Fix up mix of man(7)/mdoc(7).
[netbsd-mini2440.git] / sys / kern / kern_proc.c
blobbf46460f57ed87ba3b64d1256e97f45913c0846f
1 /* $NetBSD: kern_proc.c,v 1.158 2009/11/26 00:19:11 matt Exp $ */
3 /*-
4 * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.158 2009/11/26 00:19:11 matt Exp $");
67 #include "opt_kstack.h"
68 #include "opt_maxuprc.h"
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>
74 #include <sys/resourcevar.h>
75 #include <sys/buf.h>
76 #include <sys/acct.h>
77 #include <sys/wait.h>
78 #include <sys/file.h>
79 #include <ufs/ufs/quota.h>
80 #include <sys/uio.h>
81 #include <sys/pool.h>
82 #include <sys/pset.h>
83 #include <sys/mbuf.h>
84 #include <sys/ioctl.h>
85 #include <sys/tty.h>
86 #include <sys/signalvar.h>
87 #include <sys/ras.h>
88 #include <sys/sa.h>
89 #include <sys/savar.h>
90 #include <sys/filedesc.h>
91 #include "sys/syscall_stats.h"
92 #include <sys/kauth.h>
93 #include <sys/sleepq.h>
94 #include <sys/atomic.h>
95 #include <sys/kmem.h>
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_extern.h>
101 * Other process lists
104 struct proclist allproc;
105 struct proclist zombproc; /* resources have been freed */
107 kmutex_t *proc_lock;
110 * pid to proc lookup is done by indexing the pid_table array.
111 * Since pid numbers are only allocated when an empty slot
112 * has been found, there is no need to search any lists ever.
113 * (an orphaned pgrp will lock the slot, a session will lock
114 * the pgrp with the same number.)
115 * If the table is too small it is reallocated with twice the
116 * previous size and the entries 'unzipped' into the two halves.
117 * A linked list of free entries is passed through the pt_proc
118 * field of 'free' items - set odd to be an invalid ptr.
121 struct pid_table {
122 struct proc *pt_proc;
123 struct pgrp *pt_pgrp;
125 #if 1 /* strongly typed cast - should be a noop */
126 static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
127 #else
128 #define p2u(p) ((uint)p)
129 #endif
130 #define P_VALID(p) (!(p2u(p) & 1))
131 #define P_NEXT(p) (p2u(p) >> 1)
132 #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
134 #define INITIAL_PID_TABLE_SIZE (1 << 5)
135 static struct pid_table *pid_table;
136 static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
137 static uint pid_alloc_lim; /* max we allocate before growing table */
138 static uint pid_alloc_cnt; /* number of allocated pids */
140 /* links through free slots - never empty! */
141 static uint next_free_pt, last_free_pt;
142 static pid_t pid_max = PID_MAX; /* largest value we allocate */
144 /* Components of the first process -- never freed. */
146 extern struct emul emul_netbsd; /* defined in kern_exec.c */
148 struct session session0 = {
149 .s_count = 1,
150 .s_sid = 0,
152 struct pgrp pgrp0 = {
153 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
154 .pg_session = &session0,
156 filedesc_t filedesc0;
157 struct cwdinfo cwdi0 = {
158 .cwdi_cmask = CMASK, /* see cmask below */
159 .cwdi_refcnt = 1,
161 struct plimit limit0;
162 struct pstats pstat0;
163 struct vmspace vmspace0;
164 struct sigacts sigacts0;
165 struct turnstile turnstile0;
166 struct proc proc0 = {
167 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
168 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
169 .p_nlwps = 1,
170 .p_nrlwps = 1,
171 .p_nlwpid = 1, /* must match lwp0.l_lid */
172 .p_pgrp = &pgrp0,
173 .p_comm = "system",
175 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
176 * when they exit. init(8) can easily wait them out for us.
178 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
179 .p_stat = SACTIVE,
180 .p_nice = NZERO,
181 .p_emul = &emul_netbsd,
182 .p_cwdi = &cwdi0,
183 .p_limit = &limit0,
184 .p_fd = &filedesc0,
185 .p_vmspace = &vmspace0,
186 .p_stats = &pstat0,
187 .p_sigacts = &sigacts0,
189 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
190 #ifdef LWP0_CPU_INFO
191 .l_cpu = LWP0_CPU_INFO,
192 #endif
193 .l_proc = &proc0,
194 .l_lid = 1,
195 .l_flag = LW_SYSTEM,
196 .l_stat = LSONPROC,
197 .l_ts = &turnstile0,
198 .l_syncobj = &sched_syncobj,
199 .l_refcnt = 1,
200 .l_priority = PRI_USER + NPRI_USER - 1,
201 .l_inheritedprio = -1,
202 .l_class = SCHED_OTHER,
203 .l_psid = PS_NONE,
204 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
205 .l_name = __UNCONST("swapper"),
206 .l_fd = &filedesc0,
208 kauth_cred_t cred0;
210 int nofile = NOFILE;
211 int maxuprc = MAXUPRC;
212 int cmask = CMASK;
214 MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
215 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
218 * The process list descriptors, used during pid allocation and
219 * by sysctl. No locking on this data structure is needed since
220 * it is completely static.
