & IEEE80211_F_USEPROT)
1029 erp |= IEEE80211_ERP_USE_PROTECTION;
1030 if (ic->ic_flags & IEEE80211_F_USEBARKER)
1031 erp |= IEEE80211_ERP_LONG_PREAMBLE;
1032 *frm++ = erp;
1033 return frm;
1036 static u_int8_t *
1037 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie)
1039 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2
1040 #define ADDSHORT(frm, v) do { \
1041 frm[0] = (v) & 0xff; \
1042 frm[1] = (v) >> 8; \
1043 frm += 2; \
1044 } while (0)
1045 #define ADDSELECTOR(frm, sel) do { \
1046 memcpy(frm, sel, 4); \
1047 frm += 4; \
1048 } while (0)
1049 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
1050 static const u_int8_t cipher_suite[][4] = {
1051 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */
1052 { WPA_OUI_BYTES, WPA_CSE_TKIP },
1053 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */
1054 { WPA_OUI_BYTES, WPA_CSE_CCMP },
1055 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1056 { WPA_OUI_BYTES, WPA_CSE_NULL },
1058 static const u_int8_t wep104_suite[4] =
1059 { WPA_OUI_BYTES, WPA_CSE_WEP104 };
1060 static const u_int8_t key_mgt_unspec[4] =
1061 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
1062 static const u_int8_t key_mgt_psk[4] =
1063 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
1064 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1065 u_int8_t *frm = ie;
1066 u_int8_t *selcnt;
1068 *frm++ = IEEE80211_ELEMID_VENDOR;
1069 *frm++ = 0; /* length filled in below */
1070 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */
1071 frm += sizeof(oui);
1072 ADDSHORT(frm, WPA_VERSION);
1074 /* XXX filter out CKIP */
1076 /* multicast cipher */
1077 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1078 rsn->rsn_mcastkeylen >= 13)
1079 ADDSELECTOR(frm, wep104_suite);
1080 else
1081 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1083 /* unicast cipher list */
1084 selcnt = frm;
1085 ADDSHORT(frm, 0); /* selector count */
1086 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1087 selcnt[0]++;
1088 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1090 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1091 selcnt[0]++;
1092 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1095 /* authenticator selector list */
1096 selcnt = frm;
1097 ADDSHORT(frm, 0); /* selector count */
1098 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1099 selcnt[0]++;
1100 ADDSELECTOR(frm, key_mgt_unspec);
1102 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1103 selcnt[0]++;
1104 ADDSELECTOR(frm, key_mgt_psk);
1107 /* optional capabilities */
1108 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
1109 ADDSHORT(frm, rsn->rsn_caps);
1111 /* calculate element length */
1112 ie[1] = frm - ie - 2;
1113 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1114 ("WPA IE too big, %u > %zu",
1115 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1116 return frm;
1117 #undef ADDSHORT
1118 #undef ADDSELECTOR
1119 #undef WPA_OUI_BYTES
1122 static u_int8_t *
1123 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie)
1125 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac
1126 #define ADDSHORT(frm, v) do { \
1127 frm[0] = (v) & 0xff; \
1128 frm[1] = (v) >> 8; \
1129 frm += 2; \
1130 } while (0)
1131 #define ADDSELECTOR(frm, sel) do { \
1132 memcpy(frm, sel, 4); \
1133 frm += 4; \
1134 } while (0)
1135 static const u_int8_t cipher_suite[][4] = {
1136 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */
1137 { RSN_OUI_BYTES, RSN_CSE_TKIP },
1138 { RSN_OUI_BYTES, RSN_CSE_WRAP },
1139 { RSN_OUI_BYTES, RSN_CSE_CCMP },
1140 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */
1141 { RSN_OUI_BYTES, RSN_CSE_NULL },
1143 static const u_int8_t wep104_suite[4] =
1144 { RSN_OUI_BYTES, RSN_CSE_WEP104 };
1145 static const u_int8_t key_mgt_unspec[4] =
1146 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
1147 static const u_int8_t key_mgt_psk[4] =
1148 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
