Try to fixup the mess of mdoc(7)/man(7) mixture as created by the merge.
[netbsd-mini2440.git] / sys / opencrypto / cryptosoft.c
blob6759800f15d061dfb8f3fd5f406e246f065560b3
1 /* $NetBSD: cryptosoft.c,v 1.24 2009/03/25 01:26:13 darran Exp $ */
2 /* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
3 /* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
5 /*
6 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
8 * This code was written by Angelos D. Keromytis in Athens, Greece, in
9 * February 2000. Network Security Technologies Inc. (NSTI) kindly
10 * supported the development of this code.
12 * Copyright (c) 2000, 2001 Angelos D. Keromytis
14 * Permission to use, copy, and modify this software with or without fee
15 * is hereby granted, provided that this entire notice is included in
16 * all source code copies of any software which is or includes a copy or
17 * modification of this software.
19 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23 * PURPOSE.
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.24 2009/03/25 01:26:13 darran Exp $");
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/mbuf.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
36 #include "opt_ocf.h"
37 #include <opencrypto/cryptodev.h>
38 #include <opencrypto/cryptosoft.h>
39 #include <opencrypto/xform.h>
41 #include <opencrypto/cryptosoft_xform.c>
43 union authctx {
44 MD5_CTX md5ctx;
45 SHA1_CTX sha1ctx;
46 RMD160_CTX rmd160ctx;
47 SHA256_CTX sha256ctx;
48 SHA384_CTX sha384ctx;
49 SHA512_CTX sha512ctx;
52 struct swcr_data **swcr_sessions = NULL;
53 u_int32_t swcr_sesnum = 0;
54 int32_t swcr_id = -1;
56 #define COPYBACK(x, a, b, c, d) \
57 (x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
58 : cuio_copyback((struct uio *)a,b,c,d)
59 #define COPYDATA(x, a, b, c, d) \
60 (x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
61 : cuio_copydata((struct uio *)a,b,c,d)
63 static int swcr_encdec(struct cryptodesc *, struct swcr_data *, void *, int);
64 static int swcr_compdec(struct cryptodesc *, struct swcr_data *, void *, int);
65 static int swcr_process(void *, struct cryptop *, int);
66 static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
67 static int swcr_freesession(void *, u_int64_t);
70 * Apply a symmetric encryption/decryption algorithm.
72 static int
73 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, void *bufv,
74 int outtype)
76 char *buf = bufv;
77 unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
78 unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
79 const struct swcr_enc_xform *exf;
80 int i, k, j, blks;
81 int count, ind;
83 exf = sw->sw_exf;
84 blks = exf->enc_xform->blocksize;
86 /* Check for non-padded data */
87 if (crd->crd_len % blks)
88 return EINVAL;
90 /* Initialize the IV */
91 if (crd->crd_flags & CRD_F_ENCRYPT) {
92 /* IV explicitly provided ? */
93 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
94 memcpy(iv, crd->crd_iv, blks);
95 else {
96 /* Get random IV */
97 for (i = 0;
98 i + sizeof (u_int32_t) < EALG_MAX_BLOCK_LEN;
99 i += sizeof (u_int32_t)) {
100 u_int32_t temp = arc4random();
102 memcpy(iv + i, &temp, sizeof(u_int32_t));
105 * What if the block size is not a multiple
106 * of sizeof (u_int32_t), which is the size of
107 * what arc4random() returns ?
109 if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
110 u_int32_t temp = arc4random();
112 bcopy (&temp, iv + i,
113 EALG_MAX_BLOCK_LEN - i);
117 /* Do we need to write the IV */
118 if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
119 COPYBACK(outtype, buf, crd->crd_inject, blks, iv);
122 } else { /* Decryption */
123 /* IV explicitly provided ? */
124 if (crd->crd_flags & CRD_F_IV_EXPLICIT)
125 memcpy(iv, crd->crd_iv, blks);
126 else {
127 /* Get IV off buf */
128 COPYDATA(outtype, buf, crd->crd_inject, blks, iv);
132 ivp = iv;
134 if (outtype == CRYPTO_BUF_CONTIG) {
135 if (crd->crd_flags & CRD_F_ENCRYPT) {
136 for (i = crd->crd_skip;
137 i < crd->crd_skip + crd->crd_len; i += blks) {
138 /* XOR with the IV/previous block, as appropriate. */
139 if (i == crd->crd_skip)
140 for (k = 0; k < blks; k++)
141 buf[i + k] ^= ivp[k];
142 else
143 for (k = 0; k < blks; k++)
144 buf[i + k] ^= buf[i + k - blks];
145 exf->encrypt(sw->sw_kschedule, buf + i);
147 } else { /* Decrypt */
149 * Start at the end, so we don't need to keep the encrypted
150 * block as the IV for the next block.
