Fix up mix of man(7)/mdoc(7).
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / convert.c
blobe0c24a6954de7330c31b14183cacd69b91f90b79
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
45 return build_int_cst (type, 0);
47 switch (TREE_CODE (TREE_TYPE (expr)))
49 case POINTER_TYPE:
50 case REFERENCE_TYPE:
51 return build1 (NOP_EXPR, type, expr);
53 case INTEGER_TYPE:
54 case ENUMERAL_TYPE:
55 case BOOLEAN_TYPE:
56 case CHAR_TYPE:
57 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
58 expr = fold_build1 (NOP_EXPR,
59 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
60 expr);
61 return fold_build1 (CONVERT_EXPR, type, expr);
64 default:
65 error ("cannot convert to a pointer type");
66 return convert_to_pointer (type, integer_zero_node);
70 /* Avoid any floating point extensions from EXP. */
71 tree
72 strip_float_extensions (tree exp)
74 tree sub, expt, subt;
76 /* For floating point constant look up the narrowest type that can hold
77 it properly and handle it like (type)(narrowest_type)constant.
78 This way we can optimize for instance a=a*2.0 where "a" is float
79 but 2.0 is double constant. */
80 if (TREE_CODE (exp) == REAL_CST)
82 REAL_VALUE_TYPE orig;
83 tree type = NULL;
85 orig = TREE_REAL_CST (exp);
86 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
87 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
88 type = float_type_node;
89 else if (TYPE_PRECISION (TREE_TYPE (exp))
90 > TYPE_PRECISION (double_type_node)
91 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
92 type = double_type_node;
93 if (type)
94 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
97 if (TREE_CODE (exp) != NOP_EXPR
98 && TREE_CODE (exp) != CONVERT_EXPR)
99 return exp;
101 sub = TREE_OPERAND (exp, 0);
102 subt = TREE_TYPE (sub);
103 expt = TREE_TYPE (exp);
105 if (!FLOAT_TYPE_P (subt))
106 return exp;
108 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
109 return exp;
111 return strip_float_extensions (sub);
115 /* Convert EXPR to some floating-point type TYPE.
117 EXPR must be float, integer, or enumeral;
118 in other cases error is called. */
120 tree
121 convert_to_real (tree type, tree expr)
123 enum built_in_function fcode = builtin_mathfn_code (expr);
124 tree itype = TREE_TYPE (expr);
126 /* Disable until we figure out how to decide whether the functions are
127 present in runtime. */
128 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
129 if (optimize
130 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
131 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
133 switch (fcode)
135 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
136 CASE_MATHFN (ACOS)
137 CASE_MATHFN (ACOSH)
138 CASE_MATHFN (ASIN)
139 CASE_MATHFN (ASINH)
140 CASE_MATHFN (ATAN)
141 CASE_MATHFN (ATANH)
142 CASE_MATHFN (CBRT)
143 CASE_MATHFN (COS)
144 CASE_MATHFN (COSH)
145 CASE_MATHFN (ERF)
146 CASE_MATHFN (ERFC)
147 CASE_MATHFN (EXP)
148 CASE_MATHFN (EXP10)
149 CASE_MATHFN (EXP2)
150 CASE_MATHFN (EXPM1)
151 CASE_MATHFN (FABS)
152 CASE_MATHFN (GAMMA)
153 CASE_MATHFN (J0)
154 CASE_MATHFN (J1)
155 CASE_MATHFN (LGAMMA)
156 CASE_MATHFN (LOG)
157 CASE_MATHFN (LOG10)
158 CASE_MATHFN (LOG1P)
159 CASE_MATHFN (LOG2)
160 CASE_MATHFN (LOGB)
161 CASE_MATHFN (POW10)
162 CASE_MATHFN (SIN)
163 CASE_MATHFN (SINH)
164 CASE_MATHFN (SQRT)
165 CASE_MATHFN (TAN)
166 CASE_MATHFN (TANH)
167 CASE_MATHFN (TGAMMA)
168 CASE_MATHFN (Y0)
169 CASE_MATHFN (Y1)
170 #undef CASE_MATHFN
172 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
173 tree newtype = type;
175 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
176 the both as the safe type for operation. */
177 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
178 newtype = TREE_TYPE (arg0);
180 /* Be careful about integer to fp conversions.