222 const struct proclist_desc proclists[] = {
223 { &allproc },
224 { &zombproc },
225 { NULL },
228 static struct pgrp * pg_remove(pid_t);
229 static void pg_delete(pid_t);
230 static void orphanpg(struct pgrp *);
232 static specificdata_domain_t proc_specificdata_domain;
234 static pool_cache_t proc_cache;
236 static kauth_listener_t proc_listener;
238 static int
239 proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
240 void *arg0, void *arg1, void *arg2, void *arg3)
242 struct proc *p;
243 int result;
245 result = KAUTH_RESULT_DEFER;
246 p = arg0;
248 switch (action) {
249 case KAUTH_PROCESS_CANSEE: {
250 enum kauth_process_req req;
252 req = (enum kauth_process_req)arg1;
254 switch (req) {
255 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
256 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
257 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
258 result = KAUTH_RESULT_ALLOW;
260 break;
262 case KAUTH_REQ_PROCESS_CANSEE_ENV:
263 if (kauth_cred_getuid(cred) !=
264 kauth_cred_getuid(p->p_cred) ||
265 kauth_cred_getuid(cred) !=
266 kauth_cred_getsvuid(p->p_cred))
267 break;
269 result = KAUTH_RESULT_ALLOW;
271 break;
273 default:
274 break;
277 break;
280 case KAUTH_PROCESS_FORK: {
281 int lnprocs = (int)(unsigned long)arg2;
284 * Don't allow a nonprivileged user to use the last few
285 * processes. The variable lnprocs is the current number of
286 * processes, maxproc is the limit.
288 if (__predict_false((lnprocs >= maxproc - 5)))
289 break;
291 result = KAUTH_RESULT_ALLOW;
293 break;
296 case KAUTH_PROCESS_CORENAME:
297 case KAUTH_PROCESS_STOPFLAG:
298 if (proc_uidmatch(cred, p->p_cred) == 0)
299 result = KAUTH_RESULT_ALLOW;
301 break;
303 default:
304 break;
307 return result;
311 * Initialize global process hashing structures.
313 void
314 procinit(void)
316 const struct proclist_desc *pd;
317 u_int i;
318 #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
320 for (pd = proclists; pd->pd_list != NULL; pd++)
321 LIST_INIT(pd->pd_list);
323 proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
324 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
325 * sizeof(struct pid_table), KM_SLEEP);
327 /* Set free list running through table...
328 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
329 for (i = 0; i <= pid_tbl_mask; i++) {
330 pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
331 pid_table[i].pt_pgrp = 0;
333 /* slot 0 is just grabbed */
334 next_free_pt = 1;
335 /* Need to fix last entry. */
336 last_free_pt = pid_tbl_mask;
337 pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
338 /* point at which we grow table - to avoid reusing pids too often */
339 pid_alloc_lim = pid_tbl_mask - 1;
340 #undef LINK_EMPTY
342 proc_specificdata_domain = specificdata_domain_create();
343 KASSERT(proc_specificdata_domain != NULL);
345 proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0,
346 "procpl", NULL, IPL_NONE, NULL, NULL, NULL);
348 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
349 proc_listener_cb, NULL);
353 * Initialize process 0.
355 void
356 proc0_init(void)
358 struct proc *p;
359 struct pgrp *pg;
360 struct lwp *l;
361 rlim_t lim;
362 int i;
364 p = &proc0;
365 pg = &pgrp0;
366 l = &lwp0;
368 KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
369 KASSERT(l->l_lid == p->p_nlwpid);
371 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
372 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
373 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
375 rw_init(&p->p_reflock);
376 cv_init(&p->p_waitcv, "wait");
377 cv_init(&p->p_lwpcv, "lwpwait");
379 LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
381 pid_table[0].pt_proc = p;
382 LIST_INSERT_HEAD(&allproc, p, p_list);
383 LIST_INSERT_HEAD(&alllwp, l, l_list);
385 pid_table[0].pt_pgrp = pg;
386 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
388 #ifdef __HAVE_SYSCALL_INTERN
389 (*p->p_emul->e_syscall_intern)(p);
390 #endif
392 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
393 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
394 cv_init(&l->l_sigcv, "sigwait");
396 /* Create credentials. */
397 cred0 = kauth_cred_alloc();
398 p->p_cred = cred0;
399 kauth_cred_hold(cred0);
400 l->l_cred = cred0;
402 /* Create the CWD info. */
403 rw_init(&cwdi0.cwdi_lock);
405 /* Create the limits structures. */
406 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
407 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++)
408 limit0.pl_rlimit[i].rlim_cur =
409 limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
411 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
412 limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
413 maxfiles < nofile ? maxfiles : nofile;
415 limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
416 limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
417 maxproc < maxuprc ? maxproc : maxuprc;
419 lim = ptoa(uvmexp.free);
420 limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
421 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
422 limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
423 limit0.pl_corename = defcorename;
424 limit0.pl_refcnt = 1;
425 limit0.pl_sv_limit = NULL;
427 /* Configure virtual memory system, set vm rlimits. */
428 uvm_init_limits(p);
430 /* Initialize file descriptor table for proc0. */
431 fd_init(&filedesc0);
434 * Initialize proc0's vmspace, which uses the kernel pmap.