152 for (i = crd->crd_skip + crd->crd_len - blks;
153 i >= crd->crd_skip; i -= blks) {
154 exf->decrypt(sw->sw_kschedule, buf + i);
156 /* XOR with the IV/previous block, as appropriate */
157 if (i == crd->crd_skip)
158 for (k = 0; k < blks; k++)
159 buf[i + k] ^= ivp[k];
160 else
161 for (k = 0; k < blks; k++)
162 buf[i + k] ^= buf[i + k - blks];
166 return 0;
167 } else if (outtype == CRYPTO_BUF_MBUF) {
168 struct mbuf *m = (struct mbuf *) buf;
170 /* Find beginning of data */
171 m = m_getptr(m, crd->crd_skip, &k);
172 if (m == NULL)
173 return EINVAL;
175 i = crd->crd_len;
177 while (i > 0) {
179 * If there's insufficient data at the end of
180 * an mbuf, we have to do some copying.
182 if (m->m_len < k + blks && m->m_len != k) {
183 m_copydata(m, k, blks, blk);
185 /* Actual encryption/decryption */
186 if (crd->crd_flags & CRD_F_ENCRYPT) {
187 /* XOR with previous block */
188 for (j = 0; j < blks; j++)
189 blk[j] ^= ivp[j];
191 exf->encrypt(sw->sw_kschedule, blk);
194 * Keep encrypted block for XOR'ing
195 * with next block
197 memcpy(iv, blk, blks);
198 ivp = iv;
199 } else { /* decrypt */
201 * Keep encrypted block for XOR'ing
202 * with next block
204 if (ivp == iv)
205 memcpy(piv, blk, blks);
206 else
207 memcpy(iv, blk, blks);
209 exf->decrypt(sw->sw_kschedule, blk);
211 /* XOR with previous block */
212 for (j = 0; j < blks; j++)
213 blk[j] ^= ivp[j];
215 if (ivp == iv)
216 memcpy(iv, piv, blks);
217 else
218 ivp = iv;
221 /* Copy back decrypted block */
222 m_copyback(m, k, blks, blk);
224 /* Advance pointer */
225 m = m_getptr(m, k + blks, &k);
226 if (m == NULL)
227 return EINVAL;
229 i -= blks;
231 /* Could be done... */
232 if (i == 0)
233 break;
236 /* Skip possibly empty mbufs */
237 if (k == m->m_len) {
238 for (m = m->m_next; m && m->m_len == 0;
239 m = m->m_next)
241 k = 0;
244 /* Sanity check */
245 if (m == NULL)
246 return EINVAL;
249 * Warning: idat may point to garbage here, but
250 * we only use it in the while() loop, only if
251 * there are indeed enough data.
253 idat = mtod(m, unsigned char *) + k;
255 while (m->m_len >= k + blks && i > 0) {
256 if (crd->crd_flags & CRD_F_ENCRYPT) {
257 /* XOR with previous block/IV */
258 for (j = 0; j < blks; j++)
259 idat[j] ^= ivp[j];
261 exf->encrypt(sw->sw_kschedule, idat);
262 ivp = idat;
263 } else { /* decrypt */
265 * Keep encrypted block to be used
266 * in next block's processing.
