Fix up mix of man(7)/mdoc(7).
[netbsd-mini2440.git] / gnu / dist / gdb6 / sim / v850 / simops.c
blob38ec0a6af03500d28124eb9b9e7659f9824ae6bd
1 #include "sim-main.h"
2 #include "v850_sim.h"
3 #include "simops.h"
5 #include <sys/types.h>
7 #ifdef HAVE_UTIME_H
8 #include <utime.h>
9 #endif
11 #ifdef HAVE_TIME_H
12 #include <time.h>
13 #endif
15 #ifdef HAVE_UNISTD_H
16 #include <unistd.h>
17 #endif
19 #ifdef HAVE_STRING_H
20 #include <string.h>
21 #else
22 #ifdef HAVE_STRINGS_H
23 #include <strings.h>
24 #endif
25 #endif
27 #include "targ-vals.h"
29 #include "libiberty.h"
31 #include <errno.h>
32 #if !defined(__GO32__) && !defined(_WIN32)
33 #include <sys/stat.h>
34 #include <sys/times.h>
35 #include <sys/time.h>
36 #endif
38 /* This is an array of the bit positions of registers r20 .. r31 in
39 that order in a prepare/dispose instruction. */
40 int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 };
41 /* This is an array of the bit positions of registers r16 .. r31 in
42 that order in a push/pop instruction. */
43 int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
44 /* This is an array of the bit positions of registers r1 .. r15 in
45 that order in a push/pop instruction. */
46 int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21};
48 #ifdef DEBUG
49 #ifndef SIZE_INSTRUCTION
50 #define SIZE_INSTRUCTION 18
51 #endif
53 #ifndef SIZE_VALUES
54 #define SIZE_VALUES 11
55 #endif
58 unsigned32 trace_values[3];
59 int trace_num_values;
60 unsigned32 trace_pc;
61 const char *trace_name;
62 int trace_module;
65 void
66 trace_input (name, type, size)
67 char *name;
68 enum op_types type;
69 int size;
72 if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
73 return;
75 trace_pc = PC;
76 trace_name = name;
77 trace_module = TRACE_ALU_IDX;
79 switch (type)
81 default:
82 case OP_UNKNOWN:
83 case OP_NONE:
84 case OP_TRAP:
85 trace_num_values = 0;
86 break;
88 case OP_REG:
89 case OP_REG_REG_MOVE:
90 trace_values[0] = State.regs[OP[0]];
91 trace_num_values = 1;
92 break;
94 case OP_BIT_CHANGE:
95 case OP_REG_REG:
96 case OP_REG_REG_CMP:
97 trace_values[0] = State.regs[OP[1]];
98 trace_values[1] = State.regs[OP[0]];
99 trace_num_values = 2;
100 break;
102 case OP_IMM_REG:
103 case OP_IMM_REG_CMP:
104 trace_values[0] = SEXT5 (OP[0]);
105 trace_values[1] = OP[1];
106 trace_num_values = 2;
107 break;
109 case OP_IMM_REG_MOVE:
110 trace_values[0] = SEXT5 (OP[0]);
111 trace_num_values = 1;
112 break;
114 case OP_COND_BR:
115 trace_values[0] = State.pc;
116 trace_values[1] = SEXT9 (OP[0]);
117 trace_values[2] = PSW;
118 trace_num_values = 3;
119 break;
121 case OP_LOAD16:
122 trace_values[0] = OP[1] * size;
123 trace_values[1] = State.regs[30];
124 trace_num_values = 2;
125 break;
127 case OP_STORE16:
128 trace_values[0] = State.regs[OP[0]];
129 trace_values[1] = OP[1] * size;
130 trace_values[2] = State.regs[30];
131 trace_num_values = 3;
132 break;
134 case OP_LOAD32:
135 trace_values[0] = EXTEND16 (OP[2]);
136 trace_values[1] = State.regs[OP[0]];
137 trace_num_values = 2;
138 break;
140 case OP_STORE32:
141 trace_values[0] = State.regs[OP[1]];
142 trace_values[1] = EXTEND16 (OP[2]);
143 trace_values[2] = State.regs[OP[0]];
144 trace_num_values = 3;
145 break;
147 case OP_JUMP:
148 trace_values[0] = SEXT22 (OP[0]);
149 trace_values[1] = State.pc;
150 trace_num_values = 2;
151 break;
153 case OP_IMM_REG_REG:
154 trace_values[0] = EXTEND16 (OP[0]) << size;
155 trace_values[1] = State.regs[OP[1]];
156 trace_num_values = 2;
157 break;
159 case OP_IMM16_REG_REG:
160 trace_values[0] = EXTEND16 (OP[2]) << size;
161 trace_values[1] = State.regs[OP[1]];
162 trace_num_values = 2;
163 break;
165 case OP_UIMM_REG_REG:
166 trace_values[0] = (OP[0] & 0xffff) << size;
167 trace_values[1] = State.regs[OP[1]];
168 trace_num_values = 2;
169 break;
171 case OP_UIMM16_REG_REG:
172 trace_values[0] = (OP[2]) << size;
173 trace_values[1] = State.regs[OP[1]];
174 trace_num_values = 2;
175 break;
177 case OP_BIT:
178 trace_num_values = 0;
179 break;
181 case OP_EX1:
182 trace_values[0] = PSW;
183 trace_num_values = 1;
184 break;
186 case OP_EX2:
187 trace_num_values = 0;
188 break;
190 case OP_LDSR:
191 trace_values[0] = State.regs[OP[0]];
192 trace_num_values = 1;
193 break;
195 case OP_STSR:
196 trace_values[0] = State.sregs[OP[1]];
197 trace_num_values = 1;
202 void
203 trace_result (int has_result, unsigned32 result)
205 char buf[1000];
206 char *chp;
208 buf[0] = '\0';
209 chp = buf;
211 /* write out the values saved during the trace_input call */
213 int i;
214 for (i = 0; i < trace_num_values; i++)
216 sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "",
217 (long) trace_values[i]);
218 chp = strchr (chp, '\0');
220 while (i++ < 3)
222 sprintf (chp, "%*s", SIZE_VALUES, "");
223 chp = strchr (chp, '\0');
227 /* append any result to the end of the buffer */
228 if (has_result)
229 sprintf (chp, " :: 0x%.8lx", (unsigned long)result);
231 trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, buf);
234 void
235 trace_output (result)
236 enum op_types result;
238 if (!TRACE_ALU_P (STATE_CPU (simulator, 0)))
239 return;
241 switch (result)
243 default:
244 case OP_UNKNOWN:
245 case OP_NONE:
246 case OP_TRAP:
247 case OP_REG:
248 case OP_REG_REG_CMP:
249 case OP_IMM_REG_CMP:
250 case OP_COND_BR:
251 case OP_STORE16:
252 case OP_STORE32:
253 case OP_BIT:
254 case OP_EX2:
255 trace_result (0, 0);
256 break;
258 case OP_LOAD16:
259 case OP_STSR:
260 trace_result (1, State.regs[OP[0]]);
261 break;
263 case OP_REG_REG:
264 case OP_REG_REG_MOVE:
265 case OP_IMM_REG:
266 case OP_IMM_REG_MOVE:
267 case OP_LOAD32:
268 case OP_EX1:
269 trace_result (1, State.regs[OP[1]]);
270 break;
272 case OP_IMM_REG_REG:
273 case OP_UIMM_REG_REG:
274 case OP_IMM16_REG_REG:
275 case OP_UIMM16_REG_REG:
276 trace_result (1, State.regs[OP[1]]);
277 break;
279 case OP_JUMP:
280 if (OP[1] != 0)
281 trace_result (1, State.regs[OP[1]]);
282 else
283 trace_result (0, 0);
284 break;
286 case OP_LDSR:
287 trace_result (1, State.sregs[OP[1]]);
288 break;
291 #endif
294 /* Returns 1 if the specific condition is met, returns 0 otherwise. */
296 condition_met (unsigned code)
298 unsigned int psw = PSW;
300 switch (code & 0xf)
302 case 0x0: return ((psw & PSW_OV) != 0);
303 case 0x1: return ((psw & PSW_CY) != 0);
304 case 0x2: return ((psw & PSW_Z) != 0);
305 case 0x3: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0);
306 case 0x4: return ((psw & PSW_S) != 0);
307 /*case 0x5: return 1;*/
308 case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0);
309 case 0x7: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0);
310 case 0x8: return ((psw & PSW_OV) == 0);
311 case 0x9: return ((psw & PSW_CY) == 0);
312 case 0xa: return ((psw & PSW_Z) == 0);
313 case 0xb: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0);
314 case 0xc: return ((psw & PSW_S) == 0);
315 case 0xd: return ((psw & PSW_SAT) != 0);
316 case 0xe: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0);
317 case 0xf: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0);
320 return 1;
323 static unsigned long
324 Add32 (unsigned long a1, unsigned long a2, int * carry)
326 unsigned long result = (a1 + a2);
328 * carry = (result < a1);
330 return result;
333 static void
