Fix up mix of man(7)/mdoc(7).
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / function.c
blob46408da0b21f6ab2096cd4c0e067d51a4b659cf6
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
225 struct function *
226 find_function_data (tree decl)
228 struct function *p;
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
234 gcc_unreachable ();
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 struct function *p;
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
255 lang_hooks.function.enter_nested (p);
257 cfun = 0;
260 void
261 push_function_context (void)
263 push_function_context_to (current_function_decl);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 struct function *p = outer_function_chain;
274 cfun = p;
275 outer_function_chain = p->outer;
277 current_function_decl = p->decl;
279 lang_hooks.function.leave_nested (p);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
286 void
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
296 void
297 free_after_parsing (struct function *f)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks.function.final (f);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
311 void
312 free_after_compilation (struct function *f)
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
364 return get_func_frame_size (cfun);
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
376 We do not round to stack_boundary here.
378 FUNCTION specifies the function to allocate in. */
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
389 if (align == 0)
391 tree type;
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
404 alignment /= BITS_PER_UNIT;
406 else if (align == -1)
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
482 /* Try to detect frame size overflows on native platforms. */
483 #if BITS_PER_WORD >= 32
484 if ((FRAME_GROWS_DOWNWARD
485 ? (unsigned HOST_WIDE_INT) -function->x_frame_offset
486 : (unsigned HOST_WIDE_INT) function->x_frame_offset)
487 > ((unsigned HOST_WIDE_INT) 1 << (BITS_PER_WORD - 1))
488 /* Leave room for the fixed part of the frame. */
489 - 64 * UNITS_PER_WORD)
491 error ("%Jtotal size of local objects too large", function->decl);
492 /* Avoid duplicate error messages as much as possible. */
493 function->x_frame_offset = 0;
495 #endif
497 return x;
500 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
501 current function. */
504 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
506 return assign_stack_local_1 (mode, size, align, cfun);
510 /* Removes temporary slot TEMP from LIST. */
512 static void
513 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
515 if (temp->next)
516 temp->next->prev = temp->prev;
517 if (temp->prev)
518 temp->prev->next = temp->next;
519 else
520 *list = temp->next;
522 temp->prev = temp->next = NULL;
525 /* Inserts temporary slot TEMP to LIST. */
527 static void
528 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
530 temp->next = *list;
531 if (*list)
532 (*list)->prev = temp;
533 temp->prev = NULL;
534 *list = temp;
537 /* Returns the list of used temp slots at LEVEL. */
539 static struct temp_slot **
540 temp_slots_at_level (int level)
543 if (!used_temp_slots)
544 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
546 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
547 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
549 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
552 /* Returns the maximal temporary slot level. */
554 static int
555 max_slot_level (void)
557 if (!used_temp_slots)
558 return -1;
560 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
563 /* Moves temporary slot TEMP to LEVEL. */
565 static void
566 move_slot_to_level (struct temp_slot *temp, int level)
568 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
569 insert_slot_to_list (temp, temp_slots_at_level (level));
570 temp->level = level;
573 /* Make temporary slot TEMP available. */
575 static void
576 make_slot_available (struct temp_slot *temp)
578 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
579 insert_slot_to_list (temp, &avail_temp_slots);
580 temp->in_use = 0;
581 temp->level = -1;
584 /* Allocate a temporary stack slot and record it for possible later
585 reuse.
587 MODE is the machine mode to be given to the returned rtx.
589 SIZE is the size in units of the space required. We do no rounding here
590 since assign_stack_local will do any required rounding.
592 KEEP is 1 if this slot is to be retained after a call to
593 free_temp_slots. Automatic variables for a block are allocated
594 with this flag. KEEP values of 2 or 3 were needed respectively
595 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
596 or for SAVE_EXPRs, but they are now unused.
598 TYPE is the type that will be used for the stack slot. */
601 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
602 int keep, tree type)
604 unsigned int align;
605 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
606 rtx slot;
608 /* If SIZE is -1 it means that somebody tried to allocate a temporary
609 of a variable size. */
610 gcc_assert (size != -1);
612 /* These are now unused. */
613 gcc_assert (keep <= 1);
615 if (mode == BLKmode)
616 align = BIGGEST_ALIGNMENT;
617 else
618 align = GET_MODE_ALIGNMENT (mode);
620 if (! type)
621 type = lang_hooks.types.type_for_mode (mode, 0);
623 if (type)
624 align = LOCAL_ALIGNMENT (type, align);
626 /* Try to find an available, already-allocated temporary of the proper
627 mode which meets the size and alignment requirements. Choose the
628 smallest one with the closest alignment. */
629 for (p = avail_temp_slots; p; p = p->next)
631 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
632 && objects_must_conflict_p (p->type, type)
633 && (best_p == 0 || best_p->size > p->size
634 || (best_p->size == p->size && best_p->align > p->align)))
636 if (p->align == align && p->size == size)
638 selected = p;
639 cut_slot_from_list (selected, &avail_temp_slots);
640 best_p = 0;
641 break;
643 best_p = p;
647 /* Make our best, if any, the one to use. */
648 if (best_p)
650 selected = best_p;
651 cut_slot_from_list (selected, &avail_temp_slots);
653 /* If there are enough aligned bytes left over, make them into a new
654 temp_slot so that the extra bytes don't get wasted. Do this only
655 for BLKmode slots, so that we can be sure of the alignment. */
656 if (GET_MODE (best_p->slot) == BLKmode)
658 int alignment = best_p->align / BITS_PER_UNIT;
659 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
661 if (best_p->size - rounded_size >= alignment)
663 p = ggc_alloc (sizeof (struct temp_slot));
664 p->in_use = p->addr_taken = 0;
665 p->size = best_p->size - rounded_size;
666 p->base_offset = best_p->base_offset + rounded_size;
667 p->full_size = best_p->full_size - rounded_size;
668 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
669 p->align = best_p->align;
670 p->address = 0;
671 p->type = best_p->type;
672 insert_slot_to_list (p, &avail_temp_slots);
674 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
675 stack_slot_list);
677 best_p->size = rounded_size;
678 best_p->full_size = rounded_size;
683 /* If we still didn't find one, make a new temporary. */
684 if (selected == 0)
686 HOST_WIDE_INT frame_offset_old = frame_offset;
688 p = ggc_alloc (sizeof (struct temp_slot));
690 /* We are passing an explicit alignment request to assign_stack_local.
691 One side effect of that is assign_stack_local will not round SIZE
692 to ensure the frame offset remains suitably aligned.
694 So for requests which depended on the rounding of SIZE, we go ahead
695 and round it now. We also make sure ALIGNMENT is at least
696 BIGGEST_ALIGNMENT. */
697 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
698 p->slot = assign_stack_local (mode,
699 (mode == BLKmode
700 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
701 : size),
702 align);
704 p->align = align;
706 /* The following slot size computation is necessary because we don't
707 know the actual size of the temporary slot until assign_stack_local
708 has performed all the frame alignment and size rounding for the
709 requested temporary. Note that extra space added for alignment
710 can be either above or below this stack slot depending on which
711 way the frame grows. We include the extra space if and only if it
712 is above this slot. */
713 if (FRAME_GROWS_DOWNWARD)
714 p->size = frame_offset_old - frame_offset;
715 else
716 p->size = size;
718 /* Now define the fields used by combine_temp_slots. */
719 if (FRAME_GROWS_DOWNWARD)
721 p->base_offset = frame_offset;
722 p->full_size = frame_offset_old - frame_offset;
724 else
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
729 p->address = 0;
731 selected = p;
734 p = selected;
735 p->in_use = 1;
736 p->addr_taken = 0;
737 p->type = type;
738 p->level = temp_slot_level;
739 p->keep = keep;
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
754 /* If a type is specified, set the relevant flags. */
755 if (type != 0)
757 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
758 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
760 MEM_NOTRAP_P (slot) = 1;
762 return slot;
765 /* Allocate a temporary stack slot and record it for possible later
766 reuse. First three arguments are same as in preceding function. */
769 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
771 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
774 /* Assign a temporary.
775 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
776 and so that should be used in error messages. In either case, we
777 allocate of the given type.
778 KEEP is as for assign_stack_temp.
779 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
780 it is 0 if a register is OK.
781 DONT_PROMOTE is 1 if we should not promote values in register
782 to wider modes. */
785 assign_temp (tree type_or_decl, int keep, int memory_required,
786 int dont_promote ATTRIBUTE_UNUSED)
788 tree type, decl;
789 enum machine_mode mode;
790 #ifdef PROMOTE_MODE
791 int unsignedp;
792 #endif
794 if (DECL_P (type_or_decl))
795 decl = type_or_decl, type = TREE_TYPE (decl);
796 else
797 decl = NULL, type = type_or_decl;
799 mode = TYPE_MODE (type);
800 #ifdef PROMOTE_MODE
801 unsignedp = TYPE_UNSIGNED (type);
802 #endif
804 if (mode == BLKmode || memory_required)
806 HOST_WIDE_INT size = int_size_in_bytes (type);
807 tree size_tree;
808 rtx tmp;
810 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
811 problems with allocating the stack space. */
812 if (size == 0)
813 size = 1;
815 /* Unfortunately, we don't yet know how to allocate variable-sized
816 temporaries. However, sometimes we have a fixed upper limit on
817 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
818 instead. This is the case for Chill variable-sized strings. */
819 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
820 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
821 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
822 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
824 /* If we still haven't been able to get a size, see if the language
825 can compute a maximum size. */
826 if (size == -1
827 && (size_tree = lang_hooks.types.max_size (type)) != 0
828 && host_integerp (size_tree, 1))
829 size = tree_low_cst (size_tree, 1);
831 /* The size of the temporary may be too large to fit into an integer. */
832 /* ??? Not sure this should happen except for user silliness, so limit
833 this to things that aren't compiler-generated temporaries. The
834 rest of the time we'll die in assign_stack_temp_for_type. */
835 if (decl && size == -1
836 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
838 error ("size of variable %q+D is too large", decl);
839 size = 1;
842 tmp = assign_stack_temp_for_type (mode, size, keep, type);
843 return tmp;
846 #ifdef PROMOTE_MODE
847 if (! dont_promote)
848 mode = promote_mode (type, mode, &unsignedp, 0);
849 #endif
851 return gen_reg_rtx (mode);
854 /* Combine temporary stack slots which are adjacent on the stack.
856 This allows for better use of already allocated stack space. This is only
857 done for BLKmode slots because we can be sure that we won't have alignment
858 problems in this case. */
860 static void
861 combine_temp_slots (void)
863 struct temp_slot *p, *q, *next, *next_q;
864 int num_slots;
866 /* We can't combine slots, because the information about which slot
867 is in which alias set will be lost. */
868 if (flag_strict_aliasing)
869 return;
871 /* If there are a lot of temp slots, don't do anything unless
872 high levels of optimization. */
873 if (! flag_expensive_optimizations)
874 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
875 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
876 return;
878 for (p = avail_temp_slots; p; p = next)
880 int delete_p = 0;
882 next = p->next;
884 if (GET_MODE (p->slot) != BLKmode)
885 continue;
887 for (q = p->next; q; q = next_q)
889 int delete_q = 0;
891 next_q = q->next;
893 if (GET_MODE (q->slot) != BLKmode)
894 continue;
896 if (p->base_offset + p->full_size == q->base_offset)
898 /* Q comes after P; combine Q into P. */
899 p->size += q->size;
900 p->full_size += q->full_size;
901 delete_q = 1;
903 else if (q->base_offset + q->full_size == p->base_offset)
905 /* P comes after Q; combine P into Q. */
906 q->size += p->size;
907 q->full_size += p->full_size;
908 delete_p = 1;
909 break;
911 if (delete_q)
912 cut_slot_from_list (q, &avail_temp_slots);
915 /* Either delete P or advance past it. */
916 if (delete_p)
917 cut_slot_from_list (p, &avail_temp_slots);
921 /* Find the temp slot corresponding to the object at address X. */
923 static struct temp_slot *
924 find_temp_slot_from_address (rtx x)
926 struct temp_slot *p;
927 rtx next;
928 int i;
930 for (i = max_slot_level (); i >= 0; i--)
931 for (p = *temp_slots_at_level (i); p; p = p->next)
933 if (XEXP (p->slot, 0) == x
934 || p->address == x
935 || (GET_CODE (x) == PLUS
936 && XEXP (x, 0) == virtual_stack_vars_rtx
937 && GET_CODE (XEXP (x, 1)) == CONST_INT
938 && INTVAL (XEXP (x, 1)) >= p->base_offset
939 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
940 return p;
942 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
943 for (next = p->address; next; next = XEXP (next, 1))
944 if (XEXP (next, 0) == x)
945 return p;
948 /* If we have a sum involving a register, see if it points to a temp
949 slot. */
950 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
951 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
952 return p;
953 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
954 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
955 return p;
957 return 0;
960 /* Indicate that NEW is an alternate way of referring to the temp slot
961 that previously was known by OLD. */
963 void
964 update_temp_slot_address (rtx old, rtx new)
966 struct temp_slot *p;
968 if (rtx_equal_p (old, new))
969 return;
971 p = find_temp_slot_from_address (old);
973 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
974 is a register, see if one operand of the PLUS is a temporary
975 location. If so, NEW points into it. Otherwise, if both OLD and
976 NEW are a PLUS and if there is a register in common between them.
977 If so, try a recursive call on those values. */
978 if (p == 0)
980 if (GET_CODE (old) != PLUS)
981 return;
983 if (REG_P (new))
985 update_temp_slot_address (XEXP (old, 0), new);
986 update_temp_slot_address (XEXP (old, 1), new);
987 return;
989 else if (GET_CODE (new) != PLUS)
990 return;
992 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
993 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
994 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
995 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
996 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
997 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
998 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
999 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1001 return;
1004 /* Otherwise add an alias for the temp's address. */
1005 else if (p->address == 0)
1006 p->address = new;
1007 else
1009 if (GET_CODE (p->address) != EXPR_LIST)
1010 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1012 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1016 /* If X could be a reference to a temporary slot, mark the fact that its
1017 address was taken. */
1019 void
1020 mark_temp_addr_taken (rtx x)
1022 struct temp_slot *p;
1024 if (x == 0)
1025 return;
1027 /* If X is not in memory or is at a constant address, it cannot be in
1028 a temporary slot. */
1029 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1030 return;
1032 p = find_temp_slot_from_address (XEXP (x, 0));
1033 if (p != 0)
1034 p->addr_taken = 1;
1037 /* If X could be a reference to a temporary slot, mark that slot as
1038 belonging to the to one level higher than the current level. If X
1039 matched one of our slots, just mark that one. Otherwise, we can't
1040 easily predict which it is, so upgrade all of them. Kept slots
1041 need not be touched.
1043 This is called when an ({...}) construct occurs and a statement
1044 returns a value in memory. */
1046 void
1047 preserve_temp_slots (rtx x)
1049 struct temp_slot *p = 0, *next;
1051 /* If there is no result, we still might have some objects whose address
1052 were taken, so we need to make sure they stay around. */
1053 if (x == 0)
1055 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1057 next = p->next;
1059 if (p->addr_taken)
1060 move_slot_to_level (p, temp_slot_level - 1);
1063 return;
1066 /* If X is a register that is being used as a pointer, see if we have
1067 a temporary slot we know it points to. To be consistent with
1068 the code below, we really should preserve all non-kept slots
1069 if we can't find a match, but that seems to be much too costly. */
1070 if (REG_P (x) && REG_POINTER (x))
1071 p = find_temp_slot_from_address (x);
1073 /* If X is not in memory or is at a constant address, it cannot be in
1074 a temporary slot, but it can contain something whose address was
1075 taken. */
1076 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1078 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1080 next = p->next;
1082 if (p->addr_taken)
1083 move_slot_to_level (p, temp_slot_level - 1);
1086 return;
1089 /* First see if we can find a match. */
1090 if (p == 0)
1091 p = find_temp_slot_from_address (XEXP (x, 0));
1093 if (p != 0)
1095 /* Move everything at our level whose address was taken to our new
1096 level in case we used its address. */
1097 struct temp_slot *q;
1099 if (p->level == temp_slot_level)
1101 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1103 next = q->next;
1105 if (p != q && q->addr_taken)
1106 move_slot_to_level (q, temp_slot_level - 1);
1109 move_slot_to_level (p, temp_slot_level - 1);
1110 p->addr_taken = 0;
1112 return;
1115 /* Otherwise, preserve all non-kept slots at this level. */
1116 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1118 next = p->next;
1120 if (!p->keep)
1121 move_slot_to_level (p, temp_slot_level - 1);
1125 /* Free all temporaries used so far. This is normally called at the
1126 end of generating code for a statement. */
1128 void
1129 free_temp_slots (void)
1131 struct temp_slot *p, *next;
1133 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1135 next = p->next;
1137 if (!p->keep)
1138 make_slot_available (p);
1141 combine_temp_slots ();
1144 /* Push deeper into the nesting level for stack temporaries. */
1146 void
1147 push_temp_slots (void)
1149 temp_slot_level++;
1152 /* Pop a temporary nesting level. All slots in use in the current level
1153 are freed. */
1155 void
1156 pop_temp_slots (void)
1158 struct temp_slot *p, *next;
1160 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1162 next = p->next;
1163 make_slot_available (p);
1166 combine_temp_slots ();
1168 temp_slot_level--;
1171 /* Initialize temporary slots. */
1173 void
1174 init_temp_slots (void)
1176 /* We have not allocated any temporaries yet. */
1177 avail_temp_slots = 0;
1178 used_temp_slots = 0;
1179 temp_slot_level = 0;
1182 /* These routines are responsible for converting virtual register references
1183 to the actual hard register references once RTL generation is complete.