268 if (ivp == iv)
269 memcpy(piv, idat, blks);
270 else
271 memcpy(iv, idat, blks);
273 exf->decrypt(sw->sw_kschedule, idat);
275 /* XOR with previous block/IV */
276 for (j = 0; j < blks; j++)
277 idat[j] ^= ivp[j];
279 if (ivp == iv)
280 memcpy(iv, piv, blks);
281 else
282 ivp = iv;
285 idat += blks;
286 k += blks;
287 i -= blks;
291 return 0; /* Done with mbuf encryption/decryption */
292 } else if (outtype == CRYPTO_BUF_IOV) {
293 struct uio *uio = (struct uio *) buf;
295 /* Find beginning of data */
296 count = crd->crd_skip;
297 ind = cuio_getptr(uio, count, &k);
298 if (ind == -1)
299 return EINVAL;
301 i = crd->crd_len;
303 while (i > 0) {
305 * If there's insufficient data at the end,
306 * we have to do some copying.
308 if (uio->uio_iov[ind].iov_len < k + blks &&
309 uio->uio_iov[ind].iov_len != k) {
310 cuio_copydata(uio, k, blks, blk);
312 /* Actual encryption/decryption */
313 if (crd->crd_flags & CRD_F_ENCRYPT) {
314 /* XOR with previous block */
315 for (j = 0; j < blks; j++)
316 blk[j] ^= ivp[j];
318 exf->encrypt(sw->sw_kschedule, blk);
321 * Keep encrypted block for XOR'ing
322 * with next block
324 memcpy(iv, blk, blks);
325 ivp = iv;
326 } else { /* decrypt */
328 * Keep encrypted block for XOR'ing
329 * with next block
331 if (ivp == iv)
332 memcpy(piv, blk, blks);
333 else
334 memcpy(iv, blk, blks);
336 exf->decrypt(sw->sw_kschedule, blk);
338 /* XOR with previous block */
339 for (j = 0; j < blks; j++)
340 blk[j] ^= ivp[j];
342 if (ivp == iv)
343 memcpy(iv, piv, blks);
344 else
345 ivp = iv;
348 /* Copy back decrypted block */
349 cuio_copyback(uio, k, blks, blk);
351 count += blks;
353 /* Advance pointer */
354 ind = cuio_getptr(uio, count, &k);
355 if (ind == -1)
356 return (EINVAL);
358 i -= blks;
360 /* Could be done... */
361 if (i == 0)
362 break;
366 * Warning: idat may point to garbage here, but
367 * we only use it in the while() loop, only if
368 * there are indeed enough data.
370 idat = ((char *)uio->uio_iov[ind].iov_base) + k;
372 while (uio->uio_iov[ind].iov_len >= k + blks &&
373 i > 0) {
374 if (crd->crd_flags & CRD_F_ENCRYPT) {
375 /* XOR with previous block/IV */
376 for (j = 0; j < blks; j++)
377 idat[j] ^= ivp[j];
379 exf->encrypt(sw->sw_kschedule, idat);
380 ivp = idat;
381 } else { /* decrypt */
383 * Keep encrypted block to be used
384 * in next block's processing.
386 if (ivp == iv)
387 memcpy(piv, idat, blks);
388 else
389 memcpy(iv, idat, blks);
391 exf->decrypt(sw->sw_kschedule, idat);
393 /* XOR with previous block/IV */
394 for (j = 0; j < blks; j++)
395 idat[j] ^= ivp[j];
397 if (ivp == iv)
398 memcpy(iv, piv, blks);
399 else
400 ivp = iv;
403 idat += blks;
404 count += blks;
405 k += blks;
406 i -= blks;
409 return 0; /* Done with mbuf encryption/decryption */
412 /* Unreachable */
413 return EINVAL;
417 * Compute keyed-hash authenticator.