334 Multiply64 (int sign, unsigned long op0)
336 unsigned long op1;
337 unsigned long lo;
338 unsigned long mid1;
339 unsigned long mid2;
340 unsigned long hi;
341 unsigned long RdLo;
342 unsigned long RdHi;
343 int carry;
345 op1 = State.regs[ OP[1] ];
347 if (sign)
349 /* Compute sign of result and adjust operands if necessary. */
351 sign = (op0 ^ op1) & 0x80000000;
353 if (((signed long) op0) < 0)
354 op0 = - op0;
356 if (((signed long) op1) < 0)
357 op1 = - op1;
360 /* We can split the 32x32 into four 16x16 operations. This ensures
361 that we do not lose precision on 32bit only hosts: */
362 lo = ( (op0 & 0xFFFF) * (op1 & 0xFFFF));
363 mid1 = ( (op0 & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
364 mid2 = (((op0 >> 16) & 0xFFFF) * (op1 & 0xFFFF));
365 hi = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF));
367 /* We now need to add all of these results together, taking care
368 to propogate the carries from the additions: */
369 RdLo = Add32 (lo, (mid1 << 16), & carry);
370 RdHi = carry;
371 RdLo = Add32 (RdLo, (mid2 << 16), & carry);
372 RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi);
374 if (sign)
376 /* Negate result if necessary. */
378 RdLo = ~ RdLo;
379 RdHi = ~ RdHi;
380 if (RdLo == 0xFFFFFFFF)
382 RdLo = 0;
383 RdHi += 1;
385 else
386 RdLo += 1;
389 /* Don't store into register 0. */
390 if (OP[1])
391 State.regs[ OP[1] ] = RdLo;
392 if (OP[2] >> 11)
393 State.regs[ OP[2] >> 11 ] = RdHi;
395 return;
399 /* Read a null terminated string from memory, return in a buffer */
400 static char *
401 fetch_str (sd, addr)
402 SIM_DESC sd;
403 address_word addr;
405 char *buf;
406 int nr = 0;
407 while (sim_core_read_1 (STATE_CPU (sd, 0),
408 PC, read_map, addr + nr) != 0)
409 nr++;
410 buf = NZALLOC (char, nr + 1);
411 sim_read (simulator, addr, buf, nr);
412 return buf;
415 /* Read a null terminated argument vector from memory, return in a
416 buffer */
417 static char **
418 fetch_argv (sd, addr)
419 SIM_DESC sd;
420 address_word addr;
422 int max_nr = 64;
423 int nr = 0;
424 char **buf = xmalloc (max_nr * sizeof (char*));
425 while (1)
427 unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0),
428 PC, read_map, addr + nr * 4);
429 if (a == 0) break;
430 buf[nr] = fetch_str (sd, a);
431 nr ++;
432 if (nr == max_nr - 1)
434 max_nr += 50;
435 buf = xrealloc (buf, max_nr * sizeof (char*));
438 buf[nr] = 0;
439 return buf;
443 /* sst.b */
445 OP_380 ()
447 trace_input ("sst.b", OP_STORE16, 1);
449 store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]);
451 trace_output (OP_STORE16);
453 return 2;
456 /* sst.h */
458 OP_480 ()
460 trace_input ("sst.h", OP_STORE16, 2);
462 store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]);
464 trace_output (OP_STORE16);
466 return 2;
469 /* sst.w */
471 OP_501 ()
473 trace_input ("sst.w", OP_STORE16, 4);
475 store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]);
477 trace_output (OP_STORE16);
479 return 2;
482 /* ld.b */
484 OP_700 ()
486 int adr;
488 trace_input ("ld.b", OP_LOAD32, 1);
490 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
492 State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1));
494 trace_output (OP_LOAD32);
496 return 4;
499 /* ld.h */
501 OP_720 ()
503 int adr;
505 trace_input ("ld.h", OP_LOAD32, 2);
507 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
508 adr &= ~0x1;
510 State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2));
512 trace_output (OP_LOAD32);
514 return 4;
517 /* ld.w */
519 OP_10720 ()
521 int adr;
523 trace_input ("ld.w", OP_LOAD32, 4);
525 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
526 adr &= ~0x3;
528 State.regs[ OP[1] ] = load_mem (adr, 4);
530 trace_output (OP_LOAD32);
532 return 4;
535 /* st.b */
537 OP_740 ()
539 trace_input ("st.b", OP_STORE32, 1);
541 store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]);
543 trace_output (OP_STORE32);
545 return 4;
548 /* st.h */
550 OP_760 ()
552 int adr;
554 trace_input ("st.h", OP_STORE32, 2);
556 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]);
557 adr &= ~1;
559 store_mem (adr, 2, State.regs[ OP[1] ]);
561 trace_output (OP_STORE32);
563 return 4;
566 /* st.w */
568 OP_10760 ()
570 int adr;
572 trace_input ("st.w", OP_STORE32, 4);
574 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
575 adr &= ~3;
577 store_mem (adr, 4, State.regs[ OP[1] ]);
579 trace_output (OP_STORE32);
581 return 4;
584 /* add reg, reg */
586 OP_1C0 ()
588 unsigned int op0, op1, result, z, s, cy, ov;
590 trace_input ("add", OP_REG_REG, 0);
592 /* Compute the result. */
594 op0 = State.regs[ OP[0] ];
595 op1 = State.regs[ OP[1] ];
597 result = op0 + op1;
599 /* Compute the condition codes. */
600 z = (result == 0);
601 s = (result & 0x80000000);
602 cy = (result < op0 || result < op1);
603 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
604 && (op0 & 0x80000000) != (result & 0x80000000));
606 /* Store the result and condition codes. */
607 State.regs[OP[1]] = result;
608 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
609 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
610 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
611 trace_output (OP_REG_REG);
613 return 2;
616 /* add sign_extend(imm5), reg */
618 OP_240 ()
620 unsigned int op0, op1, result, z, s, cy, ov;
621 int temp;
623 trace_input ("add", OP_IMM_REG, 0);
625 /* Compute the result. */
626 temp = SEXT5 (OP[0]);
627 op0 = temp;
628 op1 = State.regs[OP[1]];
629 result = op0 + op1;
631 /* Compute the condition codes. */
632 z = (result == 0);
633 s = (result & 0x80000000);
634 cy = (result < op0 || result < op1);
635 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
636 && (op0 & 0x80000000) != (result & 0x80000000));
638 /* Store the result and condition codes. */
639 State.regs[OP[1]] = result;
640 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
641 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
642 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
643 trace_output (OP_IMM_REG);
645 return 2;
648 /* addi sign_extend(imm16), reg, reg */
650 OP_600 ()
652 unsigned int op0, op1, result, z, s, cy, ov;
654 trace_input ("addi", OP_IMM16_REG_REG, 0);
656 /* Compute the result. */
658 op0 = EXTEND16 (OP[2]);
659 op1 = State.regs[ OP[0] ];
660 result = op0 + op1;
662 /* Compute the condition codes. */
663 z = (result == 0);
664 s = (result & 0x80000000);
665 cy = (result < op0 || result < op1);
666 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
667 && (op0 & 0x80000000) != (result & 0x80000000));
669 /* Store the result and condition codes. */
670 State.regs[OP[1]] = result;
671 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
672 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
673 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
674 trace_output (OP_IMM16_REG_REG);
676 return 4;
679 /* sub reg1, reg2 */
681 OP_1A0 ()
683 unsigned int op0, op1, result, z, s, cy, ov;
685 trace_input ("sub", OP_REG_REG, 0);
686 /* Compute the result. */
687 op0 = State.regs[ OP[0] ];
688 op1 = State.regs[ OP[1] ];
689 result = op1 - op0;
691 /* Compute the condition codes. */
692 z = (result == 0);
693 s = (result & 0x80000000);
694 cy = (op1 < op0);
695 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
