2 * Copyright (c) 1990 The Regents of the University of California.
5 * This code is derived from software contributed to Berkeley by
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid
[] = "@(#)hash_bigkey.c 5.10 (Berkeley) 2/16/93";
39 #endif /* LIBC_SCCS and not lint */
44 * Big key/data handling for the hashing package.
59 #include <sys/param.h>
75 static int collect_key
__P((HTAB
*, BUFHEAD
*, int, DBT
*, int));
76 static int collect_data
__P((HTAB
*, BUFHEAD
*, int, int));
81 * You need to do an insert and the key/data pair is too big
88 __big_insert(hashp
, bufp
, key
, val
)
94 int key_size
, n
, val_size
;
95 u_short space
, move_bytes
, off
;
96 char *cp
, *key_data
, *val_data
;
98 cp
= bufp
->page
; /* Character pointer of p. */
101 key_data
= (char *)key
->data
;
102 key_size
= key
->size
;
103 val_data
= (char *)val
->data
;
104 val_size
= val
->size
;
106 /* First move the Key */
107 for (space
= FREESPACE(p
) - BIGOVERHEAD
; key_size
;
108 space
= FREESPACE(p
) - BIGOVERHEAD
) {
109 move_bytes
= MIN(space
, key_size
);
110 off
= OFFSET(p
) - move_bytes
;
111 memmove(cp
+ off
, key_data
, move_bytes
);
112 key_size
-= move_bytes
;
113 key_data
+= move_bytes
;
117 FREESPACE(p
) = off
- PAGE_META(n
);
120 bufp
= __add_ovflpage(hashp
, bufp
);
126 move_bytes
= MIN(FREESPACE(p
), val_size
);
127 off
= OFFSET(p
) - move_bytes
;
129 memmove(cp
+ off
, val_data
, move_bytes
);
130 val_data
+= move_bytes
;
131 val_size
-= move_bytes
;
132 p
[n
- 2] = FULL_KEY_DATA
;
133 FREESPACE(p
) = FREESPACE(p
) - move_bytes
;
137 p
= (u_short
*)bufp
->page
;
139 bufp
->flags
|= BUF_MOD
;
142 /* Now move the data */
143 for (space
= FREESPACE(p
) - BIGOVERHEAD
; val_size
;
144 space
= FREESPACE(p
) - BIGOVERHEAD
) {
145 move_bytes
= MIN(space
, val_size
);
147 * Here's the hack to make sure that if the data ends on the
148 * same page as the key ends, FREESPACE is at least one.
150 if (space
== val_size
&& val_size
== val
->size
)
152 off
= OFFSET(p
) - move_bytes
;
153 memmove(cp
+ off
, val_data
, move_bytes
);
154 val_size
-= move_bytes
;
155 val_data
+= move_bytes
;
159 FREESPACE(p
) = off
- PAGE_META(n
);
163 bufp
= __add_ovflpage(hashp
, bufp
);
169 p
[n
] = FULL_KEY_DATA
;
170 bufp
->flags
|= BUF_MOD
;
176 * Called when bufp's page contains a partial key (index should be 1)
178 * All pages in the big key/data pair except bufp are freed. We cannot
179 * free bufp because the page pointing to it is lost and we can't get rid
187 __big_delete(hashp
, bufp
)
191 register BUFHEAD
*last_bfp
, *rbufp
;
197 bp
= (u_short
*)bufp
->page
;
201 while (!key_done
|| (bp
[2] != FULL_KEY_DATA
)) {
202 if (bp
[2] == FULL_KEY
|| bp
[2] == FULL_KEY_DATA
)
206 * If there is freespace left on a FULL_KEY_DATA page, then
207 * the data is short and fits entirely on this page, and this
210 if (bp
[2] == FULL_KEY_DATA
&& FREESPACE(bp
))
212 pageno
= bp
[bp
[0] - 1];
213 rbufp
->flags
|= BUF_MOD
;
214 rbufp
= __get_buf(hashp
, pageno
, rbufp
, 0);
216 __free_ovflpage(hashp
, last_bfp
);
219 return (-1); /* Error. */
220 bp
= (u_short
*)rbufp
->page
;
224 * If we get here then rbufp points to the last page of the big
225 * key/data pair. Bufp points to the first one -- it should now be
226 * empty pointing to the next page after this pair. Can't free it
227 * because we don't have the page pointing to it.