435 * All kernel processes (which never have user space mappings)
436 * share proc0's vmspace, and thus, the kernel pmap.
438 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
439 trunc_page(VM_MAX_ADDRESS));
441 /* Initialize signal state for proc0. XXX IPL_SCHED */
442 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
443 siginit(p);
445 proc_initspecific(p);
446 lwp_initspecific(l);
448 SYSCALL_TIME_LWP_INIT(l);
452 * Session reference counting.
455 void
456 proc_sesshold(struct session *ss)
459 KASSERT(mutex_owned(proc_lock));
460 ss->s_count++;
463 void
464 proc_sessrele(struct session *ss)
467 KASSERT(mutex_owned(proc_lock));
469 * We keep the pgrp with the same id as the session in order to
470 * stop a process being given the same pid. Since the pgrp holds
471 * a reference to the session, it must be a 'zombie' pgrp by now.
473 if (--ss->s_count == 0) {
474 struct pgrp *pg;
476 pg = pg_remove(ss->s_sid);
477 mutex_exit(proc_lock);
479 kmem_free(pg, sizeof(struct pgrp));
480 kmem_free(ss, sizeof(struct session));
481 } else {
482 mutex_exit(proc_lock);
487 * Check that the specified process group is in the session of the
488 * specified process.
489 * Treats -ve ids as process ids.
490 * Used to validate TIOCSPGRP requests.
493 pgid_in_session(struct proc *p, pid_t pg_id)
495 struct pgrp *pgrp;
496 struct session *session;
497 int error;
499 mutex_enter(proc_lock);
500 if (pg_id < 0) {
501 struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
502 if (p1 == NULL)
503 return EINVAL;
504 pgrp = p1->p_pgrp;
505 } else {
506 pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
507 if (pgrp == NULL)
508 return EINVAL;
510 session = pgrp->pg_session;
511 if (session != p->p_pgrp->pg_session)
512 error = EPERM;
513 else
514 error = 0;
515 mutex_exit(proc_lock);
517 return error;
521 * p_inferior: is p an inferior of q?
523 static inline bool
524 p_inferior(struct proc *p, struct proc *q)
527 KASSERT(mutex_owned(proc_lock));
529 for (; p != q; p = p->p_pptr)
530 if (p->p_pid == 0)
531 return false;
532 return true;
536 * Locate a process by number
538 struct proc *
539 p_find(pid_t pid, uint flags)
541 struct proc *p;
542 char stat;
544 if (!(flags & PFIND_LOCKED))
545 mutex_enter(proc_lock);
547 p = pid_table[pid & pid_tbl_mask].pt_proc;
549 /* Only allow live processes to be found by pid. */
550 /* XXXSMP p_stat */
551 if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
552 stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
553 (stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
554 if (flags & PFIND_UNLOCK_OK)
555 mutex_exit(proc_lock);
556 return p;
558 if (flags & PFIND_UNLOCK_FAIL)
559 mutex_exit(proc_lock);
560 return NULL;
565 * Locate a process group by number
567 struct pgrp *
568 pg_find(pid_t pgid, uint flags)
570 struct pgrp *pg;
572 if (!(flags & PFIND_LOCKED))
573 mutex_enter(proc_lock);
574 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
576 * Can't look up a pgrp that only exists because the session
577 * hasn't died yet (traditional)
579 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
580 if (flags & PFIND_UNLOCK_FAIL)
581 mutex_exit(proc_lock);
582 return NULL;
585 if (flags & PFIND_UNLOCK_OK)
586 mutex_exit(proc_lock);
587 return pg;
590 static void
591 expand_pid_table(void)
593 size_t pt_size, tsz;
594 struct pid_table *n_pt, *new_pt;
595 struct proc *proc;
596 struct pgrp *pgrp;
597 pid_t pid;
598 u_int i;
600 pt_size = pid_tbl_mask + 1;
601 tsz = pt_size * 2 * sizeof(struct pid_table);
602 new_pt = kmem_alloc(tsz, KM_SLEEP);
604 mutex_enter(proc_lock);
605 if (pt_size != pid_tbl_mask + 1) {
606 /* Another process beat us to it... */
607 mutex_exit(proc_lock);
608 kmem_free(new_pt, tsz);
609 return;
613 * Copy entries from old table into new one.