420 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
421 struct swcr_data *sw, void *buf, int outtype)
423 unsigned char aalg[AALG_MAX_RESULT_LEN];
424 const struct swcr_auth_hash *axf;
425 union authctx ctx;
426 int err;
428 if (sw->sw_ictx == 0)
429 return EINVAL;
431 axf = sw->sw_axf;
433 memcpy(&ctx, sw->sw_ictx, axf->auth_hash->ctxsize);
435 switch (outtype) {
436 case CRYPTO_BUF_CONTIG:
437 axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
438 break;
439 case CRYPTO_BUF_MBUF:
440 err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
441 (int (*)(void*, void *, unsigned int)) axf->Update,
442 (void *) &ctx);
443 if (err)
444 return err;
445 break;
446 case CRYPTO_BUF_IOV:
447 err = cuio_apply((struct uio *) buf, crd->crd_skip,
448 crd->crd_len,
449 (int (*)(void *, void *, unsigned int)) axf->Update,
450 (void *) &ctx);
451 if (err) {
452 return err;
454 break;
455 default:
456 return EINVAL;
459 switch (sw->sw_alg) {
460 case CRYPTO_MD5_HMAC:
461 case CRYPTO_MD5_HMAC_96:
462 case CRYPTO_SHA1_HMAC:
463 case CRYPTO_SHA1_HMAC_96:
464 case CRYPTO_SHA2_HMAC:
465 case CRYPTO_RIPEMD160_HMAC:
466 case CRYPTO_RIPEMD160_HMAC_96:
467 if (sw->sw_octx == NULL)
468 return EINVAL;
470 axf->Final(aalg, &ctx);
471 memcpy(&ctx, sw->sw_octx, axf->auth_hash->ctxsize);
472 axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
473 axf->Final(aalg, &ctx);
474 break;
476 case CRYPTO_MD5_KPDK:
477 case CRYPTO_SHA1_KPDK:
478 if (sw->sw_octx == NULL)
479 return EINVAL;
481 axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
482 axf->Final(aalg, &ctx);
483 break;
485 case CRYPTO_NULL_HMAC:
486 case CRYPTO_MD5:
487 case CRYPTO_SHA1:
488 axf->Final(aalg, &ctx);
489 break;
492 /* Inject the authentication data */
493 switch (outtype) {
494 case CRYPTO_BUF_CONTIG:
495 (void)memcpy((char *)buf + crd->crd_inject, aalg,
496 axf->auth_hash->authsize);
497 break;
498 case CRYPTO_BUF_MBUF:
499 m_copyback((struct mbuf *) buf, crd->crd_inject,
500 axf->auth_hash->authsize, aalg);
501 break;
502 case CRYPTO_BUF_IOV:
503 memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
504 break;
505 default:
506 return EINVAL;
508 return 0;
512 * Apply a compression/decompression algorithm
514 static int
515 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
516 void *buf, int outtype)
518 u_int8_t *data, *out;
519 const struct swcr_comp_algo *cxf;
520 int adj;
521 u_int32_t result;
523 cxf = sw->sw_cxf;
525 /* We must handle the whole buffer of data in one time
526 * then if there is not all the data in the mbuf, we must
527 * copy in a buffer.
530 data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
531 if (data == NULL)
532 return (EINVAL);
533 COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
535 if (crd->crd_flags & CRD_F_COMP)
536 result = cxf->compress(data, crd->crd_len, &out);
537 else
538 result = cxf->decompress(data, crd->crd_len, &out);
540 free(data, M_CRYPTO_DATA);
541 if (result == 0)
542 return EINVAL;
544 /* Copy back the (de)compressed data. m_copyback is
545 * extending the mbuf as necessary.
547 sw->sw_size = result;
548 /* Check the compressed size when doing compression */
549 if (crd->crd_flags & CRD_F_COMP) {
550 if (result > crd->crd_len) {
551 /* Compression was useless, we lost time */
552 free(out, M_CRYPTO_DATA);
553 return 0;
557 COPYBACK(outtype, buf, crd->crd_skip, result, out);
558 if (result < crd->crd_len) {
559 adj = result - crd->crd_len;
560 if (outtype == CRYPTO_BUF_MBUF) {
561 adj = result - crd->crd_len;
562 m_adj((struct mbuf *)buf, adj);
564 /* Don't adjust the iov_len, it breaks the kmem_free */
566 free(out, M_CRYPTO_DATA);
567 return 0;
571 * Generate a new software session.