230 /* This is information from the last page of the pair. */
234 /* Now, bp is the first page of the pair. */
235 bp
= (u_short
*)bufp
->page
;
237 /* There is an overflow page. */
240 bufp
->ovfl
= rbufp
->ovfl
;
242 /* This is the last page. */
246 FREESPACE(bp
) = hashp
->BSIZE
- PAGE_META(n
);
247 OFFSET(bp
) = hashp
->BSIZE
- 1;
249 bufp
->flags
|= BUF_MOD
;
251 __free_ovflpage(hashp
, rbufp
);
252 if (last_bfp
!= rbufp
)
253 __free_ovflpage(hashp
, last_bfp
);
261 * -1 = get next overflow page
262 * -2 means key not found and this is big key/data
266 __find_bigpair(hashp
, bufp
, ndx
, key
, size
)
273 register u_short
*bp
;
279 bp
= (u_short
*)bufp
->page
;
284 for (bytes
= hashp
->BSIZE
- bp
[ndx
];
285 bytes
<= size
&& bp
[ndx
+ 1] == PARTIAL_KEY
;
286 bytes
= hashp
->BSIZE
- bp
[ndx
]) {
287 if (memcmp(p
+ bp
[ndx
], kkey
, bytes
))
291 bufp
= __get_buf(hashp
, bp
[ndx
+ 2], bufp
, 0);
299 if (bytes
!= ksize
|| memcmp(p
+ bp
[ndx
], kkey
, bytes
)) {
300 #ifdef HASH_STATISTICS
309 * Given the buffer pointer of the first overflow page of a big pair,
310 * find the end of the big pair
312 * This will set bpp to the buffer header of the last page of the big pair.
313 * It will return the pageno of the overflow page following the last page
314 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
318 __find_last_page(hashp
, bpp
)
327 bp
= (u_short
*)bufp
->page
;
332 * This is the last page if: the tag is FULL_KEY_DATA and
333 * either only 2 entries OVFLPAGE marker is explicit there
334 * is freespace on the page.
336 if (bp
[2] == FULL_KEY_DATA
&&
337 ((n
== 2) || (bp
[n
] == OVFLPAGE
) || (FREESPACE(bp
))))
341 bufp
= __get_buf(hashp
, pageno
, bufp
, 0);
343 return (0); /* Need to indicate an error! */
344 bp
= (u_short
*)bufp
->page
;
355 * Return the data for the key/data pair that begins on this page at this
356 * index (index should always be 1).
359 __big_return(hashp
, bufp
, ndx
, val
, set_current
)
367 u_short
*bp
, len
, off
, save_addr
;
370 bp
= (u_short
*)bufp
->page
;
371 while (bp
[ndx
+ 1] == PARTIAL_KEY
) {
372 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
375 bp
= (u_short
*)bufp
->page
;
379 if (bp
[ndx
+ 1] == FULL_KEY
) {
380 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
383 bp
= (u_short
*)bufp
->page
;
385 save_addr
= save_p
->addr
;
389 if (!FREESPACE(bp
)) {
391 * This is a hack. We can't distinguish between
392 * FULL_KEY_DATA that contains complete data or
393 * incomplete data, so we require that if the data
394 * is complete, there is at least 1 byte of free
400 save_addr
= bufp
->addr
;
401 bufp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
404 bp
= (u_short
*)bufp
->page
;
406 /* The data is all on one page. */
409 val
->data
= (u_char
*)tp
+ off
;
410 val
->size
= bp
[1] - off
;
412 if (bp
[0] == 2) { /* No more buckets in
418 hashp
->cpage
= __get_buf(hashp
,
419 bp
[bp
[0] - 1], bufp
, 0);
424 hashp
->cpage
->page
)[0]) {
433 val
->size
= collect_data(hashp
, bufp
, (int)len
, set_current
);
436 if (save_p
->addr
!= save_addr
) {
437 /* We are pretty short on buffers. */
438 errno
= EINVAL
; /* OUT OF BUFFERS */
441 memmove(hashp
->tmp_buf
, (save_p
->page
) + off
, len
);
442 val
->data
= (u_char
*)hashp
->tmp_buf
;
446 * Count how big the total datasize is by recursing through the pages. Then
447 * allocate a buffer and copy the data as you recurse up.