614 * If 'pid' is 'odd' we need to place in the upper half,
615 * even pid's to the lower half.
616 * Free items stay in the low half so we don't have to
617 * fixup the reference to them.
618 * We stuff free items on the front of the freelist
619 * because we can't write to unmodified entries.
620 * Processing the table backwards maintains a semblance
621 * of issueing pid numbers that increase with time.
623 i = pt_size - 1;
624 n_pt = new_pt + i;
625 for (; ; i--, n_pt--) {
626 proc = pid_table[i].pt_proc;
627 pgrp = pid_table[i].pt_pgrp;
628 if (!P_VALID(proc)) {
629 /* Up 'use count' so that link is valid */
630 pid = (P_NEXT(proc) + pt_size) & ~pt_size;
631 proc = P_FREE(pid);
632 if (pgrp)
633 pid = pgrp->pg_id;
634 } else
635 pid = proc->p_pid;
637 /* Save entry in appropriate half of table */
638 n_pt[pid & pt_size].pt_proc = proc;
639 n_pt[pid & pt_size].pt_pgrp = pgrp;
641 /* Put other piece on start of free list */
642 pid = (pid ^ pt_size) & ~pid_tbl_mask;
643 n_pt[pid & pt_size].pt_proc =
644 P_FREE((pid & ~pt_size) | next_free_pt);
645 n_pt[pid & pt_size].pt_pgrp = 0;
646 next_free_pt = i | (pid & pt_size);
647 if (i == 0)
648 break;
651 /* Save old table size and switch tables */
652 tsz = pt_size * sizeof(struct pid_table);
653 n_pt = pid_table;
654 pid_table = new_pt;
655 pid_tbl_mask = pt_size * 2 - 1;
658 * pid_max starts as PID_MAX (= 30000), once we have 16384
659 * allocated pids we need it to be larger!
661 if (pid_tbl_mask > PID_MAX) {
662 pid_max = pid_tbl_mask * 2 + 1;
663 pid_alloc_lim |= pid_alloc_lim << 1;
664 } else
665 pid_alloc_lim <<= 1; /* doubles number of free slots... */
667 mutex_exit(proc_lock);
668 kmem_free(n_pt, tsz);
671 struct proc *
672 proc_alloc(void)
674 struct proc *p;
675 int nxt;
676 pid_t pid;
677 struct pid_table *pt;
679 p = pool_cache_get(proc_cache, PR_WAITOK);
680 p->p_stat = SIDL; /* protect against others */
682 proc_initspecific(p);
683 /* allocate next free pid */
685 for (;;expand_pid_table()) {
686 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
687 /* ensure pids cycle through 2000+ values */
688 continue;
689 mutex_enter(proc_lock);
690 pt = &pid_table[next_free_pt];
691 #ifdef DIAGNOSTIC
692 if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
693 panic("proc_alloc: slot busy");
694 #endif
695 nxt = P_NEXT(pt->pt_proc);
696 if (nxt & pid_tbl_mask)
697 break;
698 /* Table full - expand (NB last entry not used....) */
699 mutex_exit(proc_lock);
702 /* pid is 'saved use count' + 'size' + entry */
703 pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
704 if ((uint)pid > (uint)pid_max)
705 pid &= pid_tbl_mask;
706 p->p_pid = pid;
707 next_free_pt = nxt & pid_tbl_mask;
709 /* Grab table slot */
710 pt->pt_proc = p;
711 pid_alloc_cnt++;
713 mutex_exit(proc_lock);
715 return p;
719 * Free a process id - called from proc_free (in kern_exit.c)
721 * Called with the proc_lock held.
723 void
724 proc_free_pid(struct proc *p)
726 pid_t pid = p->p_pid;
727 struct pid_table *pt;
729 KASSERT(mutex_owned(proc_lock));
731 pt = &pid_table[pid & pid_tbl_mask];
732 #ifdef DIAGNOSTIC
733 if (__predict_false(pt->pt_proc != p))
734 panic("proc_free: pid_table mismatch, pid %x, proc %p",
735 pid, p);
736 #endif
737 /* save pid use count in slot */
738 pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
740 if (pt->pt_pgrp == NULL) {
741 /* link last freed entry onto ours */
742 pid &= pid_tbl_mask;
743 pt = &pid_table[last_free_pt];
744 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
745 last_free_pt = pid;
746 pid_alloc_cnt--;
749 atomic_dec_uint(&nprocs);
752 void
753 proc_free_mem(struct proc *p)
756 pool_cache_put(proc_cache, p);
760 * proc_enterpgrp: move p to a new or existing process group (and session).