573 static int
574 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
576 struct swcr_data **swd;
577 const struct swcr_auth_hash *axf;
578 const struct swcr_enc_xform *txf;
579 const struct swcr_comp_algo *cxf;
580 u_int32_t i;
581 int k, error;
583 if (sid == NULL || cri == NULL)
584 return EINVAL;
586 if (swcr_sessions) {
587 for (i = 1; i < swcr_sesnum; i++)
588 if (swcr_sessions[i] == NULL)
589 break;
590 } else
591 i = 1; /* NB: to silence compiler warning */
593 if (swcr_sessions == NULL || i == swcr_sesnum) {
594 if (swcr_sessions == NULL) {
595 i = 1; /* We leave swcr_sessions[0] empty */
596 swcr_sesnum = CRYPTO_SW_SESSIONS;
597 } else
598 swcr_sesnum *= 2;
600 swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
601 M_CRYPTO_DATA, M_NOWAIT);
602 if (swd == NULL) {
603 /* Reset session number */
604 if (swcr_sesnum == CRYPTO_SW_SESSIONS)
605 swcr_sesnum = 0;
606 else
607 swcr_sesnum /= 2;
608 return ENOBUFS;
611 memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
613 /* Copy existing sessions */
614 if (swcr_sessions) {
615 memcpy(swd, swcr_sessions,
616 (swcr_sesnum / 2) * sizeof(struct swcr_data *));
617 free(swcr_sessions, M_CRYPTO_DATA);
620 swcr_sessions = swd;
623 swd = &swcr_sessions[i];
624 *sid = i;
626 while (cri) {
627 *swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
628 if (*swd == NULL) {
629 swcr_freesession(NULL, i);
630 return ENOBUFS;
632 memset(*swd, 0, sizeof(struct swcr_data));
634 switch (cri->cri_alg) {
635 case CRYPTO_DES_CBC:
636 txf = &swcr_enc_xform_des;
637 goto enccommon;
638 case CRYPTO_3DES_CBC:
639 txf = &swcr_enc_xform_3des;
640 goto enccommon;
641 case CRYPTO_BLF_CBC:
642 txf = &swcr_enc_xform_blf;
643 goto enccommon;
644 case CRYPTO_CAST_CBC:
645 txf = &swcr_enc_xform_cast5;
646 goto enccommon;
647 case CRYPTO_SKIPJACK_CBC:
648 txf = &swcr_enc_xform_skipjack;
649 goto enccommon;
650 case CRYPTO_RIJNDAEL128_CBC:
651 txf = &swcr_enc_xform_rijndael128;
652 goto enccommon;
653 case CRYPTO_NULL_CBC:
654 txf = &swcr_enc_xform_null;
655 goto enccommon;
656 enccommon:
657 error = txf->setkey(&((*swd)->sw_kschedule),
658 cri->cri_key, cri->cri_klen / 8);
659 if (error) {
660 swcr_freesession(NULL, i);
661 return error;
663 (*swd)->sw_exf = txf;
664 break;
666 case CRYPTO_MD5_HMAC:
667 axf = &swcr_auth_hash_hmac_md5;
668 goto authcommon;
669 case CRYPTO_MD5_HMAC_96:
670 axf = &swcr_auth_hash_hmac_md5_96;
671 goto authcommon;
672 case CRYPTO_SHA1_HMAC:
673 axf = &swcr_auth_hash_hmac_sha1;
674 goto authcommon;
675 case CRYPTO_SHA1_HMAC_96:
676 axf = &swcr_auth_hash_hmac_sha1_96;
677 goto authcommon;
678 case CRYPTO_SHA2_HMAC:
679 if (cri->cri_klen == 256)
680 axf = &swcr_auth_hash_hmac_sha2_256;
681 else if (cri->cri_klen == 384)
682 axf = &swcr_auth_hash_hmac_sha2_384;
683 else if (cri->cri_klen == 512)
684 axf = &swcr_auth_hash_hmac_sha2_512;
685 else {
686 swcr_freesession(NULL, i);
687 return EINVAL;
689 goto authcommon;
690 case CRYPTO_NULL_HMAC:
691 axf = &swcr_auth_hash_null;
692 goto authcommon;
693 case CRYPTO_RIPEMD160_HMAC:
694 axf = &swcr_auth_hash_hmac_ripemd_160;
695 goto authcommon;
696 case CRYPTO_RIPEMD160_HMAC_96:
697 axf = &swcr_auth_hash_hmac_ripemd_160_96;
698 goto authcommon; /* leave this for safety */
699 authcommon:
700 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
701 M_CRYPTO_DATA, M_NOWAIT);
702 if ((*swd)->sw_ictx == NULL) {
703 swcr_freesession(NULL, i);
704 return ENOBUFS;
707 (*swd)->sw_octx = malloc(axf->auth_hash->ctxsize,
708 M_CRYPTO_DATA, M_NOWAIT);
709 if ((*swd)->sw_octx == NULL) {
710 swcr_freesession(NULL, i);
711 return ENOBUFS;
714 for (k = 0; k < cri->cri_klen / 8; k++)
715 cri->cri_key[k] ^= HMAC_IPAD_VAL;
717 axf->Init((*swd)->sw_ictx);
718 axf->Update((*swd)->sw_ictx, cri->cri_key,
719 cri->cri_klen / 8);
720 axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
721 HMAC_BLOCK_LEN - (cri->cri_klen / 8));
723 for (k = 0; k < cri->cri_klen / 8; k++)
724 cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
726 axf->Init((*swd)->sw_octx);
727 axf->Update((*swd)->sw_octx, cri->cri_key,
728 cri->cri_klen / 8);
729 axf->Update((*swd)->sw_octx, hmac_opad_buffer,
730 HMAC_BLOCK_LEN - (cri->cri_klen / 8));
732 for (k = 0; k < cri->cri_klen / 8; k++)
733 cri->cri_key[k] ^= HMAC_OPAD_VAL;
734 (*swd)->sw_axf = axf;
735 break;
737 case CRYPTO_MD5_KPDK:
738 axf = &swcr_auth_hash_key_md5;
739 goto auth2common;
741 case CRYPTO_SHA1_KPDK:
742 axf = &swcr_auth_hash_key_sha1;
743 auth2common:
744 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
745 M_CRYPTO_DATA, M_NOWAIT);
746 if ((*swd)->sw_ictx == NULL) {
747 swcr_freesession(NULL, i);
748 return ENOBUFS;
751 /* Store the key so we can "append" it to the payload */
752 (*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
753 M_NOWAIT);
754 if ((*swd)->sw_octx == NULL) {
755 swcr_freesession(NULL, i);
756 return ENOBUFS;
759 (*swd)->sw_klen = cri->cri_klen / 8;
760 memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
761 axf->Init((*swd)->sw_ictx);
762 axf->Update((*swd)->sw_ictx, cri->cri_key,
763 cri->cri_klen / 8);
764 axf->Final(NULL, (*swd)->sw_ictx);
765 (*swd)->sw_axf = axf;
766 break;
768 case CRYPTO_MD5:
769 axf = &swcr_auth_hash_md5;
770 goto auth3common;
772 case CRYPTO_SHA1:
773 axf = &swcr_auth_hash_sha1;
774 auth3common:
775 (*swd)->sw_ictx = malloc(axf->auth_hash->ctxsize,
776 M_CRYPTO_DATA, M_NOWAIT);
777 if ((*swd)->sw_ictx == NULL) {
778 swcr_freesession(NULL, i);
779 return ENOBUFS;
782 axf->Init((*swd)->sw_ictx);
783 (*swd)->sw_axf = axf;
784 break;
786 case CRYPTO_DEFLATE_COMP:
787 cxf = &swcr_comp_algo_deflate;
788 (*swd)->sw_cxf = cxf;
789 break;
791 case CRYPTO_GZIP_COMP:
792 cxf = &swcr_comp_algo_gzip;
793 (*swd)->sw_cxf = cxf;
794 break;
795 default:
796 swcr_freesession(NULL, i);
797 return EINVAL;
800 (*swd)->sw_alg = cri->cri_alg;
801 cri = cri->cri_next;
802 swd = &((*swd)->sw_next);
804 return 0;
808 * Free a session.