696 && (op1 & 0x80000000) != (result & 0x80000000));
698 /* Store the result and condition codes. */
699 State.regs[OP[1]] = result;
700 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
701 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
702 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
703 trace_output (OP_REG_REG);
705 return 2;
708 /* subr reg1, reg2 */
710 OP_180 ()
712 unsigned int op0, op1, result, z, s, cy, ov;
714 trace_input ("subr", OP_REG_REG, 0);
715 /* Compute the result. */
716 op0 = State.regs[ OP[0] ];
717 op1 = State.regs[ OP[1] ];
718 result = op0 - op1;
720 /* Compute the condition codes. */
721 z = (result == 0);
722 s = (result & 0x80000000);
723 cy = (op0 < op1);
724 ov = ((op0 & 0x80000000) != (op1 & 0x80000000)
725 && (op0 & 0x80000000) != (result & 0x80000000));
727 /* Store the result and condition codes. */
728 State.regs[OP[1]] = result;
729 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
730 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
731 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
732 trace_output (OP_REG_REG);
734 return 2;
737 /* sxh reg1 */
739 OP_E0 ()
741 trace_input ("mulh", OP_REG_REG, 0);
743 State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ]));
745 trace_output (OP_REG_REG);
747 return 2;
750 /* mulh sign_extend(imm5), reg2 */
752 OP_2E0 ()
754 trace_input ("mulh", OP_IMM_REG, 0);
756 State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]);
758 trace_output (OP_IMM_REG);
760 return 2;
763 /* mulhi imm16, reg1, reg2 */
765 OP_6E0 ()
767 trace_input ("mulhi", OP_IMM16_REG_REG, 0);
769 State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]);
771 trace_output (OP_IMM16_REG_REG);
773 return 4;
776 /* cmp reg, reg */
778 OP_1E0 ()
780 unsigned int op0, op1, result, z, s, cy, ov;
782 trace_input ("cmp", OP_REG_REG_CMP, 0);
783 /* Compute the result. */
784 op0 = State.regs[ OP[0] ];
785 op1 = State.regs[ OP[1] ];
786 result = op1 - op0;
788 /* Compute the condition codes. */
789 z = (result == 0);
790 s = (result & 0x80000000);
791 cy = (op1 < op0);
792 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
793 && (op1 & 0x80000000) != (result & 0x80000000));
795 /* Set condition codes. */
796 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
797 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
798 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
799 trace_output (OP_REG_REG_CMP);
801 return 2;
804 /* cmp sign_extend(imm5), reg */
806 OP_260 ()
808 unsigned int op0, op1, result, z, s, cy, ov;
809 int temp;
811 /* Compute the result. */
812 trace_input ("cmp", OP_IMM_REG_CMP, 0);
813 temp = SEXT5 (OP[0]);
814 op0 = temp;
815 op1 = State.regs[OP[1]];
816 result = op1 - op0;
818 /* Compute the condition codes. */
819 z = (result == 0);
820 s = (result & 0x80000000);
821 cy = (op1 < op0);
822 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
823 && (op1 & 0x80000000) != (result & 0x80000000));
825 /* Set condition codes. */
826 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
827 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
828 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0));
829 trace_output (OP_IMM_REG_CMP);
831 return 2;
834 /* setf cccc,reg2 */
836 OP_7E0 ()
838 trace_input ("setf", OP_EX1, 0);
840 State.regs[ OP[1] ] = condition_met (OP[0]);
842 trace_output (OP_EX1);
844 return 4;
847 /* satadd reg,reg */
849 OP_C0 ()
851 unsigned int op0, op1, result, z, s, cy, ov, sat;
853 trace_input ("satadd", OP_REG_REG, 0);
854 /* Compute the result. */
855 op0 = State.regs[ OP[0] ];
856 op1 = State.regs[ OP[1] ];
857 result = op0 + op1;
859 /* Compute the condition codes. */
860 z = (result == 0);
861 s = (result & 0x80000000);
862 cy = (result < op0 || result < op1);
863 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
864 && (op0 & 0x80000000) != (result & 0x80000000));
865 sat = ov;
867 /* Store the result and condition codes. */
868 State.regs[OP[1]] = result;
869 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
870 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
871 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
872 | (sat ? PSW_SAT : 0));
874 /* Handle saturated results. */
875 if (sat && s)
876 State.regs[OP[1]] = 0x80000000;
877 else if (sat)
878 State.regs[OP[1]] = 0x7fffffff;
879 trace_output (OP_REG_REG);
881 return 2;
884 /* satadd sign_extend(imm5), reg */
886 OP_220 ()
888 unsigned int op0, op1, result, z, s, cy, ov, sat;
890 int temp;
892 trace_input ("satadd", OP_IMM_REG, 0);
894 /* Compute the result. */
895 temp = SEXT5 (OP[0]);
896 op0 = temp;
897 op1 = State.regs[OP[1]];
898 result = op0 + op1;
900 /* Compute the condition codes. */
901 z = (result == 0);
902 s = (result & 0x80000000);
903 cy = (result < op0 || result < op1);
904 ov = ((op0 & 0x80000000) == (op1 & 0x80000000)
905 && (op0 & 0x80000000) != (result & 0x80000000));
906 sat = ov;
908 /* Store the result and condition codes. */
909 State.regs[OP[1]] = result;
910 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
911 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
912 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
913 | (sat ? PSW_SAT : 0));
915 /* Handle saturated results. */
916 if (sat && s)
917 State.regs[OP[1]] = 0x80000000;
918 else if (sat)
919 State.regs[OP[1]] = 0x7fffffff;
920 trace_output (OP_IMM_REG);
922 return 2;
925 /* satsub reg1, reg2 */
927 OP_A0 ()
929 unsigned int op0, op1, result, z, s, cy, ov, sat;
931 trace_input ("satsub", OP_REG_REG, 0);
933 /* Compute the result. */
934 op0 = State.regs[ OP[0] ];
935 op1 = State.regs[ OP[1] ];
936 result = op1 - op0;
938 /* Compute the condition codes. */
939 z = (result == 0);
940 s = (result & 0x80000000);
941 cy = (op1 < op0);
942 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
943 && (op1 & 0x80000000) != (result & 0x80000000));
944 sat = ov;
946 /* Store the result and condition codes. */
947 State.regs[OP[1]] = result;
948 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
949 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
950 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
951 | (sat ? PSW_SAT : 0));
953 /* Handle saturated results. */
954 if (sat && s)
955 State.regs[OP[1]] = 0x80000000;
956 else if (sat)
957 State.regs[OP[1]] = 0x7fffffff;
958 trace_output (OP_REG_REG);
959 return 2;
962 /* satsubi sign_extend(imm16), reg */
964 OP_660 ()
966 unsigned int op0, op1, result, z, s, cy, ov, sat;
967 int temp;
969 trace_input ("satsubi", OP_IMM_REG, 0);
971 /* Compute the result. */
972 temp = EXTEND16 (OP[2]);
973 op0 = temp;
974 op1 = State.regs[ OP[0] ];
975 result = op1 - op0;
977 /* Compute the condition codes. */
978 z = (result == 0);
979 s = (result & 0x80000000);
980 cy = (op1 < op0);
981 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
982 && (op1 & 0x80000000) != (result & 0x80000000));
983 sat = ov;
985 /* Store the result and condition codes. */
986 State.regs[OP[1]] = result;
987 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
988 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
989 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
990 | (sat ? PSW_SAT : 0));
992 /* Handle saturated results. */
993 if (sat && s)