762 * If we are creating a new pgrp, the pgid should equal
763 * the calling process' pid.
764 * If is only valid to enter a process group that is in the session
765 * of the process.
766 * Also mksess should only be set if we are creating a process group
768 * Only called from sys_setsid and sys_setpgid.
771 proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess)
773 struct pgrp *new_pgrp, *pgrp;
774 struct session *sess;
775 struct proc *p;
776 int rval;
777 pid_t pg_id = NO_PGID;
779 sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL;
781 /* Allocate data areas we might need before doing any validity checks */
782 mutex_enter(proc_lock); /* Because pid_table might change */
783 if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
784 mutex_exit(proc_lock);
785 new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP);
786 mutex_enter(proc_lock);
787 } else
788 new_pgrp = NULL;
789 rval = EPERM; /* most common error (to save typing) */
791 /* Check pgrp exists or can be created */
792 pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
793 if (pgrp != NULL && pgrp->pg_id != pgid)
794 goto done;
796 /* Can only set another process under restricted circumstances. */
797 if (pid != curp->p_pid) {
798 /* must exist and be one of our children... */
799 if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
800 !p_inferior(p, curp)) {
801 rval = ESRCH;
802 goto done;
804 /* ... in the same session... */
805 if (sess != NULL || p->p_session != curp->p_session)
806 goto done;
807 /* ... existing pgid must be in same session ... */
808 if (pgrp != NULL && pgrp->pg_session != p->p_session)
809 goto done;
810 /* ... and not done an exec. */
811 if (p->p_flag & PK_EXEC) {
812 rval = EACCES;
813 goto done;
815 } else {
816 /* ... setsid() cannot re-enter a pgrp */
817 if (mksess && (curp->p_pgid == curp->p_pid ||
818 pg_find(curp->p_pid, PFIND_LOCKED)))
819 goto done;
820 p = curp;
823 /* Changing the process group/session of a session
824 leader is definitely off limits. */
825 if (SESS_LEADER(p)) {
826 if (sess == NULL && p->p_pgrp == pgrp)
827 /* unless it's a definite noop */
828 rval = 0;
829 goto done;
832 /* Can only create a process group with id of process */
833 if (pgrp == NULL && pgid != pid)
834 goto done;
836 /* Can only create a session if creating pgrp */
837 if (sess != NULL && pgrp != NULL)
838 goto done;
840 /* Check we allocated memory for a pgrp... */
841 if (pgrp == NULL && new_pgrp == NULL)
842 goto done;
844 /* Don't attach to 'zombie' pgrp */
845 if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
846 goto done;
848 /* Expect to succeed now */
849 rval = 0;
851 if (pgrp == p->p_pgrp)
852 /* nothing to do */
853 goto done;
855 /* Ok all setup, link up required structures */
857 if (pgrp == NULL) {
858 pgrp = new_pgrp;
859 new_pgrp = NULL;
860 if (sess != NULL) {
861 sess->s_sid = p->p_pid;
862 sess->s_leader = p;
863 sess->s_count = 1;
864 sess->s_ttyvp = NULL;
865 sess->s_ttyp = NULL;
866 sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
867 memcpy(sess->s_login, p->p_session->s_login,
868 sizeof(sess->s_login));
869 p->p_lflag &= ~PL_CONTROLT;
870 } else {
871 sess = p->p_pgrp->pg_session;
872 proc_sesshold(sess);
874 pgrp->pg_session = sess;
875 sess = NULL;
877 pgrp->pg_id = pgid;
878 LIST_INIT(&pgrp->pg_members);
879 #ifdef DIAGNOSTIC
880 if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
881 panic("enterpgrp: pgrp table slot in use");
882 if (__predict_false(mksess && p != curp))
883 panic("enterpgrp: mksession and p != curproc");
884 #endif
885 pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
886 pgrp->pg_jobc = 0;
890 * Adjust eligibility of affected pgrps to participate in job control.
891 * Increment eligibility counts before decrementing, otherwise we
892 * could reach 0 spuriously during the first call.
894 fixjobc(p, pgrp, 1);
895 fixjobc(p, p->p_pgrp, 0);
897 /* Interlock with ttread(). */
898 mutex_spin_enter(&tty_lock);
900 /* Move process to requested group. */
901 LIST_REMOVE(p, p_pglist);
902 if (LIST_EMPTY(&p->p_pgrp->pg_members))
903 /* defer delete until we've dumped the lock */
904 pg_id = p->p_pgrp->pg_id;
905 p->p_pgrp = pgrp;
906 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
908 /* Done with the swap; we can release the tty mutex. */
909 mutex_spin_exit(&tty_lock);
911 done:
912 if (pg_id != NO_PGID) {
913 /* Releases proc_lock. */
914 pg_delete(pg_id);
915 } else {
916 mutex_exit(proc_lock);
918 if (sess != NULL)
919 kmem_free(sess, sizeof(*sess));
920 if (new_pgrp != NULL)
921 kmem_free(new_pgrp, sizeof(*new_pgrp));
922 #ifdef DEBUG_PGRP
923 if (__predict_false(rval))
924 printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
925 pid, pgid, mksess, curp->p_pid, rval);
926 #endif
927 return rval;
931 * proc_leavepgrp: remove a process from its process group.