450 collect_data(hashp
, bufp
, len
, set
)
455 register u_short
*bp
;
463 mylen
= hashp
->BSIZE
- bp
[1];
464 save_addr
= bufp
->addr
;
466 if (bp
[2] == FULL_KEY_DATA
) { /* End of Data */
467 totlen
= len
+ mylen
;
469 free(hashp
->tmp_buf
);
470 hashp
->tmp_buf
= malloc(totlen
);
475 if (bp
[0] == 2) { /* No more buckets in chain */
480 __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
483 else if (!((u_short
*)hashp
->cpage
->page
)[0]) {
490 xbp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
491 if (!xbp
|| ((totlen
=
492 collect_data(hashp
, xbp
, len
+ mylen
, set
)) < 1))
495 if (bufp
->addr
!= save_addr
) {
496 errno
= EINVAL
; /* Out of buffers. */
499 memmove(&hashp
->tmp_buf
[len
], (bufp
->page
) + bp
[1], mylen
);
504 * Fill in the key and data for this big pair.
507 __big_keydata(hashp
, bufp
, key
, val
, set
)
513 key
->size
= collect_key(hashp
, bufp
, 0, val
, set
);
516 key
->data
= (u_char
*)hashp
->tmp_key
;
521 * Count how big the total key size is by recursing through the pages. Then
522 * collect the data, allocate a buffer and copy the key as you recurse up.
525 collect_key(hashp
, bufp
, len
, val
, set
)
535 u_short
*bp
, save_addr
;
539 mylen
= hashp
->BSIZE
- bp
[1];
541 save_addr
= bufp
->addr
;
542 totlen
= len
+ mylen
;
543 if (bp
[2] == FULL_KEY
|| bp
[2] == FULL_KEY_DATA
) { /* End of Key. */
545 free(hashp
->tmp_key
);
546 hashp
->tmp_key
= malloc(totlen
);
549 if (__big_return(hashp
, bufp
, 1, val
, set
))
552 xbp
= __get_buf(hashp
, bp
[bp
[0] - 1], bufp
, 0);
553 if (!xbp
|| ((totlen
=
554 collect_key(hashp
, xbp
, totlen
, val
, set
)) < 1))
557 if (bufp
->addr
!= save_addr
) {
558 errno
= EINVAL
; /* MIS -- OUT OF BUFFERS */
561 memmove(&hashp
->tmp_key
[len
], (bufp
->page
) + bp
[1], mylen
);
571 __big_split(hashp
, op
, np
, big_keyp
, addr
, obucket
, ret
)
573 BUFHEAD
*op
; /* Pointer to where to put keys that go in old bucket */
574 BUFHEAD
*np
; /* Pointer to new bucket page */
575 /* Pointer to first page containing the big key/data */
577 int addr
; /* Address of big_keyp */
578 u_int obucket
;/* Old Bucket */
581 register BUFHEAD
*tmpp
;
582 register u_short
*tp
;
586 u_short free_space
, n
, off
;
590 /* Now figure out where the big key/data goes */
591 if (__big_keydata(hashp
, big_keyp
, &key
, &val
, 0))
593 change
= (__call_hash(hashp
, key
.data
, key
.size
) != obucket
);
595 if (ret
->next_addr
= __find_last_page(hashp
, &big_keyp
)) {
597 __get_buf(hashp
, ret
->next_addr
, big_keyp
, 0)))
602 /* Now make one of np/op point to the big key/data pair */
604 assert(np
->ovfl
== NULL
);
611 tmpp
->flags
|= BUF_MOD
;
613 (void)fprintf(stderr
,
614 "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp
->addr
,
615 (tmpp
->ovfl
? tmpp
->ovfl
->addr
: 0), (bp
? bp
->addr
: 0));
617 tmpp
->ovfl
= bp
; /* one of op/np point to big_keyp */
618 tp
= (u_short
*)tmpp
->page
;
620 assert(FREESPACE(tp
) >= OVFLSIZE
);
624 free_space
= FREESPACE(tp
);
625 tp
[++n
] = (u_short
)addr
;
629 FREESPACE(tp
) = free_space
- OVFLSIZE
;
632 * Finally, set the new and old return values. BIG_KEYP contains a
633 * pointer to the last page of the big key_data pair. Make sure that
634 * big_keyp has no following page (2 elements) or create an empty
641 tp
= (u_short
*)big_keyp
->page
;
642 big_keyp
->flags
|= BUF_MOD
;
645 * There may be either one or two offsets on this page. If
646 * there is one, then the overflow page is linked on normally
647 * and tp[4] is OVFLPAGE. If there are two, tp[4] contains
648 * the second offset and needs to get stuffed in after the
649 * next overflow page is added.
652 free_space
= FREESPACE(tp
);
655 FREESPACE(tp
) = free_space
+ OVFLSIZE
;
657 tmpp
= __add_ovflpage(hashp
, big_keyp
);