1185 The following four variables are used for communication between the
1186 routines. They contain the offsets of the virtual registers from their
1187 respective hard registers. */
1189 static int in_arg_offset;
1190 static int var_offset;
1191 static int dynamic_offset;
1192 static int out_arg_offset;
1193 static int cfa_offset;
1195 /* In most machines, the stack pointer register is equivalent to the bottom
1196 of the stack. */
1198 #ifndef STACK_POINTER_OFFSET
1199 #define STACK_POINTER_OFFSET 0
1200 #endif
1202 /* If not defined, pick an appropriate default for the offset of dynamically
1203 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1204 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1206 #ifndef STACK_DYNAMIC_OFFSET
1208 /* The bottom of the stack points to the actual arguments. If
1209 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1210 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1211 stack space for register parameters is not pushed by the caller, but
1212 rather part of the fixed stack areas and hence not included in
1213 `current_function_outgoing_args_size'. Nevertheless, we must allow
1214 for it when allocating stack dynamic objects. */
1216 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1217 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1218 ((ACCUMULATE_OUTGOING_ARGS \
1219 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1220 + (STACK_POINTER_OFFSET)) \
1222 #else
1223 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1224 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1225 + (STACK_POINTER_OFFSET))
1226 #endif
1227 #endif
1230 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1231 is a virtual register, return the equivalent hard register and set the
1232 offset indirectly through the pointer. Otherwise, return 0. */
1234 static rtx
1235 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1237 rtx new;
1238 HOST_WIDE_INT offset;
1240 if (x == virtual_incoming_args_rtx)
1241 new = arg_pointer_rtx, offset = in_arg_offset;
1242 else if (x == virtual_stack_vars_rtx)
1243 new = frame_pointer_rtx, offset = var_offset;
1244 else if (x == virtual_stack_dynamic_rtx)
1245 new = stack_pointer_rtx, offset = dynamic_offset;
1246 else if (x == virtual_outgoing_args_rtx)
1247 new = stack_pointer_rtx, offset = out_arg_offset;
1248 else if (x == virtual_cfa_rtx)
1250 #ifdef FRAME_POINTER_CFA_OFFSET
1251 new = frame_pointer_rtx;
1252 #else
1253 new = arg_pointer_rtx;
1254 #endif
1255 offset = cfa_offset;
1257 else
1258 return NULL_RTX;
1260 *poffset = offset;
1261 return new;
1264 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1265 Instantiate any virtual registers present inside of *LOC. The expression
1266 is simplified, as much as possible, but is not to be considered "valid"
1267 in any sense implied by the target. If any change is made, set CHANGED
1268 to true. */
1270 static int
1271 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1273 HOST_WIDE_INT offset;
1274 bool *changed = (bool *) data;
1275 rtx x, new;
1277 x = *loc;
1278 if (x == 0)
1279 return 0;
1281 switch (GET_CODE (x))
1283 case REG:
1284 new = instantiate_new_reg (x, &offset);
1285 if (new)
1287 *loc = plus_constant (new, offset);
1288 if (changed)
1289 *changed = true;
1291 return -1;
1293 case PLUS:
1294 new = instantiate_new_reg (XEXP (x, 0), &offset);
1295 if (new)
1297 new = plus_constant (new, offset);
1298 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1299 if (changed)
1300 *changed = true;
1301 return -1;
1304 /* FIXME -- from old code */
1305 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1306 we can commute the PLUS and SUBREG because pointers into the
1307 frame are well-behaved. */
1308 break;
1310 default:
1311 break;
1314 return 0;
1317 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1318 matches the predicate for insn CODE operand OPERAND. */
1320 static int
1321 safe_insn_predicate (int code, int operand, rtx x)
1323 const struct insn_operand_data *op_data;
1325 if (code < 0)
1326 return true;
1328 op_data = &insn_data[code].operand[operand];
1329 if (op_data->predicate == NULL)
1330 return true;
1332 return op_data->predicate (x, op_data->mode);
1335 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1336 registers present inside of insn. The result will be a valid insn. */
1338 static void
1339 instantiate_virtual_regs_in_insn (rtx insn)
1341 HOST_WIDE_INT offset;
1342 int insn_code, i;
1343 bool any_change = false;
1344 rtx set, new, x, seq;
1346 /* There are some special cases to be handled first. */
1347 set = single_set (insn);
1348 if (set)
1350 /* We're allowed to assign to a virtual register. This is interpreted
1351 to mean that the underlying register gets assigned the inverse
1352 transformation. This is used, for example, in the handling of
1353 non-local gotos. */
1354 new = instantiate_new_reg (SET_DEST (set), &offset);
1355 if (new)
1357 start_sequence ();
1359 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1360 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1361 GEN_INT (-offset));
1362 x = force_operand (x, new);
1363 if (x != new)
1364 emit_move_insn (new, x);
1366 seq = get_insns ();
1367 end_sequence ();
1369 emit_insn_before (seq, insn);
1370 delete_insn (insn);
1371 return;
1374 /* Handle a straight copy from a virtual register by generating a
1375 new add insn. The difference between this and falling through
1376 to the generic case is avoiding a new pseudo and eliminating a
1377 move insn in the initial rtl stream. */
1378 new = instantiate_new_reg (SET_SRC (set), &offset);
1379 if (new && offset != 0
1380 && REG_P (SET_DEST (set))
1381 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1383 start_sequence ();
1385 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1386 new, GEN_INT (offset), SET_DEST (set),
1387 1, OPTAB_LIB_WIDEN);
1388 if (x != SET_DEST (set))
1389 emit_move_insn (SET_DEST (set), x);
1391 seq = get_insns ();
1392 end_sequence ();
1394 emit_insn_before (seq, insn);
1395 delete_insn (insn);
1396 return;
1399 extract_insn (insn);
1400 insn_code = INSN_CODE (insn);
1402 /* Handle a plus involving a virtual register by determining if the
1403 operands remain valid if they're modified in place. */
1404 if (GET_CODE (SET_SRC (set)) == PLUS
1405 && recog_data.n_operands >= 3
1406 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1407 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1408 && GET_CODE (recog_data.operand[2]) == CONST_INT
1409 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1411 offset += INTVAL (recog_data.operand[2]);
1413 /* If the sum is zero, then replace with a plain move. */
1414 if (offset == 0
1415 && REG_P (SET_DEST (set))
1416 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1418 start_sequence ();
1419 emit_move_insn (SET_DEST (set), new);
1420 seq = get_insns ();
1421 end_sequence ();
1423 emit_insn_before (seq, insn);
1424 delete_insn (insn);
1425 return;
1428 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1430 /* Using validate_change and apply_change_group here leaves
1431 recog_data in an invalid state. Since we know exactly what
1432 we want to check, do those two by hand. */
1433 if (safe_insn_predicate (insn_code, 1, new)
1434 && safe_insn_predicate (insn_code, 2, x))
1436 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1437 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1438 any_change = true;
1440 /* Fall through into the regular operand fixup loop in
1441 order to take care of operands other than 1 and 2. */
1445 else
1447 extract_insn (insn);
1448 insn_code = INSN_CODE (insn);
1451 /* In the general case, we expect virtual registers to appear only in
1452 operands, and then only as either bare registers or inside memories. */
1453 for (i = 0; i < recog_data.n_operands; ++i)
1455 x = recog_data.operand[i];
1456 switch (GET_CODE (x))
1458 case MEM:
1460 rtx addr = XEXP (x, 0);
1461 bool changed = false;
1463 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1464 if (!changed)
1465 continue;
1467 start_sequence ();
1468 x = replace_equiv_address (x, addr);
1469 seq = get_insns ();
1470 end_sequence ();
1471 if (seq)
1472 emit_insn_before (seq, insn);
1474 break;
1476 case REG:
1477 new = instantiate_new_reg (x, &offset);
1478 if (new == NULL)
1479 continue;
1480 if (offset == 0)
1481 x = new;
1482 else
1484 start_sequence ();
1486 /* Careful, special mode predicates may have stuff in
1487 insn_data[insn_code].operand[i].mode that isn't useful
1488 to us for computing a new value. */
1489 /* ??? Recognize address_operand and/or "p" constraints
1490 to see if (plus new offset) is a valid before we put
1491 this through expand_simple_binop. */
1492 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1499 break;
1501 case SUBREG:
1502 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1503 if (new == NULL)
1504 continue;
1505 if (offset != 0)
1507 start_sequence ();
1508 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1509 GEN_INT (offset), NULL_RTX,
1510 1, OPTAB_LIB_WIDEN);
1511 seq = get_insns ();
1512 end_sequence ();
1513 emit_insn_before (seq, insn);
1515 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1516 GET_MODE (new), SUBREG_BYTE (x));
1517 break;
1519 default:
1520 continue;
1523 /* At this point, X contains the new value for the operand.
1524 Validate the new value vs the insn predicate. Note that
1525 asm insns will have insn_code -1 here. */
1526 if (!safe_insn_predicate (insn_code, i, x))
1528 start_sequence ();
1529 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1530 seq = get_insns ();
1531 end_sequence ();
1532 if (seq)
1533 emit_insn_before (seq, insn);
1536 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1537 any_change = true;
1540 if (any_change)
1542 /* Propagate operand changes into the duplicates. */
1543 for (i = 0; i < recog_data.n_dups; ++i)
1544 *recog_data.dup_loc[i]
1545 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1547 /* Force re-recognition of the instruction for validation. */
1548 INSN_CODE (insn) = -1;
1551 if (asm_noperands (PATTERN (insn)) >= 0)
1553 if (!check_asm_operands (PATTERN (insn)))
1555 error_for_asm (insn, "impossible constraint in %<asm%>");
1556 delete_insn (insn);
1559 else
1561 if (recog_memoized (insn) < 0)
1562 fatal_insn_not_found (insn);
1566 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1567 do any instantiation required. */
1569 static void
1570 instantiate_decl (rtx x)
1572 rtx addr;
1574 if (x == 0)
1575 return;
1577 /* If this is a CONCAT, recurse for the pieces. */
1578 if (GET_CODE (x) == CONCAT)
1580 instantiate_decl (XEXP (x, 0));
1581 instantiate_decl (XEXP (x, 1));
1582 return;
1585 /* If this is not a MEM, no need to do anything. Similarly if the
1586 address is a constant or a register that is not a virtual register. */
1587 if (!MEM_P (x))
1588 return;
1590 addr = XEXP (x, 0);
1591 if (CONSTANT_P (addr)
1592 || (REG_P (addr)
1593 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1594 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1595 return;
1597 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1600 /* Helper for instantiate_decls called via walk_tree: Process all decls
1601 in the given DECL_VALUE_EXPR. */
1603 static tree
1604 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1606 tree t = *tp;
1607 if (! EXPR_P (t))
1609 *walk_subtrees = 0;
1610 if (DECL_P (t) && DECL_RTL_SET_P (t))
1611 instantiate_decl (DECL_RTL (t));
1613 return NULL;
1616 /* Subroutine of instantiate_decls: Process all decls in the given
1617 BLOCK node and all its subblocks. */
1619 static void
1620 instantiate_decls_1 (tree let)
1622 tree t;
1624 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1626 if (DECL_RTL_SET_P (t))
1627 instantiate_decl (DECL_RTL (t));
1628 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1630 tree v = DECL_VALUE_EXPR (t);
1631 walk_tree (&v, instantiate_expr, NULL, NULL);
1635 /* Process all subblocks. */
1636 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1637 instantiate_decls_1 (t);
1640 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1641 all virtual registers in their DECL_RTL's. */
1643 static void
1644 instantiate_decls (tree fndecl)
1646 tree decl;
1648 /* Process all parameters of the function. */
1649 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1651 instantiate_decl (DECL_RTL (decl));
1652 instantiate_decl (DECL_INCOMING_RTL (decl));
1653 if (DECL_HAS_VALUE_EXPR_P (decl))
1655 tree v = DECL_VALUE_EXPR (decl);
1656 walk_tree (&v, instantiate_expr, NULL, NULL);
1660 /* Now process all variables defined in the function or its subblocks. */
1661 instantiate_decls_1 (DECL_INITIAL (fndecl));
1664 /* Pass through the INSNS of function FNDECL and convert virtual register
1665 references to hard register references. */
1667 void
1668 instantiate_virtual_regs (void)
1670 rtx insn;
1672 /* Compute the offsets to use for this function. */
1673 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1674 var_offset = STARTING_FRAME_OFFSET;
1675 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1676 out_arg_offset = STACK_POINTER_OFFSET;
1677 #ifdef FRAME_POINTER_CFA_OFFSET
1678 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1679 #else
1680 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1681 #endif
1683 /* Initialize recognition, indicating that volatile is OK. */
1684 init_recog ();
1686 /* Scan through all the insns, instantiating every virtual register still
1687 present. */
1688 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1689 if (INSN_P (insn))
1691 /* These patterns in the instruction stream can never be recognized.
1692 Fortunately, they shouldn't contain virtual registers either. */
1693 if (GET_CODE (PATTERN (insn)) == USE
1694 || GET_CODE (PATTERN (insn)) == CLOBBER
1695 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1696 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1697 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1698 continue;
1700 instantiate_virtual_regs_in_insn (insn);
1702 if (INSN_DELETED_P (insn))
1703 continue;
1705 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1707 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1708 if (GET_CODE (insn) == CALL_INSN)
1709 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1710 instantiate_virtual_regs_in_rtx, NULL);
1713 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1714 instantiate_decls (current_function_decl);
1716 /* Indicate that, from now on, assign_stack_local should use
1717 frame_pointer_rtx. */
1718 virtuals_instantiated = 1;
1721 struct tree_opt_pass pass_instantiate_virtual_regs =
1723 "vregs", /* name */
1724 NULL, /* gate */
1725 instantiate_virtual_regs, /* execute */
1726 NULL, /* sub */
1727 NULL, /* next */
1728 0, /* static_pass_number */
1729 0, /* tv_id */
1730 0, /* properties_required */
1731 0, /* properties_provided */
1732 0, /* properties_destroyed */
1733 0, /* todo_flags_start */
1734 TODO_dump_func, /* todo_flags_finish */
1735 0 /* letter */
1739 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1740 This means a type for which function calls must pass an address to the
1741 function or get an address back from the function.
1742 EXP may be a type node or an expression (whose type is tested). */
1745 aggregate_value_p (tree exp, tree fntype)
1747 int i, regno, nregs;
1748 rtx reg;
1750 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1752 if (fntype)
1753 switch (TREE_CODE (fntype))
1755 case CALL_EXPR:
1756 fntype = get_callee_fndecl (fntype);
1757 fntype = fntype ? TREE_TYPE (fntype) : 0;
1758 break;
1759 case FUNCTION_DECL:
1760 fntype = TREE_TYPE (fntype);
1761 break;
1762 case FUNCTION_TYPE:
1763 case METHOD_TYPE:
1764 break;
1765 case IDENTIFIER_NODE:
1766 fntype = 0;
1767 break;
1768 default:
1769 /* We don't expect other rtl types here. */
1770 gcc_unreachable ();
1773 if (TREE_CODE (type) == VOID_TYPE)
1774 return 0;
1775 /* If the front end has decided that this needs to be passed by
1776 reference, do so. */
1777 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1778 && DECL_BY_REFERENCE (exp))
1779 return 1;
1780 if (targetm.calls.return_in_memory (type, fntype))
1781 return 1;
1782 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1783 and thus can't be returned in registers. */
1784 if (TREE_ADDRESSABLE (type))
1785 return 1;
1786 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1787 return 1;
1788 /* Make sure we have suitable call-clobbered regs to return
1789 the value in; if not, we must return it in memory. */
1790 reg = hard_function_value (type, 0, fntype, 0);
1792 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1793 it is OK. */
1794 if (!REG_P (reg))
1795 return 0;
1797 regno = REGNO (reg);
1798 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1799 for (i = 0; i < nregs; i++)
1800 if (! call_used_regs[regno + i])
1801 return 1;
1802 return 0;
1805 /* Return true if we should assign DECL a pseudo register; false if it
1806 should live on the local stack. */
1808 bool
1809 use_register_for_decl (tree decl)
1811 /* Honor volatile. */
1812 if (TREE_SIDE_EFFECTS (decl))
1813 return false;
1815 /* Honor addressability. */
1816 if (TREE_ADDRESSABLE (decl))
1817 return false;
1819 /* Only register-like things go in registers. */
1820 if (DECL_MODE (decl) == BLKmode)
1821 return false;
1823 /* If -ffloat-store specified, don't put explicit float variables
1824 into registers. */
1825 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1826 propagates values across these stores, and it probably shouldn't. */
1827 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1828 return false;
1830 /* If we're not interested in tracking debugging information for
1831 this decl, then we can certainly put it in a register. */
1832 if (DECL_IGNORED_P (decl))
1833 return true;
1835 return (optimize || DECL_REGISTER (decl));
1838 /* Return true if TYPE should be passed by invisible reference. */
1840 bool
1841 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1842 tree type, bool named_arg)
1844 if (type)
1846 /* If this type contains non-trivial constructors, then it is
1847 forbidden for the middle-end to create any new copies. */
1848 if (TREE_ADDRESSABLE (type))
1849 return true;
1851 /* GCC post 3.4 passes *all* variable sized types by reference. */
1852 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1853 return true;
1856 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1859 /* Return true if TYPE, which is passed by reference, should be callee
1860 copied instead of caller copied. */
1862 bool
1863 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1864 tree type, bool named_arg)
1866 if (type && TREE_ADDRESSABLE (type))
1867 return false;
1868 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1871 /* Structures to communicate between the subroutines of assign_parms.