932 * => must be called with the proc_lock held, which will be released;
934 void
935 proc_leavepgrp(struct proc *p)
937 struct pgrp *pgrp;
939 KASSERT(mutex_owned(proc_lock));
941 /* Interlock with ttread() */
942 mutex_spin_enter(&tty_lock);
943 pgrp = p->p_pgrp;
944 LIST_REMOVE(p, p_pglist);
945 p->p_pgrp = NULL;
946 mutex_spin_exit(&tty_lock);
948 if (LIST_EMPTY(&pgrp->pg_members)) {
949 /* Releases proc_lock. */
950 pg_delete(pgrp->pg_id);
951 } else {
952 mutex_exit(proc_lock);
957 * pg_remove: remove a process group from the table.
958 * => must be called with the proc_lock held;
959 * => returns process group to free;
961 static struct pgrp *
962 pg_remove(pid_t pg_id)
964 struct pgrp *pgrp;
965 struct pid_table *pt;
967 KASSERT(mutex_owned(proc_lock));
969 pt = &pid_table[pg_id & pid_tbl_mask];
970 pgrp = pt->pt_pgrp;
972 KASSERT(pgrp != NULL);
973 KASSERT(pgrp->pg_id == pg_id);
974 KASSERT(LIST_EMPTY(&pgrp->pg_members));
976 pt->pt_pgrp = NULL;
978 if (!P_VALID(pt->pt_proc)) {
979 /* Orphaned pgrp, put slot onto free list. */
980 KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0);
981 pg_id &= pid_tbl_mask;
982 pt = &pid_table[last_free_pt];
983 pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
984 last_free_pt = pg_id;
985 pid_alloc_cnt--;
987 return pgrp;
991 * pg_delete: delete and free a process group.
992 * => must be called with the proc_lock held, which will be released.
994 static void
995 pg_delete(pid_t pg_id)
997 struct pgrp *pg;
998 struct tty *ttyp;
999 struct session *ss;
1001 KASSERT(mutex_owned(proc_lock));
1003 pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
1004 if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) {
1005 mutex_exit(proc_lock);
1006 return;
1009 ss = pg->pg_session;
1011 /* Remove reference (if any) from tty to this process group */
1012 mutex_spin_enter(&tty_lock);
1013 ttyp = ss->s_ttyp;
1014 if (ttyp != NULL && ttyp->t_pgrp == pg) {
1015 ttyp->t_pgrp = NULL;
1016 KASSERT(ttyp->t_session == ss);
1018 mutex_spin_exit(&tty_lock);
1021 * The leading process group in a session is freed by proc_sessrele(),
1022 * if last reference. Note: proc_sessrele() releases proc_lock.
1024 pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL;
1025 proc_sessrele(ss);
1027 if (pg != NULL) {
1028 /* Free it, if was not done by proc_sessrele(). */
1029 kmem_free(pg, sizeof(struct pgrp));
1034 * Adjust pgrp jobc counters when specified process changes process group.
1035 * We count the number of processes in each process group that "qualify"
1036 * the group for terminal job control (those with a parent in a different
1037 * process group of the same session). If that count reaches zero, the
1038 * process group becomes orphaned. Check both the specified process'
1039 * process group and that of its children.
1040 * entering == 0 => p is leaving specified group.
1041 * entering == 1 => p is entering specified group.
1043 * Call with proc_lock held.
1045 void
1046 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
1048 struct pgrp *hispgrp;
1049 struct session *mysession = pgrp->pg_session;
1050 struct proc *child;
1052 KASSERT(mutex_owned(proc_lock));
1055 * Check p's parent to see whether p qualifies its own process
1056 * group; if so, adjust count for p's process group.
1058 hispgrp = p->p_pptr->p_pgrp;
1059 if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
1060 if (entering) {
1061 pgrp->pg_jobc++;
1062 p->p_lflag &= ~PL_ORPHANPG;
1063 } else if (--pgrp->pg_jobc == 0)
1064 orphanpg(pgrp);
1068 * Check this process' children to see whether they qualify
1069 * their process groups; if so, adjust counts for children's
1070 * process groups.