1149 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
1150 u_int8_t *frm = ie;
1151 u_int8_t *selcnt;
1153 *frm++ = IEEE80211_ELEMID_RSN;
1154 *frm++ = 0; /* length filled in below */
1155 ADDSHORT(frm, RSN_VERSION);
1157 /* XXX filter out CKIP */
1159 /* multicast cipher */
1160 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
1161 rsn->rsn_mcastkeylen >= 13)
1162 ADDSELECTOR(frm, wep104_suite);
1163 else
1164 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
1166 /* unicast cipher list */
1167 selcnt = frm;
1168 ADDSHORT(frm, 0); /* selector count */
1169 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
1170 selcnt[0]++;
1171 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
1173 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
1174 selcnt[0]++;
1175 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
1178 /* authenticator selector list */
1179 selcnt = frm;
1180 ADDSHORT(frm, 0); /* selector count */
1181 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
1182 selcnt[0]++;
1183 ADDSELECTOR(frm, key_mgt_unspec);
1185 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
1186 selcnt[0]++;
1187 ADDSELECTOR(frm, key_mgt_psk);
1190 /* optional capabilities */
1191 ADDSHORT(frm, rsn->rsn_caps);
1192 /* XXX PMKID */
1194 /* calculate element length */
1195 ie[1] = frm - ie - 2;
1196 IASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
1197 ("RSN IE too big, %u > %zu",
1198 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
1199 return frm;
1200 #undef ADDSELECTOR
1201 #undef ADDSHORT
1202 #undef RSN_OUI_BYTES
1206 * Add a WPA/RSN element to a frame.
1208 static u_int8_t *
1209 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic)
1212 IASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
1213 if (ic->ic_flags & IEEE80211_F_WPA2)
1214 frm = ieee80211_setup_rsn_ie(ic, frm);
1215 if (ic->ic_flags & IEEE80211_F_WPA1)
1216 frm = ieee80211_setup_wpa_ie(ic, frm);
1217 return frm;
1220 #define WME_OUI_BYTES 0x00, 0x50, 0xf2
1222 * Add a WME information element to a frame.
1224 static u_int8_t *
1225 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme)
1227 static const struct ieee80211_wme_info info = {
1228 .wme_id = IEEE80211_ELEMID_VENDOR,
1229 .wme_len = sizeof(struct ieee80211_wme_info) - 2,
1230 .wme_oui = { WME_OUI_BYTES },
1231 .wme_type = WME_OUI_TYPE,
1232 .wme_subtype = WME_INFO_OUI_SUBTYPE,
1233 .wme_version = WME_VERSION,
1234 .wme_info = 0,
1236 memcpy(frm, &info, sizeof(info));
1237 return frm + sizeof(info);
1241 * Add a WME parameters element to a frame.
1243 static u_int8_t *
1244 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme)
1246 #define SM(_v, _f) (((_v) << _f##_S) & _f)
1247 #define ADDSHORT(frm, v) do { \
1248 frm[0] = (v) & 0xff; \
1249 frm[1] = (v) >> 8; \
1250 frm += 2; \
1251 } while (0)
1252 /* NB: this works 'cuz a param has an info at the front */
1253 static const struct ieee80211_wme_info param = {
1254 .wme_id = IEEE80211_ELEMID_VENDOR,
1255 .wme_len = sizeof(struct ieee80211_wme_param) - 2,
1256 .wme_oui = { WME_OUI_BYTES },
1257 .wme_type = WME_OUI_TYPE,
1258 .wme_subtype = WME_PARAM_OUI_SUBTYPE,
1259 .wme_version = WME_VERSION,
1261 int i;
1263 memcpy(frm, &param, sizeof(param));
1264 frm += __offsetof(struct ieee80211_wme_info, wme_info);
1265 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */
1266 *frm++ = 0; /* reserved field */
1267 for (i = 0; i < WME_NUM_AC; i++) {
1268 const struct wmeParams *ac =
1269 &wme->wme_bssChanParams.cap_wmeParams[i];
1270 *frm++ = SM(i, WME_PARAM_ACI)
1271 | SM(ac->wmep_acm, WME_PARAM_ACM)
1272 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1274 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1275 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1277 ADDSHORT(frm, ac->wmep_txopLimit);
1279 return frm;
1280 #undef SM
1281 #undef ADDSHORT
1283 #undef WME_OUI_BYTES
1286 * Send a probe request frame with the specified ssid
1287 * and any optional information element data.