1872 The first holds data persistent across all parameters, the second
1873 is cleared out for each parameter. */
1875 struct assign_parm_data_all
1877 CUMULATIVE_ARGS args_so_far;
1878 struct args_size stack_args_size;
1879 tree function_result_decl;
1880 tree orig_fnargs;
1881 rtx conversion_insns;
1882 HOST_WIDE_INT pretend_args_size;
1883 HOST_WIDE_INT extra_pretend_bytes;
1884 int reg_parm_stack_space;
1887 struct assign_parm_data_one
1889 tree nominal_type;
1890 tree passed_type;
1891 rtx entry_parm;
1892 rtx stack_parm;
1893 enum machine_mode nominal_mode;
1894 enum machine_mode passed_mode;
1895 enum machine_mode promoted_mode;
1896 struct locate_and_pad_arg_data locate;
1897 int partial;
1898 BOOL_BITFIELD named_arg : 1;
1899 BOOL_BITFIELD passed_pointer : 1;
1900 BOOL_BITFIELD on_stack : 1;
1901 BOOL_BITFIELD loaded_in_reg : 1;
1904 /* A subroutine of assign_parms. Initialize ALL. */
1906 static void
1907 assign_parms_initialize_all (struct assign_parm_data_all *all)
1909 tree fntype;
1911 memset (all, 0, sizeof (*all));
1913 fntype = TREE_TYPE (current_function_decl);
1915 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1916 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1917 #else
1918 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1919 current_function_decl, -1);
1920 #endif
1922 #ifdef REG_PARM_STACK_SPACE
1923 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1924 #endif
1927 /* If ARGS contains entries with complex types, split the entry into two
1928 entries of the component type. Return a new list of substitutions are
1929 needed, else the old list. */
1931 static tree
1932 split_complex_args (tree args)
1934 tree p;
1936 /* Before allocating memory, check for the common case of no complex. */
1937 for (p = args; p; p = TREE_CHAIN (p))
1939 tree type = TREE_TYPE (p);
1940 if (TREE_CODE (type) == COMPLEX_TYPE
1941 && targetm.calls.split_complex_arg (type))
1942 goto found;
1944 return args;
1946 found:
1947 args = copy_list (args);
1949 for (p = args; p; p = TREE_CHAIN (p))
1951 tree type = TREE_TYPE (p);
1952 if (TREE_CODE (type) == COMPLEX_TYPE
1953 && targetm.calls.split_complex_arg (type))
1955 tree decl;
1956 tree subtype = TREE_TYPE (type);
1957 bool addressable = TREE_ADDRESSABLE (p);
1959 /* Rewrite the PARM_DECL's type with its component. */
1960 TREE_TYPE (p) = subtype;
1961 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1962 DECL_MODE (p) = VOIDmode;
1963 DECL_SIZE (p) = NULL;
1964 DECL_SIZE_UNIT (p) = NULL;
1965 /* If this arg must go in memory, put it in a pseudo here.
1966 We can't allow it to go in memory as per normal parms,
1967 because the usual place might not have the imag part
1968 adjacent to the real part. */
1969 DECL_ARTIFICIAL (p) = addressable;
1970 DECL_IGNORED_P (p) = addressable;
1971 TREE_ADDRESSABLE (p) = 0;
1972 layout_decl (p, 0);
1974 /* Build a second synthetic decl. */
1975 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1976 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1977 DECL_ARTIFICIAL (decl) = addressable;
1978 DECL_IGNORED_P (decl) = addressable;
1979 layout_decl (decl, 0);
1981 /* Splice it in; skip the new decl. */
1982 TREE_CHAIN (decl) = TREE_CHAIN (p);
1983 TREE_CHAIN (p) = decl;
1984 p = decl;
1988 return args;
1991 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1992 the hidden struct return argument, and (abi willing) complex args.
1993 Return the new parameter list. */
1995 static tree
1996 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1998 tree fndecl = current_function_decl;
1999 tree fntype = TREE_TYPE (fndecl);
2000 tree fnargs = DECL_ARGUMENTS (fndecl);
2002 /* If struct value address is treated as the first argument, make it so. */
2003 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2004 && ! current_function_returns_pcc_struct
2005 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2007 tree type = build_pointer_type (TREE_TYPE (fntype));
2008 tree decl;
2010 decl = build_decl (PARM_DECL, NULL_TREE, type);
2011 DECL_ARG_TYPE (decl) = type;
2012 DECL_ARTIFICIAL (decl) = 1;
2013 DECL_IGNORED_P (decl) = 1;
2015 TREE_CHAIN (decl) = fnargs;
2016 fnargs = decl;
2017 all->function_result_decl = decl;
2020 all->orig_fnargs = fnargs;
2022 /* If the target wants to split complex arguments into scalars, do so. */
2023 if (targetm.calls.split_complex_arg)
2024 fnargs = split_complex_args (fnargs);
2026 return fnargs;
2029 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2030 data for the parameter. Incorporate ABI specifics such as pass-by-
2031 reference and type promotion. */
2033 static void
2034 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2035 struct assign_parm_data_one *data)
2037 tree nominal_type, passed_type;
2038 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2040 memset (data, 0, sizeof (*data));
2042 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2043 if (!current_function_stdarg)
2044 data->named_arg = 1; /* No varadic parms. */
2045 else if (TREE_CHAIN (parm))
2046 data->named_arg = 1; /* Not the last non-varadic parm. */
2047 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2048 data->named_arg = 1; /* Only varadic ones are unnamed. */
2049 else
2050 data->named_arg = 0; /* Treat as varadic. */
2052 nominal_type = TREE_TYPE (parm);
2053 passed_type = DECL_ARG_TYPE (parm);
2055 /* Look out for errors propagating this far. Also, if the parameter's
2056 type is void then its value doesn't matter. */
2057 if (TREE_TYPE (parm) == error_mark_node
2058 /* This can happen after weird syntax errors
2059 or if an enum type is defined among the parms. */
2060 || TREE_CODE (parm) != PARM_DECL
2061 || passed_type == NULL
2062 || VOID_TYPE_P (nominal_type))
2064 nominal_type = passed_type = void_type_node;
2065 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2066 goto egress;
2069 /* Find mode of arg as it is passed, and mode of arg as it should be
2070 during execution of this function. */
2071 passed_mode = TYPE_MODE (passed_type);
2072 nominal_mode = TYPE_MODE (nominal_type);
2074 /* If the parm is to be passed as a transparent union, use the type of
2075 the first field for the tests below. We have already verified that
2076 the modes are the same. */
2077 if (TREE_CODE (passed_type) == UNION_TYPE
2078 && TYPE_TRANSPARENT_UNION (passed_type))
2079 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2081 /* See if this arg was passed by invisible reference. */
2082 if (pass_by_reference (&all->args_so_far, passed_mode,
2083 passed_type, data->named_arg))
2085 passed_type = nominal_type = build_pointer_type (passed_type);
2086 data->passed_pointer = true;
2087 passed_mode = nominal_mode = Pmode;
2090 /* Find mode as it is passed by the ABI. */
2091 promoted_mode = passed_mode;
2092 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2094 int unsignedp = TYPE_UNSIGNED (passed_type);
2095 promoted_mode = promote_mode (passed_type, promoted_mode,
2096 &unsignedp, 1);
2099 egress:
2100 data->nominal_type = nominal_type;
2101 data->passed_type = passed_type;
2102 data->nominal_mode = nominal_mode;
2103 data->passed_mode = passed_mode;
2104 data->promoted_mode = promoted_mode;
2107 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2109 static void
2110 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2111 struct assign_parm_data_one *data, bool no_rtl)
2113 int varargs_pretend_bytes = 0;
2115 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2116 data->promoted_mode,
2117 data->passed_type,
2118 &varargs_pretend_bytes, no_rtl);
2120 /* If the back-end has requested extra stack space, record how much is
2121 needed. Do not change pretend_args_size otherwise since it may be
2122 nonzero from an earlier partial argument. */
2123 if (varargs_pretend_bytes > 0)
2124 all->pretend_args_size = varargs_pretend_bytes;
2127 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2128 the incoming location of the current parameter. */
2130 static void
2131 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2132 struct assign_parm_data_one *data)
2134 HOST_WIDE_INT pretend_bytes = 0;
2135 rtx entry_parm;
2136 bool in_regs;
2138 if (data->promoted_mode == VOIDmode)
2140 data->entry_parm = data->stack_parm = const0_rtx;
2141 return;
2144 #ifdef FUNCTION_INCOMING_ARG
2145 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2146 data->passed_type, data->named_arg);
2147 #else
2148 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2149 data->passed_type, data->named_arg);
2150 #endif
2152 if (entry_parm == 0)
2153 data->promoted_mode = data->passed_mode;
2155 /* Determine parm's home in the stack, in case it arrives in the stack
2156 or we should pretend it did. Compute the stack position and rtx where
2157 the argument arrives and its size.
2159 There is one complexity here: If this was a parameter that would
2160 have been passed in registers, but wasn't only because it is
2161 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2162 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2163 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2164 as it was the previous time. */
2165 in_regs = entry_parm != 0;
2166 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2167 in_regs = true;
2168 #endif
2169 if (!in_regs && !data->named_arg)
2171 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2173 rtx tem;
2174 #ifdef FUNCTION_INCOMING_ARG
2175 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2176 data->passed_type, true);
2177 #else
2178 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2179 data->passed_type, true);
2180 #endif
2181 in_regs = tem != NULL;
2185 /* If this parameter was passed both in registers and in the stack, use
2186 the copy on the stack. */
2187 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2188 data->passed_type))
2189 entry_parm = 0;
2191 if (entry_parm)
2193 int partial;
2195 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2196 data->promoted_mode,
2197 data->passed_type,
2198 data->named_arg);
2199 data->partial = partial;
2201 /* The caller might already have allocated stack space for the
2202 register parameters. */
2203 if (partial != 0 && all->reg_parm_stack_space == 0)
2205 /* Part of this argument is passed in registers and part
2206 is passed on the stack. Ask the prologue code to extend
2207 the stack part so that we can recreate the full value.
2209 PRETEND_BYTES is the size of the registers we need to store.
2210 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2211 stack space that the prologue should allocate.
2213 Internally, gcc assumes that the argument pointer is aligned
2214 to STACK_BOUNDARY bits. This is used both for alignment
2215 optimizations (see init_emit) and to locate arguments that are
2216 aligned to more than PARM_BOUNDARY bits. We must preserve this
2217 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2218 a stack boundary. */
2220 /* We assume at most one partial arg, and it must be the first
2221 argument on the stack. */
2222 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2224 pretend_bytes = partial;
2225 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2227 /* We want to align relative to the actual stack pointer, so
2228 don't include this in the stack size until later. */
2229 all->extra_pretend_bytes = all->pretend_args_size;
2233 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2234 entry_parm ? data->partial : 0, current_function_decl,
2235 &all->stack_args_size, &data->locate);
2237 /* Adjust offsets to include the pretend args. */
2238 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2239 data->locate.slot_offset.constant += pretend_bytes;
2240 data->locate.offset.constant += pretend_bytes;
2242 data->entry_parm = entry_parm;
2245 /* A subroutine of assign_parms. If there is actually space on the stack
2246 for this parm, count it in stack_args_size and return true. */
2248 static bool
2249 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2250 struct assign_parm_data_one *data)
2252 /* Trivially true if we've no incoming register. */
2253 if (data->entry_parm == NULL)
2255 /* Also true if we're partially in registers and partially not,
2256 since we've arranged to drop the entire argument on the stack. */
2257 else if (data->partial != 0)
2259 /* Also true if the target says that it's passed in both registers
2260 and on the stack. */
2261 else if (GET_CODE (data->entry_parm) == PARALLEL
2262 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2264 /* Also true if the target says that there's stack allocated for
2265 all register parameters. */
2266 else if (all->reg_parm_stack_space > 0)
2268 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2269 else
2270 return false;
2272 all->stack_args_size.constant += data->locate.size.constant;
2273 if (data->locate.size.var)
2274 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2276 return true;
2279 /* A subroutine of assign_parms. Given that this parameter is allocated
2280 stack space by the ABI, find it. */
2282 static void
2283 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2285 rtx offset_rtx, stack_parm;
2286 unsigned int align, boundary;
2288 /* If we're passing this arg using a reg, make its stack home the
2289 aligned stack slot. */
2290 if (data->entry_parm)
2291 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2292 else
2293 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2295 stack_parm = current_function_internal_arg_pointer;
2296 if (offset_rtx != const0_rtx)
2297 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2298 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2300 set_mem_attributes (stack_parm, parm, 1);
2302 boundary = data->locate.boundary;
2303 align = BITS_PER_UNIT;
2305 /* If we're padding upward, we know that the alignment of the slot
2306 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2307 intentionally forcing upward padding. Otherwise we have to come
2308 up with a guess at the alignment based on OFFSET_RTX. */
2309 if (data->locate.where_pad != downward || data->entry_parm)
2310 align = boundary;
2311 else if (GET_CODE (offset_rtx) == CONST_INT)
2313 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2314 align = align & -align;
2316 set_mem_align (stack_parm, align);
2318 if (data->entry_parm)
2319 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2321 data->stack_parm = stack_parm;
2324 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2325 always valid and contiguous. */
2327 static void
2328 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2330 rtx entry_parm = data->entry_parm;
2331 rtx stack_parm = data->stack_parm;
2333 /* If this parm was passed part in regs and part in memory, pretend it
2334 arrived entirely in memory by pushing the register-part onto the stack.
2335 In the special case of a DImode or DFmode that is split, we could put
2336 it together in a pseudoreg directly, but for now that's not worth
2337 bothering with. */
2338 if (data->partial != 0)
2340 /* Handle calls that pass values in multiple non-contiguous
2341 locations. The Irix 6 ABI has examples of this. */
2342 if (GET_CODE (entry_parm) == PARALLEL)
2343 emit_group_store (validize_mem (stack_parm), entry_parm,
2344 data->passed_type,
2345 int_size_in_bytes (data->passed_type));
2346 else
2348 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2349 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2350 data->partial / UNITS_PER_WORD);
2353 entry_parm = stack_parm;
2356 /* If we didn't decide this parm came in a register, by default it came
2357 on the stack. */
2358 else if (entry_parm == NULL)
2359 entry_parm = stack_parm;
2361 /* When an argument is passed in multiple locations, we can't make use
2362 of this information, but we can save some copying if the whole argument
2363 is passed in a single register. */
2364 else if (GET_CODE (entry_parm) == PARALLEL
2365 && data->nominal_mode != BLKmode
2366 && data->passed_mode != BLKmode)
2368 size_t i, len = XVECLEN (entry_parm, 0);
2370 for (i = 0; i < len; i++)
2371 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2372 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2373 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2374 == data->passed_mode)
2375 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2377 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2378 break;
2382 data->entry_parm = entry_parm;
2385 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2386 always valid and properly aligned. */
2388 static void
2389 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2391 rtx stack_parm = data->stack_parm;
2393 /* If we can't trust the parm stack slot to be aligned enough for its
2394 ultimate type, don't use that slot after entry. We'll make another
2395 stack slot, if we need one. */
2396 if (stack_parm
2397 && ((STRICT_ALIGNMENT
2398 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2399 || (data->nominal_type
2400 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2401 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2402 stack_parm = NULL;
2404 /* If parm was passed in memory, and we need to convert it on entry,
2405 don't store it back in that same slot. */
2406 else if (data->entry_parm == stack_parm
2407 && data->nominal_mode != BLKmode
2408 && data->nominal_mode != data->passed_mode)
2409 stack_parm = NULL;
2411 /* If stack protection is in effect for this function, don't leave any
2412 pointers in their passed stack slots. */
2413 else if (cfun->stack_protect_guard
2414 && (flag_stack_protect == 2
2415 || data->passed_pointer
2416 || POINTER_TYPE_P (data->nominal_type)))
2417 stack_parm = NULL;
2419 data->stack_parm = stack_parm;
2422 /* A subroutine of assign_parms. Return true if the current parameter
2423 should be stored as a BLKmode in the current frame. */
2425 static bool
2426 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2428 if (data->nominal_mode == BLKmode)
2429 return true;
2430 if (GET_CODE (data->entry_parm) == PARALLEL)
2431 return true;
2433 #ifdef BLOCK_REG_PADDING
2434 /* Only assign_parm_setup_block knows how to deal with register arguments
2435 that are padded at the least significant end. */
2436 if (REG_P (data->entry_parm)
2437 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2438 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2439 == (BYTES_BIG_ENDIAN ? upward : downward)))
2440 return true;
2441 #endif
2443 return false;
2446 /* A subroutine of assign_parms. Arrange for the parameter to be
2447 present and valid in DATA->STACK_RTL. */
2449 static void
2450 assign_parm_setup_block (struct assign_parm_data_all *all,
2451 tree parm, struct assign_parm_data_one *data)
2453 rtx entry_parm = data->entry_parm;
2454 rtx stack_parm = data->stack_parm;
2455 HOST_WIDE_INT size;
2456 HOST_WIDE_INT size_stored;
2457 rtx orig_entry_parm = entry_parm;
2459 if (GET_CODE (entry_parm) == PARALLEL)
2460 entry_parm = emit_group_move_into_temps (entry_parm);
2462 /* If we've a non-block object that's nevertheless passed in parts,
2463 reconstitute it in register operations rather than on the stack. */
2464 if (GET_CODE (entry_parm) == PARALLEL
2465 && data->nominal_mode != BLKmode)
2467 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2469 if ((XVECLEN (entry_parm, 0) > 1
2470 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2471 && use_register_for_decl (parm))
2473 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2475 push_to_sequence (all->conversion_insns);
2477 /* For values returned in multiple registers, handle possible
2478 incompatible calls to emit_group_store.