1072 LIST_FOREACH(child, &p->p_children, p_sibling) {
1073 hispgrp = child->p_pgrp;
1074 if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
1075 !P_ZOMBIE(child)) {
1076 if (entering) {
1077 child->p_lflag &= ~PL_ORPHANPG;
1078 hispgrp->pg_jobc++;
1079 } else if (--hispgrp->pg_jobc == 0)
1080 orphanpg(hispgrp);
1086 * A process group has become orphaned;
1087 * if there are any stopped processes in the group,
1088 * hang-up all process in that group.
1090 * Call with proc_lock held.
1092 static void
1093 orphanpg(struct pgrp *pg)
1095 struct proc *p;
1097 KASSERT(mutex_owned(proc_lock));
1099 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1100 if (p->p_stat == SSTOP) {
1101 p->p_lflag |= PL_ORPHANPG;
1102 psignal(p, SIGHUP);
1103 psignal(p, SIGCONT);
1108 #ifdef DDB
1109 #include <ddb/db_output.h>
1110 void pidtbl_dump(void);
1111 void
1112 pidtbl_dump(void)
1114 struct pid_table *pt;
1115 struct proc *p;
1116 struct pgrp *pgrp;
1117 int id;
1119 db_printf("pid table %p size %x, next %x, last %x\n",
1120 pid_table, pid_tbl_mask+1,
1121 next_free_pt, last_free_pt);
1122 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1123 p = pt->pt_proc;
1124 if (!P_VALID(p) && !pt->pt_pgrp)
1125 continue;
1126 db_printf(" id %x: ", id);
1127 if (P_VALID(p))
1128 db_printf("proc %p id %d (0x%x) %s\n",
1129 p, p->p_pid, p->p_pid, p->p_comm);
1130 else
1131 db_printf("next %x use %x\n",
1132 P_NEXT(p) & pid_tbl_mask,
1133 P_NEXT(p) & ~pid_tbl_mask);
1134 if ((pgrp = pt->pt_pgrp)) {
1135 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1136 pgrp->pg_session, pgrp->pg_session->s_sid,
1137 pgrp->pg_session->s_count,
1138 pgrp->pg_session->s_login);
1139 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1140 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1141 LIST_FIRST(&pgrp->pg_members));
1142 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1143 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1144 p->p_pid, p, p->p_pgrp, p->p_comm);
1149 #endif /* DDB */
1151 #ifdef KSTACK_CHECK_MAGIC
1153 #define KSTACK_MAGIC 0xdeadbeaf
1155 /* XXX should be per process basis? */
1156 static int kstackleftmin = KSTACK_SIZE;
1157 static int kstackleftthres = KSTACK_SIZE / 8;
1159 void
1160 kstack_setup_magic(const struct lwp *l)
1162 uint32_t *ip;
1163 uint32_t const *end;
1165 KASSERT(l != NULL);
1166 KASSERT(l != &lwp0);
1169 * fill all the stack with magic number
1170 * so that later modification on it can be detected.
1172 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1173 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1174 for (; ip < end; ip++) {
1175 *ip = KSTACK_MAGIC;
1179 void
1180 kstack_check_magic(const struct lwp *l)
1182 uint32_t const *ip, *end;
1183 int stackleft;
1185 KASSERT(l != NULL);
1187 /* don't check proc0 */ /*XXX*/
1188 if (l == &lwp0)
1189 return;
1191 #ifdef __MACHINE_STACK_GROWS_UP
1192 /* stack grows upwards (eg. hppa) */
1193 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1194 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1195 for (ip--; ip >= end; ip--)
1196 if (*ip != KSTACK_MAGIC)
1197 break;
1199 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1200 #else /* __MACHINE_STACK_GROWS_UP */
1201 /* stack grows downwards (eg. i386) */
1202 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1203 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1204 for (; ip < end; ip++)
1205 if (*ip != KSTACK_MAGIC)
1206 break;
1208 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1209 #endif /* __MACHINE_STACK_GROWS_UP */
1211 if (kstackleftmin > stackleft) {
1212 kstackleftmin = stackleft;
1213 if (stackleft < kstackleftthres)
1214 printf("warning: kernel stack left %d bytes"
1215 "(pid %u:lid %u)\n", stackleft,
1216 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1219 if (stackleft <= 0) {
1220 panic("magic on the top of kernel stack changed for "
1221 "pid %u, lid %u: maybe kernel stack overflow",
1222 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1225 #endif /* KSTACK_CHECK_MAGIC */
1228 proclist_foreach_call(struct proclist *list,
1229 int (*callback)(struct proc *, void *arg), void *arg)
1231 struct proc marker;
1232 struct proc *p;
1233 int ret = 0;
1235 marker.p_flag = PK_MARKER;
1236 mutex_enter(proc_lock);
1237 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1238 if (p->p_flag & PK_MARKER) {
1239 p = LIST_NEXT(p, p_list);
1240 continue;
1242 LIST_INSERT_AFTER(p, &marker, p_list);
1243 ret = (*callback)(p, arg);
1244 KASSERT(mutex_owned(proc_lock));
1245 p = LIST_NEXT(&marker, p_list);
1246 LIST_REMOVE(&marker, p_list);
1248 mutex_exit(proc_lock);
1250 return ret;
1254 proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1257 /* XXXCDC: how should locking work here? */
1259 /* curproc exception is for coredump. */
1261 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1262 (p->p_vmspace->vm_refcnt < 1)) { /* XXX */
1263 return EFAULT;
1266 uvmspace_addref(p->p_vmspace);
1267 *vm = p->p_vmspace;
1269 return 0;
1273 * Acquire a write lock on the process credential.