181 These may overflow still. */
182 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
183 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
184 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
185 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
187 tree arglist;
188 tree fn = mathfn_built_in (newtype, fcode);
190 if (fn)
192 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
193 expr = build_function_call_expr (fn, arglist);
194 if (newtype == type)
195 return expr;
199 default:
200 break;
203 if (optimize
204 && (((fcode == BUILT_IN_FLOORL
205 || fcode == BUILT_IN_CEILL
206 || fcode == BUILT_IN_ROUNDL
207 || fcode == BUILT_IN_RINTL
208 || fcode == BUILT_IN_TRUNCL
209 || fcode == BUILT_IN_NEARBYINTL)
210 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
211 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
212 || ((fcode == BUILT_IN_FLOOR
213 || fcode == BUILT_IN_CEIL
214 || fcode == BUILT_IN_ROUND
215 || fcode == BUILT_IN_RINT
216 || fcode == BUILT_IN_TRUNC
217 || fcode == BUILT_IN_NEARBYINT)
218 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
220 tree fn = mathfn_built_in (type, fcode);
222 if (fn)
224 tree arg
225 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
227 /* Make sure (type)arg0 is an extension, otherwise we could end up
228 changing (float)floor(double d) into floorf((float)d), which is
229 incorrect because (float)d uses round-to-nearest and can round
230 up to the next integer. */
231 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
232 return
233 build_function_call_expr (fn,
234 build_tree_list (NULL_TREE,
235 fold (convert_to_real (type, arg))));
239 /* Propagate the cast into the operation. */
240 if (itype != type && FLOAT_TYPE_P (type))
241 switch (TREE_CODE (expr))
243 /* Convert (float)-x into -(float)x. This is safe for
244 round-to-nearest rounding mode. */
245 case ABS_EXPR:
246 case NEGATE_EXPR:
247 if (!flag_rounding_math
248 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
249 return build1 (TREE_CODE (expr), type,
250 fold (convert_to_real (type,
251 TREE_OPERAND (expr, 0))));
252 break;
253 /* Convert (outertype)((innertype0)a+(innertype1)b)
254 into ((newtype)a+(newtype)b) where newtype
255 is the widest mode from all of these. */
256 case PLUS_EXPR:
257 case MINUS_EXPR:
258 case MULT_EXPR:
259 case RDIV_EXPR:
261 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
262 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
264 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
265 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
267 tree newtype = type;
268 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
269 newtype = TREE_TYPE (arg0);
270 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
271 newtype = TREE_TYPE (arg1);
272 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
274 expr = build2 (TREE_CODE (expr), newtype,
275 fold (convert_to_real (newtype, arg0)),
276 fold (convert_to_real (newtype, arg1)));
277 if (newtype == type)
278 return expr;
282 break;
283 default:
284 break;
287 switch (TREE_CODE (TREE_TYPE (expr)))
289 case REAL_TYPE:
290 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
291 type, expr);
293 case INTEGER_TYPE:
294 case ENUMERAL_TYPE:
295 case BOOLEAN_TYPE:
296 case CHAR_TYPE:
297 return build1 (FLOAT_EXPR, type, expr);
299 case COMPLEX_TYPE:
300 return convert (type,
301 fold_build1 (REALPART_EXPR,
302 TREE_TYPE (TREE_TYPE (expr)), expr));
304 case POINTER_TYPE:
305 case REFERENCE_TYPE:
306 error ("pointer value used where a floating point value was expected");
307 return convert_to_real (type, integer_zero_node);
309 default:
310 error ("aggregate value used where a float was expected");
311 return convert_to_real (type, integer_zero_node);
315 /* Convert EXPR to some integer (or enum) type TYPE.
317 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
318 vector; in other cases error is called.
320 The result of this is always supposed to be a newly created tree node
321 not in use in any existing structure. */
323 tree
324 convert_to_integer (tree type, tree expr)
326 enum tree_code ex_form = TREE_CODE (expr);
327 tree intype = TREE_TYPE (expr);
328 unsigned int inprec = TYPE_PRECISION (intype);
329 unsigned int outprec = TYPE_PRECISION (type);
331 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
332 be. Consider `enum E = { a, b = (enum E) 3 };'. */
333 if (!COMPLETE_TYPE_P (type))
335 error ("conversion to incomplete type");
336 return error_mark_node;
339 /* Convert e.g. (long)round(d) -> lround(d). */
340 /* If we're converting to char, we may encounter differing behavior
341 between converting from double->char vs double->long->char.