1290 ieee80211_send_probereq(struct ieee80211_node *ni,
1291 const u_int8_t sa[IEEE80211_ADDR_LEN],
1292 const u_int8_t da[IEEE80211_ADDR_LEN],
1293 const u_int8_t bssid[IEEE80211_ADDR_LEN],
1294 const u_int8_t *ssid, size_t ssidlen,
1295 const void *optie, size_t optielen)
1297 struct ieee80211com *ic = ni->ni_ic;
1298 enum ieee80211_phymode mode;
1299 struct ieee80211_frame *wh;
1300 struct mbuf *m;
1301 u_int8_t *frm;
1304 * Hold a reference on the node so it doesn't go away until after
1305 * the xmit is complete all the way in the driver. On error we
1306 * will remove our reference.
1308 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1309 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1310 __func__, __LINE__,
1311 ni, ether_sprintf(ni->ni_macaddr),
1312 ieee80211_node_refcnt(ni)+1);
1313 ieee80211_ref_node(ni);
1316 * prreq frame format
1317 * [tlv] ssid
1318 * [tlv] supported rates
1319 * [tlv] extended supported rates
1320 * [tlv] user-specified ie's
1322 m = ieee80211_getmgtframe(&frm,
1323 2 + IEEE80211_NWID_LEN
1324 + 2 + IEEE80211_RATE_SIZE
1325 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1326 + (optie != NULL ? optielen : 0)
1328 if (m == NULL) {
1329 ic->ic_stats.is_tx_nobuf++;
1330 ieee80211_free_node(ni);
1331 return ENOMEM;
1334 frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1335 mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1336 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]);
1337 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]);
1339 if (optie != NULL) {
1340 memcpy(frm, optie, optielen);
1341 frm += optielen;
1343 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1345 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1346 if (m == NULL)
1347 return ENOMEM;
1348 IASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
1349 m->m_pkthdr.rcvif = (void *)ni;
1351 wh = mtod(m, struct ieee80211_frame *);
1352 ieee80211_send_setup(ic, ni, wh,
1353 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1354 sa, da, bssid);
1355 /* XXX power management? */
1357 IEEE80211_NODE_STAT(ni, tx_probereq);
1358 IEEE80211_NODE_STAT(ni, tx_mgmt);
1360 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1361 "[%s] send probe req on channel %u\n",
1362 ether_sprintf(wh->i_addr1),
1363 ieee80211_chan2ieee(ic, ic->ic_curchan));
1365 IF_ENQUEUE(&ic->ic_mgtq, m);
1366 (*ic->ic_ifp->if_start)(ic->ic_ifp);
1367 return 0;
1371 * Send a management frame. The node is for the destination (or ic_bss
1372 * when in station mode). Nodes other than ic_bss have their reference
1373 * count bumped to reflect our use for an indeterminant time.
1376 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1377 int type, int arg)
1379 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1380 struct mbuf *m;
1381 u_int8_t *frm;
1382 u_int16_t capinfo;
1383 int has_challenge, is_shared_key, ret, timer, status;
1385 IASSERT(ni != NULL, ("null node"));
1388 * Hold a reference on the node so it doesn't go away until after
1389 * the xmit is complete all the way in the driver. On error we
1390 * will remove our reference.
1392 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1393 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1394 __func__, __LINE__,
1395 ni, ether_sprintf(ni->ni_macaddr),
1396 ieee80211_node_refcnt(ni)+1);
1397 ieee80211_ref_node(ni);
1399 timer = 0;
1400 switch (type) {
1401 case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1403 * probe response frame format
1404 * [8] time stamp
1405 * [2] beacon interval
1406 * [2] cabability information
1407 * [tlv] ssid
1408 * [tlv] supported rates
1409 * [tlv] parameter set (FH/DS)
1410 * [tlv] parameter set (IBSS)
1411 * [tlv] extended rate phy (ERP)
1412 * [tlv] extended supported rates
1413 * [tlv] WPA
1414 * [tlv] WME (optional)
1416 m = ieee80211_getmgtframe(&frm,
1418 + sizeof(u_int16_t)
1419 + sizeof(u_int16_t)
1420 + 2 + IEEE80211_NWID_LEN
1421 + 2 + IEEE80211_RATE_SIZE
1422 + 7 /* max(7,3) */
1425 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1426 /* XXX !WPA1+WPA2 fits w/o a cluster */
1427 + (ic->ic_flags & IEEE80211_F_WPA ?