1275 void
1276 proc_crmod_enter(void)
1278 struct lwp *l = curlwp;
1279 struct proc *p = l->l_proc;
1280 struct plimit *lim;
1281 kauth_cred_t oc;
1282 char *cn;
1284 /* Reset what needs to be reset in plimit. */
1285 if (p->p_limit->pl_corename != defcorename) {
1286 lim_privatise(p, false);
1287 lim = p->p_limit;
1288 mutex_enter(&lim->pl_lock);
1289 cn = lim->pl_corename;
1290 lim->pl_corename = defcorename;
1291 mutex_exit(&lim->pl_lock);
1292 if (cn != defcorename)
1293 free(cn, M_TEMP);
1296 mutex_enter(p->p_lock);
1298 /* Ensure the LWP cached credentials are up to date. */
1299 if ((oc = l->l_cred) != p->p_cred) {
1300 kauth_cred_hold(p->p_cred);
1301 l->l_cred = p->p_cred;
1302 kauth_cred_free(oc);
1308 * Set in a new process credential, and drop the write lock. The credential
1309 * must have a reference already. Optionally, free a no-longer required
1310 * credential. The scheduler also needs to inspect p_cred, so we also
1311 * briefly acquire the sched state mutex.
1313 void
1314 proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1316 struct lwp *l = curlwp, *l2;
1317 struct proc *p = l->l_proc;
1318 kauth_cred_t oc;
1320 KASSERT(mutex_owned(p->p_lock));
1322 /* Is there a new credential to set in? */
1323 if (scred != NULL) {
1324 p->p_cred = scred;
1325 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1326 if (l2 != l)
1327 l2->l_prflag |= LPR_CRMOD;
1330 /* Ensure the LWP cached credentials are up to date. */
1331 if ((oc = l->l_cred) != scred) {
1332 kauth_cred_hold(scred);
1333 l->l_cred = scred;
1335 } else
1336 oc = NULL; /* XXXgcc */
1338 if (sugid) {
1340 * Mark process as having changed credentials, stops
1341 * tracing etc.
1343 p->p_flag |= PK_SUGID;
1346 mutex_exit(p->p_lock);
1348 /* If there is a credential to be released, free it now. */
1349 if (fcred != NULL) {
1350 KASSERT(scred != NULL);
1351 kauth_cred_free(fcred);
1352 if (oc != scred)
1353 kauth_cred_free(oc);
1358 * proc_specific_key_create --
1359 * Create a key for subsystem proc-specific data.
1362 proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1365 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1369 * proc_specific_key_delete --
1370 * Delete a key for subsystem proc-specific data.
1372 void
1373 proc_specific_key_delete(specificdata_key_t key)
1376 specificdata_key_delete(proc_specificdata_domain, key);
1380 * proc_initspecific --
1381 * Initialize a proc's specificdata container.
1383 void
1384 proc_initspecific(struct proc *p)
1386 int error;
1388 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1389 KASSERT(error == 0);
1393 * proc_finispecific --
1394 * Finalize a proc's specificdata container.
1396 void
1397 proc_finispecific(struct proc *p)
1400 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1404 * proc_getspecific --
1405 * Return proc-specific data corresponding to the specified key.
1407 void *
1408 proc_getspecific(struct proc *p, specificdata_key_t key)
1411 return (specificdata_getspecific(proc_specificdata_domain,
1412 &p->p_specdataref, key));
1416 * proc_setspecific --
1417 * Set proc-specific data corresponding to the specified key.
1419 void
1420 proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1423 specificdata_setspecific(proc_specificdata_domain,
1424 &p->p_specdataref, key, data);
1428 proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1430 int r = 0;
1432 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1433 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1435 * suid proc of ours or proc not ours
1437 r = EPERM;
1438 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1440 * sgid proc has sgid back to us temporarily
1442 r = EPERM;
1443 } else {
1445 * our rgid must be in target's group list (ie,
1446 * sub-processes started by a sgid process)
1448 int ismember = 0;
1450 if (kauth_cred_ismember_gid(cred,
1451 kauth_cred_getgid(target), &ismember) != 0 ||
1452 !ismember)
1453 r = EPERM;
1456 return (r);