342 We're in "undefined" territory but we prefer to be conservative,
343 so only proceed in "unsafe" math mode. */
344 if (optimize
345 && (flag_unsafe_math_optimizations
346 || (long_integer_type_node
347 && outprec >= TYPE_PRECISION (long_integer_type_node))))
349 tree s_expr = strip_float_extensions (expr);
350 tree s_intype = TREE_TYPE (s_expr);
351 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
352 tree fn = 0;
354 switch (fcode)
356 case BUILT_IN_CEIL: case BUILT_IN_CEILF: case BUILT_IN_CEILL:
357 /* Only convert in ISO C99 mode. */
358 if (!TARGET_C99_FUNCTIONS)
359 break;
360 if (outprec < TYPE_PRECISION (long_integer_type_node)
361 || (outprec == TYPE_PRECISION (long_integer_type_node)
362 && !TYPE_UNSIGNED (type)))
363 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
364 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
365 && !TYPE_UNSIGNED (type))
366 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
367 break;
369 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
370 /* Only convert in ISO C99 mode. */
371 if (!TARGET_C99_FUNCTIONS)
372 break;
373 if (outprec < TYPE_PRECISION (long_integer_type_node)
374 || (outprec == TYPE_PRECISION (long_integer_type_node)
375 && !TYPE_UNSIGNED (type)))
376 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
377 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
378 && !TYPE_UNSIGNED (type))
379 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
380 break;
382 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
383 if (outprec < TYPE_PRECISION (long_integer_type_node)
384 || (outprec == TYPE_PRECISION (long_integer_type_node)
385 && !TYPE_UNSIGNED (type)))
386 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
387 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
388 && !TYPE_UNSIGNED (type))
389 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
390 break;
392 case BUILT_IN_NEARBYINT:
393 case BUILT_IN_NEARBYINTF:
394 case BUILT_IN_NEARBYINTL:
395 /* Only convert nearbyint* if we can ignore math exceptions. */
396 if (flag_trapping_math)
397 break;
398 /* ... Fall through ... */
399 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
400 if (outprec < TYPE_PRECISION (long_integer_type_node)
401 || (outprec == TYPE_PRECISION (long_integer_type_node)
402 && !TYPE_UNSIGNED (type)))
403 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
404 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
405 && !TYPE_UNSIGNED (type))
406 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
407 break;
409 case BUILT_IN_TRUNC: case BUILT_IN_TRUNCF: case BUILT_IN_TRUNCL:
411 tree arglist = TREE_OPERAND (s_expr, 1);
412 return convert_to_integer (type, TREE_VALUE (arglist));
415 default:
416 break;
419 if (fn)
421 tree arglist = TREE_OPERAND (s_expr, 1);
422 tree newexpr = build_function_call_expr (fn, arglist);
423 return convert_to_integer (type, newexpr);
427 switch (TREE_CODE (intype))
429 case POINTER_TYPE:
430 case REFERENCE_TYPE:
431 if (integer_zerop (expr))
432 return build_int_cst (type, 0);
434 /* Convert to an unsigned integer of the correct width first,
435 and from there widen/truncate to the required type. */
436 expr = fold_build1 (CONVERT_EXPR,
437 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
438 expr);
439 return fold_build1 (NOP_EXPR, type, expr);
441 case INTEGER_TYPE:
442 case ENUMERAL_TYPE:
443 case BOOLEAN_TYPE:
444 case CHAR_TYPE:
445 /* If this is a logical operation, which just returns 0 or 1, we can
446 change the type of the expression. */
448 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
450 expr = copy_node (expr);
451 TREE_TYPE (expr) = type;
452 return expr;
455 /* If we are widening the type, put in an explicit conversion.
456 Similarly if we are not changing the width. After this, we know
457 we are truncating EXPR. */
459 else if (outprec >= inprec)
461 enum tree_code code;
463 /* If the precision of the EXPR's type is K bits and the
464 destination mode has more bits, and the sign is changing,
465 it is not safe to use a NOP_EXPR. For example, suppose
466 that EXPR's type is a 3-bit unsigned integer type, the
467 TYPE is a 3-bit signed integer type, and the machine mode
468 for the types is 8-bit QImode. In that case, the
469 conversion necessitates an explicit sign-extension. In
470 the signed-to-unsigned case the high-order bits have to
471 be cleared. */
472 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
473 && (TYPE_PRECISION (TREE_TYPE (expr))
474 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
475 code = CONVERT_EXPR;
476 else
477 code = NOP_EXPR;
479 return fold_build1 (code, type, expr);
482 /* If TYPE is an enumeral type or a type with a precision less
483 than the number of bits in its mode, do the conversion to the
484 type corresponding to its mode, then do a nop conversion
485 to TYPE. */
486 else if (TREE_CODE (type) == ENUMERAL_TYPE
487 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
488 return build1 (NOP_EXPR, type,
489 convert (lang_hooks.types.type_for_mode
490 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
491 expr));
493 /* Here detect when we can distribute the truncation down past some
494 arithmetic. For example, if adding two longs and converting to an
495 int, we can equally well convert both to ints and then add.