2480 For example, the following would be invalid, and would have to
2481 be fixed by the conditional below:
2483 emit_group_store ((reg:SF), (parallel:DF))
2484 emit_group_store ((reg:SI), (parallel:DI))
2486 An example of this are doubles in e500 v2:
2487 (parallel:DF (expr_list (reg:SI) (const_int 0))
2488 (expr_list (reg:SI) (const_int 4))). */
2489 if (data->nominal_mode != data->passed_mode)
2491 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2492 emit_group_store (t, entry_parm, NULL_TREE,
2493 GET_MODE_SIZE (GET_MODE (entry_parm)));
2494 convert_move (parmreg, t, 0);
2496 else
2497 emit_group_store (parmreg, entry_parm, data->nominal_type,
2498 int_size_in_bytes (data->nominal_type));
2500 all->conversion_insns = get_insns ();
2501 end_sequence ();
2503 SET_DECL_RTL (parm, parmreg);
2504 return;
2508 size = int_size_in_bytes (data->passed_type);
2509 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2510 if (stack_parm == 0)
2512 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2513 stack_parm = assign_stack_local (BLKmode, size_stored,
2514 DECL_ALIGN (parm));
2515 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2516 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2517 set_mem_attributes (stack_parm, parm, 1);
2520 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2521 calls that pass values in multiple non-contiguous locations. */
2522 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2524 rtx mem;
2526 /* Note that we will be storing an integral number of words.
2527 So we have to be careful to ensure that we allocate an
2528 integral number of words. We do this above when we call
2529 assign_stack_local if space was not allocated in the argument
2530 list. If it was, this will not work if PARM_BOUNDARY is not
2531 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2532 if it becomes a problem. Exception is when BLKmode arrives
2533 with arguments not conforming to word_mode. */
2535 if (data->stack_parm == 0)
2537 else if (GET_CODE (entry_parm) == PARALLEL)
2539 else
2540 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2542 mem = validize_mem (stack_parm);
2544 /* Handle values in multiple non-contiguous locations. */
2545 if (GET_CODE (entry_parm) == PARALLEL)
2547 push_to_sequence (all->conversion_insns);
2548 emit_group_store (mem, entry_parm, data->passed_type, size);
2549 all->conversion_insns = get_insns ();
2550 end_sequence ();
2553 else if (size == 0)
2556 /* If SIZE is that of a mode no bigger than a word, just use
2557 that mode's store operation. */
2558 else if (size <= UNITS_PER_WORD)
2560 enum machine_mode mode
2561 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2563 if (mode != BLKmode
2564 #ifdef BLOCK_REG_PADDING
2565 && (size == UNITS_PER_WORD
2566 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2567 != (BYTES_BIG_ENDIAN ? upward : downward)))
2568 #endif
2571 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2572 emit_move_insn (change_address (mem, mode, 0), reg);
2575 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2576 machine must be aligned to the left before storing
2577 to memory. Note that the previous test doesn't
2578 handle all cases (e.g. SIZE == 3). */
2579 else if (size != UNITS_PER_WORD
2580 #ifdef BLOCK_REG_PADDING
2581 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2582 == downward)
2583 #else
2584 && BYTES_BIG_ENDIAN
2585 #endif
2588 rtx tem, x;
2589 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2590 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2592 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2593 build_int_cst (NULL_TREE, by),
2594 NULL_RTX, 1);
2595 tem = change_address (mem, word_mode, 0);
2596 emit_move_insn (tem, x);
2598 else
2599 move_block_from_reg (REGNO (entry_parm), mem,
2600 size_stored / UNITS_PER_WORD);
2602 else
2603 move_block_from_reg (REGNO (entry_parm), mem,
2604 size_stored / UNITS_PER_WORD);
2606 else if (data->stack_parm == 0)
2608 push_to_sequence (all->conversion_insns);
2609 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2610 BLOCK_OP_NORMAL);
2611 all->conversion_insns = get_insns ();
2612 end_sequence ();
2615 data->stack_parm = stack_parm;
2616 SET_DECL_RTL (parm, stack_parm);
2619 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2620 parameter. Get it there. Perform all ABI specified conversions. */
2622 static void
2623 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2624 struct assign_parm_data_one *data)
2626 rtx parmreg;
2627 enum machine_mode promoted_nominal_mode;
2628 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2629 bool did_conversion = false;
2631 /* Store the parm in a pseudoregister during the function, but we may
2632 need to do it in a wider mode. */
2634 promoted_nominal_mode
2635 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2637 parmreg = gen_reg_rtx (promoted_nominal_mode);
2639 if (!DECL_ARTIFICIAL (parm))
2640 mark_user_reg (parmreg);
2642 /* If this was an item that we received a pointer to,
2643 set DECL_RTL appropriately. */
2644 if (data->passed_pointer)
2646 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2647 set_mem_attributes (x, parm, 1);
2648 SET_DECL_RTL (parm, x);
2650 else
2651 SET_DECL_RTL (parm, parmreg);
2653 /* Copy the value into the register. */
2654 if (data->nominal_mode != data->passed_mode
2655 || promoted_nominal_mode != data->promoted_mode)
2657 int save_tree_used;
2659 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2660 mode, by the caller. We now have to convert it to
2661 NOMINAL_MODE, if different. However, PARMREG may be in
2662 a different mode than NOMINAL_MODE if it is being stored
2663 promoted.
2665 If ENTRY_PARM is a hard register, it might be in a register
2666 not valid for operating in its mode (e.g., an odd-numbered
2667 register for a DFmode). In that case, moves are the only
2668 thing valid, so we can't do a convert from there. This
2669 occurs when the calling sequence allow such misaligned
2670 usages.
2672 In addition, the conversion may involve a call, which could
2673 clobber parameters which haven't been copied to pseudo
2674 registers yet. Therefore, we must first copy the parm to
2675 a pseudo reg here, and save the conversion until after all
2676 parameters have been moved. */
2678 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2680 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2682 push_to_sequence (all->conversion_insns);
2683 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2685 if (GET_CODE (tempreg) == SUBREG
2686 && GET_MODE (tempreg) == data->nominal_mode
2687 && REG_P (SUBREG_REG (tempreg))
2688 && data->nominal_mode == data->passed_mode
2689 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2690 && GET_MODE_SIZE (GET_MODE (tempreg))
2691 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2693 /* The argument is already sign/zero extended, so note it
2694 into the subreg. */
2695 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2696 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2699 /* TREE_USED gets set erroneously during expand_assignment. */
2700 save_tree_used = TREE_USED (parm);
2701 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2702 TREE_USED (parm) = save_tree_used;
2703 all->conversion_insns = get_insns ();
2704 end_sequence ();
2706 did_conversion = true;
2708 else
2709 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2711 /* If we were passed a pointer but the actual value can safely live
2712 in a register, put it in one. */
2713 if (data->passed_pointer
2714 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2715 /* If by-reference argument was promoted, demote it. */
2716 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2717 || use_register_for_decl (parm)))
2719 /* We can't use nominal_mode, because it will have been set to
2720 Pmode above. We must use the actual mode of the parm. */
2721 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2722 mark_user_reg (parmreg);
2724 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2726 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2727 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2729 push_to_sequence (all->conversion_insns);
2730 emit_move_insn (tempreg, DECL_RTL (parm));
2731 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2732 emit_move_insn (parmreg, tempreg);
2733 all->conversion_insns = get_insns ();
2734 end_sequence ();
2736 did_conversion = true;
2738 else
2739 emit_move_insn (parmreg, DECL_RTL (parm));
2741 SET_DECL_RTL (parm, parmreg);
2743 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2744 now the parm. */
2745 data->stack_parm = NULL;
2748 /* Mark the register as eliminable if we did no conversion and it was
2749 copied from memory at a fixed offset, and the arg pointer was not
2750 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2751 offset formed an invalid address, such memory-equivalences as we
2752 make here would screw up life analysis for it. */
2753 if (data->nominal_mode == data->passed_mode
2754 && !did_conversion
2755 && data->stack_parm != 0
2756 && MEM_P (data->stack_parm)
2757 && data->locate.offset.var == 0
2758 && reg_mentioned_p (virtual_incoming_args_rtx,
2759 XEXP (data->stack_parm, 0)))
2761 rtx linsn = get_last_insn ();
2762 rtx sinsn, set;
2764 /* Mark complex types separately. */
2765 if (GET_CODE (parmreg) == CONCAT)
2767 enum machine_mode submode
2768 = GET_MODE_INNER (GET_MODE (parmreg));
2769 int regnor = REGNO (XEXP (parmreg, 0));
2770 int regnoi = REGNO (XEXP (parmreg, 1));
2771 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2772 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2773 GET_MODE_SIZE (submode));
2775 /* Scan backwards for the set of the real and
2776 imaginary parts. */
2777 for (sinsn = linsn; sinsn != 0;
2778 sinsn = prev_nonnote_insn (sinsn))
2780 set = single_set (sinsn);
2781 if (set == 0)
2782 continue;
2784 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2785 REG_NOTES (sinsn)
2786 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2787 REG_NOTES (sinsn));
2788 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2789 REG_NOTES (sinsn)
2790 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2791 REG_NOTES (sinsn));
2794 else if ((set = single_set (linsn)) != 0
2795 && SET_DEST (set) == parmreg)
2796 REG_NOTES (linsn)
2797 = gen_rtx_EXPR_LIST (REG_EQUIV,
2798 data->stack_parm, REG_NOTES (linsn));
2801 /* For pointer data type, suggest pointer register. */
2802 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2803 mark_reg_pointer (parmreg,
2804 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2807 /* A subroutine of assign_parms. Allocate stack space to hold the current
2808 parameter. Get it there. Perform all ABI specified conversions. */
2810 static void
2811 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2812 struct assign_parm_data_one *data)
2814 /* Value must be stored in the stack slot STACK_PARM during function
2815 execution. */
2816 bool to_conversion = false;
2818 if (data->promoted_mode != data->nominal_mode)
2820 /* Conversion is required. */
2821 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2823 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2825 push_to_sequence (all->conversion_insns);
2826 to_conversion = true;
2828 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2829 TYPE_UNSIGNED (TREE_TYPE (parm)));
2831 if (data->stack_parm)
2832 /* ??? This may need a big-endian conversion on sparc64. */
2833 data->stack_parm
2834 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2837 if (data->entry_parm != data->stack_parm)
2839 rtx src, dest;
2841 if (data->stack_parm == 0)
2843 data->stack_parm
2844 = assign_stack_local (GET_MODE (data->entry_parm),
2845 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2846 TYPE_ALIGN (data->passed_type));
2847 set_mem_attributes (data->stack_parm, parm, 1);
2850 dest = validize_mem (data->stack_parm);
2851 src = validize_mem (data->entry_parm);
2853 if (MEM_P (src))
2855 /* Use a block move to handle potentially misaligned entry_parm. */
2856 if (!to_conversion)
2857 push_to_sequence (all->conversion_insns);
2858 to_conversion = true;
2860 emit_block_move (dest, src,
2861 GEN_INT (int_size_in_bytes (data->passed_type)),
2862 BLOCK_OP_NORMAL);
2864 else
2865 emit_move_insn (dest, src);
2868 if (to_conversion)
2870 all->conversion_insns = get_insns ();
2871 end_sequence ();
2874 SET_DECL_RTL (parm, data->stack_parm);
2877 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2878 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2880 static void
2881 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2883 tree parm;
2884 tree orig_fnargs = all->orig_fnargs;
2886 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2888 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2889 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2891 rtx tmp, real, imag;
2892 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2894 real = DECL_RTL (fnargs);
2895 imag = DECL_RTL (TREE_CHAIN (fnargs));
2896 if (inner != GET_MODE (real))
2898 real = gen_lowpart_SUBREG (inner, real);
2899 imag = gen_lowpart_SUBREG (inner, imag);
2902 if (TREE_ADDRESSABLE (parm))
2904 rtx rmem, imem;
2905 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2907 /* split_complex_arg put the real and imag parts in
2908 pseudos. Move them to memory. */
2909 tmp = assign_stack_local (DECL_MODE (parm), size,
2910 TYPE_ALIGN (TREE_TYPE (parm)));
2911 set_mem_attributes (tmp, parm, 1);
2912 rmem = adjust_address_nv (tmp, inner, 0);
2913 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2914 push_to_sequence (all->conversion_insns);
2915 emit_move_insn (rmem, real);
2916 emit_move_insn (imem, imag);
2917 all->conversion_insns = get_insns ();
2918 end_sequence ();
2920 else
2921 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2922 SET_DECL_RTL (parm, tmp);
2924 real = DECL_INCOMING_RTL (fnargs);
2925 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2926 if (inner != GET_MODE (real))
2928 real = gen_lowpart_SUBREG (inner, real);
2929 imag = gen_lowpart_SUBREG (inner, imag);
2931 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2932 set_decl_incoming_rtl (parm, tmp);
2933 fnargs = TREE_CHAIN (fnargs);
2935 else
2937 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2938 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2940 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2941 instead of the copy of decl, i.e. FNARGS. */
2942 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2943 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2946 fnargs = TREE_CHAIN (fnargs);
2950 /* Assign RTL expressions to the function's parameters. This may involve
2951 copying them into registers and using those registers as the DECL_RTL. */
2953 static void
2954 assign_parms (tree fndecl)
2956 struct assign_parm_data_all all;
2957 tree fnargs, parm;
2959 current_function_internal_arg_pointer
2960 = targetm.calls.internal_arg_pointer ();
2962 assign_parms_initialize_all (&all);
2963 fnargs = assign_parms_augmented_arg_list (&all);
2965 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2967 struct assign_parm_data_one data;
2969 /* Extract the type of PARM; adjust it according to ABI. */
2970 assign_parm_find_data_types (&all, parm, &data);
2972 /* Early out for errors and void parameters. */
2973 if (data.passed_mode == VOIDmode)
2975 SET_DECL_RTL (parm, const0_rtx);
2976 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2977 continue;
2980 if (current_function_stdarg && !TREE_CHAIN (parm))
2981 assign_parms_setup_varargs (&all, &data, false);
2983 /* Find out where the parameter arrives in this function. */
2984 assign_parm_find_entry_rtl (&all, &data);
2986 /* Find out where stack space for this parameter might be. */
2987 if (assign_parm_is_stack_parm (&all, &data))
2989 assign_parm_find_stack_rtl (parm, &data);
2990 assign_parm_adjust_entry_rtl (&data);
2993 /* Record permanently how this parm was passed. */
2994 set_decl_incoming_rtl (parm, data.entry_parm);
2996 /* Update info on where next arg arrives in registers. */
2997 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2998 data.passed_type, data.named_arg);
3000 assign_parm_adjust_stack_rtl (&data);
3002 if (assign_parm_setup_block_p (&data))
3003 assign_parm_setup_block (&all, parm, &data);
3004 else if (data.passed_pointer || use_register_for_decl (parm))
3005 assign_parm_setup_reg (&all, parm, &data);
3006 else
3007 assign_parm_setup_stack (&all, parm, &data);
3010 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3011 assign_parms_unsplit_complex (&all, fnargs);
3013 /* Output all parameter conversion instructions (possibly including calls)
3014 now that all parameters have been copied out of hard registers. */
3015 emit_insn (all.conversion_insns);
3017 /* If we are receiving a struct value address as the first argument, set up
3018 the RTL for the function result. As this might require code to convert
3019 the transmitted address to Pmode, we do this here to ensure that possible
3020 preliminary conversions of the address have been emitted already. */
3021 if (all.function_result_decl)
3023 tree result = DECL_RESULT (current_function_decl);
3024 rtx addr = DECL_RTL (all.function_result_decl);
3025 rtx x;
3027 if (DECL_BY_REFERENCE (result))
3028 x = addr;
3029 else
3031 addr = convert_memory_address (Pmode, addr);
3032 x = gen_rtx_MEM (DECL_MODE (result), addr);
3033 set_mem_attributes (x, result, 1);
3035 SET_DECL_RTL (result, x);
3038 /* We have aligned all the args, so add space for the pretend args. */
3039 current_function_pretend_args_size = all.pretend_args_size;
3040 all.stack_args_size.constant += all.extra_pretend_bytes;
3041 current_function_args_size = all.stack_args_size.constant;
3043 /* Adjust function incoming argument size for alignment and
3044 minimum length. */
3046 #ifdef REG_PARM_STACK_SPACE
3047 current_function_args_size = MAX (current_function_args_size,
3048 REG_PARM_STACK_SPACE (fndecl));
3049 #endif
3051 current_function_args_size = CEIL_ROUND (current_function_args_size,
3052 PARM_BOUNDARY / BITS_PER_UNIT);
3054 #ifdef ARGS_GROW_DOWNWARD
3055 current_function_arg_offset_rtx
3056 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3057 : expand_expr (size_diffop (all.stack_args_size.var,
3058 size_int (-all.stack_args_size.constant)),
3059 NULL_RTX, VOIDmode, 0));
3060 #else
3061 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3062 #endif
3064 /* See how many bytes, if any, of its args a function should try to pop
3065 on return. */
3067 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3068 current_function_args_size);
3070 /* For stdarg.h function, save info about
3071 regs and stack space used by the named args. */
3073 current_function_args_info = all.args_so_far;
3075 /* Set the rtx used for the function return value. Put this in its
3076 own variable so any optimizers that need this information don't have
3077 to include tree.h. Do this here so it gets done when an inlined
3078 function gets output. */
3080 current_function_return_rtx
3081 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3082 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3084 /* If scalar return value was computed in a pseudo-reg, or was a named
3085 return value that got dumped to the stack, copy that to the hard
3086 return register. */
3087 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3089 tree decl_result = DECL_RESULT (fndecl);
3090 rtx decl_rtl = DECL_RTL (decl_result);
3092 if (REG_P (decl_rtl)
3093 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3094 : DECL_REGISTER (decl_result))
3096 rtx real_decl_rtl;
3098 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3099 fndecl, true);
3100 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3101 /* The delay slot scheduler assumes that current_function_return_rtx
3102 holds the hard register containing the return value, not a
3103 temporary pseudo. */
3104 current_function_return_rtx = real_decl_rtl;
3109 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3110 For all seen types, gimplify their sizes. */
3112 static tree
3113 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3115 tree t = *tp;
3117 *walk_subtrees = 0;
3118 if (TYPE_P (t))
3120 if (POINTER_TYPE_P (t))
3121 *walk_subtrees = 1;
3122 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3123 && !TYPE_SIZES_GIMPLIFIED (t))
3125 gimplify_type_sizes (t, (tree *) data);
3126 *walk_subtrees = 1;
3130 return NULL;
3133 /* Gimplify the parameter list for current_function_decl. This involves
3134 evaluating SAVE_EXPRs of variable sized parameters and generating code
3135 to implement callee-copies reference parameters. Returns a list of
3136 statements to add to the beginning of the function, or NULL if nothing
3137 to do. */
3139 tree
3140 gimplify_parameters (void)
3142 struct assign_parm_data_all all;
3143 tree fnargs, parm, stmts = NULL;
3145 assign_parms_initialize_all (&all);
3146 fnargs = assign_parms_augmented_arg_list (&all);
3148 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3150 struct assign_parm_data_one data;
3152 /* Extract the type of PARM; adjust it according to ABI. */
3153 assign_parm_find_data_types (&all, parm, &data);
3155 /* Early out for errors and void parameters. */
3156 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3157 continue;
3159 /* Update info on where next arg arrives in registers. */
3160 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3161 data.passed_type, data.named_arg);
3163 /* ??? Once upon a time variable_size stuffed parameter list
3164 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3165 turned out to be less than manageable in the gimple world.