1428 2*sizeof(struct ieee80211_ie_wpa) : 0)
1429 + sizeof(struct ieee80211_wme_param)
1431 if (m == NULL)
1432 senderr(ENOMEM, is_tx_nobuf);
1434 memset(frm, 0, 8); /* timestamp should be filled later */
1435 frm += 8;
1436 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval);
1437 frm += 2;
1438 if (ic->ic_opmode == IEEE80211_M_IBSS)
1439 capinfo = IEEE80211_CAPINFO_IBSS;
1440 else
1441 capinfo = IEEE80211_CAPINFO_ESS;
1442 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1443 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1444 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1445 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1446 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1447 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1448 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1449 *(u_int16_t *)frm = htole16(capinfo);
1450 frm += 2;
1452 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid,
1453 ic->ic_bss->ni_esslen);
1454 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1456 if (ic->ic_phytype == IEEE80211_T_FH) {
1457 *frm++ = IEEE80211_ELEMID_FHPARMS;
1458 *frm++ = 5;
1459 *frm++ = ni->ni_fhdwell & 0x00ff;
1460 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1461 *frm++ = IEEE80211_FH_CHANSET(
1462 ieee80211_chan2ieee(ic, ic->ic_curchan));
1463 *frm++ = IEEE80211_FH_CHANPAT(
1464 ieee80211_chan2ieee(ic, ic->ic_curchan));
1465 *frm++ = ni->ni_fhindex;
1466 } else {
1467 *frm++ = IEEE80211_ELEMID_DSPARMS;
1468 *frm++ = 1;
1469 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan);
1472 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1473 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1474 *frm++ = 2;
1475 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1477 if (ic->ic_flags & IEEE80211_F_WPA)
1478 frm = ieee80211_add_wpa(frm, ic);
1479 if (ic->ic_curmode == IEEE80211_MODE_11G)
1480 frm = ieee80211_add_erp(frm, ic);
1481 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1482 if (ic->ic_flags & IEEE80211_F_WME)
1483 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1484 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1485 break;
1487 case IEEE80211_FC0_SUBTYPE_AUTH:
1488 status = arg >> 16;
1489 arg &= 0xffff;
1490 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1491 arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1492 ni->ni_challenge != NULL);
1495 * Deduce whether we're doing open authentication or
1496 * shared key authentication. We do the latter if
1497 * we're in the middle of a shared key authentication
1498 * handshake or if we're initiating an authentication
1499 * request and configured to use shared key.
1501 is_shared_key = has_challenge ||
1502 arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1503 (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1504 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1506 m = ieee80211_getmgtframe(&frm,
1507 3 * sizeof(u_int16_t)
1508 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1509 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0)
1511 if (m == NULL)
1512 senderr(ENOMEM, is_tx_nobuf);
1514 ((u_int16_t *)frm)[0] =
1515 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1516 : htole16(IEEE80211_AUTH_ALG_OPEN);
1517 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */
1518 ((u_int16_t *)frm)[2] = htole16(status);/* status */
1520 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1521 ((u_int16_t *)frm)[3] =
1522 htole16((IEEE80211_CHALLENGE_LEN << 8) |
1523 IEEE80211_ELEMID_CHALLENGE);
1524 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge,
1525 IEEE80211_CHALLENGE_LEN);
1526 m->m_pkthdr.len = m->m_len =
1527 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN;
1528 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1529 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1530 "[%s] request encrypt frame (%s)\n",
1531 ether_sprintf(ni->ni_macaddr), __func__);
1532 m->m_flags |= M_LINK0; /* WEP-encrypt, please */
1534 } else
1535 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t);
1537 /* XXX not right for shared key */
1538 if (status == IEEE80211_STATUS_SUCCESS)
1539 IEEE80211_NODE_STAT(ni, tx_auth);
1540 else
1541 IEEE80211_NODE_STAT(ni, tx_auth_fail);
1543 if (ic->ic_opmode == IEEE80211_M_STA)
1544 timer = IEEE80211_TRANS_WAIT;
1545 break;
1547 case IEEE80211_FC0_SUBTYPE_DEAUTH:
1548 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1549 "[%s] send station deauthenticate (reason %d)\n",
1550 ether_sprintf(ni->ni_macaddr), arg);
1551 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1552 if (m == NULL)
1553 senderr(ENOMEM, is_tx_nobuf);
1554 *(u_int16_t *)frm = htole16(arg); /* reason */
1555 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1557 IEEE80211_NODE_STAT(ni, tx_deauth);
1558 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1560 ieee80211_node_unauthorize(ni); /* port closed */
1561 break;