496 For the operations handled here, such truncation distribution
497 is always safe.
498 It is desirable in these cases:
499 1) when truncating down to full-word from a larger size
500 2) when truncating takes no work.
501 3) when at least one operand of the arithmetic has been extended
502 (as by C's default conversions). In this case we need two conversions
503 if we do the arithmetic as already requested, so we might as well
504 truncate both and then combine. Perhaps that way we need only one.
506 Note that in general we cannot do the arithmetic in a type
507 shorter than the desired result of conversion, even if the operands
508 are both extended from a shorter type, because they might overflow
509 if combined in that type. The exceptions to this--the times when
510 two narrow values can be combined in their narrow type even to
511 make a wider result--are handled by "shorten" in build_binary_op. */
513 switch (ex_form)
515 case RSHIFT_EXPR:
516 /* We can pass truncation down through right shifting
517 when the shift count is a nonpositive constant. */
518 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
519 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
520 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
521 integer_one_node)))
522 goto trunc1;
523 break;
525 case LSHIFT_EXPR:
526 /* We can pass truncation down through left shifting
527 when the shift count is a nonnegative constant and
528 the target type is unsigned. */
529 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
530 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
531 && TYPE_UNSIGNED (type)
532 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
534 /* If shift count is less than the width of the truncated type,
535 really shift. */
536 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
537 /* In this case, shifting is like multiplication. */
538 goto trunc1;
539 else
541 /* If it is >= that width, result is zero.
542 Handling this with trunc1 would give the wrong result:
543 (int) ((long long) a << 32) is well defined (as 0)
544 but (int) a << 32 is undefined and would get a
545 warning. */
547 tree t = convert_to_integer (type, integer_zero_node);
549 /* If the original expression had side-effects, we must
550 preserve it. */
551 if (TREE_SIDE_EFFECTS (expr))
552 return build2 (COMPOUND_EXPR, type, expr, t);
553 else
554 return t;
557 break;
559 case MAX_EXPR:
560 case MIN_EXPR:
561 case MULT_EXPR:
563 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
564 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
566 /* Don't distribute unless the output precision is at least as big
567 as the actual inputs. Otherwise, the comparison of the
568 truncated values will be wrong. */
569 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
570 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
571 /* If signedness of arg0 and arg1 don't match,
572 we can't necessarily find a type to compare them in. */
573 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
574 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
575 goto trunc1;
576 break;
579 case PLUS_EXPR:
580 case MINUS_EXPR:
581 case BIT_AND_EXPR:
582 case BIT_IOR_EXPR:
583 case BIT_XOR_EXPR:
584 trunc1:
586 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
587 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
589 if (outprec >= BITS_PER_WORD
590 || TRULY_NOOP_TRUNCATION (outprec, inprec)
591 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
592 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
594 /* Do the arithmetic in type TYPEX,
595 then convert result to TYPE. */
596 tree typex = type;
598 /* Can't do arithmetic in enumeral types
599 so use an integer type that will hold the values. */
600 if (TREE_CODE (typex) == ENUMERAL_TYPE)
601 typex = lang_hooks.types.type_for_size
602 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
604 /* But now perhaps TYPEX is as wide as INPREC.
605 In that case, do nothing special here.
606 (Otherwise would recurse infinitely in convert. */
607 if (TYPE_PRECISION (typex) != inprec)
609 /* Don't do unsigned arithmetic where signed was wanted,
610 or vice versa.
611 Exception: if both of the original operands were
612 unsigned then we can safely do the work as unsigned.
613 Exception: shift operations take their type solely
614 from the first argument.
615 Exception: the LSHIFT_EXPR case above requires that
616 we perform this operation unsigned lest we produce
617 signed-overflow undefinedness.