810 static int
811 swcr_freesession(void *arg, u_int64_t tid)
813 struct swcr_data *swd;
814 const struct swcr_enc_xform *txf;
815 const struct swcr_auth_hash *axf;
816 const struct swcr_comp_algo *cxf;
817 u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
819 if (sid > swcr_sesnum || swcr_sessions == NULL ||
820 swcr_sessions[sid] == NULL)
821 return EINVAL;
823 /* Silently accept and return */
824 if (sid == 0)
825 return 0;
827 while ((swd = swcr_sessions[sid]) != NULL) {
828 swcr_sessions[sid] = swd->sw_next;
830 switch (swd->sw_alg) {
831 case CRYPTO_DES_CBC:
832 case CRYPTO_3DES_CBC:
833 case CRYPTO_BLF_CBC:
834 case CRYPTO_CAST_CBC:
835 case CRYPTO_SKIPJACK_CBC:
836 case CRYPTO_RIJNDAEL128_CBC:
837 case CRYPTO_NULL_CBC:
838 txf = swd->sw_exf;
840 if (swd->sw_kschedule)
841 txf->zerokey(&(swd->sw_kschedule));
842 break;
844 case CRYPTO_MD5_HMAC:
845 case CRYPTO_MD5_HMAC_96:
846 case CRYPTO_SHA1_HMAC:
847 case CRYPTO_SHA1_HMAC_96:
848 case CRYPTO_SHA2_HMAC:
849 case CRYPTO_RIPEMD160_HMAC:
850 case CRYPTO_RIPEMD160_HMAC_96:
851 case CRYPTO_NULL_HMAC:
852 axf = swd->sw_axf;
854 if (swd->sw_ictx) {
855 memset(swd->sw_ictx, 0, axf->auth_hash->ctxsize);
856 free(swd->sw_ictx, M_CRYPTO_DATA);
858 if (swd->sw_octx) {
859 memset(swd->sw_octx, 0, axf->auth_hash->ctxsize);
860 free(swd->sw_octx, M_CRYPTO_DATA);
862 break;
864 case CRYPTO_MD5_KPDK:
865 case CRYPTO_SHA1_KPDK:
866 axf = swd->sw_axf;
868 if (swd->sw_ictx) {
869 memset(swd->sw_ictx, 0, axf->auth_hash->ctxsize);
870 free(swd->sw_ictx, M_CRYPTO_DATA);
872 if (swd->sw_octx) {
873 memset(swd->sw_octx, 0, swd->sw_klen);
874 free(swd->sw_octx, M_CRYPTO_DATA);
876 break;
878 case CRYPTO_MD5:
879 case CRYPTO_SHA1:
880 axf = swd->sw_axf;
882 if (swd->sw_ictx)
883 free(swd->sw_ictx, M_CRYPTO_DATA);
884 break;
886 case CRYPTO_DEFLATE_COMP:
887 case CRYPTO_GZIP_COMP:
888 cxf = swd->sw_cxf;
889 break;
892 free(swd, M_CRYPTO_DATA);
894 return 0;
898 * Process a software request.
900 static int
901 swcr_process(void *arg, struct cryptop *crp, int hint)
903 struct cryptodesc *crd;
904 struct swcr_data *sw;
905 u_int32_t lid;
906 int type;
908 /* Sanity check */
909 if (crp == NULL)
910 return EINVAL;
912 if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
913 crp->crp_etype = EINVAL;
914 goto done;
917 lid = crp->crp_sid & 0xffffffff;
918 if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
919 crp->crp_etype = ENOENT;
920 goto done;
923 if (crp->crp_flags & CRYPTO_F_IMBUF) {
924 type = CRYPTO_BUF_MBUF;
925 } else if (crp->crp_flags & CRYPTO_F_IOV) {
926 type = CRYPTO_BUF_IOV;
927 } else {
928 type = CRYPTO_BUF_CONTIG;
931 /* Go through crypto descriptors, processing as we go */
932 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
934 * Find the crypto context.
936 * XXX Note that the logic here prevents us from having
937 * XXX the same algorithm multiple times in a session
938 * XXX (or rather, we can but it won't give us the right
939 * XXX results). To do that, we'd need some way of differentiating
940 * XXX between the various instances of an algorithm (so we can
941 * XXX locate the correct crypto context).