1563 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1564 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1566 * asreq frame format
1567 * [2] capability information
1568 * [2] listen interval
1569 * [6*] current AP address (reassoc only)
1570 * [tlv] ssid
1571 * [tlv] supported rates
1572 * [tlv] extended supported rates
1573 * [tlv] WME
1574 * [tlv] user-specified ie's
1576 m = ieee80211_getmgtframe(&frm,
1577 sizeof(u_int16_t)
1578 + sizeof(u_int16_t)
1579 + IEEE80211_ADDR_LEN
1580 + 2 + IEEE80211_NWID_LEN
1581 + 2 + IEEE80211_RATE_SIZE
1582 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1583 + sizeof(struct ieee80211_wme_info)
1584 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1586 if (m == NULL)
1587 senderr(ENOMEM, is_tx_nobuf);
1589 capinfo = 0;
1590 if (ic->ic_opmode == IEEE80211_M_IBSS)
1591 capinfo |= IEEE80211_CAPINFO_IBSS;
1592 else /* IEEE80211_M_STA */
1593 capinfo |= IEEE80211_CAPINFO_ESS;
1594 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1595 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1597 * NB: Some 11a AP's reject the request when
1598 * short premable is set.
1600 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1601 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1602 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1603 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) &&
1604 (ic->ic_caps & IEEE80211_C_SHSLOT))
1605 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1606 *(u_int16_t *)frm = htole16(capinfo);
1607 frm += 2;
1609 *(u_int16_t *)frm = htole16(ic->ic_lintval);
1610 frm += 2;
1612 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1613 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1614 frm += IEEE80211_ADDR_LEN;
1617 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1618 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1619 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1620 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1621 frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1622 if (ic->ic_opt_ie != NULL) {
1623 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1624 frm += ic->ic_opt_ie_len;
1626 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1628 timer = IEEE80211_TRANS_WAIT;
1629 break;
1631 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1632 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1634 * asreq frame format
1635 * [2] capability information
1636 * [2] status
1637 * [2] association ID
1638 * [tlv] supported rates
1639 * [tlv] extended supported rates
1640 * [tlv] WME (if enabled and STA enabled)
1642 m = ieee80211_getmgtframe(&frm,
1643 sizeof(u_int16_t)
1644 + sizeof(u_int16_t)
1645 + sizeof(u_int16_t)
1646 + 2 + IEEE80211_RATE_SIZE
1647 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1648 + sizeof(struct ieee80211_wme_param)
1650 if (m == NULL)
1651 senderr(ENOMEM, is_tx_nobuf);
1653 capinfo = IEEE80211_CAPINFO_ESS;
1654 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1655 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1656 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1657 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1658 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1659 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1660 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1661 *(u_int16_t *)frm = htole16(capinfo);
1662 frm += 2;
1664 *(u_int16_t *)frm = htole16(arg); /* status */
1665 frm += 2;
1667 if (arg == IEEE80211_STATUS_SUCCESS) {
1668 *(u_int16_t *)frm = htole16(ni->ni_associd);
1669 IEEE80211_NODE_STAT(ni, tx_assoc);
1670 } else
1671 IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1672 frm += 2;
1674 frm = ieee80211_add_rates(frm, &ni->ni_rates);
1675 frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1676 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1677 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1678 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1679 break;
1681 case IEEE80211_FC0_SUBTYPE_DISASSOC:
1682 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1683 "[%s] send station disassociate (reason %d)\n",
1684 ether_sprintf(ni->ni_macaddr), arg);
1685 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t));
1686 if (m == NULL)
1687 senderr(ENOMEM, is_tx_nobuf);
1688 *(u_int16_t *)frm = htole16(arg); /* reason */
1689 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t);
1691 IEEE80211_NODE_STAT(ni, tx_disassoc);
1692 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1693 break;
1695 default:
1696 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1697 "[%s] invalid mgmt frame type %u\n",
1698 ether_sprintf(ni->ni_macaddr), type);
1699 senderr(EINVAL, is_tx_unknownmgt);
1700 /* NOTREACHED */
1702 ret = ieee80211_mgmt_output(ic, ni, m, type, timer);
1703 if (ret != 0) {
1704 bad:
1705 ieee80211_free_node(ni);
1707 return ret;
1708 #undef senderr
1712 * Allocate a beacon frame and fillin the appropriate bits.