3166 Now we have to hunt them down ourselves. */
3167 walk_tree_without_duplicates (&data.passed_type,
3168 gimplify_parm_type, &stmts);
3170 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3172 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3173 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3176 if (data.passed_pointer)
3178 tree type = TREE_TYPE (data.passed_type);
3179 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3180 type, data.named_arg))
3182 tree local, t;
3184 /* For constant sized objects, this is trivial; for
3185 variable-sized objects, we have to play games. */
3186 if (TREE_CONSTANT (DECL_SIZE (parm)))
3188 local = create_tmp_var (type, get_name (parm));
3189 DECL_IGNORED_P (local) = 0;
3191 else
3193 tree ptr_type, addr, args;
3195 ptr_type = build_pointer_type (type);
3196 addr = create_tmp_var (ptr_type, get_name (parm));
3197 DECL_IGNORED_P (addr) = 0;
3198 local = build_fold_indirect_ref (addr);
3200 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3201 t = built_in_decls[BUILT_IN_ALLOCA];
3202 t = build_function_call_expr (t, args);
3203 t = fold_convert (ptr_type, t);
3204 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3205 gimplify_and_add (t, &stmts);
3208 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3209 gimplify_and_add (t, &stmts);
3211 SET_DECL_VALUE_EXPR (parm, local);
3212 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3217 return stmts;
3220 /* Indicate whether REGNO is an incoming argument to the current function
3221 that was promoted to a wider mode. If so, return the RTX for the
3222 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3223 that REGNO is promoted from and whether the promotion was signed or
3224 unsigned. */
3227 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3229 tree arg;
3231 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3232 arg = TREE_CHAIN (arg))
3233 if (REG_P (DECL_INCOMING_RTL (arg))
3234 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3235 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3237 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3238 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3240 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3241 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3242 && mode != DECL_MODE (arg))
3244 *pmode = DECL_MODE (arg);
3245 *punsignedp = unsignedp;
3246 return DECL_INCOMING_RTL (arg);
3250 return 0;
3254 /* Compute the size and offset from the start of the stacked arguments for a
3255 parm passed in mode PASSED_MODE and with type TYPE.
3257 INITIAL_OFFSET_PTR points to the current offset into the stacked
3258 arguments.
3260 The starting offset and size for this parm are returned in
3261 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3262 nonzero, the offset is that of stack slot, which is returned in
3263 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3264 padding required from the initial offset ptr to the stack slot.
3266 IN_REGS is nonzero if the argument will be passed in registers. It will
3267 never be set if REG_PARM_STACK_SPACE is not defined.
3269 FNDECL is the function in which the argument was defined.
3271 There are two types of rounding that are done. The first, controlled by
3272 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3273 list to be aligned to the specific boundary (in bits). This rounding
3274 affects the initial and starting offsets, but not the argument size.
3276 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3277 optionally rounds the size of the parm to PARM_BOUNDARY. The
3278 initial offset is not affected by this rounding, while the size always
3279 is and the starting offset may be. */
3281 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3282 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3283 callers pass in the total size of args so far as
3284 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3286 void
3287 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3288 int partial, tree fndecl ATTRIBUTE_UNUSED,
3289 struct args_size *initial_offset_ptr,
3290 struct locate_and_pad_arg_data *locate)
3292 tree sizetree;
3293 enum direction where_pad;
3294 unsigned int boundary;
3295 int reg_parm_stack_space = 0;
3296 int part_size_in_regs;
3298 #ifdef REG_PARM_STACK_SPACE
3299 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3301 /* If we have found a stack parm before we reach the end of the
3302 area reserved for registers, skip that area. */
3303 if (! in_regs)
3305 if (reg_parm_stack_space > 0)
3307 if (initial_offset_ptr->var)
3309 initial_offset_ptr->var
3310 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3311 ssize_int (reg_parm_stack_space));
3312 initial_offset_ptr->constant = 0;
3314 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3315 initial_offset_ptr->constant = reg_parm_stack_space;
3318 #endif /* REG_PARM_STACK_SPACE */
3320 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3322 sizetree
3323 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3324 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3325 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3326 locate->where_pad = where_pad;
3327 locate->boundary = boundary;
3329 /* Remember if the outgoing parameter requires extra alignment on the
3330 calling function side. */
3331 if (boundary > PREFERRED_STACK_BOUNDARY)
3332 boundary = PREFERRED_STACK_BOUNDARY;
3333 if (cfun->stack_alignment_needed < boundary)
3334 cfun->stack_alignment_needed = boundary;
3336 #ifdef ARGS_GROW_DOWNWARD
3337 locate->slot_offset.constant = -initial_offset_ptr->constant;
3338 if (initial_offset_ptr->var)
3339 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3340 initial_offset_ptr->var);
3343 tree s2 = sizetree;
3344 if (where_pad != none
3345 && (!host_integerp (sizetree, 1)
3346 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3347 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3348 SUB_PARM_SIZE (locate->slot_offset, s2);
3351 locate->slot_offset.constant += part_size_in_regs;
3353 if (!in_regs
3354 #ifdef REG_PARM_STACK_SPACE
3355 || REG_PARM_STACK_SPACE (fndecl) > 0
3356 #endif
3358 pad_to_arg_alignment (&locate->slot_offset, boundary,
3359 &locate->alignment_pad);
3361 locate->size.constant = (-initial_offset_ptr->constant
3362 - locate->slot_offset.constant);
3363 if (initial_offset_ptr->var)
3364 locate->size.var = size_binop (MINUS_EXPR,
3365 size_binop (MINUS_EXPR,
3366 ssize_int (0),
3367 initial_offset_ptr->var),
3368 locate->slot_offset.var);
3370 /* Pad_below needs the pre-rounded size to know how much to pad
3371 below. */
3372 locate->offset = locate->slot_offset;
3373 if (where_pad == downward)
3374 pad_below (&locate->offset, passed_mode, sizetree);
3376 #else /* !ARGS_GROW_DOWNWARD */
3377 if (!in_regs
3378 #ifdef REG_PARM_STACK_SPACE
3379 || REG_PARM_STACK_SPACE (fndecl) > 0
3380 #endif
3382 pad_to_arg_alignment (initial_offset_ptr, boundary,
3383 &locate->alignment_pad);
3384 locate->slot_offset = *initial_offset_ptr;
3386 #ifdef PUSH_ROUNDING
3387 if (passed_mode != BLKmode)
3388 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3389 #endif
3391 /* Pad_below needs the pre-rounded size to know how much to pad below
3392 so this must be done before rounding up. */
3393 locate->offset = locate->slot_offset;
3394 if (where_pad == downward)
3395 pad_below (&locate->offset, passed_mode, sizetree);
3397 if (where_pad != none
3398 && (!host_integerp (sizetree, 1)
3399 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3400 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3402 ADD_PARM_SIZE (locate->size, sizetree);
3404 locate->size.constant -= part_size_in_regs;
3405 #endif /* ARGS_GROW_DOWNWARD */
3408 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3409 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3411 static void
3412 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3413 struct args_size *alignment_pad)
3415 tree save_var = NULL_TREE;
3416 HOST_WIDE_INT save_constant = 0;
3417 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3418 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3420 #ifdef SPARC_STACK_BOUNDARY_HACK
3421 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3422 the real alignment of %sp. However, when it does this, the
3423 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3424 if (SPARC_STACK_BOUNDARY_HACK)
3425 sp_offset = 0;
3426 #endif
3428 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3430 save_var = offset_ptr->var;
3431 save_constant = offset_ptr->constant;
3434 alignment_pad->var = NULL_TREE;
3435 alignment_pad->constant = 0;
3437 if (boundary > BITS_PER_UNIT)
3439 if (offset_ptr->var)
3441 tree sp_offset_tree = ssize_int (sp_offset);
3442 tree offset = size_binop (PLUS_EXPR,
3443 ARGS_SIZE_TREE (*offset_ptr),
3444 sp_offset_tree);
3445 #ifdef ARGS_GROW_DOWNWARD
3446 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3447 #else
3448 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3449 #endif
3451 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3452 /* ARGS_SIZE_TREE includes constant term. */
3453 offset_ptr->constant = 0;
3454 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3455 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3456 save_var);
3458 else
3460 offset_ptr->constant = -sp_offset +
3461 #ifdef ARGS_GROW_DOWNWARD
3462 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3463 #else
3464 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3465 #endif
3466 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3467 alignment_pad->constant = offset_ptr->constant - save_constant;
3472 static void
3473 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3475 if (passed_mode != BLKmode)
3477 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3478 offset_ptr->constant
3479 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3480 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3481 - GET_MODE_SIZE (passed_mode));
3483 else
3485 if (TREE_CODE (sizetree) != INTEGER_CST
3486 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3488 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3489 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3490 /* Add it in. */
3491 ADD_PARM_SIZE (*offset_ptr, s2);
3492 SUB_PARM_SIZE (*offset_ptr, sizetree);
3497 /* Walk the tree of blocks describing the binding levels within a function
3498 and warn about variables the might be killed by setjmp or vfork.