994 State.regs[OP[1]] = 0x80000000;
995 else if (sat)
996 State.regs[OP[1]] = 0x7fffffff;
997 trace_output (OP_IMM_REG);
999 return 4;
1002 /* satsubr reg,reg */
1004 OP_80 ()
1006 unsigned int op0, op1, result, z, s, cy, ov, sat;
1008 trace_input ("satsubr", OP_REG_REG, 0);
1010 /* Compute the result. */
1011 op0 = State.regs[ OP[0] ];
1012 op1 = State.regs[ OP[1] ];
1013 result = op0 - op1;
1015 /* Compute the condition codes. */
1016 z = (result == 0);
1017 s = (result & 0x80000000);
1018 cy = (result < op0);
1019 ov = ((op1 & 0x80000000) != (op0 & 0x80000000)
1020 && (op1 & 0x80000000) != (result & 0x80000000));
1021 sat = ov;
1023 /* Store the result and condition codes. */
1024 State.regs[OP[1]] = result;
1025 PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV);
1026 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1027 | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)
1028 | (sat ? PSW_SAT : 0));
1030 /* Handle saturated results. */
1031 if (sat && s)
1032 State.regs[OP[1]] = 0x80000000;
1033 else if (sat)
1034 State.regs[OP[1]] = 0x7fffffff;
1035 trace_output (OP_REG_REG);
1037 return 2;
1040 /* tst reg,reg */
1042 OP_160 ()
1044 unsigned int op0, op1, result, z, s;
1046 trace_input ("tst", OP_REG_REG_CMP, 0);
1048 /* Compute the result. */
1049 op0 = State.regs[ OP[0] ];
1050 op1 = State.regs[ OP[1] ];
1051 result = op0 & op1;
1053 /* Compute the condition codes. */
1054 z = (result == 0);
1055 s = (result & 0x80000000);
1057 /* Store the condition codes. */
1058 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1059 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1060 trace_output (OP_REG_REG_CMP);
1062 return 2;
1065 /* mov sign_extend(imm5), reg */
1067 OP_200 ()
1069 int value = SEXT5 (OP[0]);
1071 trace_input ("mov", OP_IMM_REG_MOVE, 0);
1073 State.regs[ OP[1] ] = value;
1075 trace_output (OP_IMM_REG_MOVE);
1077 return 2;
1080 /* movhi imm16, reg, reg */
1082 OP_640 ()
1084 trace_input ("movhi", OP_UIMM16_REG_REG, 16);
1086 State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16);
1088 trace_output (OP_UIMM16_REG_REG);
1090 return 4;
1093 /* sar zero_extend(imm5),reg1 */
1095 OP_2A0 ()
1097 unsigned int op0, op1, result, z, s, cy;
1099 trace_input ("sar", OP_IMM_REG, 0);
1100 op0 = OP[0];
1101 op1 = State.regs[ OP[1] ];
1102 result = (signed)op1 >> op0;
1104 /* Compute the condition codes. */
1105 z = (result == 0);
1106 s = (result & 0x80000000);
1107 cy = (op1 & (1 << (op0 - 1)));
1109 /* Store the result and condition codes. */
1110 State.regs[ OP[1] ] = result;
1111 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1112 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1113 | (cy ? PSW_CY : 0));
1114 trace_output (OP_IMM_REG);
1116 return 2;
1119 /* sar reg1, reg2 */
1121 OP_A007E0 ()
1123 unsigned int op0, op1, result, z, s, cy;
1125 trace_input ("sar", OP_REG_REG, 0);
1127 op0 = State.regs[ OP[0] ] & 0x1f;
1128 op1 = State.regs[ OP[1] ];
1129 result = (signed)op1 >> op0;
1131 /* Compute the condition codes. */
1132 z = (result == 0);
1133 s = (result & 0x80000000);
1134 cy = (op1 & (1 << (op0 - 1)));
1136 /* Store the result and condition codes. */
1137 State.regs[OP[1]] = result;
1138 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1139 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1140 | (cy ? PSW_CY : 0));
1141 trace_output (OP_REG_REG);
1143 return 4;
1146 /* shl zero_extend(imm5),reg1 */
1148 OP_2C0 ()
1150 unsigned int op0, op1, result, z, s, cy;
1152 trace_input ("shl", OP_IMM_REG, 0);
1153 op0 = OP[0];
1154 op1 = State.regs[ OP[1] ];
1155 result = op1 << op0;
1157 /* Compute the condition codes. */
1158 z = (result == 0);
1159 s = (result & 0x80000000);
1160 cy = (op1 & (1 << (32 - op0)));
1162 /* Store the result and condition codes. */
1163 State.regs[OP[1]] = result;
1164 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1165 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1166 | (cy ? PSW_CY : 0));
1167 trace_output (OP_IMM_REG);
1169 return 2;
1172 /* shl reg1, reg2 */
1174 OP_C007E0 ()
1176 unsigned int op0, op1, result, z, s, cy;
1178 trace_input ("shl", OP_REG_REG, 0);
1179 op0 = State.regs[ OP[0] ] & 0x1f;
1180 op1 = State.regs[ OP[1] ];
1181 result = op1 << op0;
1183 /* Compute the condition codes. */
1184 z = (result == 0);
1185 s = (result & 0x80000000);
1186 cy = (op1 & (1 << (32 - op0)));
1188 /* Store the result and condition codes. */
1189 State.regs[OP[1]] = result;
1190 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1191 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1192 | (cy ? PSW_CY : 0));
1193 trace_output (OP_REG_REG);
1195 return 4;
1198 /* shr zero_extend(imm5),reg1 */
1200 OP_280 ()
1202 unsigned int op0, op1, result, z, s, cy;
1204 trace_input ("shr", OP_IMM_REG, 0);
1205 op0 = OP[0];
1206 op1 = State.regs[ OP[1] ];
1207 result = op1 >> op0;
1209 /* Compute the condition codes. */
1210 z = (result == 0);
1211 s = (result & 0x80000000);
1212 cy = (op1 & (1 << (op0 - 1)));
1214 /* Store the result and condition codes. */
1215 State.regs[OP[1]] = result;
1216 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1217 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1218 | (cy ? PSW_CY : 0));
1219 trace_output (OP_IMM_REG);
1221 return 2;
1224 /* shr reg1, reg2 */
1226 OP_8007E0 ()
1228 unsigned int op0, op1, result, z, s, cy;
1230 trace_input ("shr", OP_REG_REG, 0);
1231 op0 = State.regs[ OP[0] ] & 0x1f;
1232 op1 = State.regs[ OP[1] ];
1233 result = op1 >> op0;
1235 /* Compute the condition codes. */
1236 z = (result == 0);
1237 s = (result & 0x80000000);
1238 cy = (op1 & (1 << (op0 - 1)));
1240 /* Store the result and condition codes. */
1241 State.regs[OP[1]] = result;
1242 PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY);
1243 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)
1244 | (cy ? PSW_CY : 0));
1245 trace_output (OP_REG_REG);
1247 return 4;
1250 /* or reg, reg */
1252 OP_100 ()
1254 unsigned int op0, op1, result, z, s;
1256 trace_input ("or", OP_REG_REG, 0);
1258 /* Compute the result. */
1259 op0 = State.regs[ OP[0] ];
1260 op1 = State.regs[ OP[1] ];
1261 result = op0 | op1;
1263 /* Compute the condition codes. */
1264 z = (result == 0);
1265 s = (result & 0x80000000);
1267 /* Store the result and condition codes. */
1268 State.regs[OP[1]] = result;
1269 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1270 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1271 trace_output (OP_REG_REG);
1273 return 2;
1276 /* ori zero_extend(imm16), reg, reg */
1278 OP_680 ()
1280 unsigned int op0, op1, result, z, s;
1282 trace_input ("ori", OP_UIMM16_REG_REG, 0);
1283 op0 = OP[2];
1284 op1 = State.regs[ OP[0] ];
1285 result = op0 | op1;
1287 /* Compute the condition codes. */
1288 z = (result == 0);
1289 s = (result & 0x80000000);
1291 /* Store the result and condition codes. */
1292 State.regs[OP[1]] = result;
1293 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1294 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1295 trace_output (OP_UIMM16_REG_REG);
1297 return 4;
1300 /* and reg, reg */
1302 OP_140 ()
1304 unsigned int op0, op1, result, z, s;
1306 trace_input ("and", OP_REG_REG, 0);
1308 /* Compute the result. */
1309 op0 = State.regs[ OP[0] ];