618 And we may need to do it as unsigned
619 if we truncate to the original size. */
620 if (TYPE_UNSIGNED (TREE_TYPE (expr))
621 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
622 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
623 || ex_form == LSHIFT_EXPR
624 || ex_form == RSHIFT_EXPR
625 || ex_form == LROTATE_EXPR
626 || ex_form == RROTATE_EXPR))
627 || ex_form == LSHIFT_EXPR
628 /* If we have !flag_wrapv, and either ARG0 or
629 ARG1 is of a signed type, we have to do
630 PLUS_EXPR or MINUS_EXPR in an unsigned
631 type. Otherwise, we would introduce
632 signed-overflow undefinedness. */
633 || (!flag_wrapv
634 && (ex_form == PLUS_EXPR
635 || ex_form == MINUS_EXPR)
636 && (!TYPE_UNSIGNED (TREE_TYPE (arg0))
637 || !TYPE_UNSIGNED (TREE_TYPE (arg1)))))
638 typex = lang_hooks.types.unsigned_type (typex);
639 else
640 typex = lang_hooks.types.signed_type (typex);
641 return convert (type,
642 fold_build2 (ex_form, typex,
643 convert (typex, arg0),
644 convert (typex, arg1)));
648 break;
650 case NEGATE_EXPR:
651 case BIT_NOT_EXPR:
652 /* This is not correct for ABS_EXPR,
653 since we must test the sign before truncation. */
655 tree typex;
657 /* Don't do unsigned arithmetic where signed was wanted,
658 or vice versa. */
659 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
660 typex = lang_hooks.types.unsigned_type (type);
661 else
662 typex = lang_hooks.types.signed_type (type);
663 return convert (type,
664 fold_build1 (ex_form, typex,
665 convert (typex,
666 TREE_OPERAND (expr, 0))));
669 case NOP_EXPR:
670 /* Don't introduce a
671 "can't convert between vector values of different size" error. */
672 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
673 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
674 != GET_MODE_SIZE (TYPE_MODE (type))))
675 break;
676 /* If truncating after truncating, might as well do all at once.
677 If truncating after extending, we may get rid of wasted work. */
678 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
680 case COND_EXPR:
681 /* It is sometimes worthwhile to push the narrowing down through
682 the conditional and never loses. */
683 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
684 convert (type, TREE_OPERAND (expr, 1)),
685 convert (type, TREE_OPERAND (expr, 2)));
687 default:
688 break;
691 return build1 (CONVERT_EXPR, type, expr);
693 case REAL_TYPE:
694 return build1 (FIX_TRUNC_EXPR, type, expr);
696 case COMPLEX_TYPE:
697 return convert (type,
698 fold_build1 (REALPART_EXPR,
699 TREE_TYPE (TREE_TYPE (expr)), expr));
701 case VECTOR_TYPE:
702 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
704 error ("can't convert between vector values of different size");
705 return error_mark_node;
707 return build1 (VIEW_CONVERT_EXPR, type, expr);
709 default:
710 error ("aggregate value used where an integer was expected");
711 return convert (type, integer_zero_node);
715 /* Convert EXPR to the complex type TYPE in the usual ways. */
717 tree
718 convert_to_complex (tree type, tree expr)
720 tree subtype = TREE_TYPE (type);
722 switch (TREE_CODE (TREE_TYPE (expr)))
724 case REAL_TYPE:
725 case INTEGER_TYPE:
726 case ENUMERAL_TYPE:
727 case BOOLEAN_TYPE:
728 case CHAR_TYPE:
729 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
730 convert (subtype, integer_zero_node));
732 case COMPLEX_TYPE:
734 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
736 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
737 return expr;
738 else if (TREE_CODE (expr) == COMPLEX_EXPR)
739 return fold_build2 (COMPLEX_EXPR, type,
740 convert (subtype, TREE_OPERAND (expr, 0)),
741 convert (subtype, TREE_OPERAND (expr, 1)));
742 else
744 expr = save_expr (expr);
745 return
746 fold_build2 (COMPLEX_EXPR, type,
747 convert (subtype,
748 fold_build1 (REALPART_EXPR,
749 TREE_TYPE (TREE_TYPE (expr)),
750 expr)),
751 convert (subtype,
752 fold_build1 (IMAGPART_EXPR,
753 TREE_TYPE (TREE_TYPE (expr)),
754 expr)));
758 case POINTER_TYPE:
759 case REFERENCE_TYPE:
760 error ("pointer value used where a complex was expected");
761 return convert_to_complex (type, integer_zero_node);
763 default:
764 error ("aggregate value used where a complex was expected");
765 return convert_to_complex (type, integer_zero_node);
769 /* Convert EXPR to the vector type TYPE in the usual ways. */
771 tree
772 convert_to_vector (tree type, tree expr)
774 switch (TREE_CODE (TREE_TYPE (expr)))
776 case INTEGER_TYPE:
777 case VECTOR_TYPE:
778 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
780 error ("can't convert between vector values of different size");
781 return error_mark_node;
783 return build1 (VIEW_CONVERT_EXPR, type, expr);
785 default:
786 error ("can't convert value to a vector");
787 return error_mark_node;