3499 This is done after calling flow_analysis and before global_alloc
3500 clobbers the pseudo-regs to hard regs. */
3502 void
3503 setjmp_vars_warning (tree block)
3505 tree decl, sub;
3507 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3509 if (TREE_CODE (decl) == VAR_DECL
3510 && DECL_RTL_SET_P (decl)
3511 && REG_P (DECL_RTL (decl))
3512 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3513 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3514 " or %<vfork%>",
3515 decl);
3518 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3519 setjmp_vars_warning (sub);
3522 /* Do the appropriate part of setjmp_vars_warning
3523 but for arguments instead of local variables. */
3525 void
3526 setjmp_args_warning (void)
3528 tree decl;
3529 for (decl = DECL_ARGUMENTS (current_function_decl);
3530 decl; decl = TREE_CHAIN (decl))
3531 if (DECL_RTL (decl) != 0
3532 && REG_P (DECL_RTL (decl))
3533 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3534 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3535 decl);
3539 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3540 and create duplicate blocks. */
3541 /* ??? Need an option to either create block fragments or to create
3542 abstract origin duplicates of a source block. It really depends
3543 on what optimization has been performed. */
3545 void
3546 reorder_blocks (void)
3548 tree block = DECL_INITIAL (current_function_decl);
3549 VEC(tree,heap) *block_stack;
3551 if (block == NULL_TREE)
3552 return;
3554 block_stack = VEC_alloc (tree, heap, 10);
3556 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3557 clear_block_marks (block);
3559 /* Prune the old trees away, so that they don't get in the way. */
3560 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3561 BLOCK_CHAIN (block) = NULL_TREE;
3563 /* Recreate the block tree from the note nesting. */
3564 reorder_blocks_1 (get_insns (), block, &block_stack);
3565 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3567 /* Remove deleted blocks from the block fragment chains. */
3568 reorder_fix_fragments (block);
3570 VEC_free (tree, heap, block_stack);
3573 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3575 void
3576 clear_block_marks (tree block)
3578 while (block)
3580 TREE_ASM_WRITTEN (block) = 0;
3581 clear_block_marks (BLOCK_SUBBLOCKS (block));
3582 block = BLOCK_CHAIN (block);
3586 static void
3587 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3589 rtx insn;
3591 for (insn = insns; insn; insn = NEXT_INSN (insn))
3593 if (NOTE_P (insn))
3595 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3597 tree block = NOTE_BLOCK (insn);
3599 /* If we have seen this block before, that means it now
3600 spans multiple address regions. Create a new fragment. */
3601 if (TREE_ASM_WRITTEN (block))
3603 tree new_block = copy_node (block);
3604 tree origin;
3606 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3607 ? BLOCK_FRAGMENT_ORIGIN (block)
3608 : block);
3609 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3610 BLOCK_FRAGMENT_CHAIN (new_block)
3611 = BLOCK_FRAGMENT_CHAIN (origin);
3612 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3614 NOTE_BLOCK (insn) = new_block;
3615 block = new_block;
3618 BLOCK_SUBBLOCKS (block) = 0;
3619 TREE_ASM_WRITTEN (block) = 1;
3620 /* When there's only one block for the entire function,
3621 current_block == block and we mustn't do this, it
3622 will cause infinite recursion. */
3623 if (block != current_block)
3625 BLOCK_SUPERCONTEXT (block) = current_block;
3626 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3627 BLOCK_SUBBLOCKS (current_block) = block;
3628 current_block = block;
3630 VEC_safe_push (tree, heap, *p_block_stack, block);
3632 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3634 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3635 BLOCK_SUBBLOCKS (current_block)
3636 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3637 current_block = BLOCK_SUPERCONTEXT (current_block);
3643 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3644 appears in the block tree, select one of the fragments to become
3645 the new origin block. */
3647 static void
3648 reorder_fix_fragments (tree block)
3650 while (block)
3652 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3653 tree new_origin = NULL_TREE;
3655 if (dup_origin)
3657 if (! TREE_ASM_WRITTEN (dup_origin))
3659 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3661 /* Find the first of the remaining fragments. There must
3662 be at least one -- the current block. */
3663 while (! TREE_ASM_WRITTEN (new_origin))
3664 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3665 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3668 else if (! dup_origin)
3669 new_origin = block;
3671 /* Re-root the rest of the fragments to the new origin. In the
3672 case that DUP_ORIGIN was null, that means BLOCK was the origin
3673 of a chain of fragments and we want to remove those fragments
3674 that didn't make it to the output. */
3675 if (new_origin)
3677 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3678 tree chain = *pp;
3680 while (chain)
3682 if (TREE_ASM_WRITTEN (chain))
3684 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3685 *pp = chain;
3686 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3688 chain = BLOCK_FRAGMENT_CHAIN (chain);
3690 *pp = NULL_TREE;
3693 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3694 block = BLOCK_CHAIN (block);
3698 /* Reverse the order of elements in the chain T of blocks,
3699 and return the new head of the chain (old last element). */
3701 tree
3702 blocks_nreverse (tree t)
3704 tree prev = 0, decl, next;
3705 for (decl = t; decl; decl = next)
3707 next = BLOCK_CHAIN (decl);
3708 BLOCK_CHAIN (decl) = prev;
3709 prev = decl;
3711 return prev;
3714 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3715 non-NULL, list them all into VECTOR, in a depth-first preorder
3716 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3717 blocks. */
3719 static int
3720 all_blocks (tree block, tree *vector)
3722 int n_blocks = 0;
3724 while (block)
3726 TREE_ASM_WRITTEN (block) = 0;
3728 /* Record this block. */
3729 if (vector)
3730 vector[n_blocks] = block;
3732 ++n_blocks;
3734 /* Record the subblocks, and their subblocks... */
3735 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3736 vector ? vector + n_blocks : 0);
3737 block = BLOCK_CHAIN (block);
3740 return n_blocks;
3743 /* Return a vector containing all the blocks rooted at BLOCK. The
3744 number of elements in the vector is stored in N_BLOCKS_P. The
3745 vector is dynamically allocated; it is the caller's responsibility
3746 to call `free' on the pointer returned. */
3748 static tree *
3749 get_block_vector (tree block, int *n_blocks_p)
3751 tree *block_vector;
3753 *n_blocks_p = all_blocks (block, NULL);
3754 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3755 all_blocks (block, block_vector);
3757 return block_vector;
3760 static GTY(()) int next_block_index = 2;
3762 /* Set BLOCK_NUMBER for all the blocks in FN. */
3764 void
3765 number_blocks (tree fn)
3767 int i;
3768 int n_blocks;
3769 tree *block_vector;
3771 /* For SDB and XCOFF debugging output, we start numbering the blocks
3772 from 1 within each function, rather than keeping a running
3773 count. */
3774 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3775 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3776 next_block_index = 1;
3777 #endif
3779 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3781 /* The top-level BLOCK isn't numbered at all. */
3782 for (i = 1; i < n_blocks; ++i)
3783 /* We number the blocks from two. */
3784 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3786 free (block_vector);
3788 return;
3791 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3793 tree
3794 debug_find_var_in_block_tree (tree var, tree block)
3796 tree t;
3798 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3799 if (t == var)
3800 return block;
3802 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3804 tree ret = debug_find_var_in_block_tree (var, t);
3805 if (ret)
3806 return ret;
3809 return NULL_TREE;
3812 /* Allocate a function structure for FNDECL and set its contents
3813 to the defaults. */
3815 void
3816 allocate_struct_function (tree fndecl)
3818 tree result;
3819 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3821 cfun = ggc_alloc_cleared (sizeof (struct function));
3823 cfun->stack_alignment_needed = STACK_BOUNDARY;
3824 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3826 current_function_funcdef_no = funcdef_no++;
3828 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3830 init_eh_for_function ();
3832 lang_hooks.function.init (cfun);
3833 if (init_machine_status)
3834 cfun->machine = (*init_machine_status) ();
3836 if (fndecl == NULL)
3837 return;
3839 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3840 cfun->decl = fndecl;
3842 result = DECL_RESULT (fndecl);
3843 if (aggregate_value_p (result, fndecl))
3845 #ifdef PCC_STATIC_STRUCT_RETURN
3846 current_function_returns_pcc_struct = 1;
3847 #endif
3848 current_function_returns_struct = 1;
3851 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3853 current_function_stdarg
3854 = (fntype
3855 && TYPE_ARG_TYPES (fntype) != 0
3856 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3857 != void_type_node));
3859 /* Assume all registers in stdarg functions need to be saved. */
3860 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3861 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3864 /* Reset cfun, and other non-struct-function variables to defaults as
3865 appropriate for emitting rtl at the start of a function. */
3867 static void
3868 prepare_function_start (tree fndecl)
3870 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3871 cfun = DECL_STRUCT_FUNCTION (fndecl);
3872 else
3873 allocate_struct_function (fndecl);
3874 init_emit ();
3875 init_varasm_status (cfun);
3876 init_expr ();
3878 cse_not_expected = ! optimize;
3880 /* Caller save not needed yet. */
3881 caller_save_needed = 0;
3883 /* We haven't done register allocation yet. */
3884 reg_renumber = 0;
3886 /* Indicate that we have not instantiated virtual registers yet. */
3887 virtuals_instantiated = 0;
3889 /* Indicate that we want CONCATs now. */
3890 generating_concat_p = 1;
3892 /* Indicate we have no need of a frame pointer yet. */
3893 frame_pointer_needed = 0;
3896 /* Initialize the rtl expansion mechanism so that we can do simple things
3897 like generate sequences. This is used to provide a context during global
3898 initialization of some passes. */
3899 void
3900 init_dummy_function_start (void)
3902 prepare_function_start (NULL);
3905 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3906 and initialize static variables for generating RTL for the statements
3907 of the function. */
3909 void
3910 init_function_start (tree subr)
3912 prepare_function_start (subr);
3914 /* Prevent ever trying to delete the first instruction of a
3915 function. Also tell final how to output a linenum before the
3916 function prologue. Note linenums could be missing, e.g. when
3917 compiling a Java .class file. */
3918 if (! DECL_IS_BUILTIN (subr))
3919 emit_line_note (DECL_SOURCE_LOCATION (subr));
3921 /* Make sure first insn is a note even if we don't want linenums.
3922 This makes sure the first insn will never be deleted.
3923 Also, final expects a note to appear there. */
3924 emit_note (NOTE_INSN_DELETED);
3926 /* Warn if this value is an aggregate type,
3927 regardless of which calling convention we are using for it. */
3928 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3929 warning (OPT_Waggregate_return, "function returns an aggregate");
3932 /* Make sure all values used by the optimization passes have sane
3933 defaults. */
3934 void
3935 init_function_for_compilation (void)
3937 reg_renumber = 0;
3939 /* No prologue/epilogue insns yet. Make sure that these vectors are
3940 empty. */
3941 gcc_assert (VEC_length (int, prologue) == 0);
3942 gcc_assert (VEC_length (int, epilogue) == 0);
3943 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3946 struct tree_opt_pass pass_init_function =
3948 NULL, /* name */
3949 NULL, /* gate */
3950 init_function_for_compilation, /* execute */
3951 NULL, /* sub */
3952 NULL, /* next */
3953 0, /* static_pass_number */
3954 0, /* tv_id */
3955 0, /* properties_required */
3956 0, /* properties_provided */
3957 0, /* properties_destroyed */
3958 0, /* todo_flags_start */
3959 0, /* todo_flags_finish */
3960 0 /* letter */
3964 void
3965 expand_main_function (void)
3967 #if (defined(INVOKE__main) \
3968 || (!defined(HAS_INIT_SECTION) \
3969 && !defined(INIT_SECTION_ASM_OP) \
3970 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3971 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3972 #endif
3975 /* Expand code to initialize the stack_protect_guard. This is invoked at
3976 the beginning of a function to be protected. */
3978 #ifndef HAVE_stack_protect_set
3979 # define HAVE_stack_protect_set 0
3980 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3981 #endif
3983 void
3984 stack_protect_prologue (void)
3986 tree guard_decl = targetm.stack_protect_guard ();
3987 rtx x, y;
3989 /* Avoid expand_expr here, because we don't want guard_decl pulled
3990 into registers unless absolutely necessary. And we know that
3991 cfun->stack_protect_guard is a local stack slot, so this skips
3992 all the fluff. */
3993 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3994 y = validize_mem (DECL_RTL (guard_decl));
3996 /* Allow the target to copy from Y to X without leaking Y into a
3997 register. */
3998 if (HAVE_stack_protect_set)
4000 rtx insn = gen_stack_protect_set (x, y);
4001 if (insn)
4003 emit_insn (insn);
4004 return;
4008 /* Otherwise do a straight move. */
4009 emit_move_insn (x, y);
4012 /* Expand code to verify the stack_protect_guard. This is invoked at
4013 the end of a function to be protected. */
4015 #ifndef HAVE_stack_protect_test
4016 # define HAVE_stack_protect_test 0
4017 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4018 #endif
4020 void
4021 stack_protect_epilogue (void)
4023 tree guard_decl = targetm.stack_protect_guard ();
4024 rtx label = gen_label_rtx ();
4025 rtx x, y, tmp;
4027 /* Avoid expand_expr here, because we don't want guard_decl pulled
4028 into registers unless absolutely necessary. And we know that
4029 cfun->stack_protect_guard is a local stack slot, so this skips
4030 all the fluff. */
4031 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4032 y = validize_mem (DECL_RTL (guard_decl));
4034 /* Allow the target to compare Y with X without leaking either into
4035 a register. */
4036 switch (HAVE_stack_protect_test != 0)
4038 case 1:
4039 tmp = gen_stack_protect_test (x, y, label);
4040 if (tmp)
4042 emit_insn (tmp);
4043 break;
4045 /* FALLTHRU */
4047 default:
4048 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4049 break;
4052 /* The noreturn predictor has been moved to the tree level. The rtl-level
4053 predictors estimate this branch about 20%, which isn't enough to get
4054 things moved out of line. Since this is the only extant case of adding
4055 a noreturn function at the rtl level, it doesn't seem worth doing ought
4056 except adding the prediction by hand. */
4057 tmp = get_last_insn ();
4058 if (JUMP_P (tmp))
4059 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4061 expand_expr_stmt (targetm.stack_protect_fail ());
4062 emit_label (label);
4065 /* Start the RTL for a new function, and set variables used for
4066 emitting RTL.
4067 SUBR is the FUNCTION_DECL node.
4068 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4069 the function's parameters, which must be run at any return statement. */
4071 void
4072 expand_function_start (tree subr)
4074 /* Make sure volatile mem refs aren't considered
4075 valid operands of arithmetic insns. */
4076 init_recog_no_volatile ();
4078 current_function_profile
4079 = (profile_flag
4080 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4082 current_function_limit_stack
4083 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4085 /* Make the label for return statements to jump to. Do not special
4086 case machines with special return instructions -- they will be
4087 handled later during jump, ifcvt, or epilogue creation. */
4088 return_label = gen_label_rtx ();
4090 /* Initialize rtx used to return the value. */
4091 /* Do this before assign_parms so that we copy the struct value address
4092 before any library calls that assign parms might generate. */
4094 /* Decide whether to return the value in memory or in a register. */
4095 if (aggregate_value_p (DECL_RESULT (subr), subr))
4097 /* Returning something that won't go in a register. */
4098 rtx value_address = 0;
4100 #ifdef PCC_STATIC_STRUCT_RETURN
4101 if (current_function_returns_pcc_struct)
4103 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4104 value_address = assemble_static_space (size);
4106 else
4107 #endif
4109 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4110 /* Expect to be passed the address of a place to store the value.
4111 If it is passed as an argument, assign_parms will take care of
4112 it. */
4113 if (sv)
4115 value_address = gen_reg_rtx (Pmode);
4116 emit_move_insn (value_address, sv);
4119 if (value_address)
4121 rtx x = value_address;
4122 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4124 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4125 set_mem_attributes (x, DECL_RESULT (subr), 1);
4127 SET_DECL_RTL (DECL_RESULT (subr), x);
4130 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4131 /* If return mode is void, this decl rtl should not be used. */
4132 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4133 else
4135 /* Compute the return values into a pseudo reg, which we will copy
4136 into the true return register after the cleanups are done. */
4137 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4138 if (TYPE_MODE (return_type) != BLKmode
4139 && targetm.calls.return_in_msb (return_type))
4140 /* expand_function_end will insert the appropriate padding in
4141 this case. Use the return value's natural (unpadded) mode
4142 within the function proper. */
4143 SET_DECL_RTL (DECL_RESULT (subr),
4144 gen_reg_rtx (TYPE_MODE (return_type)));
4145 else
4147 /* In order to figure out what mode to use for the pseudo, we
4148 figure out what the mode of the eventual return register will
4149 actually be, and use that. */
4150 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4152 /* Structures that are returned in registers are not
4153 aggregate_value_p, so we may see a PARALLEL or a REG. */
4154 if (REG_P (hard_reg))
4155 SET_DECL_RTL (DECL_RESULT (subr),
4156 gen_reg_rtx (GET_MODE (hard_reg)));
4157 else
4159 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4160 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4164 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4165 result to the real return register(s). */
4166 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4169 /* Initialize rtx for parameters and local variables.
4170 In some cases this requires emitting insns. */
4171 assign_parms (subr);
4173 /* If function gets a static chain arg, store it. */
4174 if (cfun->static_chain_decl)
4176 tree parm = cfun->static_chain_decl;
4177 rtx local = gen_reg_rtx (Pmode);
4179 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4180 SET_DECL_RTL (parm, local);
4181 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4183 emit_move_insn (local, static_chain_incoming_rtx);
4186 /* If the function receives a non-local goto, then store the
4187 bits we need to restore the frame pointer. */
4188 if (cfun->nonlocal_goto_save_area)
4190 tree t_save;
4191 rtx r_save;
4193 /* ??? We need to do this save early. Unfortunately here is
4194 before the frame variable gets declared. Help out... */
4195 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4197 t_save = build4 (ARRAY_REF, ptr_type_node,
4198 cfun->nonlocal_goto_save_area,
4199 integer_zero_node, NULL_TREE, NULL_TREE);
4200 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4201 r_save = convert_memory_address (Pmode, r_save);
4203 emit_move_insn (r_save, virtual_stack_vars_rtx);
4204 update_nonlocal_goto_save_area ();
4207 /* The following was moved from init_function_start.
4208 The move is supposed to make sdb output more accurate. */
4209 /* Indicate the beginning of the function body,
4210 as opposed to parm setup. */
4211 emit_note (NOTE_INSN_FUNCTION_BEG);
4213 if (!NOTE_P (get_last_insn ()))
4214 emit_note (NOTE_INSN_DELETED);
4215 parm_birth_insn = get_last_insn ();
4217 if (current_function_profile)
4219 #ifdef PROFILE_HOOK
4220 PROFILE_HOOK (current_function_funcdef_no);
4221 #endif
4224 /* After the display initializations is where the tail-recursion label
4225 should go, if we end up needing one. Ensure we have a NOTE here
4226 since some things (like trampolines) get placed before this. */
4227 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4229 /* Make sure there is a line number after the function entry setup code. */
4230 force_next_line_note ();
4233 /* Undo the effects of init_dummy_function_start. */
4234 void
4235 expand_dummy_function_end (void)
4237 /* End any sequences that failed to be closed due to syntax errors. */
4238 while (in_sequence_p ())
4239 end_sequence ();
4241 /* Outside function body, can't compute type's actual size
4242 until next function's body starts. */
4244 free_after_parsing (cfun);
4245 free_after_compilation (cfun);
4246 cfun = 0;
4249 /* Call DOIT for each hard register used as a return value from
4250 the current function. */
4252 void
4253 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4255 rtx outgoing = current_function_return_rtx;
4257 if (! outgoing)
4258 return;
4260 if (REG_P (outgoing))
4261 (*doit) (outgoing, arg);
4262 else if (GET_CODE (outgoing) == PARALLEL)
4264 int i;
4266 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4268 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4270 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4271 (*doit) (x, arg);
4276 static void
4277 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4279 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4282 void
4283 clobber_return_register (void)
4285 diddle_return_value (do_clobber_return_reg, NULL);
4287 /* In case we do use pseudo to return value, clobber it too. */
4288 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4290 tree decl_result = DECL_RESULT (current_function_decl);
4291 rtx decl_rtl = DECL_RTL (decl_result);
4292 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4294 do_clobber_return_reg (decl_rtl, NULL);
4299 static void
4300 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4302 emit_insn (gen_rtx_USE (VOIDmode, reg));
4305 void
4306 use_return_register (void)
4308 diddle_return_value (do_use_return_reg, NULL);
4311 /* Possibly warn about unused parameters. */
4312 void
4313 do_warn_unused_parameter (tree fn)
4315 tree decl;
4317 for (decl = DECL_ARGUMENTS (fn);
4318 decl; decl = TREE_CHAIN (decl))
4319 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4320 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4321 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4324 static GTY(()) rtx initial_trampoline;
4326 /* Generate RTL for the end of the current function. */
4328 void
4329 expand_function_end (void)
4331 rtx clobber_after;
4333 /* If arg_pointer_save_area was referenced only from a nested
4334 function, we will not have initialized it yet. Do that now. */
4335 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4336 get_arg_pointer_save_area (cfun);
4338 /* If we are doing stack checking and this function makes calls,
4339 do a stack probe at the start of the function to ensure we have enough
4340 space for another stack frame. */
4341 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4343 rtx insn, seq;
4345 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4346 if (CALL_P (insn))
4348 start_sequence ();
4349 probe_stack_range (STACK_CHECK_PROTECT,
4350 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4351 seq = get_insns ();
4352 end_sequence ();
4353 emit_insn_before (seq, tail_recursion_reentry);
4354 break;
4358 /* Possibly warn about unused parameters.