943 for (sw = swcr_sessions[lid];
944 sw && sw->sw_alg != crd->crd_alg;
945 sw = sw->sw_next)
948 /* No such context ? */
949 if (sw == NULL) {
950 crp->crp_etype = EINVAL;
951 goto done;
954 switch (sw->sw_alg) {
955 case CRYPTO_DES_CBC:
956 case CRYPTO_3DES_CBC:
957 case CRYPTO_BLF_CBC:
958 case CRYPTO_CAST_CBC:
959 case CRYPTO_SKIPJACK_CBC:
960 case CRYPTO_RIJNDAEL128_CBC:
961 if ((crp->crp_etype = swcr_encdec(crd, sw,
962 crp->crp_buf, type)) != 0)
963 goto done;
964 break;
965 case CRYPTO_NULL_CBC:
966 crp->crp_etype = 0;
967 break;
968 case CRYPTO_MD5_HMAC:
969 case CRYPTO_MD5_HMAC_96:
970 case CRYPTO_SHA1_HMAC:
971 case CRYPTO_SHA1_HMAC_96:
972 case CRYPTO_SHA2_HMAC:
973 case CRYPTO_RIPEMD160_HMAC:
974 case CRYPTO_RIPEMD160_HMAC_96:
975 case CRYPTO_NULL_HMAC:
976 case CRYPTO_MD5_KPDK:
977 case CRYPTO_SHA1_KPDK:
978 case CRYPTO_MD5:
979 case CRYPTO_SHA1:
980 if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
981 crp->crp_buf, type)) != 0)
982 goto done;
983 break;
985 case CRYPTO_DEFLATE_COMP:
986 case CRYPTO_GZIP_COMP:
987 DPRINTF(("swcr_process: compdec for %d\n", sw->sw_alg));
988 if ((crp->crp_etype = swcr_compdec(crd, sw,
989 crp->crp_buf, type)) != 0)
990 goto done;
991 else
992 crp->crp_olen = (int)sw->sw_size;
993 break;
995 default:
996 /* Unknown/unsupported algorithm */
997 crp->crp_etype = EINVAL;
998 goto done;
1002 done:
1003 DPRINTF(("request %08x done\n", (uint32_t)crp));
1004 crypto_done(crp);
1005 return 0;
1008 static void
1009 swcr_init(void)
1011 swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1012 if (swcr_id < 0) {
1013 /* This should never happen */
1014 panic("Software crypto device cannot initialize!");
1017 crypto_register(swcr_id, CRYPTO_DES_CBC,
1018 0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1019 #define REGISTER(alg) \
1020 crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
1022 REGISTER(CRYPTO_3DES_CBC);
1023 REGISTER(CRYPTO_BLF_CBC);
1024 REGISTER(CRYPTO_CAST_CBC);
1025 REGISTER(CRYPTO_SKIPJACK_CBC);
1026 REGISTER(CRYPTO_NULL_CBC);
1027 REGISTER(CRYPTO_MD5_HMAC);
1028 REGISTER(CRYPTO_MD5_HMAC_96);
1029 REGISTER(CRYPTO_SHA1_HMAC);
1030 REGISTER(CRYPTO_SHA1_HMAC_96);
1031 REGISTER(CRYPTO_SHA2_HMAC);
1032 REGISTER(CRYPTO_RIPEMD160_HMAC);
1033 REGISTER(CRYPTO_RIPEMD160_HMAC_96);
1034 REGISTER(CRYPTO_NULL_HMAC);
1035 REGISTER(CRYPTO_MD5_KPDK);
1036 REGISTER(CRYPTO_SHA1_KPDK);
1037 REGISTER(CRYPTO_MD5);
1038 REGISTER(CRYPTO_SHA1);
1039 REGISTER(CRYPTO_RIJNDAEL128_CBC);
1040 REGISTER(CRYPTO_DEFLATE_COMP);
1041 REGISTER(CRYPTO_GZIP_COMP);
1042 #undef REGISTER
1047 * Pseudo-device init routine for software crypto.
1049 void swcryptoattach(int);
1051 void
1052 swcryptoattach(int num)
1055 swcr_init();