1310 op1 = State.regs[ OP[1] ];
1311 result = op0 & op1;
1313 /* Compute the condition codes. */
1314 z = (result == 0);
1315 s = (result & 0x80000000);
1317 /* Store the result and condition codes. */
1318 State.regs[OP[1]] = result;
1319 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1320 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1321 trace_output (OP_REG_REG);
1323 return 2;
1326 /* andi zero_extend(imm16), reg, reg */
1328 OP_6C0 ()
1330 unsigned int result, z;
1332 trace_input ("andi", OP_UIMM16_REG_REG, 0);
1334 result = OP[2] & State.regs[ OP[0] ];
1336 /* Compute the condition codes. */
1337 z = (result == 0);
1339 /* Store the result and condition codes. */
1340 State.regs[ OP[1] ] = result;
1342 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1343 PSW |= (z ? PSW_Z : 0);
1345 trace_output (OP_UIMM16_REG_REG);
1347 return 4;
1350 /* xor reg, reg */
1352 OP_120 ()
1354 unsigned int op0, op1, result, z, s;
1356 trace_input ("xor", OP_REG_REG, 0);
1358 /* Compute the result. */
1359 op0 = State.regs[ OP[0] ];
1360 op1 = State.regs[ OP[1] ];
1361 result = op0 ^ op1;
1363 /* Compute the condition codes. */
1364 z = (result == 0);
1365 s = (result & 0x80000000);
1367 /* Store the result and condition codes. */
1368 State.regs[OP[1]] = result;
1369 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1370 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1371 trace_output (OP_REG_REG);
1373 return 2;
1376 /* xori zero_extend(imm16), reg, reg */
1378 OP_6A0 ()
1380 unsigned int op0, op1, result, z, s;
1382 trace_input ("xori", OP_UIMM16_REG_REG, 0);
1383 op0 = OP[2];
1384 op1 = State.regs[ OP[0] ];
1385 result = op0 ^ op1;
1387 /* Compute the condition codes. */
1388 z = (result == 0);
1389 s = (result & 0x80000000);
1391 /* Store the result and condition codes. */
1392 State.regs[OP[1]] = result;
1393 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1394 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1395 trace_output (OP_UIMM16_REG_REG);
1397 return 4;
1400 /* not reg1, reg2 */
1402 OP_20 ()
1404 unsigned int op0, result, z, s;
1406 trace_input ("not", OP_REG_REG_MOVE, 0);
1407 /* Compute the result. */
1408 op0 = State.regs[ OP[0] ];
1409 result = ~op0;
1411 /* Compute the condition codes. */
1412 z = (result == 0);
1413 s = (result & 0x80000000);
1415 /* Store the result and condition codes. */
1416 State.regs[OP[1]] = result;
1417 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
1418 PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0));
1419 trace_output (OP_REG_REG_MOVE);
1421 return 2;
1424 /* set1 */
1426 OP_7C0 ()
1428 unsigned int op0, op1, op2;
1429 int temp;
1431 trace_input ("set1", OP_BIT, 0);
1432 op0 = State.regs[ OP[0] ];
1433 op1 = OP[1] & 0x7;
1434 temp = EXTEND16 (OP[2]);
1435 op2 = temp;
1436 temp = load_mem (op0 + op2, 1);
1437 PSW &= ~PSW_Z;
1438 if ((temp & (1 << op1)) == 0)
1439 PSW |= PSW_Z;
1440 temp |= (1 << op1);
1441 store_mem (op0 + op2, 1, temp);
1442 trace_output (OP_BIT);
1444 return 4;
1447 /* not1 */
1449 OP_47C0 ()
1451 unsigned int op0, op1, op2;
1452 int temp;
1454 trace_input ("not1", OP_BIT, 0);
1455 op0 = State.regs[ OP[0] ];
1456 op1 = OP[1] & 0x7;
1457 temp = EXTEND16 (OP[2]);
1458 op2 = temp;
1459 temp = load_mem (op0 + op2, 1);
1460 PSW &= ~PSW_Z;
1461 if ((temp & (1 << op1)) == 0)
1462 PSW |= PSW_Z;
1463 temp ^= (1 << op1);
1464 store_mem (op0 + op2, 1, temp);
1465 trace_output (OP_BIT);
1467 return 4;
1470 /* clr1 */
1472 OP_87C0 ()
1474 unsigned int op0, op1, op2;
1475 int temp;
1477 trace_input ("clr1", OP_BIT, 0);
1478 op0 = State.regs[ OP[0] ];
1479 op1 = OP[1] & 0x7;
1480 temp = EXTEND16 (OP[2]);
1481 op2 = temp;
1482 temp = load_mem (op0 + op2, 1);
1483 PSW &= ~PSW_Z;
1484 if ((temp & (1 << op1)) == 0)
1485 PSW |= PSW_Z;
1486 temp &= ~(1 << op1);
1487 store_mem (op0 + op2, 1, temp);
1488 trace_output (OP_BIT);
1490 return 4;
1493 /* tst1 */
1495 OP_C7C0 ()
1497 unsigned int op0, op1, op2;
1498 int temp;
1500 trace_input ("tst1", OP_BIT, 0);
1501 op0 = State.regs[ OP[0] ];
1502 op1 = OP[1] & 0x7;
1503 temp = EXTEND16 (OP[2]);
1504 op2 = temp;
1505 temp = load_mem (op0 + op2, 1);
1506 PSW &= ~PSW_Z;
1507 if ((temp & (1 << op1)) == 0)
1508 PSW |= PSW_Z;
1509 trace_output (OP_BIT);
1511 return 4;
1514 /* di */
1516 OP_16007E0 ()
1518 trace_input ("di", OP_NONE, 0);
1519 PSW |= PSW_ID;
1520 trace_output (OP_NONE);
1522 return 4;
1525 /* ei */
1527 OP_16087E0 ()
1529 trace_input ("ei", OP_NONE, 0);
1530 PSW &= ~PSW_ID;
1531 trace_output (OP_NONE);
1533 return 4;
1536 /* halt */
1538 OP_12007E0 ()
1540 trace_input ("halt", OP_NONE, 0);
1541 /* FIXME this should put processor into a mode where NMI still handled */
1542 trace_output (OP_NONE);
1543 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1544 sim_stopped, SIM_SIGTRAP);
1545 return 0;
1548 /* trap */
1550 OP_10007E0 ()
1552 trace_input ("trap", OP_TRAP, 0);
1553 trace_output (OP_TRAP);
1555 /* Trap 31 is used for simulating OS I/O functions */
1557 if (OP[0] == 31)
1559 int save_errno = errno;
1560 errno = 0;
1562 /* Registers passed to trap 0 */
1564 #define FUNC State.regs[6] /* function number, return value */
1565 #define PARM1 State.regs[7] /* optional parm 1 */
1566 #define PARM2 State.regs[8] /* optional parm 2 */
1567 #define PARM3 State.regs[9] /* optional parm 3 */
1569 /* Registers set by trap 0 */
1571 #define RETVAL State.regs[10] /* return value */
1572 #define RETERR State.regs[11] /* return error code */
1574 /* Turn a pointer in a register into a pointer into real memory. */
1576 #define MEMPTR(x) (map (x))
1578 switch (FUNC)
1581 #ifdef HAVE_FORK
1582 #ifdef TARGET_SYS_fork
1583 case TARGET_SYS_fork:
1584 RETVAL = fork ();
1585 break;
1586 #endif
1587 #endif
1589 #ifdef HAVE_EXECVE
1590 #ifdef TARGET_SYS_execv
1591 case TARGET_SYS_execve:
1593 char *path = fetch_str (simulator, PARM1);
1594 char **argv = fetch_argv (simulator, PARM2);
1595 char **envp = fetch_argv (simulator, PARM3);
1596 RETVAL = execve (path, argv, envp);
1597 zfree (path);
1598 freeargv (argv);
1599 freeargv (envp);
1600 break;
1602 #endif
1603 #endif
1605 #if HAVE_EXECV
1606 #ifdef TARGET_SYS_execv
1607 case TARGET_SYS_execv:
1609 char *path = fetch_str (simulator, PARM1);
1610 char **argv = fetch_argv (simulator, PARM2);
1611 RETVAL = execv (path, argv);
1612 zfree (path);
1613 freeargv (argv);
1614 break;
1616 #endif
1617 #endif
1619 #if 0
1620 #ifdef TARGET_SYS_pipe
1621 case TARGET_SYS_pipe:
1623 reg_t buf;
1624 int host_fd[2];
1626 buf = PARM1;
1627 RETVAL = pipe (host_fd);
1628 SW (buf, host_fd[0]);
1629 buf += sizeof(uint16);
1630 SW (buf, host_fd[1]);
1632 break;
1633 #endif
1634 #endif
1636 #if 0
1637 #ifdef TARGET_SYS_wait
1638 case TARGET_SYS_wait:
1640 int status;
1642 RETVAL = wait (&status);
1643 SW (PARM1, status);
1645 break;
1646 #endif
1647 #endif
1649 #ifdef TARGET_SYS_read
1650 case TARGET_SYS_read:
1652 char *buf = zalloc (PARM3);
1653 RETVAL = sim_io_read (simulator, PARM1, buf, PARM3);
1654 sim_write (simulator, PARM2, buf, PARM3);
1655 zfree (buf);
1656 break;
1658 #endif
1660 #ifdef TARGET_SYS_write
1661 case TARGET_SYS_write:
1663 char *buf = zalloc (PARM3);
1664 sim_read (simulator, PARM2, buf, PARM3);