1714 struct mbuf *
1715 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1716 struct ieee80211_beacon_offsets *bo)
1718 struct ifnet *ifp = ic->ic_ifp;
1719 struct ieee80211_frame *wh;
1720 struct mbuf *m;
1721 int pktlen;
1722 u_int8_t *frm, *efrm;
1723 u_int16_t capinfo;
1724 struct ieee80211_rateset *rs;
1727 * beacon frame format
1728 * [8] time stamp
1729 * [2] beacon interval
1730 * [2] cabability information
1731 * [tlv] ssid
1732 * [tlv] supported rates
1733 * [3] parameter set (DS)
1734 * [tlv] parameter set (IBSS/TIM)
1735 * [tlv] extended rate phy (ERP)
1736 * [tlv] extended supported rates
1737 * [tlv] WME parameters
1738 * [tlv] WPA/RSN parameters
1739 * XXX Vendor-specific OIDs (e.g. Atheros)
1740 * NB: we allocate the max space required for the TIM bitmap.
1742 rs = &ni->ni_rates;
1743 pktlen = 8 /* time stamp */
1744 + sizeof(u_int16_t) /* beacon interval */
1745 + sizeof(u_int16_t) /* capabilities */
1746 + 2 + ni->ni_esslen /* ssid */
1747 + 2 + IEEE80211_RATE_SIZE /* supported rates */
1748 + 2 + 1 /* DS parameters */
1749 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */
1750 + 2 + 1 /* ERP */
1751 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1752 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */
1753 sizeof(struct ieee80211_wme_param) : 0)
1754 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
1755 2*sizeof(struct ieee80211_ie_wpa) : 0)
1757 m = ieee80211_getmgtframe(&frm, pktlen);
1758 if (m == NULL) {
1759 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1760 "%s: cannot get buf; size %u\n", __func__, pktlen);
1761 ic->ic_stats.is_tx_nobuf++;
1762 return NULL;
1765 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
1766 frm += 8;
1767 *(u_int16_t *)frm = htole16(ni->ni_intval);
1768 frm += 2;
1769 if (ic->ic_opmode == IEEE80211_M_IBSS)
1770 capinfo = IEEE80211_CAPINFO_IBSS;
1771 else
1772 capinfo = IEEE80211_CAPINFO_ESS;
1773 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1774 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1775 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1776 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1777 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1778 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1779 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1780 bo->bo_caps = (u_int16_t *)frm;
1781 *(u_int16_t *)frm = htole16(capinfo);
1782 frm += 2;
1783 *frm++ = IEEE80211_ELEMID_SSID;
1784 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1785 *frm++ = ni->ni_esslen;
1786 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1787 frm += ni->ni_esslen;
1788 } else
1789 *frm++ = 0;
1790 frm = ieee80211_add_rates(frm, rs);
1791 if (ic->ic_curmode != IEEE80211_MODE_FH) {
1792 *frm++ = IEEE80211_ELEMID_DSPARMS;
1793 *frm++ = 1;
1794 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1796 bo->bo_tim = frm;
1797 if (ic->ic_opmode == IEEE80211_M_IBSS) {
1798 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1799 *frm++ = 2;
1800 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
1801 bo->bo_tim_len = 0;
1802 } else {
1803 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1805 tie->tim_ie = IEEE80211_ELEMID_TIM;
1806 tie->tim_len = 4; /* length */
1807 tie->tim_count = 0; /* DTIM count */
1808 tie->tim_period = ic->ic_dtim_period; /* DTIM period */
1809 tie->tim_bitctl = 0; /* bitmap control */
1810 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
1811 frm += sizeof(struct ieee80211_tim_ie);
1812 bo->bo_tim_len = 1;
1814 bo->bo_trailer = frm;
1815 if (ic->ic_flags & IEEE80211_F_WME) {
1816 bo->bo_wme = frm;
1817 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1818 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1820 if (ic->ic_flags & IEEE80211_F_WPA)
1821 frm = ieee80211_add_wpa(frm, ic);