4359 When frontend does unit-at-a-time, the warning is already
4360 issued at finalization time. */
4361 if (warn_unused_parameter
4362 && !lang_hooks.callgraph.expand_function)
4363 do_warn_unused_parameter (current_function_decl);
4365 /* End any sequences that failed to be closed due to syntax errors. */
4366 while (in_sequence_p ())
4367 end_sequence ();
4369 clear_pending_stack_adjust ();
4370 do_pending_stack_adjust ();
4372 /* Mark the end of the function body.
4373 If control reaches this insn, the function can drop through
4374 without returning a value. */
4375 emit_note (NOTE_INSN_FUNCTION_END);
4377 /* Must mark the last line number note in the function, so that the test
4378 coverage code can avoid counting the last line twice. This just tells
4379 the code to ignore the immediately following line note, since there
4380 already exists a copy of this note somewhere above. This line number
4381 note is still needed for debugging though, so we can't delete it. */
4382 if (flag_test_coverage)
4383 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4385 /* Output a linenumber for the end of the function.
4386 SDB depends on this. */
4387 force_next_line_note ();
4388 emit_line_note (input_location);
4390 /* Before the return label (if any), clobber the return
4391 registers so that they are not propagated live to the rest of
4392 the function. This can only happen with functions that drop
4393 through; if there had been a return statement, there would
4394 have either been a return rtx, or a jump to the return label.
4396 We delay actual code generation after the current_function_value_rtx
4397 is computed. */
4398 clobber_after = get_last_insn ();
4400 /* Output the label for the actual return from the function. */
4401 emit_label (return_label);
4403 if (USING_SJLJ_EXCEPTIONS)
4405 /* Let except.c know where it should emit the call to unregister
4406 the function context for sjlj exceptions. */
4407 if (flag_exceptions)
4408 sjlj_emit_function_exit_after (get_last_insn ());
4410 else
4412 /* @@@ This is a kludge. We want to ensure that instructions that
4413 may trap are not moved into the epilogue by scheduling, because
4414 we don't always emit unwind information for the epilogue.
4415 However, not all machine descriptions define a blockage insn, so
4416 emit an ASM_INPUT to act as one. */
4417 if (flag_non_call_exceptions)
4418 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4421 /* If this is an implementation of throw, do what's necessary to
4422 communicate between __builtin_eh_return and the epilogue. */
4423 expand_eh_return ();
4425 /* If scalar return value was computed in a pseudo-reg, or was a named
4426 return value that got dumped to the stack, copy that to the hard
4427 return register. */
4428 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4430 tree decl_result = DECL_RESULT (current_function_decl);
4431 rtx decl_rtl = DECL_RTL (decl_result);
4433 if (REG_P (decl_rtl)
4434 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4435 : DECL_REGISTER (decl_result))
4437 rtx real_decl_rtl = current_function_return_rtx;
4439 /* This should be set in assign_parms. */
4440 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4442 /* If this is a BLKmode structure being returned in registers,
4443 then use the mode computed in expand_return. Note that if
4444 decl_rtl is memory, then its mode may have been changed,
4445 but that current_function_return_rtx has not. */
4446 if (GET_MODE (real_decl_rtl) == BLKmode)
4447 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4449 /* If a non-BLKmode return value should be padded at the least
4450 significant end of the register, shift it left by the appropriate
4451 amount. BLKmode results are handled using the group load/store
4452 machinery. */
4453 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4454 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4456 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4457 REGNO (real_decl_rtl)),
4458 decl_rtl);
4459 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4461 /* If a named return value dumped decl_return to memory, then
4462 we may need to re-do the PROMOTE_MODE signed/unsigned
4463 extension. */
4464 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4466 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4468 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4469 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4470 &unsignedp, 1);
4472 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4474 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4476 /* If expand_function_start has created a PARALLEL for decl_rtl,
4477 move the result to the real return registers. Otherwise, do
4478 a group load from decl_rtl for a named return. */
4479 if (GET_CODE (decl_rtl) == PARALLEL)
4480 emit_group_move (real_decl_rtl, decl_rtl);
4481 else
4482 emit_group_load (real_decl_rtl, decl_rtl,
4483 TREE_TYPE (decl_result),
4484 int_size_in_bytes (TREE_TYPE (decl_result)));
4486 /* In the case of complex integer modes smaller than a word, we'll
4487 need to generate some non-trivial bitfield insertions. Do that
4488 on a pseudo and not the hard register. */
4489 else if (GET_CODE (decl_rtl) == CONCAT
4490 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4491 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4493 int old_generating_concat_p;
4494 rtx tmp;
4496 old_generating_concat_p = generating_concat_p;
4497 generating_concat_p = 0;
4498 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4499 generating_concat_p = old_generating_concat_p;
4501 emit_move_insn (tmp, decl_rtl);
4502 emit_move_insn (real_decl_rtl, tmp);
4504 else
4505 emit_move_insn (real_decl_rtl, decl_rtl);
4509 /* If returning a structure, arrange to return the address of the value
4510 in a place where debuggers expect to find it.
4512 If returning a structure PCC style,
4513 the caller also depends on this value.
4514 And current_function_returns_pcc_struct is not necessarily set. */
4515 if (current_function_returns_struct
4516 || current_function_returns_pcc_struct)
4518 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4519 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4520 rtx outgoing;
4522 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4523 type = TREE_TYPE (type);
4524 else
4525 value_address = XEXP (value_address, 0);
4527 outgoing = targetm.calls.function_value (build_pointer_type (type),
4528 current_function_decl, true);
4530 /* Mark this as a function return value so integrate will delete the
4531 assignment and USE below when inlining this function. */
4532 REG_FUNCTION_VALUE_P (outgoing) = 1;
4534 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4535 value_address = convert_memory_address (GET_MODE (outgoing),
4536 value_address);
4538 emit_move_insn (outgoing, value_address);
4540 /* Show return register used to hold result (in this case the address
4541 of the result. */
4542 current_function_return_rtx = outgoing;
4545 /* Emit the actual code to clobber return register. */
4547 rtx seq;
4549 start_sequence ();
4550 clobber_return_register ();
4551 expand_naked_return ();
4552 seq = get_insns ();
4553 end_sequence ();
4555 emit_insn_after (seq, clobber_after);
4558 /* Output the label for the naked return from the function. */
4559 emit_label (naked_return_label);
4561 /* If stack protection is enabled for this function, check the guard. */
4562 if (cfun->stack_protect_guard)
4563 stack_protect_epilogue ();
4565 /* If we had calls to alloca, and this machine needs
4566 an accurate stack pointer to exit the function,
4567 insert some code to save and restore the stack pointer. */
4568 if (! EXIT_IGNORE_STACK
4569 && current_function_calls_alloca)
4571 rtx tem = 0;
4573 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4574 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4577 /* ??? This should no longer be necessary since stupid is no longer with
4578 us, but there are some parts of the compiler (eg reload_combine, and
4579 sh mach_dep_reorg) that still try and compute their own lifetime info
4580 instead of using the general framework. */
4581 use_return_register ();
4585 get_arg_pointer_save_area (struct function *f)
4587 rtx ret = f->x_arg_pointer_save_area;
4589 if (! ret)
4591 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4592 f->x_arg_pointer_save_area = ret;
4595 if (f == cfun && ! f->arg_pointer_save_area_init)
4597 rtx seq;
4599 /* Save the arg pointer at the beginning of the function. The
4600 generated stack slot may not be a valid memory address, so we
4601 have to check it and fix it if necessary. */
4602 start_sequence ();
4603 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4604 seq = get_insns ();
4605 end_sequence ();
4607 push_topmost_sequence ();
4608 emit_insn_after (seq, entry_of_function ());
4609 pop_topmost_sequence ();
4612 return ret;
4615 /* Extend a vector that records the INSN_UIDs of INSNS
4616 (a list of one or more insns). */
4618 static void
4619 record_insns (rtx insns, VEC(int,heap) **vecp)
4621 rtx tmp;
4623 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4624 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4627 /* Set the locator of the insn chain starting at INSN to LOC. */
4628 static void
4629 set_insn_locators (rtx insn, int loc)
4631 while (insn != NULL_RTX)
4633 if (INSN_P (insn))
4634 INSN_LOCATOR (insn) = loc;
4635 insn = NEXT_INSN (insn);
4639 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4640 be running after reorg, SEQUENCE rtl is possible. */
4642 static int
4643 contains (rtx insn, VEC(int,heap) **vec)
4645 int i, j;
4647 if (NONJUMP_INSN_P (insn)
4648 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4650 int count = 0;
4651 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4652 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4653 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4654 == VEC_index (int, *vec, j))
4655 count++;
4656 return count;
4658 else
4660 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4661 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4662 return 1;
4664 return 0;
4668 prologue_epilogue_contains (rtx insn)
4670 if (contains (insn, &prologue))
4671 return 1;
4672 if (contains (insn, &epilogue))
4673 return 1;
4674 return 0;
4678 sibcall_epilogue_contains (rtx insn)
4680 if (sibcall_epilogue)
4681 return contains (insn, &sibcall_epilogue);
4682 return 0;
4685 #ifdef HAVE_return
4686 /* Insert gen_return at the end of block BB. This also means updating
4687 block_for_insn appropriately. */
4689 static void
4690 emit_return_into_block (basic_block bb, rtx line_note)
4692 emit_jump_insn_after (gen_return (), BB_END (bb));
4693 if (line_note)
4694 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4696 #endif /* HAVE_return */
4698 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4700 /* These functions convert the epilogue into a variant that does not
4701 modify the stack pointer. This is used in cases where a function
4702 returns an object whose size is not known until it is computed.
4703 The called function leaves the object on the stack, leaves the
4704 stack depressed, and returns a pointer to the object.
4706 What we need to do is track all modifications and references to the
4707 stack pointer, deleting the modifications and changing the
4708 references to point to the location the stack pointer would have
4709 pointed to had the modifications taken place.
4711 These functions need to be portable so we need to make as few
4712 assumptions about the epilogue as we can. However, the epilogue
4713 basically contains three things: instructions to reset the stack
4714 pointer, instructions to reload registers, possibly including the
4715 frame pointer, and an instruction to return to the caller.
4717 We must be sure of what a relevant epilogue insn is doing. We also
4718 make no attempt to validate the insns we make since if they are
4719 invalid, we probably can't do anything valid. The intent is that
4720 these routines get "smarter" as more and more machines start to use
4721 them and they try operating on different epilogues.
4723 We use the following structure to track what the part of the
4724 epilogue that we've already processed has done. We keep two copies
4725 of the SP equivalence, one for use during the insn we are
4726 processing and one for use in the next insn. The difference is
4727 because one part of a PARALLEL may adjust SP and the other may use
4728 it. */
4730 struct epi_info
4732 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4733 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4734 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4735 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4736 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4737 should be set to once we no longer need
4738 its value. */
4739 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4740 for registers. */
4743 static void handle_epilogue_set (rtx, struct epi_info *);
4744 static void update_epilogue_consts (rtx, rtx, void *);
4745 static void emit_equiv_load (struct epi_info *);
4747 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4748 no modifications to the stack pointer. Return the new list of insns. */
4750 static rtx
4751 keep_stack_depressed (rtx insns)
4753 int j;
4754 struct epi_info info;
4755 rtx insn, next;
4757 /* If the epilogue is just a single instruction, it must be OK as is. */
4758 if (NEXT_INSN (insns) == NULL_RTX)
4759 return insns;
4761 /* Otherwise, start a sequence, initialize the information we have, and
4762 process all the insns we were given. */
4763 start_sequence ();
4765 info.sp_equiv_reg = stack_pointer_rtx;
4766 info.sp_offset = 0;
4767 info.equiv_reg_src = 0;
4769 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4770 info.const_equiv[j] = 0;
4772 insn = insns;
4773 next = NULL_RTX;
4774 while (insn != NULL_RTX)
4776 next = NEXT_INSN (insn);
4778 if (!INSN_P (insn))
4780 add_insn (insn);
4781 insn = next;
4782 continue;
4785 /* If this insn references the register that SP is equivalent to and
4786 we have a pending load to that register, we must force out the load
4787 first and then indicate we no longer know what SP's equivalent is. */
4788 if (info.equiv_reg_src != 0
4789 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4791 emit_equiv_load (&info);
4792 info.sp_equiv_reg = 0;
4795 info.new_sp_equiv_reg = info.sp_equiv_reg;
4796 info.new_sp_offset = info.sp_offset;
4798 /* If this is a (RETURN) and the return address is on the stack,
4799 update the address and change to an indirect jump. */
4800 if (GET_CODE (PATTERN (insn)) == RETURN
4801 || (GET_CODE (PATTERN (insn)) == PARALLEL
4802 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4804 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4805 rtx base = 0;
4806 HOST_WIDE_INT offset = 0;
4807 rtx jump_insn, jump_set;
4809 /* If the return address is in a register, we can emit the insn
4810 unchanged. Otherwise, it must be a MEM and we see what the
4811 base register and offset are. In any case, we have to emit any
4812 pending load to the equivalent reg of SP, if any. */
4813 if (REG_P (retaddr))
4815 emit_equiv_load (&info);
4816 add_insn (insn);
4817 insn = next;
4818 continue;
4820 else
4822 rtx ret_ptr;
4823 gcc_assert (MEM_P (retaddr));
4825 ret_ptr = XEXP (retaddr, 0);
4827 if (REG_P (ret_ptr))
4829 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4830 offset = 0;
4832 else
4834 gcc_assert (GET_CODE (ret_ptr) == PLUS
4835 && REG_P (XEXP (ret_ptr, 0))
4836 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4837 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4838 offset = INTVAL (XEXP (ret_ptr, 1));
4842 /* If the base of the location containing the return pointer
4843 is SP, we must update it with the replacement address. Otherwise,
4844 just build the necessary MEM. */
4845 retaddr = plus_constant (base, offset);
4846 if (base == stack_pointer_rtx)
4847 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4848 plus_constant (info.sp_equiv_reg,
4849 info.sp_offset));
4851 retaddr = gen_rtx_MEM (Pmode, retaddr);
4852 MEM_NOTRAP_P (retaddr) = 1;
4854 /* If there is a pending load to the equivalent register for SP
4855 and we reference that register, we must load our address into
4856 a scratch register and then do that load. */
4857 if (info.equiv_reg_src
4858 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4860 unsigned int regno;
4861 rtx reg;
4863 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4864 if (HARD_REGNO_MODE_OK (regno, Pmode)
4865 && !fixed_regs[regno]
4866 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4867 && !REGNO_REG_SET_P
4868 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4869 && !refers_to_regno_p (regno,
4870 regno + hard_regno_nregs[regno]
4871 [Pmode],
4872 info.equiv_reg_src, NULL)
4873 && info.const_equiv[regno] == 0)
4874 break;
4876 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4878 reg = gen_rtx_REG (Pmode, regno);
4879 emit_move_insn (reg, retaddr);
4880 retaddr = reg;
4883 emit_equiv_load (&info);
4884 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4886 /* Show the SET in the above insn is a RETURN. */
4887 jump_set = single_set (jump_insn);
4888 gcc_assert (jump_set);
4889 SET_IS_RETURN_P (jump_set) = 1;
4892 /* If SP is not mentioned in the pattern and its equivalent register, if
4893 any, is not modified, just emit it. Otherwise, if neither is set,
4894 replace the reference to SP and emit the insn. If none of those are
4895 true, handle each SET individually. */
4896 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4897 && (info.sp_equiv_reg == stack_pointer_rtx
4898 || !reg_set_p (info.sp_equiv_reg, insn)))
4899 add_insn (insn);
4900 else if (! reg_set_p (stack_pointer_rtx, insn)
4901 && (info.sp_equiv_reg == stack_pointer_rtx
4902 || !reg_set_p (info.sp_equiv_reg, insn)))
4904 int changed;
4906 changed = validate_replace_rtx (stack_pointer_rtx,
4907 plus_constant (info.sp_equiv_reg,
4908 info.sp_offset),
4909 insn);
4910 gcc_assert (changed);
4912 add_insn (insn);
4914 else if (GET_CODE (PATTERN (insn)) == SET)
4915 handle_epilogue_set (PATTERN (insn), &info);
4916 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4918 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4919 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4920 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4922 else
4923 add_insn (insn);
4925 info.sp_equiv_reg = info.new_sp_equiv_reg;
4926 info.sp_offset = info.new_sp_offset;
4928 /* Now update any constants this insn sets. */
4929 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4930 insn = next;
4933 insns = get_insns ();
4934 end_sequence ();
4935 return insns;
4938 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4939 structure that contains information about what we've seen so far. We
4940 process this SET by either updating that data or by emitting one or
4941 more insns. */
4943 static void
4944 handle_epilogue_set (rtx set, struct epi_info *p)
4946 /* First handle the case where we are setting SP. Record what it is being
4947 set from, which we must be able to determine */
4948 if (reg_set_p (stack_pointer_rtx, set))
4950 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4952 if (GET_CODE (SET_SRC (set)) == PLUS)
4954 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4955 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4956 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4957 else
4959 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4960 && (REGNO (XEXP (SET_SRC (set), 1))
4961 < FIRST_PSEUDO_REGISTER)
4962 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4963 p->new_sp_offset
4964 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4967 else
4968 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4970 /* If we are adjusting SP, we adjust from the old data. */
4971 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4973 p->new_sp_equiv_reg = p->sp_equiv_reg;
4974 p->new_sp_offset += p->sp_offset;
4977 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4979 return;
4982 /* Next handle the case where we are setting SP's equivalent
4983 register. We must not already have a value to set it to. We
4984 could update, but there seems little point in handling that case.