1665 if (PARM1 == 1)
1666 RETVAL = sim_io_write_stdout (simulator, buf, PARM3);
1667 else
1668 RETVAL = sim_io_write (simulator, PARM1, buf, PARM3);
1669 zfree (buf);
1670 break;
1672 #endif
1674 #ifdef TARGET_SYS_lseek
1675 case TARGET_SYS_lseek:
1676 RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3);
1677 break;
1678 #endif
1680 #ifdef TARGET_SYS_close
1681 case TARGET_SYS_close:
1682 RETVAL = sim_io_close (simulator, PARM1);
1683 break;
1684 #endif
1686 #ifdef TARGET_SYS_open
1687 case TARGET_SYS_open:
1689 char *buf = fetch_str (simulator, PARM1);
1690 RETVAL = sim_io_open (simulator, buf, PARM2);
1691 zfree (buf);
1692 break;
1694 #endif
1696 #ifdef TARGET_SYS_exit
1697 case TARGET_SYS_exit:
1698 if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0)
1699 /* get signal encoded by kill */
1700 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1701 sim_signalled, PARM1 & 0xffff);
1702 else if (PARM1 == 0xdead)
1703 /* old libraries */
1704 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1705 sim_stopped, SIM_SIGABRT);
1706 else
1707 /* PARM1 has exit status */
1708 sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC,
1709 sim_exited, PARM1);
1710 break;
1711 #endif
1713 #if !defined(__GO32__) && !defined(_WIN32)
1714 #ifdef TARGET_SYS_stat
1715 case TARGET_SYS_stat: /* added at hmsi */
1716 /* stat system call */
1718 struct stat host_stat;
1719 reg_t buf;
1720 char *path = fetch_str (simulator, PARM1);
1722 RETVAL = stat (path, &host_stat);
1724 zfree (path);
1725 buf = PARM2;
1727 /* Just wild-assed guesses. */
1728 store_mem (buf, 2, host_stat.st_dev);
1729 store_mem (buf + 2, 2, host_stat.st_ino);
1730 store_mem (buf + 4, 4, host_stat.st_mode);
1731 store_mem (buf + 8, 2, host_stat.st_nlink);
1732 store_mem (buf + 10, 2, host_stat.st_uid);
1733 store_mem (buf + 12, 2, host_stat.st_gid);
1734 store_mem (buf + 14, 2, host_stat.st_rdev);
1735 store_mem (buf + 16, 4, host_stat.st_size);
1736 store_mem (buf + 20, 4, host_stat.st_atime);
1737 store_mem (buf + 28, 4, host_stat.st_mtime);
1738 store_mem (buf + 36, 4, host_stat.st_ctime);
1740 break;
1741 #endif
1742 #endif
1744 #ifdef HAVE_CHOWN
1745 #ifdef TARGET_SYS_chown
1746 case TARGET_SYS_chown:
1748 char *path = fetch_str (simulator, PARM1);
1749 RETVAL = chown (path, PARM2, PARM3);
1750 zfree (path);
1752 break;
1753 #endif
1754 #endif
1756 #if HAVE_CHMOD
1757 #ifdef TARGET_SYS_chmod
1758 case TARGET_SYS_chmod:
1760 char *path = fetch_str (simulator, PARM1);
1761 RETVAL = chmod (path, PARM2);
1762 zfree (path);
1764 break;
1765 #endif
1766 #endif
1768 #ifdef TARGET_SYS_time
1769 #if HAVE_TIME
1770 case TARGET_SYS_time:
1772 time_t now;
1773 RETVAL = time (&now);
1774 store_mem (PARM1, 4, now);
1776 break;
1777 #endif
1778 #endif
1780 #if !defined(__GO32__) && !defined(_WIN32)
1781 #ifdef TARGET_SYS_times
1782 case TARGET_SYS_times:
1784 struct tms tms;
1785 RETVAL = times (&tms);
1786 store_mem (PARM1, 4, tms.tms_utime);
1787 store_mem (PARM1 + 4, 4, tms.tms_stime);
1788 store_mem (PARM1 + 8, 4, tms.tms_cutime);
1789 store_mem (PARM1 + 12, 4, tms.tms_cstime);
1790 break;
1792 #endif
1793 #endif
1795 #ifdef TARGET_SYS_gettimeofday
1796 #if !defined(__GO32__) && !defined(_WIN32)
1797 case TARGET_SYS_gettimeofday:
1799 struct timeval t;
1800 struct timezone tz;
1801 RETVAL = gettimeofday (&t, &tz);
1802 store_mem (PARM1, 4, t.tv_sec);
1803 store_mem (PARM1 + 4, 4, t.tv_usec);
1804 store_mem (PARM2, 4, tz.tz_minuteswest);
1805 store_mem (PARM2 + 4, 4, tz.tz_dsttime);
1806 break;
1808 #endif
1809 #endif
1811 #ifdef TARGET_SYS_utime
1812 #if HAVE_UTIME
1813 case TARGET_SYS_utime:
1815 /* Cast the second argument to void *, to avoid type mismatch
1816 if a prototype is present. */
1817 sim_io_error (simulator, "Utime not supported");
1818 /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */
1820 break;
1821 #endif
1822 #endif
1824 default:
1825 abort ();
1827 RETERR = errno;
1828 errno = save_errno;
1830 return 4;
1832 else
1833 { /* Trap 0 -> 30 */
1834 EIPC = PC + 4;
1835 EIPSW = PSW;
1836 /* Mask out EICC */
1837 ECR &= 0xffff0000;
1838 ECR |= 0x40 + OP[0];
1839 /* Flag that we are now doing exception processing. */
1840 PSW |= PSW_EP | PSW_ID;
1841 PC = (OP[0] < 0x10) ? 0x40 : 0x50;
1843 return 0;
1847 /* tst1 reg2, [reg1] */
1849 OP_E607E0 (void)
1851 int temp;
1853 trace_input ("tst1", OP_BIT, 1);
1855 temp = load_mem (State.regs[ OP[0] ], 1);
1857 PSW &= ~PSW_Z;
1858 if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0)
1859 PSW |= PSW_Z;
1861 trace_output (OP_BIT);
1863 return 4;
1866 /* mulu reg1, reg2, reg3 */
1868 OP_22207E0 (void)
1870 trace_input ("mulu", OP_REG_REG_REG, 0);
1872 Multiply64 (0, State.regs[ OP[0] ]);
1874 trace_output (OP_REG_REG_REG);
1876 return 4;
1879 #define BIT_CHANGE_OP( name, binop ) \
1880 unsigned int bit; \
1881 unsigned int temp; \
1883 trace_input (name, OP_BIT_CHANGE, 0); \
1885 bit = 1 << (State.regs[ OP[1] ] & 0x7); \
1886 temp = load_mem (State.regs[ OP[0] ], 1); \
1888 PSW &= ~PSW_Z; \
1889 if ((temp & bit) == 0) \
1890 PSW |= PSW_Z; \
1891 temp binop bit; \
1893 store_mem (State.regs[ OP[0] ], 1, temp); \
1895 trace_output (OP_BIT_CHANGE); \
1897 return 4;
1899 /* clr1 reg2, [reg1] */
1901 OP_E407E0 (void)
1903 BIT_CHANGE_OP ("clr1", &= ~ );
1906 /* not1 reg2, [reg1] */
1908 OP_E207E0 (void)
1910 BIT_CHANGE_OP ("not1", ^= );
1913 /* set1 */
1915 OP_E007E0 (void)
1917 BIT_CHANGE_OP ("set1", |= );
1920 /* sasf */
1922 OP_20007E0 (void)
1924 trace_input ("sasf", OP_EX1, 0);
1926 State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]);
1928 trace_output (OP_EX1);
1930 return 4;
1933 /* This function is courtesy of Sugimoto at NEC, via Seow Tan
1934 (Soew_Tan@el.nec.com) */
1935 void
1936 divun
1938 unsigned int N,
1939 unsigned long int als,
1940 unsigned long int sfi,
1941 unsigned32 /*unsigned long int*/ * quotient_ptr,
1942 unsigned32 /*unsigned long int*/ * remainder_ptr,
1943 int * overflow_ptr
1946 unsigned long ald = sfi >> (N - 1);
1947 unsigned long alo = als;
1948 unsigned int Q = 1;
1949 unsigned int C;
1950 unsigned int S = 0;
1951 unsigned int i;
1952 unsigned int R1 = 1;
1953 unsigned int DBZ = (als == 0) ? 1 : 0;
1954 unsigned long alt = Q ? ~als : als;
1956 /* 1st Loop */
1957 alo = ald + alt + Q;
1958 C = (((alt >> 31) & (ald >> 31))
1959 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
1960 C = C ^ Q;
1961 Q = ~(C ^ S) & 1;
1962 R1 = (alo == 0) ? 0 : (R1 & Q);
1963 if ((S ^ (alo>>31)) && !C)
1965 DBZ = 1;
1967 S = alo >> 31;
1968 sfi = (sfi << (32-N+1)) | Q;
1969 ald = (alo << 1) | (sfi >> 31);
1971 /* 2nd - N-1th Loop */
1972 for (i = 2; i < N; i++)
1974 alt = Q ? ~als : als;
1975 alo = ald + alt + Q;
1976 C = (((alt >> 31) & (ald >> 31))
1977 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
1978 C = C ^ Q;
1979 Q = ~(C ^ S) & 1;
1980 R1 = (alo == 0) ? 0 : (R1 & Q);
1981 if ((S ^ (alo>>31)) && !C && !DBZ)
1983 DBZ = 1;
1985 S = alo >> 31;
1986 sfi = (sfi << 1) | Q;
1987 ald = (alo << 1) | (sfi >> 31);
1990 /* Nth Loop */
1991 alt = Q ? ~als : als;
1992 alo = ald + alt + Q;
1993 C = (((alt >> 31) & (ald >> 31))
1994 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
1995 C = C ^ Q;
1996 Q = ~(C ^ S) & 1;
1997 R1 = (alo == 0) ? 0 : (R1 & Q);