1822 if (ic->ic_curmode == IEEE80211_MODE_11G)
1823 frm = ieee80211_add_erp(frm, ic);
1824 efrm = ieee80211_add_xrates(frm, rs);
1825 bo->bo_trailer_len = efrm - bo->bo_trailer;
1826 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *);
1828 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1829 IASSERT(m != NULL, ("no space for 802.11 header?"));
1830 wh = mtod(m, struct ieee80211_frame *);
1831 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1832 IEEE80211_FC0_SUBTYPE_BEACON;
1833 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1834 *(u_int16_t *)wh->i_dur = 0;
1835 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1836 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1837 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1838 *(u_int16_t *)wh->i_seq = 0;
1840 return m;
1844 * Update the dynamic parts of a beacon frame based on the current state.
1847 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1848 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1850 int len_changed = 0;
1851 u_int16_t capinfo;
1853 IEEE80211_BEACON_LOCK(ic);
1854 /* XXX faster to recalculate entirely or just changes? */
1855 if (ic->ic_opmode == IEEE80211_M_IBSS)
1856 capinfo = IEEE80211_CAPINFO_IBSS;
1857 else
1858 capinfo = IEEE80211_CAPINFO_ESS;
1859 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1860 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1861 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1862 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1863 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1864 if (ic->ic_flags & IEEE80211_F_SHSLOT)
1865 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1866 *bo->bo_caps = htole16(capinfo);
1868 if (ic->ic_flags & IEEE80211_F_WME) {
1869 struct ieee80211_wme_state *wme = &ic->ic_wme;
1872 * Check for agressive mode change. When there is
1873 * significant high priority traffic in the BSS
1874 * throttle back BE traffic by using conservative
1875 * parameters. Otherwise BE uses agressive params
1876 * to optimize performance of legacy/non-QoS traffic.
1878 if (wme->wme_flags & WME_F_AGGRMODE) {
1879 if (wme->wme_hipri_traffic >
1880 wme->wme_hipri_switch_thresh) {
1881 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1882 "%s: traffic %u, disable aggressive mode\n",
1883 __func__, wme->wme_hipri_traffic);
1884 wme->wme_flags &= ~WME_F_AGGRMODE;
1885 ieee80211_wme_updateparams_locked(ic);
1886 wme->wme_hipri_traffic =
1887 wme->wme_hipri_switch_hysteresis;
1888 } else
1889 wme->wme_hipri_traffic = 0;
1890 } else {
1891 if (wme->wme_hipri_traffic <=
1892 wme->wme_hipri_switch_thresh) {
1893 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1894 "%s: traffic %u, enable aggressive mode\n",
1895 __func__, wme->wme_hipri_traffic);
1896 wme->wme_flags |= WME_F_AGGRMODE;
1897 ieee80211_wme_updateparams_locked(ic);
1898 wme->wme_hipri_traffic = 0;
1899 } else
1900 wme->wme_hipri_traffic =
1901 wme->wme_hipri_switch_hysteresis;
1903 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
1904 (void) ieee80211_add_wme_param(bo->bo_wme, wme);
1905 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1909 #ifndef IEEE80211_NO_HOSTAP
1910 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/
1911 struct ieee80211_tim_ie *tie =
1912 (struct ieee80211_tim_ie *) bo->bo_tim;
1913 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
1914 u_int timlen, timoff, i;
1916 * ATIM/DTIM needs updating. If it fits in the
1917 * current space allocated then just copy in the
1918 * new bits. Otherwise we need to move any trailing
1919 * data to make room. Note that we know there is
1920 * contiguous space because ieee80211_beacon_allocate
1921 * insures there is space in the mbuf to write a
1922 * maximal-size virtual bitmap (based on ic_max_aid).