4985 Note that we have to allow for the case where we are setting the
4986 register set in the previous part of a PARALLEL inside a single
4987 insn. But use the old offset for any updates within this insn.
4988 We must allow for the case where the register is being set in a
4989 different (usually wider) mode than Pmode). */
4990 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4992 gcc_assert (!p->equiv_reg_src
4993 && REG_P (p->new_sp_equiv_reg)
4994 && REG_P (SET_DEST (set))
4995 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4996 <= BITS_PER_WORD)
4997 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4998 p->equiv_reg_src
4999 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5000 plus_constant (p->sp_equiv_reg,
5001 p->sp_offset));
5004 /* Otherwise, replace any references to SP in the insn to its new value
5005 and emit the insn. */
5006 else
5008 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5009 plus_constant (p->sp_equiv_reg,
5010 p->sp_offset));
5011 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5012 plus_constant (p->sp_equiv_reg,
5013 p->sp_offset));
5014 emit_insn (set);
5018 /* Update the tracking information for registers set to constants. */
5020 static void
5021 update_epilogue_consts (rtx dest, rtx x, void *data)
5023 struct epi_info *p = (struct epi_info *) data;
5024 rtx new;
5026 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5027 return;
5029 /* If we are either clobbering a register or doing a partial set,
5030 show we don't know the value. */
5031 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5032 p->const_equiv[REGNO (dest)] = 0;
5034 /* If we are setting it to a constant, record that constant. */
5035 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5036 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5038 /* If this is a binary operation between a register we have been tracking
5039 and a constant, see if we can compute a new constant value. */
5040 else if (ARITHMETIC_P (SET_SRC (x))
5041 && REG_P (XEXP (SET_SRC (x), 0))
5042 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5043 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5044 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5045 && 0 != (new = simplify_binary_operation
5046 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5047 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5048 XEXP (SET_SRC (x), 1)))
5049 && GET_CODE (new) == CONST_INT)
5050 p->const_equiv[REGNO (dest)] = new;
5052 /* Otherwise, we can't do anything with this value. */
5053 else
5054 p->const_equiv[REGNO (dest)] = 0;
5057 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5059 static void
5060 emit_equiv_load (struct epi_info *p)
5062 if (p->equiv_reg_src != 0)
5064 rtx dest = p->sp_equiv_reg;
5066 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5067 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5068 REGNO (p->sp_equiv_reg));
5070 emit_move_insn (dest, p->equiv_reg_src);
5071 p->equiv_reg_src = 0;
5074 #endif
5076 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5077 this into place with notes indicating where the prologue ends and where
5078 the epilogue begins. Update the basic block information when possible. */
5080 void
5081 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5083 int inserted = 0;
5084 edge e;
5085 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5086 rtx seq;
5087 #endif
5088 #ifdef HAVE_prologue
5089 rtx prologue_end = NULL_RTX;
5090 #endif
5091 #if defined (HAVE_epilogue) || defined(HAVE_return)
5092 rtx epilogue_end = NULL_RTX;
5093 #endif
5094 edge_iterator ei;
5096 #ifdef HAVE_prologue
5097 if (HAVE_prologue)
5099 start_sequence ();
5100 seq = gen_prologue ();
5101 emit_insn (seq);
5103 /* Retain a map of the prologue insns. */
5104 record_insns (seq, &prologue);
5105 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5107 #ifndef PROFILE_BEFORE_PROLOGUE
5108 /* Ensure that instructions are not moved into the prologue when
5109 profiling is on. The call to the profiling routine can be
5110 emitted within the live range of a call-clobbered register. */
5111 if (current_function_profile)
5112 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
5113 #endif
5115 seq = get_insns ();
5116 end_sequence ();
5117 set_insn_locators (seq, prologue_locator);
5119 /* Can't deal with multiple successors of the entry block
5120 at the moment. Function should always have at least one
5121 entry point. */
5122 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5124 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5125 inserted = 1;
5127 #endif
5129 /* If the exit block has no non-fake predecessors, we don't need
5130 an epilogue. */
5131 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5132 if ((e->flags & EDGE_FAKE) == 0)
5133 break;
5134 if (e == NULL)
5135 goto epilogue_done;
5137 #ifdef HAVE_return
5138 if (optimize && HAVE_return)
5140 /* If we're allowed to generate a simple return instruction,
5141 then by definition we don't need a full epilogue. Examine
5142 the block that falls through to EXIT. If it does not
5143 contain any code, examine its predecessors and try to
5144 emit (conditional) return instructions. */
5146 basic_block last;
5147 rtx label;
5149 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5150 if (e->flags & EDGE_FALLTHRU)
5151 break;
5152 if (e == NULL)
5153 goto epilogue_done;
5154 last = e->src;
5156 /* Verify that there are no active instructions in the last block. */
5157 label = BB_END (last);
5158 while (label && !LABEL_P (label))
5160 if (active_insn_p (label))
5161 break;
5162 label = PREV_INSN (label);
5165 if (BB_HEAD (last) == label && LABEL_P (label))
5167 edge_iterator ei2;
5168 rtx epilogue_line_note = NULL_RTX;
5170 /* Locate the line number associated with the closing brace,
5171 if we can find one. */
5172 for (seq = get_last_insn ();
5173 seq && ! active_insn_p (seq);
5174 seq = PREV_INSN (seq))
5175 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5177 epilogue_line_note = seq;
5178 break;
5181 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5183 basic_block bb = e->src;
5184 rtx jump;
5186 if (bb == ENTRY_BLOCK_PTR)
5188 ei_next (&ei2);
5189 continue;
5192 jump = BB_END (bb);
5193 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5195 ei_next (&ei2);
5196 continue;
5199 /* If we have an unconditional jump, we can replace that
5200 with a simple return instruction. */
5201 if (simplejump_p (jump))
5203 emit_return_into_block (bb, epilogue_line_note);
5204 delete_insn (jump);
5207 /* If we have a conditional jump, we can try to replace
5208 that with a conditional return instruction. */
5209 else if (condjump_p (jump))
5211 if (! redirect_jump (jump, 0, 0))
5213 ei_next (&ei2);
5214 continue;
5217 /* If this block has only one successor, it both jumps
5218 and falls through to the fallthru block, so we can't
5219 delete the edge. */
5220 if (single_succ_p (bb))
5222 ei_next (&ei2);
5223 continue;
5226 else
5228 ei_next (&ei2);
5229 continue;
5232 /* Fix up the CFG for the successful change we just made. */
5233 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5236 /* Emit a return insn for the exit fallthru block. Whether
5237 this is still reachable will be determined later. */
5239 emit_barrier_after (BB_END (last));
5240 emit_return_into_block (last, epilogue_line_note);
5241 epilogue_end = BB_END (last);
5242 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5243 goto epilogue_done;
5246 #endif
5247 /* Find the edge that falls through to EXIT. Other edges may exist
5248 due to RETURN instructions, but those don't need epilogues.
5249 There really shouldn't be a mixture -- either all should have
5250 been converted or none, however... */
5252 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5253 if (e->flags & EDGE_FALLTHRU)
5254 break;
5255 if (e == NULL)
5256 goto epilogue_done;
5258 #ifdef HAVE_epilogue
5259 if (HAVE_epilogue)
5261 start_sequence ();
5262 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5264 seq = gen_epilogue ();
5266 #ifdef INCOMING_RETURN_ADDR_RTX
5267 /* If this function returns with the stack depressed and we can support
5268 it, massage the epilogue to actually do that. */
5269 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5270 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5271 seq = keep_stack_depressed (seq);
5272 #endif
5274 emit_jump_insn (seq);
5276 /* Retain a map of the epilogue insns. */
5277 record_insns (seq, &epilogue);
5278 set_insn_locators (seq, epilogue_locator);
5280 seq = get_insns ();
5281 end_sequence ();
5283 insert_insn_on_edge (seq, e);
5284 inserted = 1;
5286 else
5287 #endif
5289 basic_block cur_bb;
5291 if (! next_active_insn (BB_END (e->src)))
5292 goto epilogue_done;
5293 /* We have a fall-through edge to the exit block, the source is not
5294 at the end of the function, and there will be an assembler epilogue
5295 at the end of the function.
5296 We can't use force_nonfallthru here, because that would try to
5297 use return. Inserting a jump 'by hand' is extremely messy, so
5298 we take advantage of cfg_layout_finalize using
5299 fixup_fallthru_exit_predecessor. */
5300 cfg_layout_initialize (0);
5301 FOR_EACH_BB (cur_bb)
5302 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5303 cur_bb->aux = cur_bb->next_bb;
5304 cfg_layout_finalize ();
5306 epilogue_done:
5308 if (inserted)
5309 commit_edge_insertions ();
5311 #ifdef HAVE_sibcall_epilogue
5312 /* Emit sibling epilogues before any sibling call sites. */
5313 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5315 basic_block bb = e->src;
5316 rtx insn = BB_END (bb);
5318 if (!CALL_P (insn)
5319 || ! SIBLING_CALL_P (insn))
5321 ei_next (&ei);
5322 continue;
5325 start_sequence ();
5326 emit_insn (gen_sibcall_epilogue ());
5327 seq = get_insns ();
5328 end_sequence ();
5330 /* Retain a map of the epilogue insns. Used in life analysis to
5331 avoid getting rid of sibcall epilogue insns. Do this before we
5332 actually emit the sequence. */
5333 record_insns (seq, &sibcall_epilogue);
5334 set_insn_locators (seq, epilogue_locator);
5336 emit_insn_before (seq, insn);
5337 ei_next (&ei);
5339 #endif
5341 #ifdef HAVE_prologue
5342 /* This is probably all useless now that we use locators. */
5343 if (prologue_end)
5345 rtx insn, prev;
5347 /* GDB handles `break f' by setting a breakpoint on the first
5348 line note after the prologue. Which means (1) that if
5349 there are line number notes before where we inserted the
5350 prologue we should move them, and (2) we should generate a
5351 note before the end of the first basic block, if there isn't
5352 one already there.
5354 ??? This behavior is completely broken when dealing with
5355 multiple entry functions. We simply place the note always
5356 into first basic block and let alternate entry points
5357 to be missed.
5360 for (insn = prologue_end; insn; insn = prev)
5362 prev = PREV_INSN (insn);
5363 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5365 /* Note that we cannot reorder the first insn in the
5366 chain, since rest_of_compilation relies on that
5367 remaining constant. */
5368 if (prev == NULL)
5369 break;
5370 reorder_insns (insn, insn, prologue_end);
5374 /* Find the last line number note in the first block. */
5375 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5376 insn != prologue_end && insn;
5377 insn = PREV_INSN (insn))
5378 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5379 break;
5381 /* If we didn't find one, make a copy of the first line number
5382 we run across. */
5383 if (! insn)
5385 for (insn = next_active_insn (prologue_end);
5386 insn;
5387 insn = PREV_INSN (insn))
5388 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5390 emit_note_copy_after (insn, prologue_end);
5391 break;
5395 #endif
5396 #ifdef HAVE_epilogue
5397 if (epilogue_end)
5399 rtx insn, next;
5401 /* Similarly, move any line notes that appear after the epilogue.
5402 There is no need, however, to be quite so anal about the existence
5403 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5404 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5405 info generation. */
5406 for (insn = epilogue_end; insn; insn = next)
5408 next = NEXT_INSN (insn);
5409 if (NOTE_P (insn)
5410 && (NOTE_LINE_NUMBER (insn) > 0
5411 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5412 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5413 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5416 #endif
5419 /* Reposition the prologue-end and epilogue-begin notes after instruction
5420 scheduling and delayed branch scheduling. */
5422 void
5423 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5425 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5426 rtx insn, last, note;
5427 int len;
5429 if ((len = VEC_length (int, prologue)) > 0)
5431 last = 0, note = 0;
5433 /* Scan from the beginning until we reach the last prologue insn.
5434 We apparently can't depend on basic_block_{head,end} after
5435 reorg has run. */
5436 for (insn = f; insn; insn = NEXT_INSN (insn))
5438 if (NOTE_P (insn))
5440 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5441 note = insn;
5443 else if (contains (insn, &prologue))
5445 last = insn;
5446 if (--len == 0)
5447 break;
5451 if (last)
5453 /* Find the prologue-end note if we haven't already, and
5454 move it to just after the last prologue insn. */
5455 if (note == 0)
5457 for (note = last; (note = NEXT_INSN (note));)
5458 if (NOTE_P (note)
5459 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5460 break;
5463 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5464 if (LABEL_P (last))
5465 last = NEXT_INSN (last);
5466 reorder_insns (note, note, last);
5470 if ((len = VEC_length (int, epilogue)) > 0)
5472 last = 0, note = 0;
5474 /* Scan from the end until we reach the first epilogue insn.
5475 We apparently can't depend on basic_block_{head,end} after
5476 reorg has run. */
5477 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5479 if (NOTE_P (insn))
5481 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5482 note = insn;
5484 else if (contains (insn, &epilogue))
5486 last = insn;
5487 if (--len == 0)
5488 break;
5492 if (last)
5494 /* Find the epilogue-begin note if we haven't already, and
5495 move it to just before the first epilogue insn. */
5496 if (note == 0)
5498 for (note = insn; (note = PREV_INSN (note));)
5499 if (NOTE_P (note)
5500 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5501 break;
5504 if (PREV_INSN (last) != note)
5505 reorder_insns (note, note, PREV_INSN (last));
5508 #endif /* HAVE_prologue or HAVE_epilogue */
5511 /* Resets insn_block_boundaries array. */
5513 void
5514 reset_block_changes (void)
5516 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5517 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5520 /* Record the boundary for BLOCK. */
5521 void
5522 record_block_change (tree block)
5524 int i, n;
5525 tree last_block;
5527 if (!block)
5528 return;
5530 if(!cfun->ib_boundaries_block)
5531 return;
5533 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5534 VARRAY_POP (cfun->ib_boundaries_block);
5535 n = get_max_uid ();
5536 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5537 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5539 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5542 /* Finishes record of boundaries. */
5543 void finalize_block_changes (void)
5545 record_block_change (DECL_INITIAL (current_function_decl));
5548 /* For INSN return the BLOCK it belongs to. */
5549 void
5550 check_block_change (rtx insn, tree *block)
5552 unsigned uid = INSN_UID (insn);
5554 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5555 return;
5557 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5560 /* Releases the ib_boundaries_block records. */
5561 void
5562 free_block_changes (void)
5564 cfun->ib_boundaries_block = NULL;
5567 /* Returns the name of the current function. */
5568 const char *
5569 current_function_name (void)
5571 return lang_hooks.decl_printable_name (cfun->decl, 2);
5575 static void
5576 rest_of_handle_check_leaf_regs (void)
5578 #ifdef LEAF_REGISTERS
5579 current_function_uses_only_leaf_regs
5580 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5581 #endif
5584 struct tree_opt_pass pass_leaf_regs =
5586 NULL, /* name */
5587 NULL, /* gate */
5588 rest_of_handle_check_leaf_regs, /* execute */
5589 NULL, /* sub */
5590 NULL, /* next */
5591 0, /* static_pass_number */
5592 0, /* tv_id */
5593 0, /* properties_required */
5594 0, /* properties_provided */
5595 0, /* properties_destroyed */
5596 0, /* todo_flags_start */
5597 0, /* todo_flags_finish */
5598 0 /* letter */
5602 #include "gt-function.h"