1998 if ((S ^ (alo>>31)) && !C)
2000 DBZ = 1;
2003 * quotient_ptr = (sfi << 1) | Q;
2004 * remainder_ptr = Q ? alo : (alo + als);
2005 * overflow_ptr = DBZ | R1;
2008 /* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */
2009 void
2010 divn
2012 unsigned int N,
2013 unsigned long int als,
2014 unsigned long int sfi,
2015 signed32 /*signed long int*/ * quotient_ptr,
2016 signed32 /*signed long int*/ * remainder_ptr,
2017 int * overflow_ptr
2020 unsigned long ald = (signed long) sfi >> (N - 1);
2021 unsigned long alo = als;
2022 unsigned int SS = als >> 31;
2023 unsigned int SD = sfi >> 31;
2024 unsigned int R1 = 1;
2025 unsigned int OV;
2026 unsigned int DBZ = als == 0 ? 1 : 0;
2027 unsigned int Q = ~(SS ^ SD) & 1;
2028 unsigned int C;
2029 unsigned int S;
2030 unsigned int i;
2031 unsigned long alt = Q ? ~als : als;
2034 /* 1st Loop */
2036 alo = ald + alt + Q;
2037 C = (((alt >> 31) & (ald >> 31))
2038 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2039 Q = C ^ SS;
2040 R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2041 S = alo >> 31;
2042 sfi = (sfi << (32-N+1)) | Q;
2043 ald = (alo << 1) | (sfi >> 31);
2044 if ((alo >> 31) ^ (ald >> 31))
2046 DBZ = 1;
2049 /* 2nd - N-1th Loop */
2051 for (i = 2; i < N; i++)
2053 alt = Q ? ~als : als;
2054 alo = ald + alt + Q;
2055 C = (((alt >> 31) & (ald >> 31))
2056 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2057 Q = C ^ SS;
2058 R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2059 S = alo >> 31;
2060 sfi = (sfi << 1) | Q;
2061 ald = (alo << 1) | (sfi >> 31);
2062 if ((alo >> 31) ^ (ald >> 31))
2064 DBZ = 1;
2068 /* Nth Loop */
2069 alt = Q ? ~als : als;
2070 alo = ald + alt + Q;
2071 C = (((alt >> 31) & (ald >> 31))
2072 | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31)));
2073 Q = C ^ SS;
2074 R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD)));
2075 sfi = (sfi << (32-N+1));
2076 ald = alo;
2078 /* End */
2079 if (alo != 0)
2081 alt = Q ? ~als : als;
2082 alo = ald + alt + Q;
2084 R1 = R1 & ((~alo >> 31) ^ SD);
2085 if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald;
2086 if (N != 32)
2087 ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q;
2088 else
2089 ald = sfi = sfi | Q;
2091 OV = DBZ | ((alo == 0) ? 0 : R1);
2093 * remainder_ptr = alo;
2095 /* Adj */
2096 if (((alo != 0) && ((SS ^ SD) ^ R1))
2097 || ((alo == 0) && (SS ^ R1)))
2098 alo = ald + 1;
2099 else
2100 alo = ald;
2102 OV = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31));
2104 * quotient_ptr = alo;
2105 * overflow_ptr = OV;
2108 /* sdivun imm5, reg1, reg2, reg3 */
2110 OP_1C207E0 (void)
2112 unsigned32 /*unsigned long int*/ quotient;
2113 unsigned32 /*unsigned long int*/ remainder;
2114 unsigned long int divide_by;
2115 unsigned long int divide_this;
2116 int overflow = 0;
2117 unsigned int imm5;
2119 trace_input ("sdivun", OP_IMM_REG_REG_REG, 0);
2121 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2123 divide_by = State.regs[ OP[0] ];
2124 divide_this = State.regs[ OP[1] ] << imm5;
2126 divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2128 State.regs[ OP[1] ] = quotient;
2129 State.regs[ OP[2] >> 11 ] = remainder;
2131 /* Set condition codes. */
2132 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2134 if (overflow) PSW |= PSW_OV;
2135 if (quotient == 0) PSW |= PSW_Z;
2136 if (quotient & 0x80000000) PSW |= PSW_S;
2138 trace_output (OP_IMM_REG_REG_REG);
2140 return 4;
2143 /* sdivn imm5, reg1, reg2, reg3 */
2145 OP_1C007E0 (void)
2147 signed32 /*signed long int*/ quotient;
2148 signed32 /*signed long int*/ remainder;
2149 signed long int divide_by;
2150 signed long int divide_this;
2151 int overflow = 0;
2152 unsigned int imm5;
2154 trace_input ("sdivn", OP_IMM_REG_REG_REG, 0);
2156 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2158 divide_by = State.regs[ OP[0] ];
2159 divide_this = State.regs[ OP[1] ] << imm5;
2161 divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2163 State.regs[ OP[1] ] = quotient;
2164 State.regs[ OP[2] >> 11 ] = remainder;
2166 /* Set condition codes. */
2167 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2169 if (overflow) PSW |= PSW_OV;
2170 if (quotient == 0) PSW |= PSW_Z;
2171 if (quotient < 0) PSW |= PSW_S;
2173 trace_output (OP_IMM_REG_REG_REG);
2175 return 4;
2178 /* sdivhun imm5, reg1, reg2, reg3 */
2180 OP_18207E0 (void)
2182 unsigned32 /*unsigned long int*/ quotient;
2183 unsigned32 /*unsigned long int*/ remainder;
2184 unsigned long int divide_by;
2185 unsigned long int divide_this;
2186 int overflow = 0;
2187 unsigned int imm5;
2189 trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0);
2191 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2193 divide_by = State.regs[ OP[0] ] & 0xffff;
2194 divide_this = State.regs[ OP[1] ] << imm5;
2196 divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2198 State.regs[ OP[1] ] = quotient;
2199 State.regs[ OP[2] >> 11 ] = remainder;
2201 /* Set condition codes. */
2202 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2204 if (overflow) PSW |= PSW_OV;
2205 if (quotient == 0) PSW |= PSW_Z;
2206 if (quotient & 0x80000000) PSW |= PSW_S;
2208 trace_output (OP_IMM_REG_REG_REG);
2210 return 4;
2213 /* sdivhn imm5, reg1, reg2, reg3 */
2215 OP_18007E0 (void)
2217 signed32 /*signed long int*/ quotient;
2218 signed32 /*signed long int*/ remainder;
2219 signed long int divide_by;
2220 signed long int divide_this;
2221 int overflow = 0;
2222 unsigned int imm5;
2224 trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0);
2226 imm5 = 32 - ((OP[3] & 0x3c0000) >> 17);
2228 divide_by = EXTEND16 (State.regs[ OP[0] ]);
2229 divide_this = State.regs[ OP[1] ] << imm5;
2231 divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow);
2233 State.regs[ OP[1] ] = quotient;
2234 State.regs[ OP[2] >> 11 ] = remainder;
2236 /* Set condition codes. */
2237 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2239 if (overflow) PSW |= PSW_OV;
2240 if (quotient == 0) PSW |= PSW_Z;
2241 if (quotient < 0) PSW |= PSW_S;
2243 trace_output (OP_IMM_REG_REG_REG);
2245 return 4;
2248 /* divu reg1, reg2, reg3 */
2250 OP_2C207E0 (void)
2252 unsigned long int quotient;
2253 unsigned long int remainder;
2254 unsigned long int divide_by;
2255 unsigned long int divide_this;
2256 int overflow = 0;
2258 trace_input ("divu", OP_REG_REG_REG, 0);
2260 /* Compute the result. */
2262 divide_by = State.regs[ OP[0] ];
2263 divide_this = State.regs[ OP[1] ];
2265 if (divide_by == 0)
2267 overflow = 1;
2268 divide_by = 1;
2271 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2272 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2274 /* Set condition codes. */
2275 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2277 if (overflow) PSW |= PSW_OV;
2278 if (quotient == 0) PSW |= PSW_Z;
2279 if (quotient & 0x80000000) PSW |= PSW_S;
2281 trace_output (OP_REG_REG_REG);
2283 return 4;
2286 /* div reg1, reg2, reg3 */
2288 OP_2C007E0 (void)
2290 signed long int quotient;
2291 signed long int remainder;
2292 signed long int divide_by;
2293 signed long int divide_this;
2294 int overflow = 0;
2296 trace_input ("div", OP_REG_REG_REG, 0);
2298 /* Compute the result. */
2300 divide_by = State.regs[ OP[0] ];
2301 divide_this = State.regs[ OP[1] ];