1925 * Calculate the bitmap size and offset, copy any
1926 * trailer out of the way, and then copy in the
1927 * new bitmap and update the information element.
1928 * Note that the tim bitmap must contain at least
1929 * one byte and any offset must be even.
1931 if (ic->ic_ps_pending != 0) {
1932 timoff = 128; /* impossibly large */
1933 for (i = 0; i < ic->ic_tim_len; i++)
1934 if (ic->ic_tim_bitmap[i]) {
1935 timoff = i &~ 1;
1936 break;
1938 IASSERT(timoff != 128, ("tim bitmap empty!"));
1939 for (i = ic->ic_tim_len-1; i >= timoff; i--)
1940 if (ic->ic_tim_bitmap[i])
1941 break;
1942 timlen = 1 + (i - timoff);
1943 } else {
1944 timoff = 0;
1945 timlen = 1;
1947 if (timlen != bo->bo_tim_len) {
1948 /* copy up/down trailer */
1949 ovbcopy(bo->bo_trailer, tie->tim_bitmap+timlen,
1950 bo->bo_trailer_len);
1951 bo->bo_trailer = tie->tim_bitmap+timlen;
1952 bo->bo_wme = bo->bo_trailer;
1953 bo->bo_tim_len = timlen;
1955 /* update information element */
1956 tie->tim_len = 3 + timlen;
1957 tie->tim_bitctl = timoff;
1958 len_changed = 1;
1960 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
1961 bo->bo_tim_len);
1963 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
1965 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1966 "%s: TIM updated, pending %u, off %u, len %u\n",
1967 __func__, ic->ic_ps_pending, timoff, timlen);
1969 /* count down DTIM period */
1970 if (tie->tim_count == 0)
1971 tie->tim_count = tie->tim_period - 1;
1972 else
1973 tie->tim_count--;
1974 /* update state for buffered multicast frames on DTIM */
1975 if (mcast && (tie->tim_count == 1 || tie->tim_period == 1))
1976 tie->tim_bitctl |= 1;
1977 else
1978 tie->tim_bitctl &= ~1;
1980 #endif /* !IEEE80211_NO_HOSTAP */
1981 IEEE80211_BEACON_UNLOCK(ic);
1983 return len_changed;
1987 * Save an outbound packet for a node in power-save sleep state.
1988 * The new packet is placed on the node's saved queue, and the TIM
1989 * is changed, if necessary.
1991 void
1992 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni,
1993 struct mbuf *m)
1995 int qlen, age;
1997 IEEE80211_NODE_SAVEQ_LOCK(ni);
1998 if (IF_QFULL(&ni->ni_savedq)) {
1999 IF_DROP(&ni->ni_savedq);
2000 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2001 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
2002 "[%s] pwr save q overflow, drops %d (size %d)\n",
2003 ether_sprintf(ni->ni_macaddr),
2004 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
2005 #ifdef IEEE80211_DEBUG
2006 if (ieee80211_msg_dumppkts(ic))
2007 ieee80211_dump_pkt(mtod(m, void *), m->m_len, -1, -1);
2008 #endif
2009 m_freem(m);
2010 return;
2013 * Tag the frame with it's expiry time and insert
2014 * it in the queue. The aging interval is 4 times
2015 * the listen interval specified by the station.
2016 * Frames that sit around too long are reclaimed
2017 * using this information.
2019 /* XXX handle overflow? */
2020 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */
2021 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
2022 IEEE80211_NODE_SAVEQ_UNLOCK(ni);
2024 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
2025 "[%s] save frame with age %d, %u now queued\n",
2026 ether_sprintf(ni->ni_macaddr), age, qlen);
2028 if (qlen == 1)
2029 ic->ic_set_tim(ni, 1);