2303 if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
2305 overflow = 1;
2306 divide_by = 1;
2309 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2310 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2312 /* Set condition codes. */
2313 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2315 if (overflow) PSW |= PSW_OV;
2316 if (quotient == 0) PSW |= PSW_Z;
2317 if (quotient < 0) PSW |= PSW_S;
2319 trace_output (OP_REG_REG_REG);
2321 return 4;
2324 /* divhu reg1, reg2, reg3 */
2326 OP_28207E0 (void)
2328 unsigned long int quotient;
2329 unsigned long int remainder;
2330 unsigned long int divide_by;
2331 unsigned long int divide_this;
2332 int overflow = 0;
2334 trace_input ("divhu", OP_REG_REG_REG, 0);
2336 /* Compute the result. */
2338 divide_by = State.regs[ OP[0] ] & 0xffff;
2339 divide_this = State.regs[ OP[1] ];
2341 if (divide_by == 0)
2343 overflow = 1;
2344 divide_by = 1;
2347 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2348 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2350 /* Set condition codes. */
2351 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2353 if (overflow) PSW |= PSW_OV;
2354 if (quotient == 0) PSW |= PSW_Z;
2355 if (quotient & 0x80000000) PSW |= PSW_S;
2357 trace_output (OP_REG_REG_REG);
2359 return 4;
2362 /* divh reg1, reg2, reg3 */
2364 OP_28007E0 (void)
2366 signed long int quotient;
2367 signed long int remainder;
2368 signed long int divide_by;
2369 signed long int divide_this;
2370 int overflow = 0;
2372 trace_input ("divh", OP_REG_REG_REG, 0);
2374 /* Compute the result. */
2376 divide_by = State.regs[ OP[0] ];
2377 divide_this = EXTEND16 (State.regs[ OP[1] ]);
2379 if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31)))
2381 overflow = 1;
2382 divide_by = 1;
2385 State.regs[ OP[1] ] = quotient = divide_this / divide_by;
2386 State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by;
2388 /* Set condition codes. */
2389 PSW &= ~(PSW_Z | PSW_S | PSW_OV);
2391 if (overflow) PSW |= PSW_OV;
2392 if (quotient == 0) PSW |= PSW_Z;
2393 if (quotient < 0) PSW |= PSW_S;
2395 trace_output (OP_REG_REG_REG);
2397 return 4;
2400 /* mulu imm9, reg2, reg3 */
2402 OP_24207E0 (void)
2404 trace_input ("mulu", OP_IMM_REG_REG, 0);
2406 Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0));
2408 trace_output (OP_IMM_REG_REG);
2410 return 4;
2413 /* mul imm9, reg2, reg3 */
2415 OP_24007E0 (void)
2417 trace_input ("mul", OP_IMM_REG_REG, 0);
2419 Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)));
2421 trace_output (OP_IMM_REG_REG);
2423 return 4;
2426 /* ld.hu */
2428 OP_107E0 (void)
2430 int adr;
2432 trace_input ("ld.hu", OP_LOAD32, 2);
2434 adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1);
2435 adr &= ~0x1;
2437 State.regs[ OP[1] ] = load_mem (adr, 2);
2439 trace_output (OP_LOAD32);
2441 return 4;
2445 /* ld.bu */
2447 OP_10780 (void)
2449 int adr;
2451 trace_input ("ld.bu", OP_LOAD32, 1);
2453 adr = (State.regs[ OP[0] ]
2454 + (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1)));
2456 State.regs[ OP[1] ] = load_mem (adr, 1);
2458 trace_output (OP_LOAD32);
2460 return 4;
2463 /* prepare list12, imm5, imm32 */
2465 OP_1B0780 (void)
2467 int i;
2469 trace_input ("prepare", OP_PUSHPOP1, 0);
2471 /* Store the registers with lower number registers being placed at higher addresses. */
2472 for (i = 0; i < 12; i++)
2473 if ((OP[3] & (1 << type1_regs[ i ])))
2475 SP -= 4;
2476 store_mem (SP, 4, State.regs[ 20 + i ]);
2479 SP -= (OP[3] & 0x3e) << 1;
2481 EP = load_mem (PC + 4, 4);
2483 trace_output (OP_PUSHPOP1);
2485 return 8;
2488 /* prepare list12, imm5, imm16-32 */
2490 OP_130780 (void)
2492 int i;
2494 trace_input ("prepare", OP_PUSHPOP1, 0);
2496 /* Store the registers with lower number registers being placed at higher addresses. */
2497 for (i = 0; i < 12; i++)
2498 if ((OP[3] & (1 << type1_regs[ i ])))
2500 SP -= 4;
2501 store_mem (SP, 4, State.regs[ 20 + i ]);
2504 SP -= (OP[3] & 0x3e) << 1;
2506 EP = load_mem (PC + 4, 2) << 16;
2508 trace_output (OP_PUSHPOP1);
2510 return 6;
2513 /* prepare list12, imm5, imm16 */
2515 OP_B0780 (void)
2517 int i;
2519 trace_input ("prepare", OP_PUSHPOP1, 0);
2521 /* Store the registers with lower number registers being placed at higher addresses. */
2522 for (i = 0; i < 12; i++)
2523 if ((OP[3] & (1 << type1_regs[ i ])))
2525 SP -= 4;
2526 store_mem (SP, 4, State.regs[ 20 + i ]);
2529 SP -= (OP[3] & 0x3e) << 1;
2531 EP = EXTEND16 (load_mem (PC + 4, 2));
2533 trace_output (OP_PUSHPOP1);
2535 return 6;
2538 /* prepare list12, imm5, sp */
2540 OP_30780 (void)
2542 int i;
2544 trace_input ("prepare", OP_PUSHPOP1, 0);
2546 /* Store the registers with lower number registers being placed at higher addresses. */
2547 for (i = 0; i < 12; i++)
2548 if ((OP[3] & (1 << type1_regs[ i ])))
2550 SP -= 4;
2551 store_mem (SP, 4, State.regs[ 20 + i ]);
2554 SP -= (OP[3] & 0x3e) << 1;
2556 EP = SP;
2558 trace_output (OP_PUSHPOP1);
2560 return 4;
2563 /* mul reg1, reg2, reg3 */
2565 OP_22007E0 (void)
2567 trace_input ("mul", OP_REG_REG_REG, 0);
2569 Multiply64 (1, State.regs[ OP[0] ]);
2571 trace_output (OP_REG_REG_REG);
2573 return 4;
2576 /* popmh list18 */
2578 OP_307F0 (void)
2580 int i;
2582 trace_input ("popmh", OP_PUSHPOP2, 0);
2584 if (OP[3] & (1 << 19))
2586 if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2588 FEPSW = load_mem ( SP & ~ 3, 4);
2589 FEPC = load_mem ((SP + 4) & ~ 3, 4);
2591 else
2593 EIPSW = load_mem ( SP & ~ 3, 4);
2594 EIPC = load_mem ((SP + 4) & ~ 3, 4);
2597 SP += 8;
2600 /* Load the registers with lower number registers being retrieved from higher addresses. */
2601 for (i = 16; i--;)
2602 if ((OP[3] & (1 << type2_regs[ i ])))
2604 State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4);
2605 SP += 4;
2608 trace_output (OP_PUSHPOP2);
2610 return 4;
2613 /* popml lsit18 */
2615 OP_107F0 (void)
2617 int i;
2619 trace_input ("popml", OP_PUSHPOP3, 0);
2621 if (OP[3] & (1 << 19))
2623 if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2625 FEPSW = load_mem ( SP & ~ 3, 4);
2626 FEPC = load_mem ((SP + 4) & ~ 3, 4);
2628 else
2630 EIPSW = load_mem ( SP & ~ 3, 4);
2631 EIPC = load_mem ((SP + 4) & ~ 3, 4);
2634 SP += 8;
2637 if (OP[3] & (1 << 3))
2639 PSW = load_mem (SP & ~ 3, 4);
2640 SP += 4;
2643 /* Load the registers with lower number registers being retrieved from higher addresses. */
2644 for (i = 15; i--;)
2645 if ((OP[3] & (1 << type3_regs[ i ])))
2647 State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4);
2648 SP += 4;
2651 trace_output (OP_PUSHPOP2);
2653 return 4;
2656 /* pushmh list18 */
2658 OP_307E0 (void)
2660 int i;
2662 trace_input ("pushmh", OP_PUSHPOP2, 0);
2664 /* Store the registers with lower number registers being placed at higher addresses. */
2665 for (i = 0; i < 16; i++)
2666 if ((OP[3] & (1 << type2_regs[ i ])))
2668 SP -= 4;
2669 store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]);
2672 if (OP[3] & (1 << 19))
2674 SP -= 8;
2676 if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0))
2678 store_mem ((SP + 4) & ~ 3, 4, FEPC);
2679 store_mem ( SP & ~ 3, 4, FEPSW);
2681 else
2683 store_mem ((SP + 4) & ~ 3, 4, EIPC);
2684 store_mem ( SP & ~ 3, 4, EIPSW);
2688 trace_output (OP_PUSHPOP2);
2690 return 4;